blob: 749830bc0da2cf32f8881e087c609d0a86253455 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh9a324642003-09-06 20:12:01 +000012** The code in this file implements execution method of the
13** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14** handles housekeeping details such as creating and deleting
15** VDBE instances. This file is solely interested in executing
16** the VDBE program.
17**
danielk1977fc57d7b2004-05-26 02:04:57 +000018** In the external interface, an "sqlite3_stmt*" is an opaque pointer
drh9a324642003-09-06 20:12:01 +000019** to a VDBE.
drh75897232000-05-29 14:26:00 +000020**
21** The SQL parser generates a program which is then executed by
22** the VDBE to do the work of the SQL statement. VDBE programs are
23** similar in form to assembly language. The program consists of
24** a linear sequence of operations. Each operation has an opcode
drh9cbf3422008-01-17 16:22:13 +000025** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26** is a null-terminated string. Operand P5 is an unsigned character.
27** Few opcodes use all 5 operands.
drh75897232000-05-29 14:26:00 +000028**
drh9cbf3422008-01-17 16:22:13 +000029** Computation results are stored on a set of registers numbered beginning
30** with 1 and going up to Vdbe.nMem. Each register can store
31** either an integer, a null-terminated string, a floating point
shane21e7feb2008-05-30 15:59:49 +000032** number, or the SQL "NULL" value. An implicit conversion from one
drhb19a2bc2001-09-16 00:13:26 +000033** type to the other occurs as necessary.
drh75897232000-05-29 14:26:00 +000034**
danielk19774adee202004-05-08 08:23:19 +000035** Most of the code in this file is taken up by the sqlite3VdbeExec()
drh75897232000-05-29 14:26:00 +000036** function which does the work of interpreting a VDBE program.
37** But other routines are also provided to help in building up
38** a program instruction by instruction.
39**
drhac82fcf2002-09-08 17:23:41 +000040** Various scripts scan this source file in order to generate HTML
41** documentation, headers files, or other derived files. The formatting
42** of the code in this file is, therefore, important. See other comments
43** in this file for details. If in doubt, do not deviate from existing
44** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000045*/
46#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000047#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000048
49/*
drh2b4ded92010-09-27 21:09:31 +000050** Invoke this macro on memory cells just prior to changing the
51** value of the cell. This macro verifies that shallow copies are
52** not misused.
53*/
54#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000055# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000056#else
57# define memAboutToChange(P,M)
58#endif
59
60/*
drh487ab3c2001-11-08 00:45:21 +000061** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000062** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000063** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000064** working correctly. This variable has no function other than to
65** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000066*/
drh0f7eb612006-08-08 13:51:43 +000067#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000068int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000069#endif
drh487ab3c2001-11-08 00:45:21 +000070
drhf6038712004-02-08 18:07:34 +000071/*
72** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000073** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
74** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000075**
76** This facility is used for testing purposes only. It does not function
77** in an ordinary build.
78*/
drh0f7eb612006-08-08 13:51:43 +000079#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000080int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000081#endif
drh1350b032002-02-27 19:00:20 +000082
danielk19777e18c252004-05-25 11:47:24 +000083/*
drh6bf89572004-11-03 16:27:01 +000084** The next global variable is incremented each type the OP_Sort opcode
85** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000086** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000087** has no function other than to help verify the correct operation of the
88** library.
89*/
drh0f7eb612006-08-08 13:51:43 +000090#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000091int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000092#endif
drh6bf89572004-11-03 16:27:01 +000093
94/*
drhae7e1512007-05-02 16:51:59 +000095** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000096** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000097** use this information to make sure that the zero-blob functionality
98** is working correctly. This variable has no function other than to
99** help verify the correct operation of the library.
100*/
101#ifdef SQLITE_TEST
102int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +0000103static void updateMaxBlobsize(Mem *p){
104 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
105 sqlite3_max_blobsize = p->n;
106 }
107}
drhae7e1512007-05-02 16:51:59 +0000108#endif
109
110/*
dan0ff297e2009-09-25 17:03:14 +0000111** The next global variable is incremented each type the OP_Found opcode
112** is executed. This is used to test whether or not the foreign key
113** operation implemented using OP_FkIsZero is working. This variable
114** has no function other than to help verify the correct operation of the
115** library.
116*/
117#ifdef SQLITE_TEST
118int sqlite3_found_count = 0;
119#endif
120
121/*
drhb7654112008-01-12 12:48:07 +0000122** Test a register to see if it exceeds the current maximum blob size.
123** If it does, record the new maximum blob size.
124*/
drh678ccce2008-03-31 18:19:54 +0000125#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000126# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000127#else
128# define UPDATE_MAX_BLOBSIZE(P)
129#endif
130
131/*
drh9cbf3422008-01-17 16:22:13 +0000132** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000133** already. Return non-zero if a malloc() fails.
134*/
drhb21c8cd2007-08-21 19:33:56 +0000135#define Stringify(P, enc) \
136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
drhf4479502004-05-27 03:12:53 +0000137 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000138
139/*
danielk1977bd7e4602004-05-24 07:34:48 +0000140** An ephemeral string value (signified by the MEM_Ephem flag) contains
141** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000142** is responsible for deallocating that string. Because the register
143** does not control the string, it might be deleted without the register
144** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000145**
146** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000147** string that the register itself controls. In other words, it
danielk1977bd7e4602004-05-24 07:34:48 +0000148** converts an MEM_Ephem string into an MEM_Dyn string.
149*/
drhb21c8cd2007-08-21 19:33:56 +0000150#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000151 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000153
dan689ab892011-08-12 15:02:00 +0000154/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
155#ifdef SQLITE_OMIT_MERGE_SORT
156# define isSorter(x) 0
157#else
158# define isSorter(x) ((x)->pSorter!=0)
159#endif
160
danielk19771cc5ed82007-05-16 17:28:43 +0000161/*
shane21e7feb2008-05-30 15:59:49 +0000162** Argument pMem points at a register that will be passed to a
danielk1977c572ef72004-05-27 09:28:41 +0000163** user-defined function or returned to the user as the result of a query.
dan937d0de2009-10-15 18:35:38 +0000164** This routine sets the pMem->type variable used by the sqlite3_value_*()
165** routines.
danielk1977c572ef72004-05-27 09:28:41 +0000166*/
dan937d0de2009-10-15 18:35:38 +0000167void sqlite3VdbeMemStoreType(Mem *pMem){
danielk1977c572ef72004-05-27 09:28:41 +0000168 int flags = pMem->flags;
169 if( flags & MEM_Null ){
drh9c054832004-05-31 18:51:57 +0000170 pMem->type = SQLITE_NULL;
danielk1977c572ef72004-05-27 09:28:41 +0000171 }
172 else if( flags & MEM_Int ){
drh9c054832004-05-31 18:51:57 +0000173 pMem->type = SQLITE_INTEGER;
danielk1977c572ef72004-05-27 09:28:41 +0000174 }
175 else if( flags & MEM_Real ){
drh9c054832004-05-31 18:51:57 +0000176 pMem->type = SQLITE_FLOAT;
danielk1977c572ef72004-05-27 09:28:41 +0000177 }
178 else if( flags & MEM_Str ){
drh9c054832004-05-31 18:51:57 +0000179 pMem->type = SQLITE_TEXT;
danielk1977c572ef72004-05-27 09:28:41 +0000180 }else{
drh9c054832004-05-31 18:51:57 +0000181 pMem->type = SQLITE_BLOB;
danielk1977c572ef72004-05-27 09:28:41 +0000182 }
183}
danielk19778a6b5412004-05-24 07:04:25 +0000184
185/*
drhdfe88ec2008-11-03 20:55:06 +0000186** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000187** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000188*/
drhdfe88ec2008-11-03 20:55:06 +0000189static VdbeCursor *allocateCursor(
190 Vdbe *p, /* The virtual machine */
191 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000192 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000193 int iDb, /* Database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000194 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000195){
196 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000197 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000198 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000199 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000200 **
201 ** * Sometimes cursor numbers are used for a couple of different
202 ** purposes in a vdbe program. The different uses might require
203 ** different sized allocations. Memory cells provide growable
204 ** allocations.
205 **
206 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
207 ** be freed lazily via the sqlite3_release_memory() API. This
208 ** minimizes the number of malloc calls made by the system.
209 **
210 ** Memory cells for cursors are allocated at the top of the address
211 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
212 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
213 */
214 Mem *pMem = &p->aMem[p->nMem-iCur];
215
danielk19775f096132008-03-28 15:44:09 +0000216 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000217 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000218 nByte =
drhc54055b2009-11-13 17:05:53 +0000219 ROUND8(sizeof(VdbeCursor)) +
danielk1977cd3e8f72008-03-25 09:47:35 +0000220 (isBtreeCursor?sqlite3BtreeCursorSize():0) +
221 2*nField*sizeof(u32);
222
drh290c1942004-08-21 17:54:45 +0000223 assert( iCur<p->nCursor );
224 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000225 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000226 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000227 }
danielk1977cd3e8f72008-03-25 09:47:35 +0000228 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
drhdfe88ec2008-11-03 20:55:06 +0000229 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000230 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000231 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000232 pCx->nField = nField;
233 if( nField ){
drhc54055b2009-11-13 17:05:53 +0000234 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
danielk1977cd3e8f72008-03-25 09:47:35 +0000235 }
236 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000237 pCx->pCursor = (BtCursor*)
drhc54055b2009-11-13 17:05:53 +0000238 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
drhf25a5072009-11-18 23:01:25 +0000239 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000240 }
danielk197794eb6a12005-12-15 15:22:08 +0000241 }
drh4774b132004-06-12 20:12:51 +0000242 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000243}
244
danielk19773d1bfea2004-05-14 11:00:53 +0000245/*
drh29d72102006-02-09 22:13:41 +0000246** Try to convert a value into a numeric representation if we can
247** do so without loss of information. In other words, if the string
248** looks like a number, convert it into a number. If it does not
249** look like a number, leave it alone.
250*/
drhb21c8cd2007-08-21 19:33:56 +0000251static void applyNumericAffinity(Mem *pRec){
drh29d72102006-02-09 22:13:41 +0000252 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
drh9339da12010-09-30 00:50:49 +0000253 double rValue;
254 i64 iValue;
danb7dca7d2010-03-05 16:32:12 +0000255 u8 enc = pRec->enc;
drh9339da12010-09-30 00:50:49 +0000256 if( (pRec->flags&MEM_Str)==0 ) return;
257 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
shaneh5f1d6b62010-09-30 16:51:25 +0000258 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
drh9339da12010-09-30 00:50:49 +0000259 pRec->u.i = iValue;
260 pRec->flags |= MEM_Int;
261 }else{
262 pRec->r = rValue;
263 pRec->flags |= MEM_Real;
drh29d72102006-02-09 22:13:41 +0000264 }
265 }
266}
267
268/*
drh8a512562005-11-14 22:29:05 +0000269** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000270**
drh8a512562005-11-14 22:29:05 +0000271** SQLITE_AFF_INTEGER:
272** SQLITE_AFF_REAL:
273** SQLITE_AFF_NUMERIC:
274** Try to convert pRec to an integer representation or a
275** floating-point representation if an integer representation
276** is not possible. Note that the integer representation is
277** always preferred, even if the affinity is REAL, because
278** an integer representation is more space efficient on disk.
279**
280** SQLITE_AFF_TEXT:
281** Convert pRec to a text representation.
282**
283** SQLITE_AFF_NONE:
284** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000285*/
drh17435752007-08-16 04:30:38 +0000286static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000287 Mem *pRec, /* The value to apply affinity to */
288 char affinity, /* The affinity to be applied */
289 u8 enc /* Use this text encoding */
290){
drh8a512562005-11-14 22:29:05 +0000291 if( affinity==SQLITE_AFF_TEXT ){
drh17c40292004-07-21 02:53:29 +0000292 /* Only attempt the conversion to TEXT if there is an integer or real
293 ** representation (blob and NULL do not get converted) but no string
294 ** representation.
295 */
296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
drhb21c8cd2007-08-21 19:33:56 +0000297 sqlite3VdbeMemStringify(pRec, enc);
drh17c40292004-07-21 02:53:29 +0000298 }
299 pRec->flags &= ~(MEM_Real|MEM_Int);
drh8a512562005-11-14 22:29:05 +0000300 }else if( affinity!=SQLITE_AFF_NONE ){
301 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
302 || affinity==SQLITE_AFF_NUMERIC );
drhb21c8cd2007-08-21 19:33:56 +0000303 applyNumericAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000304 if( pRec->flags & MEM_Real ){
drh8df447f2005-11-01 15:48:24 +0000305 sqlite3VdbeIntegerAffinity(pRec);
drh17c40292004-07-21 02:53:29 +0000306 }
danielk19773d1bfea2004-05-14 11:00:53 +0000307 }
308}
309
danielk1977aee18ef2005-03-09 12:26:50 +0000310/*
drh29d72102006-02-09 22:13:41 +0000311** Try to convert the type of a function argument or a result column
312** into a numeric representation. Use either INTEGER or REAL whichever
313** is appropriate. But only do the conversion if it is possible without
314** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000315*/
316int sqlite3_value_numeric_type(sqlite3_value *pVal){
317 Mem *pMem = (Mem*)pVal;
drhe5a8a1d2010-11-18 12:31:24 +0000318 if( pMem->type==SQLITE_TEXT ){
319 applyNumericAffinity(pMem);
320 sqlite3VdbeMemStoreType(pMem);
321 }
drh29d72102006-02-09 22:13:41 +0000322 return pMem->type;
323}
324
325/*
danielk1977aee18ef2005-03-09 12:26:50 +0000326** Exported version of applyAffinity(). This one works on sqlite3_value*,
327** not the internal Mem* type.
328*/
danielk19771e536952007-08-16 10:09:01 +0000329void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000330 sqlite3_value *pVal,
331 u8 affinity,
332 u8 enc
333){
drhb21c8cd2007-08-21 19:33:56 +0000334 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000335}
336
danielk1977b5402fb2005-01-12 07:15:04 +0000337#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000338/*
danielk1977ca6b2912004-05-21 10:49:47 +0000339** Write a nice string representation of the contents of cell pMem
340** into buffer zBuf, length nBuf.
341*/
drh74161702006-02-24 02:53:49 +0000342void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000343 char *zCsr = zBuf;
344 int f = pMem->flags;
345
drh57196282004-10-06 15:41:16 +0000346 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000347
danielk1977ca6b2912004-05-21 10:49:47 +0000348 if( f&MEM_Blob ){
349 int i;
350 char c;
351 if( f & MEM_Dyn ){
352 c = 'z';
353 assert( (f & (MEM_Static|MEM_Ephem))==0 );
354 }else if( f & MEM_Static ){
355 c = 't';
356 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
357 }else if( f & MEM_Ephem ){
358 c = 'e';
359 assert( (f & (MEM_Static|MEM_Dyn))==0 );
360 }else{
361 c = 's';
362 }
363
drh5bb3eb92007-05-04 13:15:55 +0000364 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000365 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000366 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000367 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000368 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000369 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000370 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000371 }
372 for(i=0; i<16 && i<pMem->n; i++){
373 char z = pMem->z[i];
374 if( z<32 || z>126 ) *zCsr++ = '.';
375 else *zCsr++ = z;
376 }
377
drhe718efe2007-05-10 21:14:03 +0000378 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000379 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000380 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000381 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000382 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000383 }
danielk1977b1bc9532004-05-22 03:05:33 +0000384 *zCsr = '\0';
385 }else if( f & MEM_Str ){
386 int j, k;
387 zBuf[0] = ' ';
388 if( f & MEM_Dyn ){
389 zBuf[1] = 'z';
390 assert( (f & (MEM_Static|MEM_Ephem))==0 );
391 }else if( f & MEM_Static ){
392 zBuf[1] = 't';
393 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
394 }else if( f & MEM_Ephem ){
395 zBuf[1] = 'e';
396 assert( (f & (MEM_Static|MEM_Dyn))==0 );
397 }else{
398 zBuf[1] = 's';
399 }
400 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000401 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000402 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000403 zBuf[k++] = '[';
404 for(j=0; j<15 && j<pMem->n; j++){
405 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000406 if( c>=0x20 && c<0x7f ){
407 zBuf[k++] = c;
408 }else{
409 zBuf[k++] = '.';
410 }
411 }
412 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000413 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000414 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000415 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000416 }
danielk1977ca6b2912004-05-21 10:49:47 +0000417}
418#endif
419
drh5b6afba2008-01-05 16:29:28 +0000420#ifdef SQLITE_DEBUG
421/*
422** Print the value of a register for tracing purposes:
423*/
424static void memTracePrint(FILE *out, Mem *p){
425 if( p->flags & MEM_Null ){
426 fprintf(out, " NULL");
427 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
428 fprintf(out, " si:%lld", p->u.i);
429 }else if( p->flags & MEM_Int ){
430 fprintf(out, " i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000431#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000432 }else if( p->flags & MEM_Real ){
433 fprintf(out, " r:%g", p->r);
drh0b3bf922009-06-15 20:45:34 +0000434#endif
drh733bf1b2009-04-22 00:47:00 +0000435 }else if( p->flags & MEM_RowSet ){
436 fprintf(out, " (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000437 }else{
438 char zBuf[200];
439 sqlite3VdbeMemPrettyPrint(p, zBuf);
440 fprintf(out, " ");
441 fprintf(out, "%s", zBuf);
442 }
443}
444static void registerTrace(FILE *out, int iReg, Mem *p){
445 fprintf(out, "REG[%d] = ", iReg);
446 memTracePrint(out, p);
447 fprintf(out, "\n");
448}
449#endif
450
451#ifdef SQLITE_DEBUG
drhb21e7c72008-06-22 12:37:57 +0000452# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
drh5b6afba2008-01-05 16:29:28 +0000453#else
454# define REGISTER_TRACE(R,M)
455#endif
456
danielk197784ac9d02004-05-18 09:58:06 +0000457
drh7b396862003-01-01 23:06:20 +0000458#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000459
460/*
461** hwtime.h contains inline assembler code for implementing
462** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000463*/
shane9bcbdad2008-05-29 20:22:37 +0000464#include "hwtime.h"
465
drh7b396862003-01-01 23:06:20 +0000466#endif
467
drh8c74a8c2002-08-25 19:20:40 +0000468/*
drhcaec2f12003-01-07 02:47:47 +0000469** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
danielk19776f8a5032004-05-10 10:34:51 +0000470** sqlite3_interrupt() routine has been called. If it has been, then
drhcaec2f12003-01-07 02:47:47 +0000471** processing of the VDBE program is interrupted.
472**
473** This macro added to every instruction that does a jump in order to
474** implement a loop. This test used to be on every single instruction,
drhe4c88c02012-01-04 12:57:45 +0000475** but that meant we more testing than we needed. By only testing the
drhcaec2f12003-01-07 02:47:47 +0000476** flag on jump instructions, we get a (small) speed improvement.
477*/
478#define CHECK_FOR_INTERRUPT \
drh881feaa2006-07-26 01:39:30 +0000479 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drhcaec2f12003-01-07 02:47:47 +0000480
481
danielk1977fd7f0452008-12-17 17:30:26 +0000482#ifndef NDEBUG
483/*
484** This function is only called from within an assert() expression. It
485** checks that the sqlite3.nTransaction variable is correctly set to
486** the number of non-transaction savepoints currently in the
487** linked list starting at sqlite3.pSavepoint.
488**
489** Usage:
490**
491** assert( checkSavepointCount(db) );
492*/
493static int checkSavepointCount(sqlite3 *db){
494 int n = 0;
495 Savepoint *p;
496 for(p=db->pSavepoint; p; p=p->pNext) n++;
497 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
498 return 1;
499}
500#endif
501
drhcaec2f12003-01-07 02:47:47 +0000502/*
drhb9755982010-07-24 16:34:37 +0000503** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
504** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
505** in memory obtained from sqlite3DbMalloc).
506*/
507static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
508 sqlite3 *db = p->db;
509 sqlite3DbFree(db, p->zErrMsg);
510 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
511 sqlite3_free(pVtab->zErrMsg);
512 pVtab->zErrMsg = 0;
513}
514
515
516/*
drhb86ccfb2003-01-28 23:13:10 +0000517** Execute as much of a VDBE program as we can then return.
518**
danielk19774adee202004-05-08 08:23:19 +0000519** sqlite3VdbeMakeReady() must be called before this routine in order to
drhb86ccfb2003-01-28 23:13:10 +0000520** close the program with a final OP_Halt and to set up the callbacks
521** and the error message pointer.
522**
523** Whenever a row or result data is available, this routine will either
524** invoke the result callback (if there is one) or return with
drh326dce72003-01-29 14:06:07 +0000525** SQLITE_ROW.
drhb86ccfb2003-01-28 23:13:10 +0000526**
527** If an attempt is made to open a locked database, then this routine
528** will either invoke the busy callback (if there is one) or it will
529** return SQLITE_BUSY.
530**
531** If an error occurs, an error message is written to memory obtained
drh17435752007-08-16 04:30:38 +0000532** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
drhb86ccfb2003-01-28 23:13:10 +0000533** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
534**
535** If the callback ever returns non-zero, then the program exits
536** immediately. There will be no error message but the p->rc field is
537** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
538**
drh9468c7f2003-03-07 19:50:07 +0000539** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
540** routine to return SQLITE_ERROR.
drhb86ccfb2003-01-28 23:13:10 +0000541**
542** Other fatal errors return SQLITE_ERROR.
543**
danielk19774adee202004-05-08 08:23:19 +0000544** After this routine has finished, sqlite3VdbeFinalize() should be
drhb86ccfb2003-01-28 23:13:10 +0000545** used to clean up the mess that was left behind.
546*/
danielk19774adee202004-05-08 08:23:19 +0000547int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000548 Vdbe *p /* The VDBE */
549){
shaneh84f4b2f2010-02-26 01:46:54 +0000550 int pc=0; /* The program counter */
drhbbe879d2009-11-14 18:04:35 +0000551 Op *aOp = p->aOp; /* Copy of p->aOp */
drhb86ccfb2003-01-28 23:13:10 +0000552 Op *pOp; /* Current operation */
553 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000554 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000555 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000556 u8 encoding = ENC(db); /* The database encoding */
drha6c2ed92009-11-14 23:22:23 +0000557#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
shaneh5e17e8b2009-12-03 04:40:47 +0000558 int checkProgress; /* True if progress callbacks are enabled */
drha6c2ed92009-11-14 23:22:23 +0000559 int nProgressOps = 0; /* Opcodes executed since progress callback. */
560#endif
561 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000562 Mem *pIn1 = 0; /* 1st input operand */
563 Mem *pIn2 = 0; /* 2nd input operand */
564 Mem *pIn3 = 0; /* 3rd input operand */
565 Mem *pOut = 0; /* Output operand */
drh0acb7e42008-06-25 00:12:41 +0000566 int iCompare = 0; /* Result of last OP_Compare operation */
shanebe217792009-03-05 04:20:31 +0000567 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000568 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000569#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000570 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000571 int origPc; /* Program counter at start of opcode */
572#endif
drh856c1032009-06-02 15:21:42 +0000573 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000574
drhca48c902008-01-18 14:08:24 +0000575 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000576 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000577 if( p->rc==SQLITE_NOMEM ){
578 /* This happens if a malloc() inside a call to sqlite3_column_text() or
579 ** sqlite3_column_text16() failed. */
580 goto no_mem;
581 }
drh3a840692003-01-29 22:58:26 +0000582 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
583 p->rc = SQLITE_OK;
drhb86ccfb2003-01-28 23:13:10 +0000584 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000585 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000586 db->busyHandler.nBusy = 0;
drh93581642004-02-12 13:02:55 +0000587 CHECK_FOR_INTERRUPT;
drh602c2372007-03-01 00:29:13 +0000588 sqlite3VdbeIOTraceSql(p);
drha6c2ed92009-11-14 23:22:23 +0000589#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
590 checkProgress = db->xProgress!=0;
591#endif
drh3c23a882007-01-09 14:01:13 +0000592#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000593 sqlite3BeginBenignMalloc();
drh42224412010-05-31 14:28:25 +0000594 if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){
drh3c23a882007-01-09 14:01:13 +0000595 int i;
596 printf("VDBE Program Listing:\n");
597 sqlite3VdbePrintSql(p);
598 for(i=0; i<p->nOp; i++){
drhbbe879d2009-11-14 18:04:35 +0000599 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
drh3c23a882007-01-09 14:01:13 +0000600 }
601 }
danielk19772d1d86f2008-06-20 14:59:51 +0000602 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000603#endif
drhb86ccfb2003-01-28 23:13:10 +0000604 for(pc=p->pc; rc==SQLITE_OK; pc++){
drhcaec2f12003-01-07 02:47:47 +0000605 assert( pc>=0 && pc<p->nOp );
drh17435752007-08-16 04:30:38 +0000606 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000607#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +0000608 origPc = pc;
shane9bcbdad2008-05-29 20:22:37 +0000609 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000610#endif
drhbbe879d2009-11-14 18:04:35 +0000611 pOp = &aOp[pc];
drh6e142f52000-06-08 13:36:40 +0000612
danielk19778b60e0f2005-01-12 09:10:39 +0000613 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000614 */
danielk19778b60e0f2005-01-12 09:10:39 +0000615#ifdef SQLITE_DEBUG
drh75897232000-05-29 14:26:00 +0000616 if( p->trace ){
drh3f7d4e42004-07-24 14:35:58 +0000617 if( pc==0 ){
618 printf("VDBE Execution Trace:\n");
619 sqlite3VdbePrintSql(p);
620 }
danielk19774adee202004-05-08 08:23:19 +0000621 sqlite3VdbePrintOp(p->trace, pc, pOp);
drh75897232000-05-29 14:26:00 +0000622 }
drh3f7d4e42004-07-24 14:35:58 +0000623#endif
624
drh6e142f52000-06-08 13:36:40 +0000625
drhf6038712004-02-08 18:07:34 +0000626 /* Check to see if we need to simulate an interrupt. This only happens
627 ** if we have a special test build.
628 */
629#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000630 if( sqlite3_interrupt_count>0 ){
631 sqlite3_interrupt_count--;
632 if( sqlite3_interrupt_count==0 ){
633 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000634 }
635 }
636#endif
637
danielk1977348bb5d2003-10-18 09:37:26 +0000638#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
639 /* Call the progress callback if it is configured and the required number
640 ** of VDBE ops have been executed (either since this invocation of
danielk19774adee202004-05-08 08:23:19 +0000641 ** sqlite3VdbeExec() or since last time the progress callback was called).
danielk1977348bb5d2003-10-18 09:37:26 +0000642 ** If the progress callback returns non-zero, exit the virtual machine with
643 ** a return code SQLITE_ABORT.
644 */
drha6c2ed92009-11-14 23:22:23 +0000645 if( checkProgress ){
drh3914aed2004-01-31 20:40:42 +0000646 if( db->nProgressOps==nProgressOps ){
danielk1977de523ac2007-06-15 14:53:53 +0000647 int prc;
drh9978c972010-02-23 17:36:32 +0000648 prc = db->xProgress(db->pProgressArg);
danielk1977de523ac2007-06-15 14:53:53 +0000649 if( prc!=0 ){
650 rc = SQLITE_INTERRUPT;
drha05a7222008-01-19 03:35:58 +0000651 goto vdbe_error_halt;
danielk1977de523ac2007-06-15 14:53:53 +0000652 }
danielk19773fe11f32007-06-13 16:49:48 +0000653 nProgressOps = 0;
danielk1977348bb5d2003-10-18 09:37:26 +0000654 }
drh3914aed2004-01-31 20:40:42 +0000655 nProgressOps++;
danielk1977348bb5d2003-10-18 09:37:26 +0000656 }
danielk1977348bb5d2003-10-18 09:37:26 +0000657#endif
658
drh3c657212009-11-17 23:59:58 +0000659 /* On any opcode with the "out2-prerelase" tag, free any
660 ** external allocations out of mem[p2] and set mem[p2] to be
661 ** an undefined integer. Opcodes will either fill in the integer
662 ** value or convert mem[p2] to a different type.
drh4c583122008-01-04 22:01:03 +0000663 */
drha6c2ed92009-11-14 23:22:23 +0000664 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000665 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
666 assert( pOp->p2>0 );
667 assert( pOp->p2<=p->nMem );
668 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +0000669 memAboutToChange(p, pOut);
drhe4c88c02012-01-04 12:57:45 +0000670 VdbeMemRelease(pOut);
drh3c657212009-11-17 23:59:58 +0000671 pOut->flags = MEM_Int;
drh4c583122008-01-04 22:01:03 +0000672 }
drh3c657212009-11-17 23:59:58 +0000673
674 /* Sanity checking on other operands */
675#ifdef SQLITE_DEBUG
676 if( (pOp->opflags & OPFLG_IN1)!=0 ){
677 assert( pOp->p1>0 );
678 assert( pOp->p1<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000679 assert( memIsValid(&aMem[pOp->p1]) );
drh3c657212009-11-17 23:59:58 +0000680 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
681 }
682 if( (pOp->opflags & OPFLG_IN2)!=0 ){
683 assert( pOp->p2>0 );
684 assert( pOp->p2<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000685 assert( memIsValid(&aMem[pOp->p2]) );
drh3c657212009-11-17 23:59:58 +0000686 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
687 }
688 if( (pOp->opflags & OPFLG_IN3)!=0 ){
689 assert( pOp->p3>0 );
690 assert( pOp->p3<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000691 assert( memIsValid(&aMem[pOp->p3]) );
drh3c657212009-11-17 23:59:58 +0000692 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
693 }
694 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
695 assert( pOp->p2>0 );
696 assert( pOp->p2<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000697 memAboutToChange(p, &aMem[pOp->p2]);
drh3c657212009-11-17 23:59:58 +0000698 }
699 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
700 assert( pOp->p3>0 );
701 assert( pOp->p3<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000702 memAboutToChange(p, &aMem[pOp->p3]);
drh3c657212009-11-17 23:59:58 +0000703 }
704#endif
drh93952eb2009-11-13 19:43:43 +0000705
drh75897232000-05-29 14:26:00 +0000706 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000707
drh5e00f6c2001-09-13 13:46:56 +0000708/*****************************************************************************
709** What follows is a massive switch statement where each case implements a
710** separate instruction in the virtual machine. If we follow the usual
711** indentation conventions, each case should be indented by 6 spaces. But
712** that is a lot of wasted space on the left margin. So the code within
713** the switch statement will break with convention and be flush-left. Another
714** big comment (similar to this one) will mark the point in the code where
715** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000716**
717** The formatting of each case is important. The makefile for SQLite
718** generates two C files "opcodes.h" and "opcodes.c" by scanning this
719** file looking for lines that begin with "case OP_". The opcodes.h files
720** will be filled with #defines that give unique integer values to each
721** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000722** each string is the symbolic name for the corresponding opcode. If the
723** case statement is followed by a comment of the form "/# same as ... #/"
724** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000725**
drh9cbf3422008-01-17 16:22:13 +0000726** Other keywords in the comment that follows each case are used to
727** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
728** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
729** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000730**
drhac82fcf2002-09-08 17:23:41 +0000731** Documentation about VDBE opcodes is generated by scanning this file
732** for lines of that contain "Opcode:". That line and all subsequent
733** comment lines are used in the generation of the opcode.html documentation
734** file.
735**
736** SUMMARY:
737**
738** Formatting is important to scripts that scan this file.
739** Do not deviate from the formatting style currently in use.
740**
drh5e00f6c2001-09-13 13:46:56 +0000741*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000742
drh9cbf3422008-01-17 16:22:13 +0000743/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000744**
745** An unconditional jump to address P2.
746** The next instruction executed will be
747** the one at index P2 from the beginning of
748** the program.
749*/
drh9cbf3422008-01-17 16:22:13 +0000750case OP_Goto: { /* jump */
drhcaec2f12003-01-07 02:47:47 +0000751 CHECK_FOR_INTERRUPT;
drh5e00f6c2001-09-13 13:46:56 +0000752 pc = pOp->p2 - 1;
753 break;
754}
drh75897232000-05-29 14:26:00 +0000755
drh2eb95372008-06-06 15:04:36 +0000756/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000757**
drh2eb95372008-06-06 15:04:36 +0000758** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000759** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000760*/
drhb8475df2011-12-09 16:21:19 +0000761case OP_Gosub: { /* jump */
762 assert( pOp->p1>0 && pOp->p1<=p->nMem );
drh3c657212009-11-17 23:59:58 +0000763 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000764 assert( (pIn1->flags & MEM_Dyn)==0 );
drh2b4ded92010-09-27 21:09:31 +0000765 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000766 pIn1->flags = MEM_Int;
767 pIn1->u.i = pc;
768 REGISTER_TRACE(pOp->p1, pIn1);
drh8c74a8c2002-08-25 19:20:40 +0000769 pc = pOp->p2 - 1;
770 break;
771}
772
drh2eb95372008-06-06 15:04:36 +0000773/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000774**
drh2eb95372008-06-06 15:04:36 +0000775** Jump to the next instruction after the address in register P1.
drh8c74a8c2002-08-25 19:20:40 +0000776*/
drh2eb95372008-06-06 15:04:36 +0000777case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000778 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000779 assert( pIn1->flags & MEM_Int );
drh9c1905f2008-12-10 22:32:56 +0000780 pc = (int)pIn1->u.i;
drh8c74a8c2002-08-25 19:20:40 +0000781 break;
782}
783
drhe00ee6e2008-06-20 15:24:01 +0000784/* Opcode: Yield P1 * * * *
785**
786** Swap the program counter with the value in register P1.
787*/
danielk1977f73ab8b2008-12-29 10:39:53 +0000788case OP_Yield: { /* in1 */
drhe00ee6e2008-06-20 15:24:01 +0000789 int pcDest;
drh3c657212009-11-17 23:59:58 +0000790 pIn1 = &aMem[pOp->p1];
drhe00ee6e2008-06-20 15:24:01 +0000791 assert( (pIn1->flags & MEM_Dyn)==0 );
792 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000793 pcDest = (int)pIn1->u.i;
drhe00ee6e2008-06-20 15:24:01 +0000794 pIn1->u.i = pc;
795 REGISTER_TRACE(pOp->p1, pIn1);
796 pc = pcDest;
797 break;
798}
799
drh5053a792009-02-20 03:02:23 +0000800/* Opcode: HaltIfNull P1 P2 P3 P4 *
801**
drhef8662b2011-06-20 21:47:58 +0000802** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000803** parameter P1, P2, and P4 as if this were a Halt instruction. If the
804** value in register P3 is not NULL, then this routine is a no-op.
805*/
806case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000807 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000808 if( (pIn3->flags & MEM_Null)==0 ) break;
809 /* Fall through into OP_Halt */
810}
drhe00ee6e2008-06-20 15:24:01 +0000811
drh9cbf3422008-01-17 16:22:13 +0000812/* Opcode: Halt P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +0000813**
drh3d4501e2008-12-04 20:40:10 +0000814** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000815** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000816**
drh92f02c32004-09-02 14:57:08 +0000817** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
818** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
819** For errors, it can be some other value. If P1!=0 then P2 will determine
820** whether or not to rollback the current transaction. Do not rollback
821** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
822** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000823** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000824**
drh66a51672008-01-03 00:01:23 +0000825** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000826**
drh9cfcf5d2002-01-29 18:41:24 +0000827** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000828** every program. So a jump past the last instruction of the program
829** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000830*/
drh9cbf3422008-01-17 16:22:13 +0000831case OP_Halt: {
dan165921a2009-08-28 18:53:45 +0000832 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000833 /* Halt the sub-program. Return control to the parent frame. */
dan165921a2009-08-28 18:53:45 +0000834 VdbeFrame *pFrame = p->pFrame;
835 p->pFrame = pFrame->pParent;
836 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000837 sqlite3VdbeSetChanges(db, p->nChange);
dan165921a2009-08-28 18:53:45 +0000838 pc = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000839 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000840 if( pOp->p2==OE_Ignore ){
dan2832ad42009-08-31 15:27:27 +0000841 /* Instruction pc is the OP_Program that invoked the sub-program
842 ** currently being halted. If the p2 instruction of this OP_Halt
843 ** instruction is set to OE_Ignore, then the sub-program is throwing
844 ** an IGNORE exception. In this case jump to the address specified
845 ** as the p2 of the calling OP_Program. */
dan76d462e2009-08-30 11:42:51 +0000846 pc = p->aOp[pc].p2-1;
dan165921a2009-08-28 18:53:45 +0000847 }
drhbbe879d2009-11-14 18:04:35 +0000848 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000849 aMem = p->aMem;
dan165921a2009-08-28 18:53:45 +0000850 break;
851 }
dan2832ad42009-08-31 15:27:27 +0000852
drh92f02c32004-09-02 14:57:08 +0000853 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000854 p->errorAction = (u8)pOp->p2;
dan165921a2009-08-28 18:53:45 +0000855 p->pc = pc;
danielk19772dca4ac2008-01-03 11:50:29 +0000856 if( pOp->p4.z ){
drh413c3d32010-02-23 20:11:56 +0000857 assert( p->rc!=SQLITE_OK );
drhf089aa42008-07-08 19:34:06 +0000858 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
drhaf46dc12010-02-24 21:44:07 +0000859 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +0000860 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
drhcda455b2010-02-24 19:23:56 +0000861 }else if( p->rc ){
drhaf46dc12010-02-24 21:44:07 +0000862 testcase( sqlite3GlobalConfig.xLog!=0 );
drhcda455b2010-02-24 19:23:56 +0000863 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
drh9cfcf5d2002-01-29 18:41:24 +0000864 }
drh92f02c32004-09-02 14:57:08 +0000865 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000866 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000867 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000868 p->rc = rc = SQLITE_BUSY;
869 }else{
dan1da40a32009-09-19 17:00:31 +0000870 assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
871 assert( rc==SQLITE_OK || db->nDeferredCons>0 );
drh900b31e2007-08-28 02:27:51 +0000872 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000873 }
drh900b31e2007-08-28 02:27:51 +0000874 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000875}
drhc61053b2000-06-04 12:58:36 +0000876
drh4c583122008-01-04 22:01:03 +0000877/* Opcode: Integer P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000878**
drh9cbf3422008-01-17 16:22:13 +0000879** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000880*/
drh4c583122008-01-04 22:01:03 +0000881case OP_Integer: { /* out2-prerelease */
drh4c583122008-01-04 22:01:03 +0000882 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000883 break;
884}
885
drh4c583122008-01-04 22:01:03 +0000886/* Opcode: Int64 * P2 * P4 *
drh29dda4a2005-07-21 18:23:20 +0000887**
drh66a51672008-01-03 00:01:23 +0000888** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +0000889** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +0000890*/
drh4c583122008-01-04 22:01:03 +0000891case OP_Int64: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000892 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +0000893 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +0000894 break;
895}
drh4f26d6c2004-05-26 23:25:30 +0000896
drh13573c72010-01-12 17:04:07 +0000897#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +0000898/* Opcode: Real * P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000899**
drh4c583122008-01-04 22:01:03 +0000900** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +0000901** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +0000902*/
drh4c583122008-01-04 22:01:03 +0000903case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
904 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +0000905 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh4c583122008-01-04 22:01:03 +0000906 pOut->r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +0000907 break;
908}
drh13573c72010-01-12 17:04:07 +0000909#endif
danielk1977cbb18d22004-05-28 11:37:27 +0000910
drh3c84ddf2008-01-09 02:15:38 +0000911/* Opcode: String8 * P2 * P4 *
danielk1977cbb18d22004-05-28 11:37:27 +0000912**
drh66a51672008-01-03 00:01:23 +0000913** P4 points to a nul terminated UTF-8 string. This opcode is transformed
danielk19770f69c1e2004-05-29 11:24:50 +0000914** into an OP_String before it is executed for the first time.
danielk1977cbb18d22004-05-28 11:37:27 +0000915*/
drh4c583122008-01-04 22:01:03 +0000916case OP_String8: { /* same as TK_STRING, out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000917 assert( pOp->p4.z!=0 );
drhed2df7f2005-11-16 04:34:32 +0000918 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +0000919 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +0000920
921#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +0000922 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +0000923 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
924 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +0000925 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh3a9cf172009-06-17 21:42:33 +0000926 assert( pOut->zMalloc==pOut->z );
927 assert( pOut->flags & MEM_Dyn );
danielk19775f096132008-03-28 15:44:09 +0000928 pOut->zMalloc = 0;
drh4c583122008-01-04 22:01:03 +0000929 pOut->flags |= MEM_Static;
drh191b54c2008-04-15 12:14:21 +0000930 pOut->flags &= ~MEM_Dyn;
drh66a51672008-01-03 00:01:23 +0000931 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000932 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +0000933 }
drh66a51672008-01-03 00:01:23 +0000934 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +0000935 pOp->p4.z = pOut->z;
936 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +0000937 }
danielk197793758c82005-01-21 08:13:14 +0000938#endif
drhbb4957f2008-03-20 14:03:29 +0000939 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +0000940 goto too_big;
941 }
942 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +0000943}
drhf4479502004-05-27 03:12:53 +0000944
drh4c583122008-01-04 22:01:03 +0000945/* Opcode: String P1 P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000946**
drh9cbf3422008-01-17 16:22:13 +0000947** The string value P4 of length P1 (bytes) is stored in register P2.
drhf4479502004-05-27 03:12:53 +0000948*/
drh4c583122008-01-04 22:01:03 +0000949case OP_String: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000950 assert( pOp->p4.z!=0 );
drh4c583122008-01-04 22:01:03 +0000951 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
952 pOut->z = pOp->p4.z;
953 pOut->n = pOp->p1;
954 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000955 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977c572ef72004-05-27 09:28:41 +0000956 break;
957}
958
drhb8475df2011-12-09 16:21:19 +0000959/* Opcode: Null * P2 P3 * *
drhf0863fe2005-06-12 21:35:51 +0000960**
drhb8475df2011-12-09 16:21:19 +0000961** Write a NULL into registers P2. If P3 greater than P2, then also write
962** NULL into register P3 and ever register in between P2 and P3. If P3
963** is less than P2 (typically P3 is zero) then only register P2 is
964** set to NULL
drhf0863fe2005-06-12 21:35:51 +0000965*/
drh4c583122008-01-04 22:01:03 +0000966case OP_Null: { /* out2-prerelease */
drhb8475df2011-12-09 16:21:19 +0000967 int cnt;
968 cnt = pOp->p3-pOp->p2;
969 assert( pOp->p3<=p->nMem );
drh3c657212009-11-17 23:59:58 +0000970 pOut->flags = MEM_Null;
drhb8475df2011-12-09 16:21:19 +0000971 while( cnt>0 ){
972 pOut++;
973 memAboutToChange(p, pOut);
drhe4c88c02012-01-04 12:57:45 +0000974 VdbeMemRelease(pOut);
drhb8475df2011-12-09 16:21:19 +0000975 pOut->flags = MEM_Null;
976 cnt--;
977 }
drhf0863fe2005-06-12 21:35:51 +0000978 break;
979}
980
981
drh9de221d2008-01-05 06:51:30 +0000982/* Opcode: Blob P1 P2 * P4
danielk1977c572ef72004-05-27 09:28:41 +0000983**
drh9de221d2008-01-05 06:51:30 +0000984** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +0000985** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +0000986*/
drh4c583122008-01-04 22:01:03 +0000987case OP_Blob: { /* out2-prerelease */
drhcbd2da92007-12-17 16:20:06 +0000988 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh4c583122008-01-04 22:01:03 +0000989 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +0000990 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000991 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +0000992 break;
993}
994
drheaf52d82010-05-12 13:50:23 +0000995/* Opcode: Variable P1 P2 * P4 *
drh50457892003-09-06 01:10:47 +0000996**
drheaf52d82010-05-12 13:50:23 +0000997** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +0000998**
999** If the parameter is named, then its name appears in P4 and P3==1.
1000** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001001*/
drheaf52d82010-05-12 13:50:23 +00001002case OP_Variable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00001003 Mem *pVar; /* Value being transferred */
1004
drheaf52d82010-05-12 13:50:23 +00001005 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +00001006 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +00001007 pVar = &p->aVar[pOp->p1 - 1];
1008 if( sqlite3VdbeMemTooBig(pVar) ){
1009 goto too_big;
drh023ae032007-05-08 12:12:16 +00001010 }
drheaf52d82010-05-12 13:50:23 +00001011 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1012 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001013 break;
1014}
danielk1977295ba552004-05-19 10:34:51 +00001015
drhb21e7c72008-06-22 12:37:57 +00001016/* Opcode: Move P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001017**
drhb21e7c72008-06-22 12:37:57 +00001018** Move the values in register P1..P1+P3-1 over into
1019** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
1020** left holding a NULL. It is an error for register ranges
1021** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
drh5e00f6c2001-09-13 13:46:56 +00001022*/
drhe1349cb2008-04-01 00:36:10 +00001023case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001024 char *zMalloc; /* Holding variable for allocated memory */
1025 int n; /* Number of registers left to copy */
1026 int p1; /* Register to copy from */
1027 int p2; /* Register to copy to */
1028
1029 n = pOp->p3;
1030 p1 = pOp->p1;
1031 p2 = pOp->p2;
danielk19776ab3a2e2009-02-19 14:39:25 +00001032 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001033 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001034
drha6c2ed92009-11-14 23:22:23 +00001035 pIn1 = &aMem[p1];
1036 pOut = &aMem[p2];
drhb21e7c72008-06-22 12:37:57 +00001037 while( n-- ){
drha6c2ed92009-11-14 23:22:23 +00001038 assert( pOut<=&aMem[p->nMem] );
1039 assert( pIn1<=&aMem[p->nMem] );
drh2b4ded92010-09-27 21:09:31 +00001040 assert( memIsValid(pIn1) );
1041 memAboutToChange(p, pOut);
drhb21e7c72008-06-22 12:37:57 +00001042 zMalloc = pOut->zMalloc;
1043 pOut->zMalloc = 0;
1044 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001045#ifdef SQLITE_DEBUG
1046 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1047 pOut->pScopyFrom += p1 - pOp->p2;
1048 }
1049#endif
drhb21e7c72008-06-22 12:37:57 +00001050 pIn1->zMalloc = zMalloc;
1051 REGISTER_TRACE(p2++, pOut);
1052 pIn1++;
1053 pOut++;
1054 }
drhe1349cb2008-04-01 00:36:10 +00001055 break;
1056}
1057
drhb1fdb2a2008-01-05 04:06:03 +00001058/* Opcode: Copy P1 P2 * * *
1059**
drh9cbf3422008-01-17 16:22:13 +00001060** Make a copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001061**
1062** This instruction makes a deep copy of the value. A duplicate
1063** is made of any string or blob constant. See also OP_SCopy.
1064*/
drh93952eb2009-11-13 19:43:43 +00001065case OP_Copy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001066 pIn1 = &aMem[pOp->p1];
1067 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001068 assert( pOut!=pIn1 );
1069 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1070 Deephemeralize(pOut);
1071 REGISTER_TRACE(pOp->p2, pOut);
1072 break;
1073}
1074
drhb1fdb2a2008-01-05 04:06:03 +00001075/* Opcode: SCopy P1 P2 * * *
1076**
drh9cbf3422008-01-17 16:22:13 +00001077** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001078**
1079** This instruction makes a shallow copy of the value. If the value
1080** is a string or blob, then the copy is only a pointer to the
1081** original and hence if the original changes so will the copy.
1082** Worse, if the original is deallocated, the copy becomes invalid.
1083** Thus the program must guarantee that the original will not change
1084** during the lifetime of the copy. Use OP_Copy to make a complete
1085** copy.
1086*/
drh93952eb2009-11-13 19:43:43 +00001087case OP_SCopy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001088 pIn1 = &aMem[pOp->p1];
1089 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001090 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001091 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001092#ifdef SQLITE_DEBUG
1093 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1094#endif
drh5b6afba2008-01-05 16:29:28 +00001095 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00001096 break;
1097}
drh75897232000-05-29 14:26:00 +00001098
drh9cbf3422008-01-17 16:22:13 +00001099/* Opcode: ResultRow P1 P2 * * *
drhd4e70eb2008-01-02 00:34:36 +00001100**
shane21e7feb2008-05-30 15:59:49 +00001101** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001102** results. This opcode causes the sqlite3_step() call to terminate
1103** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1104** structure to provide access to the top P1 values as the result
drh9cbf3422008-01-17 16:22:13 +00001105** row.
drhd4e70eb2008-01-02 00:34:36 +00001106*/
drh9cbf3422008-01-17 16:22:13 +00001107case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001108 Mem *pMem;
1109 int i;
1110 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001111 assert( pOp->p1>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001112 assert( pOp->p1+pOp->p2<=p->nMem+1 );
drhd4e70eb2008-01-02 00:34:36 +00001113
dan32b09f22009-09-23 17:29:59 +00001114 /* If this statement has violated immediate foreign key constraints, do
1115 ** not return the number of rows modified. And do not RELEASE the statement
1116 ** transaction. It needs to be rolled back. */
1117 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1118 assert( db->flags&SQLITE_CountRows );
1119 assert( p->usesStmtJournal );
1120 break;
1121 }
1122
danielk1977bd434552009-03-18 10:33:00 +00001123 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1124 ** DML statements invoke this opcode to return the number of rows
1125 ** modified to the user. This is the only way that a VM that
1126 ** opens a statement transaction may invoke this opcode.
1127 **
1128 ** In case this is such a statement, close any statement transaction
1129 ** opened by this VM before returning control to the user. This is to
1130 ** ensure that statement-transactions are always nested, not overlapping.
1131 ** If the open statement-transaction is not closed here, then the user
1132 ** may step another VM that opens its own statement transaction. This
1133 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001134 **
1135 ** The statement transaction is never a top-level transaction. Hence
1136 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001137 */
1138 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001139 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1140 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001141 break;
1142 }
1143
drhd4e70eb2008-01-02 00:34:36 +00001144 /* Invalidate all ephemeral cursor row caches */
1145 p->cacheCtr = (p->cacheCtr + 2)|1;
1146
1147 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001148 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001149 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001150 */
drha6c2ed92009-11-14 23:22:23 +00001151 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001152 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001153 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001154 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001155 assert( (pMem[i].flags & MEM_Ephem)==0
1156 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001157 sqlite3VdbeMemNulTerminate(&pMem[i]);
dan937d0de2009-10-15 18:35:38 +00001158 sqlite3VdbeMemStoreType(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001159 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001160 }
drh28039692008-03-17 16:54:01 +00001161 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001162
1163 /* Return SQLITE_ROW
1164 */
drhd4e70eb2008-01-02 00:34:36 +00001165 p->pc = pc + 1;
drhd4e70eb2008-01-02 00:34:36 +00001166 rc = SQLITE_ROW;
1167 goto vdbe_return;
1168}
1169
drh5b6afba2008-01-05 16:29:28 +00001170/* Opcode: Concat P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001171**
drh5b6afba2008-01-05 16:29:28 +00001172** Add the text in register P1 onto the end of the text in
1173** register P2 and store the result in register P3.
1174** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001175**
1176** P3 = P2 || P1
1177**
1178** It is illegal for P1 and P3 to be the same register. Sometimes,
1179** if P3 is the same register as P2, the implementation is able
1180** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001181*/
drh5b6afba2008-01-05 16:29:28 +00001182case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001183 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001184
drh3c657212009-11-17 23:59:58 +00001185 pIn1 = &aMem[pOp->p1];
1186 pIn2 = &aMem[pOp->p2];
1187 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001188 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001189 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001190 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001191 break;
drh5e00f6c2001-09-13 13:46:56 +00001192 }
drha0c06522009-06-17 22:50:41 +00001193 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001194 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001195 Stringify(pIn2, encoding);
1196 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001197 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001198 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001199 }
danielk1977a7a8e142008-02-13 18:25:27 +00001200 MemSetTypeFlag(pOut, MEM_Str);
drh9c1905f2008-12-10 22:32:56 +00001201 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001202 goto no_mem;
1203 }
danielk1977a7a8e142008-02-13 18:25:27 +00001204 if( pOut!=pIn2 ){
1205 memcpy(pOut->z, pIn2->z, pIn2->n);
1206 }
1207 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1208 pOut->z[nByte] = 0;
1209 pOut->z[nByte+1] = 0;
1210 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001211 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001212 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001213 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001214 break;
1215}
drh75897232000-05-29 14:26:00 +00001216
drh3c84ddf2008-01-09 02:15:38 +00001217/* Opcode: Add P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001218**
drh60a713c2008-01-21 16:22:45 +00001219** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001220** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001221** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001222*/
drh3c84ddf2008-01-09 02:15:38 +00001223/* Opcode: Multiply P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001224**
drh3c84ddf2008-01-09 02:15:38 +00001225**
shane21e7feb2008-05-30 15:59:49 +00001226** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001227** and store the result in register P3.
1228** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001229*/
drh3c84ddf2008-01-09 02:15:38 +00001230/* Opcode: Subtract P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001231**
drh60a713c2008-01-21 16:22:45 +00001232** Subtract the value in register P1 from the value in register P2
1233** and store the result in register P3.
1234** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001235*/
drh9cbf3422008-01-17 16:22:13 +00001236/* Opcode: Divide P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001237**
drh60a713c2008-01-21 16:22:45 +00001238** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001239** and store the result in register P3 (P3=P2/P1). If the value in
1240** register P1 is zero, then the result is NULL. If either input is
1241** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001242*/
drh9cbf3422008-01-17 16:22:13 +00001243/* Opcode: Remainder P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001244**
drh3c84ddf2008-01-09 02:15:38 +00001245** Compute the remainder after integer division of the value in
1246** register P1 by the value in register P2 and store the result in P3.
1247** If the value in register P2 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001248** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001249*/
drh5b6afba2008-01-05 16:29:28 +00001250case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1251case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1252case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1253case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1254case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001255 int flags; /* Combined MEM_* flags from both inputs */
1256 i64 iA; /* Integer value of left operand */
1257 i64 iB; /* Integer value of right operand */
1258 double rA; /* Real value of left operand */
1259 double rB; /* Real value of right operand */
1260
drh3c657212009-11-17 23:59:58 +00001261 pIn1 = &aMem[pOp->p1];
drh61669b32008-07-30 13:27:10 +00001262 applyNumericAffinity(pIn1);
drh3c657212009-11-17 23:59:58 +00001263 pIn2 = &aMem[pOp->p2];
drh61669b32008-07-30 13:27:10 +00001264 applyNumericAffinity(pIn2);
drh3c657212009-11-17 23:59:58 +00001265 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001266 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001267 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1268 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
drh856c1032009-06-02 15:21:42 +00001269 iA = pIn1->u.i;
1270 iB = pIn2->u.i;
drh5e00f6c2001-09-13 13:46:56 +00001271 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001272 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1273 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1274 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001275 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001276 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001277 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001278 iB /= iA;
drh75897232000-05-29 14:26:00 +00001279 break;
1280 }
drhbf4133c2001-10-13 02:59:08 +00001281 default: {
drh856c1032009-06-02 15:21:42 +00001282 if( iA==0 ) goto arithmetic_result_is_null;
1283 if( iA==-1 ) iA = 1;
1284 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001285 break;
1286 }
drh75897232000-05-29 14:26:00 +00001287 }
drh856c1032009-06-02 15:21:42 +00001288 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001289 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001290 }else{
drh158b9cb2011-03-05 20:59:46 +00001291fp_math:
drh856c1032009-06-02 15:21:42 +00001292 rA = sqlite3VdbeRealValue(pIn1);
1293 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001294 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001295 case OP_Add: rB += rA; break;
1296 case OP_Subtract: rB -= rA; break;
1297 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001298 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001299 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001300 if( rA==(double)0 ) goto arithmetic_result_is_null;
1301 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001302 break;
1303 }
drhbf4133c2001-10-13 02:59:08 +00001304 default: {
shane75ac1de2009-06-09 18:58:52 +00001305 iA = (i64)rA;
1306 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001307 if( iA==0 ) goto arithmetic_result_is_null;
1308 if( iA==-1 ) iA = 1;
1309 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001310 break;
1311 }
drh5e00f6c2001-09-13 13:46:56 +00001312 }
drhc5a7b512010-01-13 16:25:42 +00001313#ifdef SQLITE_OMIT_FLOATING_POINT
1314 pOut->u.i = rB;
1315 MemSetTypeFlag(pOut, MEM_Int);
1316#else
drh856c1032009-06-02 15:21:42 +00001317 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001318 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001319 }
drh856c1032009-06-02 15:21:42 +00001320 pOut->r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001321 MemSetTypeFlag(pOut, MEM_Real);
drh8a512562005-11-14 22:29:05 +00001322 if( (flags & MEM_Real)==0 ){
drh5b6afba2008-01-05 16:29:28 +00001323 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001324 }
drhc5a7b512010-01-13 16:25:42 +00001325#endif
drh5e00f6c2001-09-13 13:46:56 +00001326 }
1327 break;
1328
drha05a7222008-01-19 03:35:58 +00001329arithmetic_result_is_null:
1330 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001331 break;
1332}
1333
drh7a957892012-02-02 17:35:43 +00001334/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001335**
drh66a51672008-01-03 00:01:23 +00001336** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001337** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1338** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001339** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001340**
drh7a957892012-02-02 17:35:43 +00001341** If P1 is not zero, then it is a register that a subsequent min() or
1342** max() aggregate will set to 1 if the current row is not the minimum or
1343** maximum. The P1 register is initialized to 0 by this instruction.
1344**
danielk1977dc1bdc42004-06-11 10:51:27 +00001345** The interface used by the implementation of the aforementioned functions
1346** to retrieve the collation sequence set by this opcode is not available
1347** publicly, only to user functions defined in func.c.
1348*/
drh9cbf3422008-01-17 16:22:13 +00001349case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001350 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001351 if( pOp->p1 ){
1352 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1353 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001354 break;
1355}
1356
drh98757152008-01-09 23:04:12 +00001357/* Opcode: Function P1 P2 P3 P4 P5
drh8e0a2f92002-02-23 23:45:45 +00001358**
drh66a51672008-01-03 00:01:23 +00001359** Invoke a user function (P4 is a pointer to a Function structure that
drh98757152008-01-09 23:04:12 +00001360** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001361** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001362** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001363**
drh13449892005-09-07 21:22:45 +00001364** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001365** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001366** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001367** whether meta data associated with a user function argument using the
1368** sqlite3_set_auxdata() API may be safely retained until the next
1369** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001370**
drh13449892005-09-07 21:22:45 +00001371** See also: AggStep and AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001372*/
drh0bce8352002-02-28 00:41:10 +00001373case OP_Function: {
danielk197751ad0ec2004-05-24 12:39:02 +00001374 int i;
drh6810ce62004-01-31 19:22:56 +00001375 Mem *pArg;
danielk197722322fd2004-05-25 23:35:17 +00001376 sqlite3_context ctx;
danielk197751ad0ec2004-05-24 12:39:02 +00001377 sqlite3_value **apVal;
drh856c1032009-06-02 15:21:42 +00001378 int n;
drh1350b032002-02-27 19:00:20 +00001379
drh856c1032009-06-02 15:21:42 +00001380 n = pOp->p5;
danielk19776ddcca52004-05-24 23:48:25 +00001381 apVal = p->apArg;
danielk197751ad0ec2004-05-24 12:39:02 +00001382 assert( apVal || n==0 );
drhebc16712010-09-28 00:25:58 +00001383 assert( pOp->p3>0 && pOp->p3<=p->nMem );
1384 pOut = &aMem[pOp->p3];
1385 memAboutToChange(p, pOut);
danielk197751ad0ec2004-05-24 12:39:02 +00001386
danielk19776ab3a2e2009-02-19 14:39:25 +00001387 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
danielk1977a7a8e142008-02-13 18:25:27 +00001388 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drha6c2ed92009-11-14 23:22:23 +00001389 pArg = &aMem[pOp->p2];
drh6810ce62004-01-31 19:22:56 +00001390 for(i=0; i<n; i++, pArg++){
drh2b4ded92010-09-27 21:09:31 +00001391 assert( memIsValid(pArg) );
danielk197751ad0ec2004-05-24 12:39:02 +00001392 apVal[i] = pArg;
drhebc16712010-09-28 00:25:58 +00001393 Deephemeralize(pArg);
dan937d0de2009-10-15 18:35:38 +00001394 sqlite3VdbeMemStoreType(pArg);
drhab5cd702010-04-07 14:32:11 +00001395 REGISTER_TRACE(pOp->p2+i, pArg);
drh8e0a2f92002-02-23 23:45:45 +00001396 }
danielk197751ad0ec2004-05-24 12:39:02 +00001397
drh66a51672008-01-03 00:01:23 +00001398 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1399 if( pOp->p4type==P4_FUNCDEF ){
danielk19772dca4ac2008-01-03 11:50:29 +00001400 ctx.pFunc = pOp->p4.pFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001401 ctx.pVdbeFunc = 0;
1402 }else{
danielk19772dca4ac2008-01-03 11:50:29 +00001403 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001404 ctx.pFunc = ctx.pVdbeFunc->pFunc;
1405 }
1406
drh00706be2004-01-30 14:49:16 +00001407 ctx.s.flags = MEM_Null;
drhfa4a4b92008-03-19 21:45:51 +00001408 ctx.s.db = db;
danielk19775f096132008-03-28 15:44:09 +00001409 ctx.s.xDel = 0;
1410 ctx.s.zMalloc = 0;
danielk1977a7a8e142008-02-13 18:25:27 +00001411
1412 /* The output cell may already have a buffer allocated. Move
1413 ** the pointer to ctx.s so in case the user-function can use
1414 ** the already allocated buffer instead of allocating a new one.
1415 */
1416 sqlite3VdbeMemMove(&ctx.s, pOut);
1417 MemSetTypeFlag(&ctx.s, MEM_Null);
1418
drh8e0a2f92002-02-23 23:45:45 +00001419 ctx.isError = 0;
drhe82f5d02008-10-07 19:53:14 +00001420 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
drhbbe879d2009-11-14 18:04:35 +00001421 assert( pOp>aOp );
drh66a51672008-01-03 00:01:23 +00001422 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00001423 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00001424 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00001425 }
drh99a66922011-05-13 18:51:42 +00001426 db->lastRowid = lastRowid;
drhee9ff672010-09-03 18:50:48 +00001427 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh99a66922011-05-13 18:51:42 +00001428 lastRowid = db->lastRowid;
danielk19777e18c252004-05-25 11:47:24 +00001429
shane21e7feb2008-05-30 15:59:49 +00001430 /* If any auxiliary data functions have been called by this user function,
danielk1977682f68b2004-06-05 10:22:17 +00001431 ** immediately call the destructor for any non-static values.
1432 */
1433 if( ctx.pVdbeFunc ){
drh13449892005-09-07 21:22:45 +00001434 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
danielk19772dca4ac2008-01-03 11:50:29 +00001435 pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
drh66a51672008-01-03 00:01:23 +00001436 pOp->p4type = P4_VDBEFUNC;
danielk1977682f68b2004-06-05 10:22:17 +00001437 }
1438
dan5f84e142011-06-14 14:18:45 +00001439 if( db->mallocFailed ){
1440 /* Even though a malloc() has failed, the implementation of the
1441 ** user function may have called an sqlite3_result_XXX() function
1442 ** to return a value. The following call releases any resources
1443 ** associated with such a value.
1444 */
1445 sqlite3VdbeMemRelease(&ctx.s);
1446 goto no_mem;
1447 }
1448
drh90669c12006-01-20 15:45:36 +00001449 /* If the function returned an error, throw an exception */
1450 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00001451 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00001452 rc = ctx.isError;
drh90669c12006-01-20 15:45:36 +00001453 }
1454
drh9cbf3422008-01-17 16:22:13 +00001455 /* Copy the result of the function into register P3 */
drhb21c8cd2007-08-21 19:33:56 +00001456 sqlite3VdbeChangeEncoding(&ctx.s, encoding);
drh98757152008-01-09 23:04:12 +00001457 sqlite3VdbeMemMove(pOut, &ctx.s);
1458 if( sqlite3VdbeMemTooBig(pOut) ){
drh023ae032007-05-08 12:12:16 +00001459 goto too_big;
1460 }
drh7b94e7f2011-04-04 12:29:20 +00001461
1462#if 0
1463 /* The app-defined function has done something that as caused this
1464 ** statement to expire. (Perhaps the function called sqlite3_exec()
1465 ** with a CREATE TABLE statement.)
1466 */
1467 if( p->expired ) rc = SQLITE_ABORT;
1468#endif
1469
drh2dcef112008-01-12 19:03:48 +00001470 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00001471 UPDATE_MAX_BLOBSIZE(pOut);
drh8e0a2f92002-02-23 23:45:45 +00001472 break;
1473}
1474
drh98757152008-01-09 23:04:12 +00001475/* Opcode: BitAnd P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001476**
drh98757152008-01-09 23:04:12 +00001477** Take the bit-wise AND of the values in register P1 and P2 and
1478** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001479** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001480*/
drh98757152008-01-09 23:04:12 +00001481/* Opcode: BitOr P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001482**
drh98757152008-01-09 23:04:12 +00001483** Take the bit-wise OR of the values in register P1 and P2 and
1484** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001485** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001486*/
drh98757152008-01-09 23:04:12 +00001487/* Opcode: ShiftLeft P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001488**
drh98757152008-01-09 23:04:12 +00001489** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001490** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001491** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001492** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001493*/
drh98757152008-01-09 23:04:12 +00001494/* Opcode: ShiftRight P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001495**
drh98757152008-01-09 23:04:12 +00001496** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001497** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001498** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001499** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001500*/
drh5b6afba2008-01-05 16:29:28 +00001501case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1502case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1503case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1504case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001505 i64 iA;
1506 u64 uA;
1507 i64 iB;
1508 u8 op;
drh6810ce62004-01-31 19:22:56 +00001509
drh3c657212009-11-17 23:59:58 +00001510 pIn1 = &aMem[pOp->p1];
1511 pIn2 = &aMem[pOp->p2];
1512 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001513 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001514 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001515 break;
1516 }
drh158b9cb2011-03-05 20:59:46 +00001517 iA = sqlite3VdbeIntValue(pIn2);
1518 iB = sqlite3VdbeIntValue(pIn1);
1519 op = pOp->opcode;
1520 if( op==OP_BitAnd ){
1521 iA &= iB;
1522 }else if( op==OP_BitOr ){
1523 iA |= iB;
1524 }else if( iB!=0 ){
1525 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1526
1527 /* If shifting by a negative amount, shift in the other direction */
1528 if( iB<0 ){
1529 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1530 op = 2*OP_ShiftLeft + 1 - op;
1531 iB = iB>(-64) ? -iB : 64;
1532 }
1533
1534 if( iB>=64 ){
1535 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1536 }else{
1537 memcpy(&uA, &iA, sizeof(uA));
1538 if( op==OP_ShiftLeft ){
1539 uA <<= iB;
1540 }else{
1541 uA >>= iB;
1542 /* Sign-extend on a right shift of a negative number */
1543 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1544 }
1545 memcpy(&iA, &uA, sizeof(iA));
1546 }
drhbf4133c2001-10-13 02:59:08 +00001547 }
drh158b9cb2011-03-05 20:59:46 +00001548 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001549 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001550 break;
1551}
1552
drh8558cde2008-01-05 05:20:10 +00001553/* Opcode: AddImm P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00001554**
danielk19770cdc0222008-06-26 18:04:03 +00001555** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001556** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001557**
drh8558cde2008-01-05 05:20:10 +00001558** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001559*/
drh9cbf3422008-01-17 16:22:13 +00001560case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001561 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001562 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001563 sqlite3VdbeMemIntegerify(pIn1);
1564 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001565 break;
1566}
1567
drh9cbf3422008-01-17 16:22:13 +00001568/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001569**
drh9cbf3422008-01-17 16:22:13 +00001570** Force the value in register P1 to be an integer. If the value
1571** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001572** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001573** raise an SQLITE_MISMATCH exception.
1574*/
drh9cbf3422008-01-17 16:22:13 +00001575case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001576 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001577 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1578 if( (pIn1->flags & MEM_Int)==0 ){
drh17c40292004-07-21 02:53:29 +00001579 if( pOp->p2==0 ){
1580 rc = SQLITE_MISMATCH;
1581 goto abort_due_to_error;
drh3c84ddf2008-01-09 02:15:38 +00001582 }else{
drh17c40292004-07-21 02:53:29 +00001583 pc = pOp->p2 - 1;
drh8aff1012001-12-22 14:49:24 +00001584 }
drh8aff1012001-12-22 14:49:24 +00001585 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00001586 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001587 }
1588 break;
1589}
1590
drh13573c72010-01-12 17:04:07 +00001591#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001592/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001593**
drh2133d822008-01-03 18:44:59 +00001594** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001595**
drh8a512562005-11-14 22:29:05 +00001596** This opcode is used when extracting information from a column that
1597** has REAL affinity. Such column values may still be stored as
1598** integers, for space efficiency, but after extraction we want them
1599** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001600*/
drh9cbf3422008-01-17 16:22:13 +00001601case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001602 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001603 if( pIn1->flags & MEM_Int ){
1604 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001605 }
drh487e2622005-06-25 18:42:14 +00001606 break;
1607}
drh13573c72010-01-12 17:04:07 +00001608#endif
drh487e2622005-06-25 18:42:14 +00001609
drh8df447f2005-11-01 15:48:24 +00001610#ifndef SQLITE_OMIT_CAST
drh8558cde2008-01-05 05:20:10 +00001611/* Opcode: ToText P1 * * * *
drh487e2622005-06-25 18:42:14 +00001612**
drh8558cde2008-01-05 05:20:10 +00001613** Force the value in register P1 to be text.
drh31beae92005-11-24 14:34:36 +00001614** If the value is numeric, convert it to a string using the
drh487e2622005-06-25 18:42:14 +00001615** equivalent of printf(). Blob values are unchanged and
1616** are afterwards simply interpreted as text.
1617**
1618** A NULL value is not changed by this routine. It remains NULL.
1619*/
drh9cbf3422008-01-17 16:22:13 +00001620case OP_ToText: { /* same as TK_TO_TEXT, in1 */
drh3c657212009-11-17 23:59:58 +00001621 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001622 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001623 if( pIn1->flags & MEM_Null ) break;
drh487e2622005-06-25 18:42:14 +00001624 assert( MEM_Str==(MEM_Blob>>3) );
drh8558cde2008-01-05 05:20:10 +00001625 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1626 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1627 rc = ExpandBlob(pIn1);
danielk1977a7a8e142008-02-13 18:25:27 +00001628 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drh68ac65e2009-01-05 18:02:27 +00001629 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
drhb7654112008-01-12 12:48:07 +00001630 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001631 break;
1632}
1633
drh8558cde2008-01-05 05:20:10 +00001634/* Opcode: ToBlob P1 * * * *
drh487e2622005-06-25 18:42:14 +00001635**
drh8558cde2008-01-05 05:20:10 +00001636** Force the value in register P1 to be a BLOB.
drh487e2622005-06-25 18:42:14 +00001637** If the value is numeric, convert it to a string first.
1638** Strings are simply reinterpreted as blobs with no change
1639** to the underlying data.
1640**
1641** A NULL value is not changed by this routine. It remains NULL.
1642*/
drh9cbf3422008-01-17 16:22:13 +00001643case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
drh3c657212009-11-17 23:59:58 +00001644 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001645 if( pIn1->flags & MEM_Null ) break;
1646 if( (pIn1->flags & MEM_Blob)==0 ){
1647 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
danielk1977a7a8e142008-02-13 18:25:27 +00001648 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drhde58ddb2009-01-05 22:30:38 +00001649 MemSetTypeFlag(pIn1, MEM_Blob);
1650 }else{
1651 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
drh487e2622005-06-25 18:42:14 +00001652 }
drhb7654112008-01-12 12:48:07 +00001653 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001654 break;
1655}
drh8a512562005-11-14 22:29:05 +00001656
drh8558cde2008-01-05 05:20:10 +00001657/* Opcode: ToNumeric P1 * * * *
drh8a512562005-11-14 22:29:05 +00001658**
drh8558cde2008-01-05 05:20:10 +00001659** Force the value in register P1 to be numeric (either an
drh8a512562005-11-14 22:29:05 +00001660** integer or a floating-point number.)
1661** If the value is text or blob, try to convert it to an using the
1662** equivalent of atoi() or atof() and store 0 if no such conversion
1663** is possible.
1664**
1665** A NULL value is not changed by this routine. It remains NULL.
1666*/
drh9cbf3422008-01-17 16:22:13 +00001667case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
drh3c657212009-11-17 23:59:58 +00001668 pIn1 = &aMem[pOp->p1];
drh93518622010-09-30 14:48:06 +00001669 sqlite3VdbeMemNumerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001670 break;
1671}
1672#endif /* SQLITE_OMIT_CAST */
1673
drh8558cde2008-01-05 05:20:10 +00001674/* Opcode: ToInt P1 * * * *
drh8a512562005-11-14 22:29:05 +00001675**
drh710c4842010-08-30 01:17:20 +00001676** Force the value in register P1 to be an integer. If
drh8a512562005-11-14 22:29:05 +00001677** The value is currently a real number, drop its fractional part.
1678** If the value is text or blob, try to convert it to an integer using the
1679** equivalent of atoi() and store 0 if no such conversion is possible.
1680**
1681** A NULL value is not changed by this routine. It remains NULL.
1682*/
drh9cbf3422008-01-17 16:22:13 +00001683case OP_ToInt: { /* same as TK_TO_INT, in1 */
drh3c657212009-11-17 23:59:58 +00001684 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001685 if( (pIn1->flags & MEM_Null)==0 ){
1686 sqlite3VdbeMemIntegerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001687 }
1688 break;
1689}
1690
drh13573c72010-01-12 17:04:07 +00001691#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
drh8558cde2008-01-05 05:20:10 +00001692/* Opcode: ToReal P1 * * * *
drh8a512562005-11-14 22:29:05 +00001693**
drh8558cde2008-01-05 05:20:10 +00001694** Force the value in register P1 to be a floating point number.
drh8a512562005-11-14 22:29:05 +00001695** If The value is currently an integer, convert it.
1696** If the value is text or blob, try to convert it to an integer using the
drh60a713c2008-01-21 16:22:45 +00001697** equivalent of atoi() and store 0.0 if no such conversion is possible.
drh8a512562005-11-14 22:29:05 +00001698**
1699** A NULL value is not changed by this routine. It remains NULL.
1700*/
drh9cbf3422008-01-17 16:22:13 +00001701case OP_ToReal: { /* same as TK_TO_REAL, in1 */
drh3c657212009-11-17 23:59:58 +00001702 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001703 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001704 if( (pIn1->flags & MEM_Null)==0 ){
1705 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001706 }
1707 break;
1708}
drh13573c72010-01-12 17:04:07 +00001709#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
drh487e2622005-06-25 18:42:14 +00001710
drh35573352008-01-08 23:54:25 +00001711/* Opcode: Lt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001712**
drh35573352008-01-08 23:54:25 +00001713** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1714** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001715**
drh35573352008-01-08 23:54:25 +00001716** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1717** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001718** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001719**
drh35573352008-01-08 23:54:25 +00001720** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001721** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001722** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001723** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001724** affinity is used. Note that the affinity conversions are stored
1725** back into the input registers P1 and P3. So this opcode can cause
1726** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001727**
1728** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001729** the values are compared. If both values are blobs then memcmp() is
1730** used to determine the results of the comparison. If both values
1731** are text, then the appropriate collating function specified in
1732** P4 is used to do the comparison. If P4 is not specified then
1733** memcmp() is used to compare text string. If both values are
1734** numeric, then a numeric comparison is used. If the two values
1735** are of different types, then numbers are considered less than
1736** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001737**
drh35573352008-01-08 23:54:25 +00001738** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1739** store a boolean result (either 0, or 1, or NULL) in register P2.
drh5e00f6c2001-09-13 13:46:56 +00001740*/
drh9cbf3422008-01-17 16:22:13 +00001741/* Opcode: Ne P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001742**
drh35573352008-01-08 23:54:25 +00001743** This works just like the Lt opcode except that the jump is taken if
1744** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001745** additional information.
drh6a2fe092009-09-23 02:29:36 +00001746**
1747** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1748** true or false and is never NULL. If both operands are NULL then the result
1749** of comparison is false. If either operand is NULL then the result is true.
drhef8662b2011-06-20 21:47:58 +00001750** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001751** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001752*/
drh9cbf3422008-01-17 16:22:13 +00001753/* Opcode: Eq P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001754**
drh35573352008-01-08 23:54:25 +00001755** This works just like the Lt opcode except that the jump is taken if
1756** the operands in registers P1 and P3 are equal.
1757** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001758**
1759** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1760** true or false and is never NULL. If both operands are NULL then the result
1761** of comparison is true. If either operand is NULL then the result is false.
drhef8662b2011-06-20 21:47:58 +00001762** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001763** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001764*/
drh9cbf3422008-01-17 16:22:13 +00001765/* Opcode: Le P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001766**
drh35573352008-01-08 23:54:25 +00001767** This works just like the Lt opcode except that the jump is taken if
1768** the content of register P3 is less than or equal to the content of
1769** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001770*/
drh9cbf3422008-01-17 16:22:13 +00001771/* Opcode: Gt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001772**
drh35573352008-01-08 23:54:25 +00001773** This works just like the Lt opcode except that the jump is taken if
1774** the content of register P3 is greater than the content of
1775** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001776*/
drh9cbf3422008-01-17 16:22:13 +00001777/* Opcode: Ge P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001778**
drh35573352008-01-08 23:54:25 +00001779** This works just like the Lt opcode except that the jump is taken if
1780** the content of register P3 is greater than or equal to the content of
1781** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001782*/
drh9cbf3422008-01-17 16:22:13 +00001783case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1784case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1785case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1786case OP_Le: /* same as TK_LE, jump, in1, in3 */
1787case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1788case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001789 int res; /* Result of the comparison of pIn1 against pIn3 */
1790 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001791 u16 flags1; /* Copy of initial value of pIn1->flags */
1792 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001793
drh3c657212009-11-17 23:59:58 +00001794 pIn1 = &aMem[pOp->p1];
1795 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001796 flags1 = pIn1->flags;
1797 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001798 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001799 /* One or both operands are NULL */
1800 if( pOp->p5 & SQLITE_NULLEQ ){
1801 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1802 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1803 ** or not both operands are null.
1804 */
1805 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drhc3f1d5f2011-05-30 23:42:16 +00001806 res = (flags1 & flags3 & MEM_Null)==0;
drh6a2fe092009-09-23 02:29:36 +00001807 }else{
1808 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1809 ** then the result is always NULL.
1810 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1811 */
1812 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001813 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001814 MemSetTypeFlag(pOut, MEM_Null);
1815 REGISTER_TRACE(pOp->p2, pOut);
1816 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1817 pc = pOp->p2-1;
1818 }
1819 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001820 }
drh6a2fe092009-09-23 02:29:36 +00001821 }else{
1822 /* Neither operand is NULL. Do a comparison. */
1823 affinity = pOp->p5 & SQLITE_AFF_MASK;
1824 if( affinity ){
1825 applyAffinity(pIn1, affinity, encoding);
1826 applyAffinity(pIn3, affinity, encoding);
1827 if( db->mallocFailed ) goto no_mem;
1828 }
danielk1977a37cdde2004-05-16 11:15:36 +00001829
drh6a2fe092009-09-23 02:29:36 +00001830 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1831 ExpandBlob(pIn1);
1832 ExpandBlob(pIn3);
1833 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001834 }
danielk1977a37cdde2004-05-16 11:15:36 +00001835 switch( pOp->opcode ){
1836 case OP_Eq: res = res==0; break;
1837 case OP_Ne: res = res!=0; break;
1838 case OP_Lt: res = res<0; break;
1839 case OP_Le: res = res<=0; break;
1840 case OP_Gt: res = res>0; break;
1841 default: res = res>=0; break;
1842 }
1843
drh35573352008-01-08 23:54:25 +00001844 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001845 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00001846 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00001847 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00001848 pOut->u.i = res;
1849 REGISTER_TRACE(pOp->p2, pOut);
1850 }else if( res ){
1851 pc = pOp->p2-1;
danielk1977a37cdde2004-05-16 11:15:36 +00001852 }
danb7dca7d2010-03-05 16:32:12 +00001853
1854 /* Undo any changes made by applyAffinity() to the input registers. */
1855 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1856 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
danielk1977a37cdde2004-05-16 11:15:36 +00001857 break;
1858}
drhc9b84a12002-06-20 11:36:48 +00001859
drh0acb7e42008-06-25 00:12:41 +00001860/* Opcode: Permutation * * * P4 *
1861**
shanebe217792009-03-05 04:20:31 +00001862** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00001863** of integers in P4.
1864**
1865** The permutation is only valid until the next OP_Permutation, OP_Compare,
1866** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
1867** immediately prior to the OP_Compare.
1868*/
1869case OP_Permutation: {
1870 assert( pOp->p4type==P4_INTARRAY );
1871 assert( pOp->p4.ai );
1872 aPermute = pOp->p4.ai;
1873 break;
1874}
1875
drh16ee60f2008-06-20 18:13:25 +00001876/* Opcode: Compare P1 P2 P3 P4 *
1877**
drh710c4842010-08-30 01:17:20 +00001878** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1879** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00001880** the comparison for use by the next OP_Jump instruct.
1881**
drh0acb7e42008-06-25 00:12:41 +00001882** P4 is a KeyInfo structure that defines collating sequences and sort
1883** orders for the comparison. The permutation applies to registers
1884** only. The KeyInfo elements are used sequentially.
1885**
1886** The comparison is a sort comparison, so NULLs compare equal,
1887** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00001888** and strings are less than blobs.
1889*/
1890case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00001891 int n;
1892 int i;
1893 int p1;
1894 int p2;
1895 const KeyInfo *pKeyInfo;
1896 int idx;
1897 CollSeq *pColl; /* Collating sequence to use on this term */
1898 int bRev; /* True for DESCENDING sort order */
1899
1900 n = pOp->p3;
1901 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00001902 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00001903 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00001904 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00001905 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00001906#if SQLITE_DEBUG
1907 if( aPermute ){
1908 int k, mx = 0;
1909 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1910 assert( p1>0 && p1+mx<=p->nMem+1 );
1911 assert( p2>0 && p2+mx<=p->nMem+1 );
1912 }else{
1913 assert( p1>0 && p1+n<=p->nMem+1 );
1914 assert( p2>0 && p2+n<=p->nMem+1 );
1915 }
1916#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00001917 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00001918 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00001919 assert( memIsValid(&aMem[p1+idx]) );
1920 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00001921 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1922 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00001923 assert( i<pKeyInfo->nField );
1924 pColl = pKeyInfo->aColl[i];
1925 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00001926 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00001927 if( iCompare ){
1928 if( bRev ) iCompare = -iCompare;
1929 break;
1930 }
drh16ee60f2008-06-20 18:13:25 +00001931 }
drh0acb7e42008-06-25 00:12:41 +00001932 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00001933 break;
1934}
1935
1936/* Opcode: Jump P1 P2 P3 * *
1937**
1938** Jump to the instruction at address P1, P2, or P3 depending on whether
1939** in the most recent OP_Compare instruction the P1 vector was less than
1940** equal to, or greater than the P2 vector, respectively.
1941*/
drh0acb7e42008-06-25 00:12:41 +00001942case OP_Jump: { /* jump */
1943 if( iCompare<0 ){
drh16ee60f2008-06-20 18:13:25 +00001944 pc = pOp->p1 - 1;
drh0acb7e42008-06-25 00:12:41 +00001945 }else if( iCompare==0 ){
drh16ee60f2008-06-20 18:13:25 +00001946 pc = pOp->p2 - 1;
1947 }else{
1948 pc = pOp->p3 - 1;
1949 }
1950 break;
1951}
1952
drh5b6afba2008-01-05 16:29:28 +00001953/* Opcode: And P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001954**
drh5b6afba2008-01-05 16:29:28 +00001955** Take the logical AND of the values in registers P1 and P2 and
1956** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00001957**
drh5b6afba2008-01-05 16:29:28 +00001958** If either P1 or P2 is 0 (false) then the result is 0 even if
1959** the other input is NULL. A NULL and true or two NULLs give
1960** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00001961*/
drh5b6afba2008-01-05 16:29:28 +00001962/* Opcode: Or P1 P2 P3 * *
1963**
1964** Take the logical OR of the values in register P1 and P2 and
1965** store the answer in register P3.
1966**
1967** If either P1 or P2 is nonzero (true) then the result is 1 (true)
1968** even if the other input is NULL. A NULL and false or two NULLs
1969** give a NULL output.
1970*/
1971case OP_And: /* same as TK_AND, in1, in2, out3 */
1972case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001973 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1974 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00001975
drh3c657212009-11-17 23:59:58 +00001976 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00001977 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00001978 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00001979 }else{
drh5b6afba2008-01-05 16:29:28 +00001980 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00001981 }
drh3c657212009-11-17 23:59:58 +00001982 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00001983 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00001984 v2 = 2;
1985 }else{
drh5b6afba2008-01-05 16:29:28 +00001986 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00001987 }
1988 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00001989 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00001990 v1 = and_logic[v1*3+v2];
1991 }else{
drh5b6afba2008-01-05 16:29:28 +00001992 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00001993 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00001994 }
drh3c657212009-11-17 23:59:58 +00001995 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00001996 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00001997 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00001998 }else{
drh5b6afba2008-01-05 16:29:28 +00001999 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002000 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002001 }
drh5e00f6c2001-09-13 13:46:56 +00002002 break;
2003}
2004
drhe99fa2a2008-12-15 15:27:51 +00002005/* Opcode: Not P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002006**
drhe99fa2a2008-12-15 15:27:51 +00002007** Interpret the value in register P1 as a boolean value. Store the
2008** boolean complement in register P2. If the value in register P1 is
2009** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002010*/
drh93952eb2009-11-13 19:43:43 +00002011case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002012 pIn1 = &aMem[pOp->p1];
2013 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00002014 if( pIn1->flags & MEM_Null ){
2015 sqlite3VdbeMemSetNull(pOut);
2016 }else{
2017 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
2018 }
drh5e00f6c2001-09-13 13:46:56 +00002019 break;
2020}
2021
drhe99fa2a2008-12-15 15:27:51 +00002022/* Opcode: BitNot P1 P2 * * *
drhbf4133c2001-10-13 02:59:08 +00002023**
drhe99fa2a2008-12-15 15:27:51 +00002024** Interpret the content of register P1 as an integer. Store the
2025** ones-complement of the P1 value into register P2. If P1 holds
2026** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002027*/
drh93952eb2009-11-13 19:43:43 +00002028case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002029 pIn1 = &aMem[pOp->p1];
2030 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00002031 if( pIn1->flags & MEM_Null ){
2032 sqlite3VdbeMemSetNull(pOut);
2033 }else{
2034 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
2035 }
drhbf4133c2001-10-13 02:59:08 +00002036 break;
2037}
2038
drh48f2d3b2011-09-16 01:34:43 +00002039/* Opcode: Once P1 P2 * * *
2040**
dan1d8cb212011-12-09 13:24:16 +00002041** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
2042** set the flag and fall through to the next instruction.
drhb8475df2011-12-09 16:21:19 +00002043**
2044** See also: JumpOnce
drh48f2d3b2011-09-16 01:34:43 +00002045*/
dan1d8cb212011-12-09 13:24:16 +00002046case OP_Once: { /* jump */
2047 assert( pOp->p1<p->nOnceFlag );
2048 if( p->aOnceFlag[pOp->p1] ){
2049 pc = pOp->p2-1;
2050 }else{
2051 p->aOnceFlag[pOp->p1] = 1;
2052 }
2053 break;
2054}
2055
drh3c84ddf2008-01-09 02:15:38 +00002056/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002057**
drhef8662b2011-06-20 21:47:58 +00002058** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002059** is considered true if it is numeric and non-zero. If the value
drhb8475df2011-12-09 16:21:19 +00002060** in P1 is NULL then take the jump if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002061*/
drh3c84ddf2008-01-09 02:15:38 +00002062/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002063**
drhef8662b2011-06-20 21:47:58 +00002064** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002065** is considered false if it has a numeric value of zero. If the value
2066** in P1 is NULL then take the jump if P3 is zero.
drhf5905aa2002-05-26 20:54:33 +00002067*/
drh9cbf3422008-01-17 16:22:13 +00002068case OP_If: /* jump, in1 */
2069case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002070 int c;
drh3c657212009-11-17 23:59:58 +00002071 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002072 if( pIn1->flags & MEM_Null ){
2073 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002074 }else{
drhba0232a2005-06-06 17:27:19 +00002075#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002076 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002077#else
drh3c84ddf2008-01-09 02:15:38 +00002078 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002079#endif
drhf5905aa2002-05-26 20:54:33 +00002080 if( pOp->opcode==OP_IfNot ) c = !c;
2081 }
drh3c84ddf2008-01-09 02:15:38 +00002082 if( c ){
2083 pc = pOp->p2-1;
2084 }
drh5e00f6c2001-09-13 13:46:56 +00002085 break;
2086}
2087
drh830ecf92009-06-18 00:41:55 +00002088/* Opcode: IsNull P1 P2 * * *
drh477df4b2008-01-05 18:48:24 +00002089**
drh830ecf92009-06-18 00:41:55 +00002090** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002091*/
drh9cbf3422008-01-17 16:22:13 +00002092case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002093 pIn1 = &aMem[pOp->p1];
drh830ecf92009-06-18 00:41:55 +00002094 if( (pIn1->flags & MEM_Null)!=0 ){
2095 pc = pOp->p2 - 1;
2096 }
drh477df4b2008-01-05 18:48:24 +00002097 break;
2098}
2099
drh98757152008-01-09 23:04:12 +00002100/* Opcode: NotNull P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002101**
drh6a288a32008-01-07 19:20:24 +00002102** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002103*/
drh9cbf3422008-01-17 16:22:13 +00002104case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002105 pIn1 = &aMem[pOp->p1];
drh6a288a32008-01-07 19:20:24 +00002106 if( (pIn1->flags & MEM_Null)==0 ){
2107 pc = pOp->p2 - 1;
2108 }
drh5e00f6c2001-09-13 13:46:56 +00002109 break;
2110}
2111
drh3e9ca092009-09-08 01:14:48 +00002112/* Opcode: Column P1 P2 P3 P4 P5
danielk1977192ac1d2004-05-10 07:17:30 +00002113**
danielk1977cfcdaef2004-05-12 07:33:33 +00002114** Interpret the data that cursor P1 points to as a structure built using
2115** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002116** information about the format of the data.) Extract the P2-th column
2117** from this record. If there are less that (P2+1)
2118** values in the record, extract a NULL.
2119**
drh9cbf3422008-01-17 16:22:13 +00002120** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002121**
danielk19771f4aa332008-01-03 09:51:55 +00002122** If the column contains fewer than P2 fields, then extract a NULL. Or,
2123** if the P4 argument is a P4_MEM use the value of the P4 argument as
2124** the result.
drh3e9ca092009-09-08 01:14:48 +00002125**
2126** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2127** then the cache of the cursor is reset prior to extracting the column.
2128** The first OP_Column against a pseudo-table after the value of the content
2129** register has changed should have this bit set.
danielk1977192ac1d2004-05-10 07:17:30 +00002130*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002131case OP_Column: {
drh35cd6432009-06-05 14:17:21 +00002132 u32 payloadSize; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002133 i64 payloadSize64; /* Number of bytes in the record */
2134 int p1; /* P1 value of the opcode */
2135 int p2; /* column number to retrieve */
2136 VdbeCursor *pC; /* The VDBE cursor */
drhe61cffc2004-06-12 18:12:15 +00002137 char *zRec; /* Pointer to complete record-data */
drhd3194f52004-05-27 19:59:32 +00002138 BtCursor *pCrsr; /* The BTree cursor */
2139 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
2140 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk197764202cf2008-11-17 15:31:47 +00002141 int nField; /* number of fields in the record */
danielk1977cfcdaef2004-05-12 07:33:33 +00002142 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002143 int i; /* Loop counter */
2144 char *zData; /* Part of the record being decoded */
drhd4e70eb2008-01-02 00:34:36 +00002145 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002146 Mem sMem; /* For storing the record being decoded */
drh35cd6432009-06-05 14:17:21 +00002147 u8 *zIdx; /* Index into header */
2148 u8 *zEndHdr; /* Pointer to first byte after the header */
2149 u32 offset; /* Offset into the data */
drh6658cd92010-02-05 14:12:53 +00002150 u32 szField; /* Number of bytes in the content of a field */
drh35cd6432009-06-05 14:17:21 +00002151 int szHdr; /* Size of the header size field at start of record */
2152 int avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002153 u32 t; /* A type code from the record header */
drh3e9ca092009-09-08 01:14:48 +00002154 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002155
drh856c1032009-06-02 15:21:42 +00002156
2157 p1 = pOp->p1;
2158 p2 = pOp->p2;
2159 pC = 0;
drhb27b7f52008-12-10 18:03:45 +00002160 memset(&sMem, 0, sizeof(sMem));
drhd3194f52004-05-27 19:59:32 +00002161 assert( p1<p->nCursor );
drh9cbf3422008-01-17 16:22:13 +00002162 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00002163 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002164 memAboutToChange(p, pDest);
shane36840fd2009-06-26 16:32:13 +00002165 zRec = 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00002166
drhe61cffc2004-06-12 18:12:15 +00002167 /* This block sets the variable payloadSize to be the total number of
2168 ** bytes in the record.
2169 **
2170 ** zRec is set to be the complete text of the record if it is available.
drhb73857f2006-03-17 00:25:59 +00002171 ** The complete record text is always available for pseudo-tables
2172 ** If the record is stored in a cursor, the complete record text
2173 ** might be available in the pC->aRow cache. Or it might not be.
2174 ** If the data is unavailable, zRec is set to NULL.
drhd3194f52004-05-27 19:59:32 +00002175 **
2176 ** We also compute the number of columns in the record. For cursors,
drhdfe88ec2008-11-03 20:55:06 +00002177 ** the number of columns is stored in the VdbeCursor.nField element.
danielk1977cfcdaef2004-05-12 07:33:33 +00002178 */
drhb73857f2006-03-17 00:25:59 +00002179 pC = p->apCsr[p1];
danielk19776c924092007-11-12 08:09:34 +00002180 assert( pC!=0 );
danielk19770817d0d2007-02-14 09:19:36 +00002181#ifndef SQLITE_OMIT_VIRTUALTABLE
2182 assert( pC->pVtabCursor==0 );
2183#endif
shane36840fd2009-06-26 16:32:13 +00002184 pCrsr = pC->pCursor;
2185 if( pCrsr!=0 ){
drhe61cffc2004-06-12 18:12:15 +00002186 /* The record is stored in a B-Tree */
drh536065a2005-01-26 21:55:31 +00002187 rc = sqlite3VdbeCursorMoveto(pC);
drh52f159e2005-01-27 00:33:21 +00002188 if( rc ) goto abort_due_to_error;
danielk1977192ac1d2004-05-10 07:17:30 +00002189 if( pC->nullRow ){
2190 payloadSize = 0;
drh76873ab2006-01-07 18:48:26 +00002191 }else if( pC->cacheStatus==p->cacheCtr ){
drh9188b382004-05-14 21:12:22 +00002192 payloadSize = pC->payloadSize;
drh2646da72005-12-09 20:02:05 +00002193 zRec = (char*)pC->aRow;
drhf0863fe2005-06-12 21:35:51 +00002194 }else if( pC->isIndex ){
drhea8ffdf2009-07-22 00:35:23 +00002195 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhb07028f2011-10-14 21:49:18 +00002196 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
drhc27ae612009-07-14 18:35:44 +00002197 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhaa736092009-06-22 00:55:30 +00002198 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2199 ** payload size, so it is impossible for payloadSize64 to be
2200 ** larger than 32 bits. */
2201 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
drh35cd6432009-06-05 14:17:21 +00002202 payloadSize = (u32)payloadSize64;
danielk1977192ac1d2004-05-10 07:17:30 +00002203 }else{
drhea8ffdf2009-07-22 00:35:23 +00002204 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhb07028f2011-10-14 21:49:18 +00002205 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &payloadSize);
drhea8ffdf2009-07-22 00:35:23 +00002206 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
danielk1977192ac1d2004-05-10 07:17:30 +00002207 }
drh4a6f3aa2011-08-28 00:19:26 +00002208 }else if( ALWAYS(pC->pseudoTableReg>0) ){
drha6c2ed92009-11-14 23:22:23 +00002209 pReg = &aMem[pC->pseudoTableReg];
drh3e9ca092009-09-08 01:14:48 +00002210 assert( pReg->flags & MEM_Blob );
drh2b4ded92010-09-27 21:09:31 +00002211 assert( memIsValid(pReg) );
drh3e9ca092009-09-08 01:14:48 +00002212 payloadSize = pReg->n;
2213 zRec = pReg->z;
2214 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002215 assert( payloadSize==0 || zRec!=0 );
drh9a65f2c2009-06-22 19:05:40 +00002216 }else{
2217 /* Consider the row to be NULL */
2218 payloadSize = 0;
danielk1977192ac1d2004-05-10 07:17:30 +00002219 }
2220
drhe6f43fc2011-08-28 02:15:34 +00002221 /* If payloadSize is 0, then just store a NULL. This can happen because of
2222 ** nullRow or because of a corrupt database. */
danielk1977192ac1d2004-05-10 07:17:30 +00002223 if( payloadSize==0 ){
drhe6f43fc2011-08-28 02:15:34 +00002224 MemSetTypeFlag(pDest, MEM_Null);
drhd4e70eb2008-01-02 00:34:36 +00002225 goto op_column_out;
danielk1977192ac1d2004-05-10 07:17:30 +00002226 }
drh35cd6432009-06-05 14:17:21 +00002227 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2228 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002229 goto too_big;
2230 }
danielk1977192ac1d2004-05-10 07:17:30 +00002231
shane36840fd2009-06-26 16:32:13 +00002232 nField = pC->nField;
drhd3194f52004-05-27 19:59:32 +00002233 assert( p2<nField );
danielk1977b4964b72004-05-18 01:23:38 +00002234
drh9188b382004-05-14 21:12:22 +00002235 /* Read and parse the table header. Store the results of the parse
2236 ** into the record header cache fields of the cursor.
danielk1977192ac1d2004-05-10 07:17:30 +00002237 */
danielk1977cd3e8f72008-03-25 09:47:35 +00002238 aType = pC->aType;
drha05a7222008-01-19 03:35:58 +00002239 if( pC->cacheStatus==p->cacheCtr ){
drhd3194f52004-05-27 19:59:32 +00002240 aOffset = pC->aOffset;
2241 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00002242 assert(aType);
drh856c1032009-06-02 15:21:42 +00002243 avail = 0;
drhb73857f2006-03-17 00:25:59 +00002244 pC->aOffset = aOffset = &aType[nField];
2245 pC->payloadSize = payloadSize;
2246 pC->cacheStatus = p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002247
drhd3194f52004-05-27 19:59:32 +00002248 /* Figure out how many bytes are in the header */
danielk197784ac9d02004-05-18 09:58:06 +00002249 if( zRec ){
2250 zData = zRec;
2251 }else{
drhf0863fe2005-06-12 21:35:51 +00002252 if( pC->isIndex ){
drhe51c44f2004-05-30 20:46:09 +00002253 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
drhd3194f52004-05-27 19:59:32 +00002254 }else{
drhe51c44f2004-05-30 20:46:09 +00002255 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002256 }
drhe61cffc2004-06-12 18:12:15 +00002257 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2258 ** save the payload in the pC->aRow cache. That will save us from
2259 ** having to make additional calls to fetch the content portion of
2260 ** the record.
2261 */
drh35cd6432009-06-05 14:17:21 +00002262 assert( avail>=0 );
2263 if( payloadSize <= (u32)avail ){
drh2646da72005-12-09 20:02:05 +00002264 zRec = zData;
2265 pC->aRow = (u8*)zData;
drhe61cffc2004-06-12 18:12:15 +00002266 }else{
2267 pC->aRow = 0;
2268 }
drhd3194f52004-05-27 19:59:32 +00002269 }
drh588f5bc2007-01-02 18:41:54 +00002270 /* The following assert is true in all cases accept when
2271 ** the database file has been corrupted externally.
2272 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
drh35cd6432009-06-05 14:17:21 +00002273 szHdr = getVarint32((u8*)zData, offset);
2274
2275 /* Make sure a corrupt database has not given us an oversize header.
2276 ** Do this now to avoid an oversize memory allocation.
2277 **
2278 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2279 ** types use so much data space that there can only be 4096 and 32 of
2280 ** them, respectively. So the maximum header length results from a
2281 ** 3-byte type for each of the maximum of 32768 columns plus three
2282 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2283 */
2284 if( offset > 98307 ){
2285 rc = SQLITE_CORRUPT_BKPT;
2286 goto op_column_out;
2287 }
2288
2289 /* Compute in len the number of bytes of data we need to read in order
2290 ** to get nField type values. offset is an upper bound on this. But
2291 ** nField might be significantly less than the true number of columns
2292 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2293 ** We want to minimize len in order to limit the size of the memory
2294 ** allocation, especially if a corrupt database file has caused offset
2295 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2296 ** still exceed Robson memory allocation limits on some configurations.
2297 ** On systems that cannot tolerate large memory allocations, nField*5+3
2298 ** will likely be much smaller since nField will likely be less than
2299 ** 20 or so. This insures that Robson memory allocation limits are
2300 ** not exceeded even for corrupt database files.
2301 */
2302 len = nField*5 + 3;
shane75ac1de2009-06-09 18:58:52 +00002303 if( len > (int)offset ) len = (int)offset;
drhe61cffc2004-06-12 18:12:15 +00002304
2305 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2306 ** record header in most cases. But they will fail to get the complete
2307 ** record header if the record header does not fit on a single page
2308 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2309 ** acquire the complete header text.
2310 */
drh35cd6432009-06-05 14:17:21 +00002311 if( !zRec && avail<len ){
danielk1977a7a8e142008-02-13 18:25:27 +00002312 sMem.flags = 0;
2313 sMem.db = 0;
drh35cd6432009-06-05 14:17:21 +00002314 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
danielk197784ac9d02004-05-18 09:58:06 +00002315 if( rc!=SQLITE_OK ){
danielk19773c9cc8d2005-01-17 03:40:08 +00002316 goto op_column_out;
drh9188b382004-05-14 21:12:22 +00002317 }
drhb6f54522004-05-20 02:42:16 +00002318 zData = sMem.z;
drh9188b382004-05-14 21:12:22 +00002319 }
drh35cd6432009-06-05 14:17:21 +00002320 zEndHdr = (u8 *)&zData[len];
2321 zIdx = (u8 *)&zData[szHdr];
drh9188b382004-05-14 21:12:22 +00002322
drhd3194f52004-05-27 19:59:32 +00002323 /* Scan the header and use it to fill in the aType[] and aOffset[]
2324 ** arrays. aType[i] will contain the type integer for the i-th
2325 ** column and aOffset[i] will contain the offset from the beginning
2326 ** of the record to the start of the data for the i-th column
drh9188b382004-05-14 21:12:22 +00002327 */
danielk1977dedf45b2006-01-13 17:12:01 +00002328 for(i=0; i<nField; i++){
2329 if( zIdx<zEndHdr ){
drh6658cd92010-02-05 14:12:53 +00002330 aOffset[i] = offset;
drh5a077b72011-08-29 02:16:18 +00002331 if( zIdx[0]<0x80 ){
2332 t = zIdx[0];
2333 zIdx++;
2334 }else{
2335 zIdx += sqlite3GetVarint32(zIdx, &t);
2336 }
2337 aType[i] = t;
2338 szField = sqlite3VdbeSerialTypeLen(t);
drh6658cd92010-02-05 14:12:53 +00002339 offset += szField;
2340 if( offset<szField ){ /* True if offset overflows */
2341 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2342 break;
2343 }
danielk1977dedf45b2006-01-13 17:12:01 +00002344 }else{
2345 /* If i is less that nField, then there are less fields in this
2346 ** record than SetNumColumns indicated there are columns in the
2347 ** table. Set the offset for any extra columns not present in
drh9cbf3422008-01-17 16:22:13 +00002348 ** the record to 0. This tells code below to store a NULL
2349 ** instead of deserializing a value from the record.
danielk1977dedf45b2006-01-13 17:12:01 +00002350 */
2351 aOffset[i] = 0;
2352 }
drh9188b382004-05-14 21:12:22 +00002353 }
danielk19775f096132008-03-28 15:44:09 +00002354 sqlite3VdbeMemRelease(&sMem);
drhd3194f52004-05-27 19:59:32 +00002355 sMem.flags = MEM_Null;
2356
danielk19779792eef2006-01-13 15:58:43 +00002357 /* If we have read more header data than was contained in the header,
2358 ** or if the end of the last field appears to be past the end of the
shane2ca8bc02008-05-07 18:59:28 +00002359 ** record, or if the end of the last field appears to be before the end
2360 ** of the record (when all fields present), then we must be dealing
2361 ** with a corrupt database.
drhd3194f52004-05-27 19:59:32 +00002362 */
drh6658cd92010-02-05 14:12:53 +00002363 if( (zIdx > zEndHdr) || (offset > payloadSize)
2364 || (zIdx==zEndHdr && offset!=payloadSize) ){
drh49285702005-09-17 15:20:26 +00002365 rc = SQLITE_CORRUPT_BKPT;
danielk19773c9cc8d2005-01-17 03:40:08 +00002366 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002367 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002368 }
danielk1977192ac1d2004-05-10 07:17:30 +00002369
danielk197736963fd2005-02-19 08:18:05 +00002370 /* Get the column information. If aOffset[p2] is non-zero, then
2371 ** deserialize the value from the record. If aOffset[p2] is zero,
2372 ** then there are not enough fields in the record to satisfy the
drh66a51672008-01-03 00:01:23 +00002373 ** request. In this case, set the value NULL or to P4 if P4 is
drh29dda4a2005-07-21 18:23:20 +00002374 ** a pointer to a Mem object.
drh9188b382004-05-14 21:12:22 +00002375 */
danielk197736963fd2005-02-19 08:18:05 +00002376 if( aOffset[p2] ){
2377 assert( rc==SQLITE_OK );
2378 if( zRec ){
drhe4c88c02012-01-04 12:57:45 +00002379 VdbeMemRelease(pDest);
danielk1977808ec7c2008-07-29 10:18:57 +00002380 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
danielk197736963fd2005-02-19 08:18:05 +00002381 }else{
2382 len = sqlite3VdbeSerialTypeLen(aType[p2]);
danielk1977a7a8e142008-02-13 18:25:27 +00002383 sqlite3VdbeMemMove(&sMem, pDest);
drhb21c8cd2007-08-21 19:33:56 +00002384 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
danielk197736963fd2005-02-19 08:18:05 +00002385 if( rc!=SQLITE_OK ){
2386 goto op_column_out;
2387 }
2388 zData = sMem.z;
danielk1977a7a8e142008-02-13 18:25:27 +00002389 sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
danielk19777701e812005-01-10 12:59:51 +00002390 }
drhd4e70eb2008-01-02 00:34:36 +00002391 pDest->enc = encoding;
danielk197736963fd2005-02-19 08:18:05 +00002392 }else{
danielk197760585dd2008-01-03 08:08:40 +00002393 if( pOp->p4type==P4_MEM ){
danielk19772dca4ac2008-01-03 11:50:29 +00002394 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
danielk1977aee18ef2005-03-09 12:26:50 +00002395 }else{
drhe6f43fc2011-08-28 02:15:34 +00002396 MemSetTypeFlag(pDest, MEM_Null);
danielk1977aee18ef2005-03-09 12:26:50 +00002397 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002398 }
drhfebe1062004-08-28 18:17:48 +00002399
2400 /* If we dynamically allocated space to hold the data (in the
2401 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
drhd4e70eb2008-01-02 00:34:36 +00002402 ** dynamically allocated space over to the pDest structure.
drhfebe1062004-08-28 18:17:48 +00002403 ** This prevents a memory copy.
2404 */
danielk19775f096132008-03-28 15:44:09 +00002405 if( sMem.zMalloc ){
2406 assert( sMem.z==sMem.zMalloc );
danielk1977a7a8e142008-02-13 18:25:27 +00002407 assert( !(pDest->flags & MEM_Dyn) );
2408 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2409 pDest->flags &= ~(MEM_Ephem|MEM_Static);
danielk19775f096132008-03-28 15:44:09 +00002410 pDest->flags |= MEM_Term;
danielk1977a7a8e142008-02-13 18:25:27 +00002411 pDest->z = sMem.z;
danielk19775f096132008-03-28 15:44:09 +00002412 pDest->zMalloc = sMem.zMalloc;
danielk1977b1bc9532004-05-22 03:05:33 +00002413 }
drhfebe1062004-08-28 18:17:48 +00002414
drhd4e70eb2008-01-02 00:34:36 +00002415 rc = sqlite3VdbeMemMakeWriteable(pDest);
drhd3194f52004-05-27 19:59:32 +00002416
danielk19773c9cc8d2005-01-17 03:40:08 +00002417op_column_out:
drhb7654112008-01-12 12:48:07 +00002418 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002419 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002420 break;
2421}
2422
danielk1977751de562008-04-18 09:01:15 +00002423/* Opcode: Affinity P1 P2 * P4 *
2424**
2425** Apply affinities to a range of P2 registers starting with P1.
2426**
2427** P4 is a string that is P2 characters long. The nth character of the
2428** string indicates the column affinity that should be used for the nth
2429** memory cell in the range.
2430*/
2431case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002432 const char *zAffinity; /* The affinity to be applied */
2433 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002434
drh856c1032009-06-02 15:21:42 +00002435 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002436 assert( zAffinity!=0 );
2437 assert( zAffinity[pOp->p2]==0 );
2438 pIn1 = &aMem[pOp->p1];
2439 while( (cAff = *(zAffinity++))!=0 ){
2440 assert( pIn1 <= &p->aMem[p->nMem] );
drh2b4ded92010-09-27 21:09:31 +00002441 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002442 ExpandBlob(pIn1);
2443 applyAffinity(pIn1, cAff, encoding);
2444 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002445 }
2446 break;
2447}
2448
drh1db639c2008-01-17 02:36:28 +00002449/* Opcode: MakeRecord P1 P2 P3 P4 *
drh7a224de2004-06-02 01:22:02 +00002450**
drh710c4842010-08-30 01:17:20 +00002451** Convert P2 registers beginning with P1 into the [record format]
2452** use as a data record in a database table or as a key
2453** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002454**
danielk1977751de562008-04-18 09:01:15 +00002455** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002456** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002457** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002458**
drh8a512562005-11-14 22:29:05 +00002459** The mapping from character to affinity is given by the SQLITE_AFF_
2460** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002461**
drh66a51672008-01-03 00:01:23 +00002462** If P4 is NULL then all index fields have the affinity NONE.
drh7f057c92005-06-24 03:53:06 +00002463*/
drh1db639c2008-01-17 02:36:28 +00002464case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002465 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2466 Mem *pRec; /* The new record */
2467 u64 nData; /* Number of bytes of data space */
2468 int nHdr; /* Number of bytes of header space */
2469 i64 nByte; /* Data space required for this record */
2470 int nZero; /* Number of zero bytes at the end of the record */
2471 int nVarint; /* Number of bytes in a varint */
2472 u32 serial_type; /* Type field */
2473 Mem *pData0; /* First field to be combined into the record */
2474 Mem *pLast; /* Last field of the record */
2475 int nField; /* Number of fields in the record */
2476 char *zAffinity; /* The affinity string for the record */
2477 int file_format; /* File format to use for encoding */
2478 int i; /* Space used in zNewRecord[] */
2479 int len; /* Length of a field */
2480
drhf3218fe2004-05-28 08:21:02 +00002481 /* Assuming the record contains N fields, the record format looks
2482 ** like this:
2483 **
drh7a224de2004-06-02 01:22:02 +00002484 ** ------------------------------------------------------------------------
2485 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2486 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002487 **
drh9cbf3422008-01-17 16:22:13 +00002488 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2489 ** and so froth.
drhf3218fe2004-05-28 08:21:02 +00002490 **
2491 ** Each type field is a varint representing the serial type of the
2492 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002493 ** hdr-size field is also a varint which is the offset from the beginning
2494 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002495 */
drh856c1032009-06-02 15:21:42 +00002496 nData = 0; /* Number of bytes of data space */
2497 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002498 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002499 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002500 zAffinity = pOp->p4.z;
danielk19776ab3a2e2009-02-19 14:39:25 +00002501 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
drha6c2ed92009-11-14 23:22:23 +00002502 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002503 nField = pOp->p2;
2504 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002505 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002506
drh2b4ded92010-09-27 21:09:31 +00002507 /* Identify the output register */
2508 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2509 pOut = &aMem[pOp->p3];
2510 memAboutToChange(p, pOut);
2511
drhf3218fe2004-05-28 08:21:02 +00002512 /* Loop through the elements that will make up the record to figure
2513 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002514 */
drha2a49dc2008-01-02 14:28:13 +00002515 for(pRec=pData0; pRec<=pLast; pRec++){
drh2b4ded92010-09-27 21:09:31 +00002516 assert( memIsValid(pRec) );
drhd3d39e92004-05-20 22:16:29 +00002517 if( zAffinity ){
drhb21c8cd2007-08-21 19:33:56 +00002518 applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
drhd3d39e92004-05-20 22:16:29 +00002519 }
danielk1977d908f5a2007-05-11 07:08:28 +00002520 if( pRec->flags&MEM_Zero && pRec->n>0 ){
drha05a7222008-01-19 03:35:58 +00002521 sqlite3VdbeMemExpandBlob(pRec);
danielk1977d908f5a2007-05-11 07:08:28 +00002522 }
drhd946db02005-12-29 19:23:06 +00002523 serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002524 len = sqlite3VdbeSerialTypeLen(serial_type);
2525 nData += len;
drhf3218fe2004-05-28 08:21:02 +00002526 nHdr += sqlite3VarintLen(serial_type);
drhfdf972a2007-05-02 13:30:27 +00002527 if( pRec->flags & MEM_Zero ){
2528 /* Only pure zero-filled BLOBs can be input to this Opcode.
2529 ** We do not allow blobs with a prefix and a zero-filled tail. */
drh8df32842008-12-09 02:51:23 +00002530 nZero += pRec->u.nZero;
drhae7e1512007-05-02 16:51:59 +00002531 }else if( len ){
drhfdf972a2007-05-02 13:30:27 +00002532 nZero = 0;
2533 }
danielk19778d059842004-05-12 11:24:02 +00002534 }
danielk19773d1bfea2004-05-14 11:00:53 +00002535
drhf3218fe2004-05-28 08:21:02 +00002536 /* Add the initial header varint and total the size */
drhcb9882a2005-03-17 03:15:40 +00002537 nHdr += nVarint = sqlite3VarintLen(nHdr);
2538 if( nVarint<sqlite3VarintLen(nHdr) ){
2539 nHdr++;
2540 }
drhfdf972a2007-05-02 13:30:27 +00002541 nByte = nHdr+nData-nZero;
drhbb4957f2008-03-20 14:03:29 +00002542 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002543 goto too_big;
2544 }
drhf3218fe2004-05-28 08:21:02 +00002545
danielk1977a7a8e142008-02-13 18:25:27 +00002546 /* Make sure the output register has a buffer large enough to store
2547 ** the new record. The output register (pOp->p3) is not allowed to
2548 ** be one of the input registers (because the following call to
2549 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2550 */
drh9c1905f2008-12-10 22:32:56 +00002551 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002552 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002553 }
danielk1977a7a8e142008-02-13 18:25:27 +00002554 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002555
2556 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002557 i = putVarint32(zNewRecord, nHdr);
drha2a49dc2008-01-02 14:28:13 +00002558 for(pRec=pData0; pRec<=pLast; pRec++){
drhd946db02005-12-29 19:23:06 +00002559 serial_type = sqlite3VdbeSerialType(pRec, file_format);
shane3f8d5cf2008-04-24 19:15:09 +00002560 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
danielk19778d059842004-05-12 11:24:02 +00002561 }
drha2a49dc2008-01-02 14:28:13 +00002562 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
drh9c1905f2008-12-10 22:32:56 +00002563 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
drhf3218fe2004-05-28 08:21:02 +00002564 }
drhfdf972a2007-05-02 13:30:27 +00002565 assert( i==nByte );
drhf3218fe2004-05-28 08:21:02 +00002566
drh9cbf3422008-01-17 16:22:13 +00002567 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drh9c1905f2008-12-10 22:32:56 +00002568 pOut->n = (int)nByte;
danielk1977a7a8e142008-02-13 18:25:27 +00002569 pOut->flags = MEM_Blob | MEM_Dyn;
2570 pOut->xDel = 0;
drhfdf972a2007-05-02 13:30:27 +00002571 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002572 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002573 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002574 }
drh477df4b2008-01-05 18:48:24 +00002575 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002576 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002577 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002578 break;
2579}
2580
danielk1977a5533162009-02-24 10:01:51 +00002581/* Opcode: Count P1 P2 * * *
2582**
2583** Store the number of entries (an integer value) in the table or index
2584** opened by cursor P1 in register P2
2585*/
2586#ifndef SQLITE_OMIT_BTREECOUNT
2587case OP_Count: { /* out2-prerelease */
2588 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002589 BtCursor *pCrsr;
2590
2591 pCrsr = p->apCsr[pOp->p1]->pCursor;
dana205a482011-08-27 18:48:57 +00002592 if( ALWAYS(pCrsr) ){
drh818e39a2009-04-02 20:27:28 +00002593 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2594 }else{
2595 nEntry = 0;
2596 }
danielk1977a5533162009-02-24 10:01:51 +00002597 pOut->u.i = nEntry;
2598 break;
2599}
2600#endif
2601
danielk1977fd7f0452008-12-17 17:30:26 +00002602/* Opcode: Savepoint P1 * * P4 *
2603**
2604** Open, release or rollback the savepoint named by parameter P4, depending
2605** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2606** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2607*/
2608case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002609 int p1; /* Value of P1 operand */
2610 char *zName; /* Name of savepoint */
2611 int nName;
2612 Savepoint *pNew;
2613 Savepoint *pSavepoint;
2614 Savepoint *pTmp;
2615 int iSavepoint;
2616 int ii;
2617
2618 p1 = pOp->p1;
2619 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002620
2621 /* Assert that the p1 parameter is valid. Also that if there is no open
2622 ** transaction, then there cannot be any savepoints.
2623 */
2624 assert( db->pSavepoint==0 || db->autoCommit==0 );
2625 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2626 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2627 assert( checkSavepointCount(db) );
2628
2629 if( p1==SAVEPOINT_BEGIN ){
danielk197734cf35d2008-12-18 18:31:38 +00002630 if( db->writeVdbeCnt>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002631 /* A new savepoint cannot be created if there are active write
2632 ** statements (i.e. open read/write incremental blob handles).
2633 */
2634 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2635 "SQL statements in progress");
2636 rc = SQLITE_BUSY;
2637 }else{
drh856c1032009-06-02 15:21:42 +00002638 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002639
drhbe07ec52011-06-03 12:15:26 +00002640#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002641 /* This call is Ok even if this savepoint is actually a transaction
2642 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2643 ** If this is a transaction savepoint being opened, it is guaranteed
2644 ** that the db->aVTrans[] array is empty. */
2645 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002646 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2647 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002648 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002649#endif
dand9495cd2011-04-27 12:08:04 +00002650
danielk1977fd7f0452008-12-17 17:30:26 +00002651 /* Create a new savepoint structure. */
2652 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2653 if( pNew ){
2654 pNew->zName = (char *)&pNew[1];
2655 memcpy(pNew->zName, zName, nName+1);
2656
2657 /* If there is no open transaction, then mark this as a special
2658 ** "transaction savepoint". */
2659 if( db->autoCommit ){
2660 db->autoCommit = 0;
2661 db->isTransactionSavepoint = 1;
2662 }else{
2663 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002664 }
danielk1977fd7f0452008-12-17 17:30:26 +00002665
2666 /* Link the new savepoint into the database handle's list. */
2667 pNew->pNext = db->pSavepoint;
2668 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002669 pNew->nDeferredCons = db->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002670 }
2671 }
2672 }else{
drh856c1032009-06-02 15:21:42 +00002673 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002674
2675 /* Find the named savepoint. If there is no such savepoint, then an
2676 ** an error is returned to the user. */
2677 for(
drh856c1032009-06-02 15:21:42 +00002678 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002679 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002680 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002681 ){
2682 iSavepoint++;
2683 }
2684 if( !pSavepoint ){
2685 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2686 rc = SQLITE_ERROR;
drh0f198a72012-02-13 16:43:16 +00002687 }else if( db->writeVdbeCnt>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00002688 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00002689 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00002690 */
2691 sqlite3SetString(&p->zErrMsg, db,
drh0f198a72012-02-13 16:43:16 +00002692 "cannot release savepoint - SQL statements in progress"
danielk1977fd7f0452008-12-17 17:30:26 +00002693 );
2694 rc = SQLITE_BUSY;
2695 }else{
2696
2697 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002698 ** and this is a RELEASE command, then the current transaction
2699 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002700 */
2701 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2702 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002703 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002704 goto vdbe_return;
2705 }
danielk1977fd7f0452008-12-17 17:30:26 +00002706 db->autoCommit = 1;
2707 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2708 p->pc = pc;
2709 db->autoCommit = 0;
2710 p->rc = rc = SQLITE_BUSY;
2711 goto vdbe_return;
2712 }
danielk197734cf35d2008-12-18 18:31:38 +00002713 db->isTransactionSavepoint = 0;
2714 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002715 }else{
danielk1977fd7f0452008-12-17 17:30:26 +00002716 iSavepoint = db->nSavepoint - iSavepoint - 1;
2717 for(ii=0; ii<db->nDb; ii++){
drh0f198a72012-02-13 16:43:16 +00002718 sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);
2719 }
2720 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00002721 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2722 if( rc!=SQLITE_OK ){
2723 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002724 }
danielk1977fd7f0452008-12-17 17:30:26 +00002725 }
drh9f0bbf92009-01-02 21:08:09 +00002726 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002727 sqlite3ExpirePreparedStatements(db);
drhc7792fa2011-04-02 16:28:52 +00002728 sqlite3ResetInternalSchema(db, -1);
danc311fee2010-08-31 16:25:19 +00002729 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002730 }
2731 }
2732
2733 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2734 ** savepoints nested inside of the savepoint being operated on. */
2735 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002736 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002737 db->pSavepoint = pTmp->pNext;
2738 sqlite3DbFree(db, pTmp);
2739 db->nSavepoint--;
2740 }
2741
dan1da40a32009-09-19 17:00:31 +00002742 /* If it is a RELEASE, then destroy the savepoint being operated on
2743 ** too. If it is a ROLLBACK TO, then set the number of deferred
2744 ** constraint violations present in the database to the value stored
2745 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002746 if( p1==SAVEPOINT_RELEASE ){
2747 assert( pSavepoint==db->pSavepoint );
2748 db->pSavepoint = pSavepoint->pNext;
2749 sqlite3DbFree(db, pSavepoint);
2750 if( !isTransaction ){
2751 db->nSavepoint--;
2752 }
dan1da40a32009-09-19 17:00:31 +00002753 }else{
2754 db->nDeferredCons = pSavepoint->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002755 }
dand9495cd2011-04-27 12:08:04 +00002756
2757 if( !isTransaction ){
2758 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2759 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2760 }
danielk1977fd7f0452008-12-17 17:30:26 +00002761 }
2762 }
2763
2764 break;
2765}
2766
drh98757152008-01-09 23:04:12 +00002767/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002768**
2769** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002770** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002771** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2772** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002773**
2774** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002775*/
drh9cbf3422008-01-17 16:22:13 +00002776case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002777 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002778 int iRollback;
drh856c1032009-06-02 15:21:42 +00002779 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002780
drh856c1032009-06-02 15:21:42 +00002781 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002782 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002783 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002784 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002785 assert( desiredAutoCommit==1 || iRollback==0 );
drh92f02c32004-09-02 14:57:08 +00002786 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
danielk197746c43ed2004-06-30 06:30:25 +00002787
drh0f198a72012-02-13 16:43:16 +00002788#if 0
shane68c02732009-06-09 18:14:18 +00002789 if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
drhad4a4b82008-11-05 16:37:34 +00002790 /* If this instruction implements a ROLLBACK and other VMs are
danielk197746c43ed2004-06-30 06:30:25 +00002791 ** still running, and a transaction is active, return an error indicating
2792 ** that the other VMs must complete first.
2793 */
drhad4a4b82008-11-05 16:37:34 +00002794 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2795 "SQL statements in progress");
drh99dfe5e2008-10-30 15:03:15 +00002796 rc = SQLITE_BUSY;
drh0f198a72012-02-13 16:43:16 +00002797 }else
2798#endif
2799 if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
drhad4a4b82008-11-05 16:37:34 +00002800 /* If this instruction implements a COMMIT and other VMs are writing
2801 ** return an error indicating that the other VMs must complete first.
2802 */
2803 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2804 "SQL statements in progress");
2805 rc = SQLITE_BUSY;
2806 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00002807 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00002808 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00002809 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00002810 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00002811 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002812 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002813 }else{
shane7d3846a2008-12-11 02:58:26 +00002814 db->autoCommit = (u8)desiredAutoCommit;
danielk1977f3f06bb2005-12-16 15:24:28 +00002815 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
danielk1977f3f06bb2005-12-16 15:24:28 +00002816 p->pc = pc;
drh9c1905f2008-12-10 22:32:56 +00002817 db->autoCommit = (u8)(1-desiredAutoCommit);
drh900b31e2007-08-28 02:27:51 +00002818 p->rc = rc = SQLITE_BUSY;
2819 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002820 }
danielk19771d850a72004-05-31 08:26:49 +00002821 }
danielk1977bd434552009-03-18 10:33:00 +00002822 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00002823 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00002824 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00002825 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00002826 }else{
drh900b31e2007-08-28 02:27:51 +00002827 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00002828 }
drh900b31e2007-08-28 02:27:51 +00002829 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00002830 }else{
drhf089aa42008-07-08 19:34:06 +00002831 sqlite3SetString(&p->zErrMsg, db,
drhad4a4b82008-11-05 16:37:34 +00002832 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00002833 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00002834 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00002835
2836 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00002837 }
2838 break;
2839}
2840
drh98757152008-01-09 23:04:12 +00002841/* Opcode: Transaction P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002842**
2843** Begin a transaction. The transaction ends when a Commit or Rollback
drh663fc632002-02-02 18:49:19 +00002844** opcode is encountered. Depending on the ON CONFLICT setting, the
2845** transaction might also be rolled back if an error is encountered.
drh5e00f6c2001-09-13 13:46:56 +00002846**
drh001bbcb2003-03-19 03:14:00 +00002847** P1 is the index of the database file on which the transaction is
2848** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00002849** file used for temporary tables. Indices of 2 or more are used for
2850** attached databases.
drhcabb0812002-09-14 13:47:32 +00002851**
drh80242052004-06-09 00:48:12 +00002852** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
danielk1977ee5741e2004-05-31 10:01:34 +00002853** obtained on the database file when a write-transaction is started. No
drh80242052004-06-09 00:48:12 +00002854** other process can start another write transaction while this transaction is
2855** underway. Starting a write transaction also creates a rollback journal. A
2856** write transaction must be started before any changes can be made to the
drh684917c2004-10-05 02:41:42 +00002857** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2858** on the file.
danielk1977ee5741e2004-05-31 10:01:34 +00002859**
dane0af83a2009-09-08 19:15:01 +00002860** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2861** true (this flag is set if the Vdbe may modify more than one row and may
2862** throw an ABORT exception), a statement transaction may also be opened.
2863** More specifically, a statement transaction is opened iff the database
2864** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00002865** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00002866** VDBE to be rolled back after an error without having to roll back the
2867** entire transaction. If no error is encountered, the statement transaction
2868** will automatically commit when the VDBE halts.
2869**
danielk1977ee5741e2004-05-31 10:01:34 +00002870** If P2 is zero, then a read-lock is obtained on the database file.
drh5e00f6c2001-09-13 13:46:56 +00002871*/
drh9cbf3422008-01-17 16:22:13 +00002872case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00002873 Btree *pBt;
2874
drh653b82a2009-06-22 11:10:47 +00002875 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00002876 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh653b82a2009-06-22 11:10:47 +00002877 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00002878
danielk197724162fe2004-06-04 06:22:00 +00002879 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00002880 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
danielk197724162fe2004-06-04 06:22:00 +00002881 if( rc==SQLITE_BUSY ){
danielk19772a764eb2004-06-12 01:43:26 +00002882 p->pc = pc;
drh900b31e2007-08-28 02:27:51 +00002883 p->rc = rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00002884 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00002885 }
drh9e9f1bd2009-10-13 15:36:51 +00002886 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00002887 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00002888 }
dane0af83a2009-09-08 19:15:01 +00002889
2890 if( pOp->p2 && p->usesStmtJournal
2891 && (db->autoCommit==0 || db->activeVdbeCnt>1)
2892 ){
2893 assert( sqlite3BtreeIsInTrans(pBt) );
2894 if( p->iStatement==0 ){
2895 assert( db->nStatement>=0 && db->nSavepoint>=0 );
2896 db->nStatement++;
2897 p->iStatement = db->nSavepoint + db->nStatement;
2898 }
dana311b802011-04-26 19:21:34 +00002899
drh346506f2011-05-25 01:16:42 +00002900 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00002901 if( rc==SQLITE_OK ){
2902 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
2903 }
dan1da40a32009-09-19 17:00:31 +00002904
2905 /* Store the current value of the database handles deferred constraint
2906 ** counter. If the statement transaction needs to be rolled back,
2907 ** the value of this counter needs to be restored too. */
2908 p->nStmtDefCons = db->nDeferredCons;
dane0af83a2009-09-08 19:15:01 +00002909 }
drhb86ccfb2003-01-28 23:13:10 +00002910 }
drh5e00f6c2001-09-13 13:46:56 +00002911 break;
2912}
2913
drhb1fdb2a2008-01-05 04:06:03 +00002914/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002915**
drh9cbf3422008-01-17 16:22:13 +00002916** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00002917** P3==1 is the schema version. P3==2 is the database format.
2918** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00002919** the main database file and P1==1 is the database file used to store
2920** temporary tables.
drh4a324312001-12-21 14:30:42 +00002921**
drh50e5dad2001-09-15 00:57:28 +00002922** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00002923** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00002924** executing this instruction.
2925*/
drh4c583122008-01-04 22:01:03 +00002926case OP_ReadCookie: { /* out2-prerelease */
drhf328bc82004-05-10 23:29:49 +00002927 int iMeta;
drh856c1032009-06-02 15:21:42 +00002928 int iDb;
2929 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00002930
drh856c1032009-06-02 15:21:42 +00002931 iDb = pOp->p1;
2932 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00002933 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00002934 assert( iDb>=0 && iDb<db->nDb );
2935 assert( db->aDb[iDb].pBt!=0 );
drhdddd7792011-04-03 18:19:25 +00002936 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
danielk19770d19f7a2009-06-03 11:25:07 +00002937
danielk1977602b4662009-07-02 07:47:33 +00002938 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh4c583122008-01-04 22:01:03 +00002939 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00002940 break;
2941}
2942
drh98757152008-01-09 23:04:12 +00002943/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002944**
drh98757152008-01-09 23:04:12 +00002945** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00002946** into cookie number P2 of database P1. P2==1 is the schema version.
2947** P2==2 is the database format. P2==3 is the recommended pager cache
2948** size, and so forth. P1==0 is the main database file and P1==1 is the
2949** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00002950**
2951** A transaction must be started before executing this opcode.
2952*/
drh9cbf3422008-01-17 16:22:13 +00002953case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00002954 Db *pDb;
drh4a324312001-12-21 14:30:42 +00002955 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00002956 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00002957 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh3f7d4e42004-07-24 14:35:58 +00002958 pDb = &db->aDb[pOp->p1];
2959 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00002960 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drh3c657212009-11-17 23:59:58 +00002961 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00002962 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00002963 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00002964 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
2965 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00002966 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00002967 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00002968 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00002969 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00002970 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00002971 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00002972 }
drhfd426c62006-01-30 15:34:22 +00002973 if( pOp->p1==1 ){
2974 /* Invalidate all prepared statements whenever the TEMP database
2975 ** schema is changed. Ticket #1644 */
2976 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00002977 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00002978 }
drh50e5dad2001-09-15 00:57:28 +00002979 break;
2980}
2981
drhc2a75552011-03-18 21:55:46 +00002982/* Opcode: VerifyCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002983**
drh001bbcb2003-03-19 03:14:00 +00002984** Check the value of global database parameter number 0 (the
drhc2a75552011-03-18 21:55:46 +00002985** schema version) and make sure it is equal to P2 and that the
2986** generation counter on the local schema parse equals P3.
2987**
drh001bbcb2003-03-19 03:14:00 +00002988** P1 is the database number which is 0 for the main database file
2989** and 1 for the file holding temporary tables and some higher number
2990** for auxiliary databases.
drh50e5dad2001-09-15 00:57:28 +00002991**
2992** The cookie changes its value whenever the database schema changes.
drhb19a2bc2001-09-16 00:13:26 +00002993** This operation is used to detect when that the cookie has changed
drh50e5dad2001-09-15 00:57:28 +00002994** and that the current process needs to reread the schema.
2995**
2996** Either a transaction needs to have been started or an OP_Open needs
2997** to be executed (to establish a read lock) before this opcode is
2998** invoked.
2999*/
drh9cbf3422008-01-17 16:22:13 +00003000case OP_VerifyCookie: {
drhf328bc82004-05-10 23:29:49 +00003001 int iMeta;
drhc2a75552011-03-18 21:55:46 +00003002 int iGen;
drhc275b4e2004-07-19 17:25:24 +00003003 Btree *pBt;
drhc2a75552011-03-18 21:55:46 +00003004
drh001bbcb2003-03-19 03:14:00 +00003005 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003006 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh21206082011-04-04 18:22:02 +00003007 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drhc275b4e2004-07-19 17:25:24 +00003008 pBt = db->aDb[pOp->p1].pBt;
3009 if( pBt ){
danielk1977602b4662009-07-02 07:47:33 +00003010 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
drhc2a75552011-03-18 21:55:46 +00003011 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
drhc275b4e2004-07-19 17:25:24 +00003012 }else{
drhfcd71b62011-04-05 22:08:24 +00003013 iGen = iMeta = 0;
drhc275b4e2004-07-19 17:25:24 +00003014 }
drhc2a75552011-03-18 21:55:46 +00003015 if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
drh633e6d52008-07-28 19:34:53 +00003016 sqlite3DbFree(db, p->zErrMsg);
danielk1977a1644fd2007-08-29 12:31:25 +00003017 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
danielk1977896e7922007-04-17 08:32:33 +00003018 /* If the schema-cookie from the database file matches the cookie
3019 ** stored with the in-memory representation of the schema, do
3020 ** not reload the schema from the database file.
3021 **
shane21e7feb2008-05-30 15:59:49 +00003022 ** If virtual-tables are in use, this is not just an optimization.
danielk1977896e7922007-04-17 08:32:33 +00003023 ** Often, v-tables store their data in other SQLite tables, which
3024 ** are queried from within xNext() and other v-table methods using
3025 ** prepared queries. If such a query is out-of-date, we do not want to
3026 ** discard the database schema, as the user code implementing the
3027 ** v-table would have to be ready for the sqlite3_vtab structure itself
3028 ** to be invalidated whenever sqlite3_step() is called from within
3029 ** a v-table method.
3030 */
3031 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3032 sqlite3ResetInternalSchema(db, pOp->p1);
3033 }
3034
drh5b6c5452011-02-22 03:34:56 +00003035 p->expired = 1;
drh50e5dad2001-09-15 00:57:28 +00003036 rc = SQLITE_SCHEMA;
3037 }
3038 break;
3039}
3040
drh98757152008-01-09 23:04:12 +00003041/* Opcode: OpenRead P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003042**
drhecdc7532001-09-23 02:35:53 +00003043** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003044** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003045** P3==0 means the main database, P3==1 means the database used for
3046** temporary tables, and P3>1 means used the corresponding attached
3047** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003048** values need not be contiguous but all P1 values should be small integers.
3049** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003050**
drh98757152008-01-09 23:04:12 +00003051** If P5!=0 then use the content of register P2 as the root page, not
3052** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003053**
drhb19a2bc2001-09-16 00:13:26 +00003054** There will be a read lock on the database whenever there is an
3055** open cursor. If the database was unlocked prior to this instruction
3056** then a read lock is acquired as part of this instruction. A read
3057** lock allows other processes to read the database but prohibits
3058** any other process from modifying the database. The read lock is
3059** released when all cursors are closed. If this instruction attempts
3060** to get a read lock but fails, the script terminates with an
3061** SQLITE_BUSY error code.
3062**
danielk1977d336e222009-02-20 10:58:41 +00003063** The P4 value may be either an integer (P4_INT32) or a pointer to
3064** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3065** structure, then said structure defines the content and collating
3066** sequence of the index being opened. Otherwise, if P4 is an integer
3067** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003068**
drh001bbcb2003-03-19 03:14:00 +00003069** See also OpenWrite.
drh5e00f6c2001-09-13 13:46:56 +00003070*/
drh98757152008-01-09 23:04:12 +00003071/* Opcode: OpenWrite P1 P2 P3 P4 P5
drhecdc7532001-09-23 02:35:53 +00003072**
3073** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003074** page is P2. Or if P5!=0 use the content of register P2 to find the
3075** root page.
drhecdc7532001-09-23 02:35:53 +00003076**
danielk1977d336e222009-02-20 10:58:41 +00003077** The P4 value may be either an integer (P4_INT32) or a pointer to
3078** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3079** structure, then said structure defines the content and collating
3080** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003081** value, it is set to the number of columns in the table, or to the
3082** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003083**
drh001bbcb2003-03-19 03:14:00 +00003084** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003085** in read/write mode. For a given table, there can be one or more read-only
3086** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003087**
drh001bbcb2003-03-19 03:14:00 +00003088** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003089*/
drh9cbf3422008-01-17 16:22:13 +00003090case OP_OpenRead:
3091case OP_OpenWrite: {
drh856c1032009-06-02 15:21:42 +00003092 int nField;
3093 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003094 int p2;
3095 int iDb;
drhf57b3392001-10-08 13:22:32 +00003096 int wrFlag;
3097 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003098 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003099 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003100
danfa401de2009-10-16 14:55:03 +00003101 if( p->expired ){
3102 rc = SQLITE_ABORT;
3103 break;
3104 }
3105
drh856c1032009-06-02 15:21:42 +00003106 nField = 0;
3107 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003108 p2 = pOp->p2;
3109 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003110 assert( iDb>=0 && iDb<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003111 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
drhd946db02005-12-29 19:23:06 +00003112 pDb = &db->aDb[iDb];
3113 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003114 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003115 if( pOp->opcode==OP_OpenWrite ){
3116 wrFlag = 1;
drh21206082011-04-04 18:22:02 +00003117 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003118 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3119 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003120 }
3121 }else{
3122 wrFlag = 0;
3123 }
drh98757152008-01-09 23:04:12 +00003124 if( pOp->p5 ){
drh9cbf3422008-01-17 16:22:13 +00003125 assert( p2>0 );
3126 assert( p2<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003127 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003128 assert( memIsValid(pIn2) );
3129 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003130 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003131 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003132 /* The p2 value always comes from a prior OP_CreateTable opcode and
3133 ** that opcode will always set the p2 value to 2 or more or else fail.
3134 ** If there were a failure, the prepared statement would have halted
3135 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00003136 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00003137 rc = SQLITE_CORRUPT_BKPT;
3138 goto abort_due_to_error;
3139 }
drh5edc3122001-09-13 21:53:09 +00003140 }
danielk1977d336e222009-02-20 10:58:41 +00003141 if( pOp->p4type==P4_KEYINFO ){
3142 pKeyInfo = pOp->p4.pKeyInfo;
3143 pKeyInfo->enc = ENC(p->db);
3144 nField = pKeyInfo->nField+1;
3145 }else if( pOp->p4type==P4_INT32 ){
3146 nField = pOp->p4.i;
3147 }
drh653b82a2009-06-22 11:10:47 +00003148 assert( pOp->p1>=0 );
3149 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003150 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003151 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003152 pCur->isOrdered = 1;
danielk1977d336e222009-02-20 10:58:41 +00003153 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3154 pCur->pKeyInfo = pKeyInfo;
3155
dana205a482011-08-27 18:48:57 +00003156 /* Since it performs no memory allocation or IO, the only value that
3157 ** sqlite3BtreeCursor() may return is SQLITE_OK. */
3158 assert( rc==SQLITE_OK );
danielk1977172114a2009-07-07 15:47:12 +00003159
3160 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3161 ** SQLite used to check if the root-page flags were sane at this point
3162 ** and report database corruption if they were not, but this check has
3163 ** since moved into the btree layer. */
3164 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3165 pCur->isIndex = !pCur->isTable;
drh5e00f6c2001-09-13 13:46:56 +00003166 break;
3167}
3168
drh2a5d9902011-08-26 00:34:45 +00003169/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003170**
drhb9bb7c12006-06-11 23:41:55 +00003171** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003172** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003173** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003174** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003175**
drh25d3adb2010-04-05 15:11:08 +00003176** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003177** The cursor points to a BTree table if P4==0 and to a BTree index
3178** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003179** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003180**
3181** This opcode was once called OpenTemp. But that created
3182** confusion because the term "temp table", might refer either
3183** to a TEMP table at the SQL level, or to a table opened by
3184** this opcode. Then this opcode was call OpenVirtual. But
3185** that created confusion with the whole virtual-table idea.
drh2a5d9902011-08-26 00:34:45 +00003186**
3187** The P5 parameter can be a mask of the BTREE_* flags defined
3188** in btree.h. These flags control aspects of the operation of
3189** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3190** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003191*/
drha21a64d2010-04-06 22:33:55 +00003192/* Opcode: OpenAutoindex P1 P2 * P4 *
3193**
3194** This opcode works the same as OP_OpenEphemeral. It has a
3195** different name to distinguish its use. Tables created using
3196** by this opcode will be used for automatically created transient
3197** indices in joins.
3198*/
3199case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003200case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003201 VdbeCursor *pCx;
drhd4187c72010-08-30 22:15:45 +00003202 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003203 SQLITE_OPEN_READWRITE |
3204 SQLITE_OPEN_CREATE |
3205 SQLITE_OPEN_EXCLUSIVE |
3206 SQLITE_OPEN_DELETEONCLOSE |
3207 SQLITE_OPEN_TRANSIENT_DB;
3208
drh653b82a2009-06-22 11:10:47 +00003209 assert( pOp->p1>=0 );
3210 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003211 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003212 pCx->nullRow = 1;
dan689ab892011-08-12 15:02:00 +00003213 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3214 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003215 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003216 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003217 }
3218 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003219 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003220 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003221 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003222 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003223 */
danielk19772dca4ac2008-01-03 11:50:29 +00003224 if( pOp->p4.pKeyInfo ){
drhc6b52df2002-01-04 03:09:29 +00003225 int pgno;
drh66a51672008-01-03 00:01:23 +00003226 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003227 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003228 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003229 assert( pgno==MASTER_ROOT+1 );
drh1e968a02008-03-25 00:22:21 +00003230 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
danielk1977cd3e8f72008-03-25 09:47:35 +00003231 (KeyInfo*)pOp->p4.z, pCx->pCursor);
danielk19772dca4ac2008-01-03 11:50:29 +00003232 pCx->pKeyInfo = pOp->p4.pKeyInfo;
dan689ab892011-08-12 15:02:00 +00003233 pCx->pKeyInfo->enc = ENC(p->db);
drhc6b52df2002-01-04 03:09:29 +00003234 }
drhf0863fe2005-06-12 21:35:51 +00003235 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003236 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003237 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003238 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003239 }
drh5e00f6c2001-09-13 13:46:56 +00003240 }
drhd4187c72010-08-30 22:15:45 +00003241 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
drhf0863fe2005-06-12 21:35:51 +00003242 pCx->isIndex = !pCx->isTable;
dan5134d132011-09-02 10:31:11 +00003243 break;
3244}
3245
3246/* Opcode: OpenSorter P1 P2 * P4 *
3247**
3248** This opcode works like OP_OpenEphemeral except that it opens
3249** a transient index that is specifically designed to sort large
3250** tables using an external merge-sort algorithm.
3251*/
drhca892a72011-09-03 00:17:51 +00003252case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003253 VdbeCursor *pCx;
drhca892a72011-09-03 00:17:51 +00003254#ifndef SQLITE_OMIT_MERGE_SORT
dan5134d132011-09-02 10:31:11 +00003255 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3256 if( pCx==0 ) goto no_mem;
3257 pCx->pKeyInfo = pOp->p4.pKeyInfo;
3258 pCx->pKeyInfo->enc = ENC(p->db);
3259 pCx->isSorter = 1;
3260 rc = sqlite3VdbeSorterInit(db, pCx);
drhca892a72011-09-03 00:17:51 +00003261#else
3262 pOp->opcode = OP_OpenEphemeral;
3263 pc--;
3264#endif
drh5e00f6c2001-09-13 13:46:56 +00003265 break;
3266}
3267
danielk1977d336e222009-02-20 10:58:41 +00003268/* Opcode: OpenPseudo P1 P2 P3 * *
drh70ce3f02003-04-15 19:22:22 +00003269**
3270** Open a new cursor that points to a fake table that contains a single
drh3e9ca092009-09-08 01:14:48 +00003271** row of data. The content of that one row in the content of memory
3272** register P2. In other words, cursor P1 becomes an alias for the
3273** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003274**
drh2d8d7ce2010-02-15 15:17:05 +00003275** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003276** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003277** individual columns using the OP_Column opcode. The OP_Column opcode
3278** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003279**
3280** P3 is the number of fields in the records that will be stored by
3281** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003282*/
drh9cbf3422008-01-17 16:22:13 +00003283case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003284 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003285
drh653b82a2009-06-22 11:10:47 +00003286 assert( pOp->p1>=0 );
3287 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003288 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003289 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003290 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003291 pCx->isTable = 1;
3292 pCx->isIndex = 0;
drh70ce3f02003-04-15 19:22:22 +00003293 break;
3294}
3295
drh98757152008-01-09 23:04:12 +00003296/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003297**
3298** Close a cursor previously opened as P1. If P1 is not
3299** currently open, this instruction is a no-op.
3300*/
drh9cbf3422008-01-17 16:22:13 +00003301case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003302 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3303 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3304 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003305 break;
3306}
3307
drh959403f2008-12-12 17:56:16 +00003308/* Opcode: SeekGe P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003309**
danielk1977b790c6c2008-04-18 10:25:24 +00003310** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003311** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003312** to an SQL index, then P3 is the first in an array of P4 registers
3313** that are used as an unpacked index key.
3314**
3315** Reposition cursor P1 so that it points to the smallest entry that
3316** is greater than or equal to the key value. If there are no records
3317** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003318**
drh959403f2008-12-12 17:56:16 +00003319** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003320*/
drh959403f2008-12-12 17:56:16 +00003321/* Opcode: SeekGt P1 P2 P3 P4 *
drh7cf6e4d2004-05-19 14:56:55 +00003322**
danielk1977b790c6c2008-04-18 10:25:24 +00003323** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003324** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003325** to an SQL index, then P3 is the first in an array of P4 registers
3326** that are used as an unpacked index key.
3327**
3328** Reposition cursor P1 so that it points to the smallest entry that
3329** is greater than the key value. If there are no records greater than
3330** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003331**
drh959403f2008-12-12 17:56:16 +00003332** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003333*/
drh959403f2008-12-12 17:56:16 +00003334/* Opcode: SeekLt P1 P2 P3 P4 *
drhc045ec52002-12-04 20:01:06 +00003335**
danielk1977b790c6c2008-04-18 10:25:24 +00003336** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003337** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003338** to an SQL index, then P3 is the first in an array of P4 registers
3339** that are used as an unpacked index key.
3340**
3341** Reposition cursor P1 so that it points to the largest entry that
3342** is less than the key value. If there are no records less than
3343** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003344**
drh959403f2008-12-12 17:56:16 +00003345** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003346*/
drh959403f2008-12-12 17:56:16 +00003347/* Opcode: SeekLe P1 P2 P3 P4 *
danielk19773d1bfea2004-05-14 11:00:53 +00003348**
danielk1977b790c6c2008-04-18 10:25:24 +00003349** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003350** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003351** to an SQL index, then P3 is the first in an array of P4 registers
3352** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003353**
danielk1977b790c6c2008-04-18 10:25:24 +00003354** Reposition cursor P1 so that it points to the largest entry that
3355** is less than or equal to the key value. If there are no records
3356** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003357**
drh959403f2008-12-12 17:56:16 +00003358** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003359*/
drh959403f2008-12-12 17:56:16 +00003360case OP_SeekLt: /* jump, in3 */
3361case OP_SeekLe: /* jump, in3 */
3362case OP_SeekGe: /* jump, in3 */
3363case OP_SeekGt: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003364 int res;
3365 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003366 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003367 UnpackedRecord r;
3368 int nField;
3369 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003370
drh653b82a2009-06-22 11:10:47 +00003371 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003372 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003373 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003374 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003375 assert( pC->pseudoTableReg==0 );
drh1f350122009-11-13 20:52:43 +00003376 assert( OP_SeekLe == OP_SeekLt+1 );
3377 assert( OP_SeekGe == OP_SeekLt+2 );
3378 assert( OP_SeekGt == OP_SeekLt+3 );
drhd4187c72010-08-30 22:15:45 +00003379 assert( pC->isOrdered );
dana205a482011-08-27 18:48:57 +00003380 if( ALWAYS(pC->pCursor!=0) ){
drh7cf6e4d2004-05-19 14:56:55 +00003381 oc = pOp->opcode;
drha11846b2004-01-07 18:52:56 +00003382 pC->nullRow = 0;
drhf0863fe2005-06-12 21:35:51 +00003383 if( pC->isTable ){
drh959403f2008-12-12 17:56:16 +00003384 /* The input value in P3 might be of any type: integer, real, string,
3385 ** blob, or NULL. But it needs to be an integer before we can do
3386 ** the seek, so covert it. */
drh3c657212009-11-17 23:59:58 +00003387 pIn3 = &aMem[pOp->p3];
drh959403f2008-12-12 17:56:16 +00003388 applyNumericAffinity(pIn3);
3389 iKey = sqlite3VdbeIntValue(pIn3);
3390 pC->rowidIsValid = 0;
3391
3392 /* If the P3 value could not be converted into an integer without
3393 ** loss of information, then special processing is required... */
3394 if( (pIn3->flags & MEM_Int)==0 ){
3395 if( (pIn3->flags & MEM_Real)==0 ){
3396 /* If the P3 value cannot be converted into any kind of a number,
3397 ** then the seek is not possible, so jump to P2 */
3398 pc = pOp->p2 - 1;
3399 break;
3400 }
3401 /* If we reach this point, then the P3 value must be a floating
3402 ** point number. */
3403 assert( (pIn3->flags & MEM_Real)!=0 );
3404
3405 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
drhaa736092009-06-22 00:55:30 +00003406 /* The P3 value is too large in magnitude to be expressed as an
drh959403f2008-12-12 17:56:16 +00003407 ** integer. */
3408 res = 1;
3409 if( pIn3->r<0 ){
drh1f350122009-11-13 20:52:43 +00003410 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003411 rc = sqlite3BtreeFirst(pC->pCursor, &res);
3412 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3413 }
3414 }else{
drh1f350122009-11-13 20:52:43 +00003415 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
drh959403f2008-12-12 17:56:16 +00003416 rc = sqlite3BtreeLast(pC->pCursor, &res);
3417 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3418 }
3419 }
3420 if( res ){
3421 pc = pOp->p2 - 1;
3422 }
3423 break;
3424 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3425 /* Use the ceiling() function to convert real->int */
3426 if( pIn3->r > (double)iKey ) iKey++;
3427 }else{
3428 /* Use the floor() function to convert real->int */
3429 assert( oc==OP_SeekLe || oc==OP_SeekGt );
3430 if( pIn3->r < (double)iKey ) iKey--;
3431 }
3432 }
drhe63d9992008-08-13 19:11:48 +00003433 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003434 if( rc!=SQLITE_OK ){
3435 goto abort_due_to_error;
3436 }
drh959403f2008-12-12 17:56:16 +00003437 if( res==0 ){
3438 pC->rowidIsValid = 1;
3439 pC->lastRowid = iKey;
3440 }
drh5e00f6c2001-09-13 13:46:56 +00003441 }else{
drh856c1032009-06-02 15:21:42 +00003442 nField = pOp->p4.i;
danielk1977b790c6c2008-04-18 10:25:24 +00003443 assert( pOp->p4type==P4_INT32 );
3444 assert( nField>0 );
3445 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00003446 r.nField = (u16)nField;
drh1f350122009-11-13 20:52:43 +00003447
3448 /* The next line of code computes as follows, only faster:
3449 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3450 ** r.flags = UNPACKED_INCRKEY;
3451 ** }else{
3452 ** r.flags = 0;
3453 ** }
3454 */
shaneh5e17e8b2009-12-03 04:40:47 +00003455 r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
drh1f350122009-11-13 20:52:43 +00003456 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3457 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3458 assert( oc!=OP_SeekGe || r.flags==0 );
3459 assert( oc!=OP_SeekLt || r.flags==0 );
3460
drha6c2ed92009-11-14 23:22:23 +00003461 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00003462#ifdef SQLITE_DEBUG
3463 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3464#endif
drh039fc322009-11-17 18:31:47 +00003465 ExpandBlob(r.aMem);
drhe63d9992008-08-13 19:11:48 +00003466 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003467 if( rc!=SQLITE_OK ){
3468 goto abort_due_to_error;
3469 }
drhf0863fe2005-06-12 21:35:51 +00003470 pC->rowidIsValid = 0;
drh5e00f6c2001-09-13 13:46:56 +00003471 }
drha11846b2004-01-07 18:52:56 +00003472 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003473 pC->cacheStatus = CACHE_STALE;
drh0f7eb612006-08-08 13:51:43 +00003474#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +00003475 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00003476#endif
drh1f350122009-11-13 20:52:43 +00003477 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003478 if( res<0 || (res==0 && oc==OP_SeekGt) ){
danielk197728129562005-01-11 10:25:06 +00003479 rc = sqlite3BtreeNext(pC->pCursor, &res);
danielk197701427a62005-01-11 13:02:33 +00003480 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003481 pC->rowidIsValid = 0;
drh1af3fdb2004-07-18 21:33:01 +00003482 }else{
3483 res = 0;
drh8721ce42001-11-07 14:22:00 +00003484 }
drh7cf6e4d2004-05-19 14:56:55 +00003485 }else{
drh959403f2008-12-12 17:56:16 +00003486 assert( oc==OP_SeekLt || oc==OP_SeekLe );
3487 if( res>0 || (res==0 && oc==OP_SeekLt) ){
danielk197701427a62005-01-11 13:02:33 +00003488 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3489 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003490 pC->rowidIsValid = 0;
drh1a844c32002-12-04 22:29:28 +00003491 }else{
3492 /* res might be negative because the table is empty. Check to
3493 ** see if this is the case.
3494 */
drhf328bc82004-05-10 23:29:49 +00003495 res = sqlite3BtreeEof(pC->pCursor);
drh1a844c32002-12-04 22:29:28 +00003496 }
drh1af3fdb2004-07-18 21:33:01 +00003497 }
drh91fd4d42008-01-19 20:11:25 +00003498 assert( pOp->p2>0 );
drh1af3fdb2004-07-18 21:33:01 +00003499 if( res ){
drh91fd4d42008-01-19 20:11:25 +00003500 pc = pOp->p2 - 1;
drh8721ce42001-11-07 14:22:00 +00003501 }
drhaa736092009-06-22 00:55:30 +00003502 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003503 /* This happens when attempting to open the sqlite3_master table
3504 ** for read access returns SQLITE_EMPTY. In this case always
3505 ** take the jump (since there are no records in the table).
3506 */
3507 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00003508 }
drh5e00f6c2001-09-13 13:46:56 +00003509 break;
3510}
3511
drh959403f2008-12-12 17:56:16 +00003512/* Opcode: Seek P1 P2 * * *
3513**
3514** P1 is an open table cursor and P2 is a rowid integer. Arrange
3515** for P1 to move so that it points to the rowid given by P2.
3516**
3517** This is actually a deferred seek. Nothing actually happens until
3518** the cursor is used to read a record. That way, if no reads
3519** occur, no unnecessary I/O happens.
3520*/
3521case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003522 VdbeCursor *pC;
3523
drh653b82a2009-06-22 11:10:47 +00003524 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3525 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003526 assert( pC!=0 );
drhaa736092009-06-22 00:55:30 +00003527 if( ALWAYS(pC->pCursor!=0) ){
drh959403f2008-12-12 17:56:16 +00003528 assert( pC->isTable );
3529 pC->nullRow = 0;
drh3c657212009-11-17 23:59:58 +00003530 pIn2 = &aMem[pOp->p2];
drh959403f2008-12-12 17:56:16 +00003531 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3532 pC->rowidIsValid = 0;
3533 pC->deferredMoveto = 1;
3534 }
3535 break;
3536}
3537
3538
drh8cff69d2009-11-12 19:59:44 +00003539/* Opcode: Found P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003540**
drh8cff69d2009-11-12 19:59:44 +00003541** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3542** P4>0 then register P3 is the first of P4 registers that form an unpacked
3543** record.
3544**
3545** Cursor P1 is on an index btree. If the record identified by P3 and P4
3546** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003547** P1 is left pointing at the matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003548*/
drh8cff69d2009-11-12 19:59:44 +00003549/* Opcode: NotFound P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003550**
drh8cff69d2009-11-12 19:59:44 +00003551** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3552** P4>0 then register P3 is the first of P4 registers that form an unpacked
3553** record.
3554**
3555** Cursor P1 is on an index btree. If the record identified by P3 and P4
3556** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3557** does contain an entry whose prefix matches the P3/P4 record then control
3558** falls through to the next instruction and P1 is left pointing at the
3559** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003560**
drhcb6d50e2008-08-21 19:28:30 +00003561** See also: Found, NotExists, IsUnique
drh5e00f6c2001-09-13 13:46:56 +00003562*/
drh9cbf3422008-01-17 16:22:13 +00003563case OP_NotFound: /* jump, in3 */
3564case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003565 int alreadyExists;
drhdfe88ec2008-11-03 20:55:06 +00003566 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003567 int res;
dan03e9cfc2011-09-05 14:20:27 +00003568 char *pFree;
drh856c1032009-06-02 15:21:42 +00003569 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003570 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00003571 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3572
dan0ff297e2009-09-25 17:03:14 +00003573#ifdef SQLITE_TEST
3574 sqlite3_found_count++;
3575#endif
3576
drh856c1032009-06-02 15:21:42 +00003577 alreadyExists = 0;
drhaa736092009-06-22 00:55:30 +00003578 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003579 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003580 pC = p->apCsr[pOp->p1];
3581 assert( pC!=0 );
drh3c657212009-11-17 23:59:58 +00003582 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003583 if( ALWAYS(pC->pCursor!=0) ){
drhe63d9992008-08-13 19:11:48 +00003584
drhf0863fe2005-06-12 21:35:51 +00003585 assert( pC->isTable==0 );
drh8cff69d2009-11-12 19:59:44 +00003586 if( pOp->p4.i>0 ){
3587 r.pKeyInfo = pC->pKeyInfo;
shaneh5e17e8b2009-12-03 04:40:47 +00003588 r.nField = (u16)pOp->p4.i;
drh8cff69d2009-11-12 19:59:44 +00003589 r.aMem = pIn3;
drh2b4ded92010-09-27 21:09:31 +00003590#ifdef SQLITE_DEBUG
3591 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3592#endif
drh8cff69d2009-11-12 19:59:44 +00003593 r.flags = UNPACKED_PREFIX_MATCH;
3594 pIdxKey = &r;
3595 }else{
dan03e9cfc2011-09-05 14:20:27 +00003596 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3597 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3598 );
3599 if( pIdxKey==0 ) goto no_mem;
drh8cff69d2009-11-12 19:59:44 +00003600 assert( pIn3->flags & MEM_Blob );
drhd81a1422010-09-28 07:11:24 +00003601 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
dan03e9cfc2011-09-05 14:20:27 +00003602 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh8cff69d2009-11-12 19:59:44 +00003603 pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
danielk19779a96b662007-11-29 17:05:18 +00003604 }
drhe63d9992008-08-13 19:11:48 +00003605 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
drh8cff69d2009-11-12 19:59:44 +00003606 if( pOp->p4.i==0 ){
dan03e9cfc2011-09-05 14:20:27 +00003607 sqlite3DbFree(db, pFree);
drh8cff69d2009-11-12 19:59:44 +00003608 }
danielk197777519402007-08-30 11:48:31 +00003609 if( rc!=SQLITE_OK ){
3610 break;
3611 }
3612 alreadyExists = (res==0);
drha11846b2004-01-07 18:52:56 +00003613 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003614 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003615 }
3616 if( pOp->opcode==OP_Found ){
3617 if( alreadyExists ) pc = pOp->p2 - 1;
3618 }else{
3619 if( !alreadyExists ) pc = pOp->p2 - 1;
3620 }
drh5e00f6c2001-09-13 13:46:56 +00003621 break;
3622}
3623
drh98757152008-01-09 23:04:12 +00003624/* Opcode: IsUnique P1 P2 P3 P4 *
drh9cfcf5d2002-01-29 18:41:24 +00003625**
drh8cff69d2009-11-12 19:59:44 +00003626** Cursor P1 is open on an index b-tree - that is to say, a btree which
3627** no data and where the key are records generated by OP_MakeRecord with
3628** the list field being the integer ROWID of the entry that the index
3629** entry refers to.
danielk1977de630352009-05-04 11:42:29 +00003630**
3631** The P3 register contains an integer record number. Call this record
3632** number R. Register P4 is the first in a set of N contiguous registers
3633** that make up an unpacked index key that can be used with cursor P1.
3634** The value of N can be inferred from the cursor. N includes the rowid
3635** value appended to the end of the index record. This rowid value may
3636** or may not be the same as R.
3637**
3638** If any of the N registers beginning with register P4 contains a NULL
3639** value, jump immediately to P2.
3640**
3641** Otherwise, this instruction checks if cursor P1 contains an entry
3642** where the first (N-1) fields match but the rowid value at the end
3643** of the index entry is not R. If there is no such entry, control jumps
3644** to instruction P2. Otherwise, the rowid of the conflicting index
3645** entry is copied to register P3 and control falls through to the next
3646** instruction.
drh9cfcf5d2002-01-29 18:41:24 +00003647**
drh9cbf3422008-01-17 16:22:13 +00003648** See also: NotFound, NotExists, Found
drh9cfcf5d2002-01-29 18:41:24 +00003649*/
drh9cbf3422008-01-17 16:22:13 +00003650case OP_IsUnique: { /* jump, in3 */
shane60a4b532009-05-06 18:57:09 +00003651 u16 ii;
drhdfe88ec2008-11-03 20:55:06 +00003652 VdbeCursor *pCx;
drh9cfcf5d2002-01-29 18:41:24 +00003653 BtCursor *pCrsr;
shane60a4b532009-05-06 18:57:09 +00003654 u16 nField;
drha6c2ed92009-11-14 23:22:23 +00003655 Mem *aMx;
drh856c1032009-06-02 15:21:42 +00003656 UnpackedRecord r; /* B-Tree index search key */
3657 i64 R; /* Rowid stored in register P3 */
drh9cfcf5d2002-01-29 18:41:24 +00003658
drh3c657212009-11-17 23:59:58 +00003659 pIn3 = &aMem[pOp->p3];
drha6c2ed92009-11-14 23:22:23 +00003660 aMx = &aMem[pOp->p4.i];
danielk1977de630352009-05-04 11:42:29 +00003661 /* Assert that the values of parameters P1 and P4 are in range. */
drh98757152008-01-09 23:04:12 +00003662 assert( pOp->p4type==P4_INT32 );
drh9cbf3422008-01-17 16:22:13 +00003663 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
danielk1977de630352009-05-04 11:42:29 +00003664 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3665
3666 /* Find the index cursor. */
3667 pCx = p->apCsr[pOp->p1];
3668 assert( pCx->deferredMoveto==0 );
3669 pCx->seekResult = 0;
3670 pCx->cacheStatus = CACHE_STALE;
drhf328bc82004-05-10 23:29:49 +00003671 pCrsr = pCx->pCursor;
danielk1977de630352009-05-04 11:42:29 +00003672
3673 /* If any of the values are NULL, take the jump. */
3674 nField = pCx->pKeyInfo->nField;
3675 for(ii=0; ii<nField; ii++){
drha6c2ed92009-11-14 23:22:23 +00003676 if( aMx[ii].flags & MEM_Null ){
danielk1977de630352009-05-04 11:42:29 +00003677 pc = pOp->p2 - 1;
3678 pCrsr = 0;
3679 break;
3680 }
3681 }
drha6c2ed92009-11-14 23:22:23 +00003682 assert( (aMx[nField].flags & MEM_Null)==0 );
danielk1977de630352009-05-04 11:42:29 +00003683
drhf328bc82004-05-10 23:29:49 +00003684 if( pCrsr!=0 ){
danielk1977de630352009-05-04 11:42:29 +00003685 /* Populate the index search key. */
3686 r.pKeyInfo = pCx->pKeyInfo;
3687 r.nField = nField + 1;
3688 r.flags = UNPACKED_PREFIX_SEARCH;
drha6c2ed92009-11-14 23:22:23 +00003689 r.aMem = aMx;
drh2b4ded92010-09-27 21:09:31 +00003690#ifdef SQLITE_DEBUG
3691 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3692#endif
danielk1977452c9892004-05-13 05:16:15 +00003693
danielk1977de630352009-05-04 11:42:29 +00003694 /* Extract the value of R from register P3. */
3695 sqlite3VdbeMemIntegerify(pIn3);
3696 R = pIn3->u.i;
3697
3698 /* Search the B-Tree index. If no conflicting record is found, jump
3699 ** to P2. Otherwise, copy the rowid of the conflicting record to
3700 ** register P3 and fall through to the next instruction. */
3701 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3702 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
drh9cfcf5d2002-01-29 18:41:24 +00003703 pc = pOp->p2 - 1;
danielk1977de630352009-05-04 11:42:29 +00003704 }else{
3705 pIn3->u.i = r.rowid;
drh9cfcf5d2002-01-29 18:41:24 +00003706 }
drh9cfcf5d2002-01-29 18:41:24 +00003707 }
3708 break;
3709}
3710
drh9cbf3422008-01-17 16:22:13 +00003711/* Opcode: NotExists P1 P2 P3 * *
drh6b125452002-01-28 15:53:03 +00003712**
drhef8662b2011-06-20 21:47:58 +00003713** Use the content of register P3 as an integer key. If a record
danielk197796cb76f2008-01-04 13:24:28 +00003714** with that key does not exist in table of P1, then jump to P2.
drh710c4842010-08-30 01:17:20 +00003715** If the record does exist, then fall through. The cursor is left
drh9cbf3422008-01-17 16:22:13 +00003716** pointing to the record if it exists.
drh6b125452002-01-28 15:53:03 +00003717**
3718** The difference between this operation and NotFound is that this
drhf0863fe2005-06-12 21:35:51 +00003719** operation assumes the key is an integer and that P1 is a table whereas
3720** NotFound assumes key is a blob constructed from MakeRecord and
3721** P1 is an index.
drh6b125452002-01-28 15:53:03 +00003722**
drhcb6d50e2008-08-21 19:28:30 +00003723** See also: Found, NotFound, IsUnique
drh6b125452002-01-28 15:53:03 +00003724*/
drh9cbf3422008-01-17 16:22:13 +00003725case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003726 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003727 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003728 int res;
3729 u64 iKey;
3730
drh3c657212009-11-17 23:59:58 +00003731 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003732 assert( pIn3->flags & MEM_Int );
3733 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3734 pC = p->apCsr[pOp->p1];
3735 assert( pC!=0 );
3736 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00003737 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00003738 pCrsr = pC->pCursor;
dana205a482011-08-27 18:48:57 +00003739 if( ALWAYS(pCrsr!=0) ){
drh856c1032009-06-02 15:21:42 +00003740 res = 0;
drhaa736092009-06-22 00:55:30 +00003741 iKey = pIn3->u.i;
danielk1977de630352009-05-04 11:42:29 +00003742 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drh98757152008-01-09 23:04:12 +00003743 pC->lastRowid = pIn3->u.i;
drh9c1905f2008-12-10 22:32:56 +00003744 pC->rowidIsValid = res==0 ?1:0;
drh9188b382004-05-14 21:12:22 +00003745 pC->nullRow = 0;
drh76873ab2006-01-07 18:48:26 +00003746 pC->cacheStatus = CACHE_STALE;
danielk19771d461462009-04-21 09:02:45 +00003747 pC->deferredMoveto = 0;
danielk197728129562005-01-11 10:25:06 +00003748 if( res!=0 ){
drh17f71932002-02-21 12:01:27 +00003749 pc = pOp->p2 - 1;
drh91fd4d42008-01-19 20:11:25 +00003750 assert( pC->rowidIsValid==0 );
drh6b125452002-01-28 15:53:03 +00003751 }
danielk1977de630352009-05-04 11:42:29 +00003752 pC->seekResult = res;
drhaa736092009-06-22 00:55:30 +00003753 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003754 /* This happens when an attempt to open a read cursor on the
3755 ** sqlite_master table returns SQLITE_EMPTY.
3756 */
danielk1977f7b9d662008-06-23 18:49:43 +00003757 pc = pOp->p2 - 1;
3758 assert( pC->rowidIsValid==0 );
danielk1977de630352009-05-04 11:42:29 +00003759 pC->seekResult = 0;
drh6b125452002-01-28 15:53:03 +00003760 }
drh6b125452002-01-28 15:53:03 +00003761 break;
3762}
3763
drh4c583122008-01-04 22:01:03 +00003764/* Opcode: Sequence P1 P2 * * *
drh4db38a72005-09-01 12:16:28 +00003765**
drh4c583122008-01-04 22:01:03 +00003766** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00003767** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00003768** The sequence number on the cursor is incremented after this
3769** instruction.
drh4db38a72005-09-01 12:16:28 +00003770*/
drh4c583122008-01-04 22:01:03 +00003771case OP_Sequence: { /* out2-prerelease */
drh653b82a2009-06-22 11:10:47 +00003772 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3773 assert( p->apCsr[pOp->p1]!=0 );
3774 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00003775 break;
3776}
3777
3778
drh98757152008-01-09 23:04:12 +00003779/* Opcode: NewRowid P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00003780**
drhf0863fe2005-06-12 21:35:51 +00003781** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00003782** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00003783** table that cursor P1 points to. The new record number is written
3784** written to register P2.
drh205f48e2004-11-05 00:43:11 +00003785**
dan76d462e2009-08-30 11:42:51 +00003786** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3787** the largest previously generated record number. No new record numbers are
3788** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00003789** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00003790** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00003791** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00003792*/
drh4c583122008-01-04 22:01:03 +00003793case OP_NewRowid: { /* out2-prerelease */
drhaa736092009-06-22 00:55:30 +00003794 i64 v; /* The new rowid */
3795 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3796 int res; /* Result of an sqlite3BtreeLast() */
3797 int cnt; /* Counter to limit the number of searches */
3798 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00003799 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00003800
drh856c1032009-06-02 15:21:42 +00003801 v = 0;
3802 res = 0;
drhaa736092009-06-22 00:55:30 +00003803 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3804 pC = p->apCsr[pOp->p1];
3805 assert( pC!=0 );
3806 if( NEVER(pC->pCursor==0) ){
drhf328bc82004-05-10 23:29:49 +00003807 /* The zero initialization above is all that is needed */
drh5e00f6c2001-09-13 13:46:56 +00003808 }else{
drh5cf8e8c2002-02-19 22:42:05 +00003809 /* The next rowid or record number (different terms for the same
3810 ** thing) is obtained in a two-step algorithm.
3811 **
3812 ** First we attempt to find the largest existing rowid and add one
3813 ** to that. But if the largest existing rowid is already the maximum
3814 ** positive integer, we have to fall through to the second
3815 ** probabilistic algorithm
3816 **
3817 ** The second algorithm is to select a rowid at random and see if
3818 ** it already exists in the table. If it does not exist, we have
3819 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00003820 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00003821 */
drhaa736092009-06-22 00:55:30 +00003822 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00003823
drh75f86a42005-02-17 00:03:06 +00003824#ifdef SQLITE_32BIT_ROWID
3825# define MAX_ROWID 0x7fffffff
3826#else
drhfe2093d2005-01-20 22:48:47 +00003827 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3828 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3829 ** to provide the constant while making all compilers happy.
3830 */
danielk197764202cf2008-11-17 15:31:47 +00003831# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00003832#endif
drhfe2093d2005-01-20 22:48:47 +00003833
drh5cf8e8c2002-02-19 22:42:05 +00003834 if( !pC->useRandomRowid ){
drh7f751222009-03-17 22:33:00 +00003835 v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3836 if( v==0 ){
danielk1977261919c2005-12-06 12:52:59 +00003837 rc = sqlite3BtreeLast(pC->pCursor, &res);
3838 if( rc!=SQLITE_OK ){
3839 goto abort_due_to_error;
3840 }
drh32fbe342002-10-19 20:16:37 +00003841 if( res ){
drhc79c7612010-01-01 18:57:48 +00003842 v = 1; /* IMP: R-61914-48074 */
drh5cf8e8c2002-02-19 22:42:05 +00003843 }else{
drhea8ffdf2009-07-22 00:35:23 +00003844 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
drhc27ae612009-07-14 18:35:44 +00003845 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3846 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
drha40eb7c2012-02-24 00:02:28 +00003847 if( v>=MAX_ROWID ){
drh32fbe342002-10-19 20:16:37 +00003848 pC->useRandomRowid = 1;
3849 }else{
drhc79c7612010-01-01 18:57:48 +00003850 v++; /* IMP: R-29538-34987 */
drh32fbe342002-10-19 20:16:37 +00003851 }
drh5cf8e8c2002-02-19 22:42:05 +00003852 }
drh3fc190c2001-09-14 03:24:23 +00003853 }
drh205f48e2004-11-05 00:43:11 +00003854
3855#ifndef SQLITE_OMIT_AUTOINCREMENT
drh4c583122008-01-04 22:01:03 +00003856 if( pOp->p3 ){
shaneabc6b892009-09-10 19:09:03 +00003857 /* Assert that P3 is a valid memory cell. */
3858 assert( pOp->p3>0 );
dan76d462e2009-08-30 11:42:51 +00003859 if( p->pFrame ){
3860 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00003861 /* Assert that P3 is a valid memory cell. */
3862 assert( pOp->p3<=pFrame->nMem );
dan76d462e2009-08-30 11:42:51 +00003863 pMem = &pFrame->aMem[pOp->p3];
3864 }else{
shaneabc6b892009-09-10 19:09:03 +00003865 /* Assert that P3 is a valid memory cell. */
3866 assert( pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003867 pMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00003868 memAboutToChange(p, pMem);
dan76d462e2009-08-30 11:42:51 +00003869 }
drh2b4ded92010-09-27 21:09:31 +00003870 assert( memIsValid(pMem) );
dan76d462e2009-08-30 11:42:51 +00003871
3872 REGISTER_TRACE(pOp->p3, pMem);
drh8a512562005-11-14 22:29:05 +00003873 sqlite3VdbeMemIntegerify(pMem);
drh4c583122008-01-04 22:01:03 +00003874 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
drh3c024d62007-03-30 11:23:45 +00003875 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
drhc79c7612010-01-01 18:57:48 +00003876 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
drh205f48e2004-11-05 00:43:11 +00003877 goto abort_due_to_error;
3878 }
drh3c024d62007-03-30 11:23:45 +00003879 if( v<pMem->u.i+1 ){
3880 v = pMem->u.i + 1;
drh205f48e2004-11-05 00:43:11 +00003881 }
drh3c024d62007-03-30 11:23:45 +00003882 pMem->u.i = v;
drh205f48e2004-11-05 00:43:11 +00003883 }
3884#endif
3885
drh7f751222009-03-17 22:33:00 +00003886 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
drh5cf8e8c2002-02-19 22:42:05 +00003887 }
3888 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00003889 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00003890 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00003891 ** engine starts picking positive candidate ROWIDs at random until
3892 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00003893 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
3894 ** an AUTOINCREMENT table. */
shanehc4d340a2010-09-01 02:37:56 +00003895 /* on the first attempt, simply do one more than previous */
drh99a66922011-05-13 18:51:42 +00003896 v = lastRowid;
shanehc4d340a2010-09-01 02:37:56 +00003897 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3898 v++; /* ensure non-zero */
drh5cf8e8c2002-02-19 22:42:05 +00003899 cnt = 0;
drh748a52c2010-09-01 11:50:08 +00003900 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
3901 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00003902 && (res==0)
3903 && (++cnt<100)){
3904 /* collision - try another random rowid */
3905 sqlite3_randomness(sizeof(v), &v);
3906 if( cnt<5 ){
3907 /* try "small" random rowids for the initial attempts */
3908 v &= 0xffffff;
drh91fd4d42008-01-19 20:11:25 +00003909 }else{
shanehc4d340a2010-09-01 02:37:56 +00003910 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
drh5cf8e8c2002-02-19 22:42:05 +00003911 }
shanehc4d340a2010-09-01 02:37:56 +00003912 v++; /* ensure non-zero */
3913 }
drhaa736092009-06-22 00:55:30 +00003914 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00003915 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00003916 goto abort_due_to_error;
3917 }
drh748a52c2010-09-01 11:50:08 +00003918 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00003919 }
drhf0863fe2005-06-12 21:35:51 +00003920 pC->rowidIsValid = 0;
drha11846b2004-01-07 18:52:56 +00003921 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003922 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003923 }
drh4c583122008-01-04 22:01:03 +00003924 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00003925 break;
3926}
3927
danielk19771f4aa332008-01-03 09:51:55 +00003928/* Opcode: Insert P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003929**
jplyon5a564222003-06-02 06:15:58 +00003930** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00003931** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00003932** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00003933** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00003934** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00003935**
danielk19771f4aa332008-01-03 09:51:55 +00003936** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
3937** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00003938** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00003939** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00003940**
drh3e9ca092009-09-08 01:14:48 +00003941** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
3942** the last seek operation (OP_NotExists) was a success, then this
3943** operation will not attempt to find the appropriate row before doing
3944** the insert but will instead overwrite the row that the cursor is
3945** currently pointing to. Presumably, the prior OP_NotExists opcode
3946** has already positioned the cursor correctly. This is an optimization
3947** that boosts performance by avoiding redundant seeks.
3948**
3949** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
3950** UPDATE operation. Otherwise (if the flag is clear) then this opcode
3951** is part of an INSERT operation. The difference is only important to
3952** the update hook.
3953**
drh66a51672008-01-03 00:01:23 +00003954** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00003955** may be NULL. If it is not NULL, then the update-hook
3956** (sqlite3.xUpdateCallback) is invoked following a successful insert.
3957**
drh93aed5a2008-01-16 17:46:38 +00003958** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
3959** allocated, then ownership of P2 is transferred to the pseudo-cursor
3960** and register P2 becomes ephemeral. If the cursor is changed, the
3961** value of register P2 will then change. Make sure this does not
3962** cause any problems.)
3963**
drhf0863fe2005-06-12 21:35:51 +00003964** This instruction only works on tables. The equivalent instruction
3965** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00003966*/
drhe05c9292009-10-29 13:48:10 +00003967/* Opcode: InsertInt P1 P2 P3 P4 P5
3968**
3969** This works exactly like OP_Insert except that the key is the
3970** integer value P3, not the value of the integer stored in register P3.
3971*/
3972case OP_Insert:
3973case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00003974 Mem *pData; /* MEM cell holding data for the record to be inserted */
3975 Mem *pKey; /* MEM cell holding key for the record */
3976 i64 iKey; /* The integer ROWID or key for the record to be inserted */
3977 VdbeCursor *pC; /* Cursor to table into which insert is written */
3978 int nZero; /* Number of zero-bytes to append */
3979 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
3980 const char *zDb; /* database name - used by the update hook */
3981 const char *zTbl; /* Table name - used by the opdate hook */
3982 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00003983
drha6c2ed92009-11-14 23:22:23 +00003984 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00003985 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00003986 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00003987 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00003988 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003989 assert( pC->pCursor!=0 );
3990 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00003991 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00003992 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00003993
drhe05c9292009-10-29 13:48:10 +00003994 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00003995 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00003996 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00003997 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00003998 REGISTER_TRACE(pOp->p3, pKey);
3999 iKey = pKey->u.i;
4000 }else{
4001 assert( pOp->opcode==OP_InsertInt );
4002 iKey = pOp->p3;
4003 }
4004
drha05a7222008-01-19 03:35:58 +00004005 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh99a66922011-05-13 18:51:42 +00004006 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00004007 if( pData->flags & MEM_Null ){
4008 pData->z = 0;
4009 pData->n = 0;
4010 }else{
4011 assert( pData->flags & (MEM_Blob|MEM_Str) );
4012 }
drh3e9ca092009-09-08 01:14:48 +00004013 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4014 if( pData->flags & MEM_Zero ){
4015 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004016 }else{
drh3e9ca092009-09-08 01:14:48 +00004017 nZero = 0;
drha05a7222008-01-19 03:35:58 +00004018 }
drh3e9ca092009-09-08 01:14:48 +00004019 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
4020 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4021 pData->z, pData->n, nZero,
4022 pOp->p5 & OPFLAG_APPEND, seekResult
4023 );
drha05a7222008-01-19 03:35:58 +00004024 pC->rowidIsValid = 0;
4025 pC->deferredMoveto = 0;
4026 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004027
drha05a7222008-01-19 03:35:58 +00004028 /* Invoke the update-hook if required. */
4029 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00004030 zDb = db->aDb[pC->iDb].zName;
4031 zTbl = pOp->p4.z;
4032 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00004033 assert( pC->isTable );
4034 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4035 assert( pC->iDb>=0 );
4036 }
drh5e00f6c2001-09-13 13:46:56 +00004037 break;
4038}
4039
drh98757152008-01-09 23:04:12 +00004040/* Opcode: Delete P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00004041**
drh5edc3122001-09-13 21:53:09 +00004042** Delete the record at which the P1 cursor is currently pointing.
4043**
4044** The cursor will be left pointing at either the next or the previous
4045** record in the table. If it is left pointing at the next record, then
drhb19a2bc2001-09-16 00:13:26 +00004046** the next Next instruction will be a no-op. Hence it is OK to delete
4047** a record from within an Next loop.
drhc8d30ac2002-04-12 10:08:59 +00004048**
rdcb0c374f2004-02-20 22:53:38 +00004049** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00004050** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004051**
drh91fd4d42008-01-19 20:11:25 +00004052** P1 must not be pseudo-table. It has to be a real table with
4053** multiple rows.
4054**
4055** If P4 is not NULL, then it is the name of the table that P1 is
4056** pointing to. The update hook will be invoked, if it exists.
4057** If P4 is not NULL then the P1 cursor must have been positioned
4058** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00004059*/
drh9cbf3422008-01-17 16:22:13 +00004060case OP_Delete: {
drh856c1032009-06-02 15:21:42 +00004061 i64 iKey;
drhdfe88ec2008-11-03 20:55:06 +00004062 VdbeCursor *pC;
drh91fd4d42008-01-19 20:11:25 +00004063
drh856c1032009-06-02 15:21:42 +00004064 iKey = 0;
drh653b82a2009-06-22 11:10:47 +00004065 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4066 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004067 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00004068 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
danielk197794eb6a12005-12-15 15:22:08 +00004069
drh91fd4d42008-01-19 20:11:25 +00004070 /* If the update-hook will be invoked, set iKey to the rowid of the
4071 ** row being deleted.
4072 */
4073 if( db->xUpdateCallback && pOp->p4.z ){
4074 assert( pC->isTable );
4075 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
4076 iKey = pC->lastRowid;
4077 }
danielk197794eb6a12005-12-15 15:22:08 +00004078
drh9a65f2c2009-06-22 19:05:40 +00004079 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
4080 ** OP_Column on the same table without any intervening operations that
4081 ** might move or invalidate the cursor. Hence cursor pC is always pointing
4082 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
4083 ** below is always a no-op and cannot fail. We will run it anyhow, though,
4084 ** to guard against future changes to the code generator.
4085 **/
4086 assert( pC->deferredMoveto==0 );
drh91fd4d42008-01-19 20:11:25 +00004087 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004088 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4089
drh7f751222009-03-17 22:33:00 +00004090 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
drh91fd4d42008-01-19 20:11:25 +00004091 rc = sqlite3BtreeDelete(pC->pCursor);
drh91fd4d42008-01-19 20:11:25 +00004092 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004093
drh91fd4d42008-01-19 20:11:25 +00004094 /* Invoke the update-hook if required. */
4095 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4096 const char *zDb = db->aDb[pC->iDb].zName;
4097 const char *zTbl = pOp->p4.z;
4098 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
4099 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00004100 }
danielk1977b28af712004-06-21 06:50:26 +00004101 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00004102 break;
4103}
drhb7f1d9a2009-09-08 02:27:58 +00004104/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004105**
drhb7f1d9a2009-09-08 02:27:58 +00004106** The value of the change counter is copied to the database handle
4107** change counter (returned by subsequent calls to sqlite3_changes()).
4108** Then the VMs internal change counter resets to 0.
4109** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004110*/
drh9cbf3422008-01-17 16:22:13 +00004111case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004112 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004113 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004114 break;
4115}
4116
dan5134d132011-09-02 10:31:11 +00004117/* Opcode: SorterCompare P1 P2 P3
4118**
4119** P1 is a sorter cursor. This instruction compares the record blob in
4120** register P3 with the entry that the sorter cursor currently points to.
4121** If, excluding the rowid fields at the end, the two records are a match,
4122** fall through to the next instruction. Otherwise, jump to instruction P2.
4123*/
4124case OP_SorterCompare: {
4125 VdbeCursor *pC;
4126 int res;
4127
4128 pC = p->apCsr[pOp->p1];
4129 assert( isSorter(pC) );
4130 pIn3 = &aMem[pOp->p3];
4131 rc = sqlite3VdbeSorterCompare(pC, pIn3, &res);
4132 if( res ){
4133 pc = pOp->p2-1;
4134 }
4135 break;
4136};
4137
4138/* Opcode: SorterData P1 P2 * * *
4139**
4140** Write into register P2 the current sorter data for sorter cursor P1.
4141*/
4142case OP_SorterData: {
4143 VdbeCursor *pC;
drhca892a72011-09-03 00:17:51 +00004144#ifndef SQLITE_OMIT_MERGE_SORT
dan5134d132011-09-02 10:31:11 +00004145 pOut = &aMem[pOp->p2];
4146 pC = p->apCsr[pOp->p1];
4147 assert( pC->isSorter );
4148 rc = sqlite3VdbeSorterRowkey(pC, pOut);
drhca892a72011-09-03 00:17:51 +00004149#else
4150 pOp->opcode = OP_RowKey;
4151 pc--;
4152#endif
dan5134d132011-09-02 10:31:11 +00004153 break;
4154}
4155
drh98757152008-01-09 23:04:12 +00004156/* Opcode: RowData P1 P2 * * *
drh70ce3f02003-04-15 19:22:22 +00004157**
drh98757152008-01-09 23:04:12 +00004158** Write into register P2 the complete row data for cursor P1.
4159** There is no interpretation of the data.
4160** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004161** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004162**
drhde4fcfd2008-01-19 23:50:26 +00004163** If the P1 cursor must be pointing to a valid row (not a NULL row)
4164** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004165*/
drh98757152008-01-09 23:04:12 +00004166/* Opcode: RowKey P1 P2 * * *
drh143f3c42004-01-07 20:37:52 +00004167**
drh98757152008-01-09 23:04:12 +00004168** Write into register P2 the complete row key for cursor P1.
4169** There is no interpretation of the data.
drh9cbf3422008-01-17 16:22:13 +00004170** The key is copied onto the P3 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004171** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004172**
drhde4fcfd2008-01-19 23:50:26 +00004173** If the P1 cursor must be pointing to a valid row (not a NULL row)
4174** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004175*/
danielk1977a7a8e142008-02-13 18:25:27 +00004176case OP_RowKey:
4177case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004178 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004179 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004180 u32 n;
drh856c1032009-06-02 15:21:42 +00004181 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00004182
drha6c2ed92009-11-14 23:22:23 +00004183 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004184 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004185
drhf0863fe2005-06-12 21:35:51 +00004186 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004187 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4188 pC = p->apCsr[pOp->p1];
dan5134d132011-09-02 10:31:11 +00004189 assert( pC->isSorter==0 );
drhc6aff302011-09-01 15:32:47 +00004190 assert( pC->isTable || pOp->opcode!=OP_RowData );
drhf0863fe2005-06-12 21:35:51 +00004191 assert( pC->isIndex || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00004192 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00004193 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00004194 assert( pC->pseudoTableReg==0 );
drhca892a72011-09-03 00:17:51 +00004195 assert( !pC->isSorter );
drhde4fcfd2008-01-19 23:50:26 +00004196 assert( pC->pCursor!=0 );
4197 pCrsr = pC->pCursor;
drhea8ffdf2009-07-22 00:35:23 +00004198 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drh9a65f2c2009-06-22 19:05:40 +00004199
4200 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4201 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4202 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
4203 ** a no-op and can never fail. But we leave it in place as a safety.
4204 */
4205 assert( pC->deferredMoveto==0 );
drhde4fcfd2008-01-19 23:50:26 +00004206 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004207 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4208
drhde4fcfd2008-01-19 23:50:26 +00004209 if( pC->isIndex ){
drhde4fcfd2008-01-19 23:50:26 +00004210 assert( !pC->isTable );
drhb07028f2011-10-14 21:49:18 +00004211 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
drhc27ae612009-07-14 18:35:44 +00004212 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004213 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004214 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004215 }
drhbfb19dc2009-06-05 16:46:53 +00004216 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004217 }else{
drhb07028f2011-10-14 21:49:18 +00004218 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004219 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004220 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004221 goto too_big;
4222 }
drhde4fcfd2008-01-19 23:50:26 +00004223 }
danielk1977a7a8e142008-02-13 18:25:27 +00004224 if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4225 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004226 }
danielk1977a7a8e142008-02-13 18:25:27 +00004227 pOut->n = n;
4228 MemSetTypeFlag(pOut, MEM_Blob);
drhde4fcfd2008-01-19 23:50:26 +00004229 if( pC->isIndex ){
4230 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4231 }else{
4232 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004233 }
danielk197796cb76f2008-01-04 13:24:28 +00004234 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004235 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00004236 break;
4237}
4238
drh2133d822008-01-03 18:44:59 +00004239/* Opcode: Rowid P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004240**
drh2133d822008-01-03 18:44:59 +00004241** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004242** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004243**
4244** P1 can be either an ordinary table or a virtual table. There used to
4245** be a separate OP_VRowid opcode for use with virtual tables, but this
4246** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004247*/
drh4c583122008-01-04 22:01:03 +00004248case OP_Rowid: { /* out2-prerelease */
drhdfe88ec2008-11-03 20:55:06 +00004249 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004250 i64 v;
drh856c1032009-06-02 15:21:42 +00004251 sqlite3_vtab *pVtab;
4252 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004253
drh653b82a2009-06-22 11:10:47 +00004254 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4255 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004256 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004257 assert( pC->pseudoTableReg==0 );
drh044925b2009-04-22 17:15:02 +00004258 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004259 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004260 break;
4261 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004262 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004263#ifndef SQLITE_OMIT_VIRTUALTABLE
4264 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004265 pVtab = pC->pVtabCursor->pVtab;
4266 pModule = pVtab->pModule;
4267 assert( pModule->xRowid );
drh044925b2009-04-22 17:15:02 +00004268 rc = pModule->xRowid(pC->pVtabCursor, &v);
drhb9755982010-07-24 16:34:37 +00004269 importVtabErrMsg(p, pVtab);
drh044925b2009-04-22 17:15:02 +00004270#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004271 }else{
drh6be240e2009-07-14 02:33:02 +00004272 assert( pC->pCursor!=0 );
drh61495262009-04-22 15:32:59 +00004273 rc = sqlite3VdbeCursorMoveto(pC);
4274 if( rc ) goto abort_due_to_error;
4275 if( pC->rowidIsValid ){
4276 v = pC->lastRowid;
drh61495262009-04-22 15:32:59 +00004277 }else{
drhc27ae612009-07-14 18:35:44 +00004278 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4279 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
drh61495262009-04-22 15:32:59 +00004280 }
drh5e00f6c2001-09-13 13:46:56 +00004281 }
drh4c583122008-01-04 22:01:03 +00004282 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004283 break;
4284}
4285
drh9cbf3422008-01-17 16:22:13 +00004286/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004287**
4288** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004289** that occur while the cursor is on the null row will always
4290** write a NULL.
drh17f71932002-02-21 12:01:27 +00004291*/
drh9cbf3422008-01-17 16:22:13 +00004292case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004293 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004294
drh653b82a2009-06-22 11:10:47 +00004295 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4296 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004297 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004298 pC->nullRow = 1;
drhf0863fe2005-06-12 21:35:51 +00004299 pC->rowidIsValid = 0;
dana205a482011-08-27 18:48:57 +00004300 assert( pC->pCursor || pC->pVtabCursor );
danielk1977be51a652008-10-08 17:58:48 +00004301 if( pC->pCursor ){
4302 sqlite3BtreeClearCursor(pC->pCursor);
4303 }
drh17f71932002-02-21 12:01:27 +00004304 break;
4305}
4306
drh9cbf3422008-01-17 16:22:13 +00004307/* Opcode: Last P1 P2 * * *
drh9562b552002-02-19 15:00:07 +00004308**
drhf0863fe2005-06-12 21:35:51 +00004309** The next use of the Rowid or Column or Next instruction for P1
drh9562b552002-02-19 15:00:07 +00004310** will refer to the last entry in the database table or index.
4311** If the table or index is empty and P2>0, then jump immediately to P2.
4312** If P2 is 0 or if the table or index is not empty, fall through
4313** to the following instruction.
4314*/
drh9cbf3422008-01-17 16:22:13 +00004315case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004316 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004317 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004318 int res;
drh9562b552002-02-19 15:00:07 +00004319
drh653b82a2009-06-22 11:10:47 +00004320 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4321 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004322 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004323 pCrsr = pC->pCursor;
drh7abc5402011-10-22 21:00:46 +00004324 res = 0;
4325 if( ALWAYS(pCrsr!=0) ){
drh9a65f2c2009-06-22 19:05:40 +00004326 rc = sqlite3BtreeLast(pCrsr, &res);
4327 }
drh9c1905f2008-12-10 22:32:56 +00004328 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004329 pC->deferredMoveto = 0;
drha7e77062009-01-14 00:55:09 +00004330 pC->rowidIsValid = 0;
drha05a7222008-01-19 03:35:58 +00004331 pC->cacheStatus = CACHE_STALE;
drh9a65f2c2009-06-22 19:05:40 +00004332 if( pOp->p2>0 && res ){
drha05a7222008-01-19 03:35:58 +00004333 pc = pOp->p2 - 1;
drh9562b552002-02-19 15:00:07 +00004334 }
4335 break;
4336}
4337
drh0342b1f2005-09-01 03:07:44 +00004338
drh9cbf3422008-01-17 16:22:13 +00004339/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004340**
4341** This opcode does exactly the same thing as OP_Rewind except that
4342** it increments an undocumented global variable used for testing.
4343**
4344** Sorting is accomplished by writing records into a sorting index,
4345** then rewinding that index and playing it back from beginning to
4346** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4347** rewinding so that the global variable will be incremented and
4348** regression tests can determine whether or not the optimizer is
4349** correctly optimizing out sorts.
4350*/
drhc6aff302011-09-01 15:32:47 +00004351case OP_SorterSort: /* jump */
drhca892a72011-09-03 00:17:51 +00004352#ifdef SQLITE_OMIT_MERGE_SORT
4353 pOp->opcode = OP_Sort;
4354#endif
drh9cbf3422008-01-17 16:22:13 +00004355case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004356#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004357 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004358 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004359#endif
drhd1d38482008-10-07 23:46:38 +00004360 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
drh0342b1f2005-09-01 03:07:44 +00004361 /* Fall through into OP_Rewind */
4362}
drh9cbf3422008-01-17 16:22:13 +00004363/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004364**
drhf0863fe2005-06-12 21:35:51 +00004365** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004366** will refer to the first entry in the database table or index.
4367** If the table or index is empty and P2>0, then jump immediately to P2.
4368** If P2 is 0 or if the table or index is not empty, fall through
4369** to the following instruction.
drh5e00f6c2001-09-13 13:46:56 +00004370*/
drh9cbf3422008-01-17 16:22:13 +00004371case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004372 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004373 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004374 int res;
drh5e00f6c2001-09-13 13:46:56 +00004375
drh653b82a2009-06-22 11:10:47 +00004376 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4377 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004378 assert( pC!=0 );
drhc6aff302011-09-01 15:32:47 +00004379 assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004380 res = 1;
dan689ab892011-08-12 15:02:00 +00004381 if( isSorter(pC) ){
dana20fde62011-07-12 14:28:05 +00004382 rc = sqlite3VdbeSorterRewind(db, pC, &res);
dana205a482011-08-27 18:48:57 +00004383 }else{
4384 pCrsr = pC->pCursor;
4385 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004386 rc = sqlite3BtreeFirst(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004387 pC->atFirst = res==0 ?1:0;
drha11846b2004-01-07 18:52:56 +00004388 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004389 pC->cacheStatus = CACHE_STALE;
drha7e77062009-01-14 00:55:09 +00004390 pC->rowidIsValid = 0;
drhf4dada72004-05-11 09:57:35 +00004391 }
drh9c1905f2008-12-10 22:32:56 +00004392 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004393 assert( pOp->p2>0 && pOp->p2<p->nOp );
4394 if( res ){
drhf4dada72004-05-11 09:57:35 +00004395 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00004396 }
4397 break;
4398}
4399
dana205a482011-08-27 18:48:57 +00004400/* Opcode: Next P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004401**
4402** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004403** table or index. If there are no more key/value pairs then fall through
4404** to the following instruction. But if the cursor advance was successful,
4405** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004406**
drh60a713c2008-01-21 16:22:45 +00004407** The P1 cursor must be for a real table, not a pseudo-table.
4408**
dana205a482011-08-27 18:48:57 +00004409** P4 is always of type P4_ADVANCE. The function pointer points to
4410** sqlite3BtreeNext().
4411**
drhafc266a2010-03-31 17:47:44 +00004412** If P5 is positive and the jump is taken, then event counter
4413** number P5-1 in the prepared statement is incremented.
4414**
drhc045ec52002-12-04 20:01:06 +00004415** See also: Prev
drh8721ce42001-11-07 14:22:00 +00004416*/
drhafc266a2010-03-31 17:47:44 +00004417/* Opcode: Prev P1 P2 * * P5
drhc045ec52002-12-04 20:01:06 +00004418**
4419** Back up cursor P1 so that it points to the previous key/data pair in its
4420** table or index. If there is no previous key/value pairs then fall through
4421** to the following instruction. But if the cursor backup was successful,
4422** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004423**
4424** The P1 cursor must be for a real table, not a pseudo-table.
drhafc266a2010-03-31 17:47:44 +00004425**
dana205a482011-08-27 18:48:57 +00004426** P4 is always of type P4_ADVANCE. The function pointer points to
4427** sqlite3BtreePrevious().
4428**
drhafc266a2010-03-31 17:47:44 +00004429** If P5 is positive and the jump is taken, then event counter
4430** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004431*/
drhc6aff302011-09-01 15:32:47 +00004432case OP_SorterNext: /* jump */
drhca892a72011-09-03 00:17:51 +00004433#ifdef SQLITE_OMIT_MERGE_SORT
4434 pOp->opcode = OP_Next;
4435#endif
drh9cbf3422008-01-17 16:22:13 +00004436case OP_Prev: /* jump */
4437case OP_Next: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004438 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004439 int res;
drh8721ce42001-11-07 14:22:00 +00004440
drhcaec2f12003-01-07 02:47:47 +00004441 CHECK_FOR_INTERRUPT;
drh70ce3f02003-04-15 19:22:22 +00004442 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drhafc266a2010-03-31 17:47:44 +00004443 assert( pOp->p5<=ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004444 pC = p->apCsr[pOp->p1];
drh72e8fa42007-03-28 14:30:06 +00004445 if( pC==0 ){
4446 break; /* See ticket #2273 */
4447 }
drhc6aff302011-09-01 15:32:47 +00004448 assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
dan689ab892011-08-12 15:02:00 +00004449 if( isSorter(pC) ){
dan5134d132011-09-02 10:31:11 +00004450 assert( pOp->opcode==OP_SorterNext );
dana20fde62011-07-12 14:28:05 +00004451 rc = sqlite3VdbeSorterNext(db, pC, &res);
4452 }else{
dana20fde62011-07-12 14:28:05 +00004453 res = 1;
4454 assert( pC->deferredMoveto==0 );
dana205a482011-08-27 18:48:57 +00004455 assert( pC->pCursor );
4456 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4457 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4458 rc = pOp->p4.xAdvance(pC->pCursor, &res);
drh9a65f2c2009-06-22 19:05:40 +00004459 }
drh9c1905f2008-12-10 22:32:56 +00004460 pC->nullRow = (u8)res;
drha3460582008-07-11 21:02:53 +00004461 pC->cacheStatus = CACHE_STALE;
4462 if( res==0 ){
4463 pc = pOp->p2 - 1;
drhd1d38482008-10-07 23:46:38 +00004464 if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
drh0f7eb612006-08-08 13:51:43 +00004465#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004466 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004467#endif
drh8721ce42001-11-07 14:22:00 +00004468 }
drhf0863fe2005-06-12 21:35:51 +00004469 pC->rowidIsValid = 0;
drh8721ce42001-11-07 14:22:00 +00004470 break;
4471}
4472
danielk1977de630352009-05-04 11:42:29 +00004473/* Opcode: IdxInsert P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004474**
drhef8662b2011-06-20 21:47:58 +00004475** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004476** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004477** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004478**
drhaa9b8962008-01-08 02:57:55 +00004479** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004480** insert is likely to be an append.
4481**
drhf0863fe2005-06-12 21:35:51 +00004482** This instruction only works for indices. The equivalent instruction
4483** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004484*/
drhca892a72011-09-03 00:17:51 +00004485case OP_SorterInsert: /* in2 */
4486#ifdef SQLITE_OMIT_MERGE_SORT
4487 pOp->opcode = OP_IdxInsert;
4488#endif
drh9cbf3422008-01-17 16:22:13 +00004489case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004490 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004491 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004492 int nKey;
4493 const char *zKey;
4494
drh653b82a2009-06-22 11:10:47 +00004495 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4496 pC = p->apCsr[pOp->p1];
4497 assert( pC!=0 );
drhc6aff302011-09-01 15:32:47 +00004498 assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00004499 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004500 assert( pIn2->flags & MEM_Blob );
drh653b82a2009-06-22 11:10:47 +00004501 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004502 if( ALWAYS(pCrsr!=0) ){
drhf0863fe2005-06-12 21:35:51 +00004503 assert( pC->isTable==0 );
drhaa9b8962008-01-08 02:57:55 +00004504 rc = ExpandBlob(pIn2);
danielk1977d908f5a2007-05-11 07:08:28 +00004505 if( rc==SQLITE_OK ){
dan5134d132011-09-02 10:31:11 +00004506 if( isSorter(pC) ){
4507 rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
4508 }else{
4509 nKey = pIn2->n;
4510 zKey = pIn2->z;
dan1e74e602011-08-06 12:01:58 +00004511 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4512 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
dan5134d132011-09-02 10:31:11 +00004513 );
dan1e74e602011-08-06 12:01:58 +00004514 assert( pC->deferredMoveto==0 );
dan5134d132011-09-02 10:31:11 +00004515 pC->cacheStatus = CACHE_STALE;
dan1e74e602011-08-06 12:01:58 +00004516 }
danielk1977d908f5a2007-05-11 07:08:28 +00004517 }
drh5e00f6c2001-09-13 13:46:56 +00004518 }
drh5e00f6c2001-09-13 13:46:56 +00004519 break;
4520}
4521
drhd1d38482008-10-07 23:46:38 +00004522/* Opcode: IdxDelete P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004523**
drhe14006d2008-03-25 17:23:32 +00004524** The content of P3 registers starting at register P2 form
4525** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004526** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004527*/
drhe14006d2008-03-25 17:23:32 +00004528case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004529 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004530 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004531 int res;
4532 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004533
drhe14006d2008-03-25 17:23:32 +00004534 assert( pOp->p3>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00004535 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
drh653b82a2009-06-22 11:10:47 +00004536 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4537 pC = p->apCsr[pOp->p1];
4538 assert( pC!=0 );
4539 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004540 if( ALWAYS(pCrsr!=0) ){
drhe14006d2008-03-25 17:23:32 +00004541 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004542 r.nField = (u16)pOp->p3;
drhe63d9992008-08-13 19:11:48 +00004543 r.flags = 0;
drha6c2ed92009-11-14 23:22:23 +00004544 r.aMem = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004545#ifdef SQLITE_DEBUG
4546 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4547#endif
drhe63d9992008-08-13 19:11:48 +00004548 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
danielk197775bab7d2006-01-23 13:09:45 +00004549 if( rc==SQLITE_OK && res==0 ){
danielk19774adee202004-05-08 08:23:19 +00004550 rc = sqlite3BtreeDelete(pCrsr);
drh5e00f6c2001-09-13 13:46:56 +00004551 }
drh9188b382004-05-14 21:12:22 +00004552 assert( pC->deferredMoveto==0 );
drh76873ab2006-01-07 18:48:26 +00004553 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004554 }
drh5e00f6c2001-09-13 13:46:56 +00004555 break;
4556}
4557
drh2133d822008-01-03 18:44:59 +00004558/* Opcode: IdxRowid P1 P2 * * *
drh8721ce42001-11-07 14:22:00 +00004559**
drh2133d822008-01-03 18:44:59 +00004560** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004561** the end of the index key pointed to by cursor P1. This integer should be
4562** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004563**
drh9437bd22009-02-01 00:29:56 +00004564** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004565*/
drh4c583122008-01-04 22:01:03 +00004566case OP_IdxRowid: { /* out2-prerelease */
drh8721ce42001-11-07 14:22:00 +00004567 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004568 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004569 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004570
drh653b82a2009-06-22 11:10:47 +00004571 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4572 pC = p->apCsr[pOp->p1];
4573 assert( pC!=0 );
4574 pCrsr = pC->pCursor;
drh3c657212009-11-17 23:59:58 +00004575 pOut->flags = MEM_Null;
drh9a65f2c2009-06-22 19:05:40 +00004576 if( ALWAYS(pCrsr!=0) ){
danielk1977c4d201c2009-04-07 09:16:56 +00004577 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004578 if( NEVER(rc) ) goto abort_due_to_error;
drhd7556d22004-05-14 21:59:40 +00004579 assert( pC->deferredMoveto==0 );
drhf0863fe2005-06-12 21:35:51 +00004580 assert( pC->isTable==0 );
drh4c583122008-01-04 22:01:03 +00004581 if( !pC->nullRow ){
drh35f6b932009-06-23 14:15:04 +00004582 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
danielk19771d850a72004-05-31 08:26:49 +00004583 if( rc!=SQLITE_OK ){
4584 goto abort_due_to_error;
4585 }
drh4c583122008-01-04 22:01:03 +00004586 pOut->u.i = rowid;
drh3c657212009-11-17 23:59:58 +00004587 pOut->flags = MEM_Int;
danielk19773d1bfea2004-05-14 11:00:53 +00004588 }
drh8721ce42001-11-07 14:22:00 +00004589 }
4590 break;
4591}
4592
danielk197761dd5832008-04-18 11:31:12 +00004593/* Opcode: IdxGE P1 P2 P3 P4 P5
drh8721ce42001-11-07 14:22:00 +00004594**
danielk197761dd5832008-04-18 11:31:12 +00004595** The P4 register values beginning with P3 form an unpacked index
4596** key that omits the ROWID. Compare this key value against the index
4597** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004598**
danielk197761dd5832008-04-18 11:31:12 +00004599** If the P1 index entry is greater than or equal to the key value
4600** then jump to P2. Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004601**
danielk197761dd5832008-04-18 11:31:12 +00004602** If P5 is non-zero then the key value is increased by an epsilon
4603** prior to the comparison. This make the opcode work like IdxGT except
4604** that if the key from register P3 is a prefix of the key in the cursor,
4605** the result is false whereas it would be true with IdxGT.
drh8721ce42001-11-07 14:22:00 +00004606*/
drh3bb9b932010-08-06 02:10:00 +00004607/* Opcode: IdxLT P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004608**
danielk197761dd5832008-04-18 11:31:12 +00004609** The P4 register values beginning with P3 form an unpacked index
4610** key that omits the ROWID. Compare this key value against the index
4611** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004612**
danielk197761dd5832008-04-18 11:31:12 +00004613** If the P1 index entry is less than the key value then jump to P2.
4614** Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004615**
danielk197761dd5832008-04-18 11:31:12 +00004616** If P5 is non-zero then the key value is increased by an epsilon prior
4617** to the comparison. This makes the opcode work like IdxLE.
drhc045ec52002-12-04 20:01:06 +00004618*/
drh93952eb2009-11-13 19:43:43 +00004619case OP_IdxLT: /* jump */
4620case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004621 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004622 int res;
4623 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004624
drh653b82a2009-06-22 11:10:47 +00004625 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4626 pC = p->apCsr[pOp->p1];
4627 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00004628 assert( pC->isOrdered );
drh9a65f2c2009-06-22 19:05:40 +00004629 if( ALWAYS(pC->pCursor!=0) ){
drhd7556d22004-05-14 21:59:40 +00004630 assert( pC->deferredMoveto==0 );
drha05a7222008-01-19 03:35:58 +00004631 assert( pOp->p5==0 || pOp->p5==1 );
danielk197761dd5832008-04-18 11:31:12 +00004632 assert( pOp->p4type==P4_INT32 );
4633 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004634 r.nField = (u16)pOp->p4.i;
drhe63d9992008-08-13 19:11:48 +00004635 if( pOp->p5 ){
dan0c733f62011-11-16 15:27:09 +00004636 r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH;
drhe63d9992008-08-13 19:11:48 +00004637 }else{
dan0c733f62011-11-16 15:27:09 +00004638 r.flags = UNPACKED_PREFIX_MATCH;
drhe63d9992008-08-13 19:11:48 +00004639 }
drha6c2ed92009-11-14 23:22:23 +00004640 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00004641#ifdef SQLITE_DEBUG
4642 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4643#endif
drhe63d9992008-08-13 19:11:48 +00004644 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
drhc045ec52002-12-04 20:01:06 +00004645 if( pOp->opcode==OP_IdxLT ){
4646 res = -res;
drha05a7222008-01-19 03:35:58 +00004647 }else{
4648 assert( pOp->opcode==OP_IdxGE );
drh8721ce42001-11-07 14:22:00 +00004649 res++;
4650 }
4651 if( res>0 ){
4652 pc = pOp->p2 - 1 ;
4653 }
4654 }
4655 break;
4656}
4657
drh98757152008-01-09 23:04:12 +00004658/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004659**
4660** Delete an entire database table or index whose root page in the database
4661** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00004662**
drh98757152008-01-09 23:04:12 +00004663** The table being destroyed is in the main database file if P3==0. If
4664** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00004665** that is used to store tables create using CREATE TEMPORARY TABLE.
4666**
drh205f48e2004-11-05 00:43:11 +00004667** If AUTOVACUUM is enabled then it is possible that another root page
4668** might be moved into the newly deleted root page in order to keep all
4669** root pages contiguous at the beginning of the database. The former
4670** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00004671** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00004672** movement was required (because the table being dropped was already
4673** the last one in the database) then a zero is stored in register P2.
4674** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00004675**
drhb19a2bc2001-09-16 00:13:26 +00004676** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00004677*/
drh98757152008-01-09 23:04:12 +00004678case OP_Destroy: { /* out2-prerelease */
danielk1977a0bf2652004-11-04 14:30:04 +00004679 int iMoved;
drh3765df42006-06-28 18:18:09 +00004680 int iCnt;
drh5a91a532007-01-05 16:39:43 +00004681 Vdbe *pVdbe;
drh856c1032009-06-02 15:21:42 +00004682 int iDb;
4683#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk1977212b2182006-06-23 14:32:08 +00004684 iCnt = 0;
drh856c1032009-06-02 15:21:42 +00004685 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
danielk1977212b2182006-06-23 14:32:08 +00004686 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4687 iCnt++;
4688 }
4689 }
drh3765df42006-06-28 18:18:09 +00004690#else
4691 iCnt = db->activeVdbeCnt;
danielk1977212b2182006-06-23 14:32:08 +00004692#endif
drh3c657212009-11-17 23:59:58 +00004693 pOut->flags = MEM_Null;
danielk1977212b2182006-06-23 14:32:08 +00004694 if( iCnt>1 ){
danielk1977e6efa742004-11-10 11:55:10 +00004695 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00004696 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00004697 }else{
drh856c1032009-06-02 15:21:42 +00004698 iDb = pOp->p3;
danielk1977212b2182006-06-23 14:32:08 +00004699 assert( iCnt==1 );
drhdddd7792011-04-03 18:19:25 +00004700 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
drh98757152008-01-09 23:04:12 +00004701 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00004702 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00004703 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00004704#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00004705 if( rc==SQLITE_OK && iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00004706 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4707 /* All OP_Destroy operations occur on the same btree */
4708 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4709 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00004710 }
drh3765df42006-06-28 18:18:09 +00004711#endif
danielk1977a0bf2652004-11-04 14:30:04 +00004712 }
drh5e00f6c2001-09-13 13:46:56 +00004713 break;
4714}
4715
danielk1977c7af4842008-10-27 13:59:33 +00004716/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00004717**
4718** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00004719** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00004720** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00004721**
drhf57b3392001-10-08 13:22:32 +00004722** The table being clear is in the main database file if P2==0. If
4723** P2==1 then the table to be clear is in the auxiliary database file
4724** that is used to store tables create using CREATE TEMPORARY TABLE.
4725**
shanebe217792009-03-05 04:20:31 +00004726** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00004727** intkey table (an SQL table, not an index). In this case the row change
4728** count is incremented by the number of rows in the table being cleared.
4729** If P3 is greater than zero, then the value stored in register P3 is
4730** also incremented by the number of rows in the table being cleared.
4731**
drhb19a2bc2001-09-16 00:13:26 +00004732** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00004733*/
drh9cbf3422008-01-17 16:22:13 +00004734case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00004735 int nChange;
4736
4737 nChange = 0;
drhdddd7792011-04-03 18:19:25 +00004738 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
danielk1977c7af4842008-10-27 13:59:33 +00004739 rc = sqlite3BtreeClearTable(
4740 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4741 );
4742 if( pOp->p3 ){
4743 p->nChange += nChange;
4744 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00004745 assert( memIsValid(&aMem[pOp->p3]) );
4746 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00004747 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00004748 }
4749 }
drh5edc3122001-09-13 21:53:09 +00004750 break;
4751}
4752
drh4c583122008-01-04 22:01:03 +00004753/* Opcode: CreateTable P1 P2 * * *
drh5b2fd562001-09-13 15:21:31 +00004754**
drh4c583122008-01-04 22:01:03 +00004755** Allocate a new table in the main database file if P1==0 or in the
4756** auxiliary database file if P1==1 or in an attached database if
4757** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004758** register P2
drh5b2fd562001-09-13 15:21:31 +00004759**
drhc6b52df2002-01-04 03:09:29 +00004760** The difference between a table and an index is this: A table must
4761** have a 4-byte integer key and can have arbitrary data. An index
4762** has an arbitrary key but no data.
4763**
drhb19a2bc2001-09-16 00:13:26 +00004764** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00004765*/
drh4c583122008-01-04 22:01:03 +00004766/* Opcode: CreateIndex P1 P2 * * *
drhf57b3392001-10-08 13:22:32 +00004767**
drh4c583122008-01-04 22:01:03 +00004768** Allocate a new index in the main database file if P1==0 or in the
4769** auxiliary database file if P1==1 or in an attached database if
4770** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004771** register P2.
drhf57b3392001-10-08 13:22:32 +00004772**
drhc6b52df2002-01-04 03:09:29 +00004773** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00004774*/
drh4c583122008-01-04 22:01:03 +00004775case OP_CreateIndex: /* out2-prerelease */
4776case OP_CreateTable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00004777 int pgno;
drhf328bc82004-05-10 23:29:49 +00004778 int flags;
drh234c39d2004-07-24 03:30:47 +00004779 Db *pDb;
drh856c1032009-06-02 15:21:42 +00004780
4781 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00004782 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00004783 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh234c39d2004-07-24 03:30:47 +00004784 pDb = &db->aDb[pOp->p1];
4785 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00004786 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00004787 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00004788 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00004789 }else{
drhd4187c72010-08-30 22:15:45 +00004790 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00004791 }
drh234c39d2004-07-24 03:30:47 +00004792 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00004793 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00004794 break;
4795}
4796
drh22645842011-03-24 01:34:03 +00004797/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00004798**
4799** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00004800** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00004801**
4802** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00004803** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00004804*/
drh9cbf3422008-01-17 16:22:13 +00004805case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00004806 int iDb;
4807 const char *zMaster;
4808 char *zSql;
4809 InitData initData;
4810
drhbdaec522011-04-04 00:14:43 +00004811 /* Any prepared statement that invokes this opcode will hold mutexes
4812 ** on every btree. This is a prerequisite for invoking
4813 ** sqlite3InitCallback().
4814 */
4815#ifdef SQLITE_DEBUG
4816 for(iDb=0; iDb<db->nDb; iDb++){
4817 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4818 }
4819#endif
drhbdaec522011-04-04 00:14:43 +00004820
drh856c1032009-06-02 15:21:42 +00004821 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00004822 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00004823 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00004824 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00004825 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00004826 initData.db = db;
4827 initData.iDb = pOp->p1;
4828 initData.pzErrMsg = &p->zErrMsg;
4829 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00004830 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00004831 db->aDb[iDb].zName, zMaster, pOp->p4.z);
4832 if( zSql==0 ){
4833 rc = SQLITE_NOMEM;
4834 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00004835 assert( db->init.busy==0 );
4836 db->init.busy = 1;
4837 initData.rc = SQLITE_OK;
4838 assert( !db->mallocFailed );
4839 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4840 if( rc==SQLITE_OK ) rc = initData.rc;
4841 sqlite3DbFree(db, zSql);
4842 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00004843 }
drh3c23a882007-01-09 14:01:13 +00004844 }
drh4d0d9162012-01-25 20:43:22 +00004845 if( rc ) sqlite3ResetInternalSchema(db, -1);
danielk1977261919c2005-12-06 12:52:59 +00004846 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00004847 goto no_mem;
4848 }
drh234c39d2004-07-24 03:30:47 +00004849 break;
4850}
4851
drh8bfdf722009-06-19 14:06:03 +00004852#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00004853/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00004854**
4855** Read the sqlite_stat1 table for database P1 and load the content
4856** of that table into the internal index hash table. This will cause
4857** the analysis to be used when preparing all subsequent queries.
4858*/
drh9cbf3422008-01-17 16:22:13 +00004859case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00004860 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4861 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00004862 break;
4863}
drh8bfdf722009-06-19 14:06:03 +00004864#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00004865
drh98757152008-01-09 23:04:12 +00004866/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004867**
4868** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004869** the table named P4 in database P1. This is called after a table
drh956bc922004-07-24 17:38:29 +00004870** is dropped in order to keep the internal representation of the
4871** schema consistent with what is on disk.
4872*/
drh9cbf3422008-01-17 16:22:13 +00004873case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00004874 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004875 break;
4876}
4877
drh98757152008-01-09 23:04:12 +00004878/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004879**
4880** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004881** the index named P4 in database P1. This is called after an index
drh956bc922004-07-24 17:38:29 +00004882** is dropped in order to keep the internal representation of the
4883** schema consistent with what is on disk.
4884*/
drh9cbf3422008-01-17 16:22:13 +00004885case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00004886 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004887 break;
4888}
4889
drh98757152008-01-09 23:04:12 +00004890/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004891**
4892** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004893** the trigger named P4 in database P1. This is called after a trigger
drh956bc922004-07-24 17:38:29 +00004894** is dropped in order to keep the internal representation of the
4895** schema consistent with what is on disk.
4896*/
drh9cbf3422008-01-17 16:22:13 +00004897case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00004898 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004899 break;
4900}
4901
drh234c39d2004-07-24 03:30:47 +00004902
drhb7f91642004-10-31 02:22:47 +00004903#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00004904/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004905**
drh98757152008-01-09 23:04:12 +00004906** Do an analysis of the currently open database. Store in
4907** register P1 the text of an error message describing any problems.
4908** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00004909**
drh98757152008-01-09 23:04:12 +00004910** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00004911** At most reg(P3) errors will be reported.
4912** In other words, the analysis stops as soon as reg(P1) errors are
4913** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00004914**
drh79069752004-05-22 21:30:40 +00004915** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00004916** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00004917** total.
drh21504322002-06-25 13:16:02 +00004918**
drh98757152008-01-09 23:04:12 +00004919** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00004920** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00004921**
drh1dcdbc02007-01-27 02:24:54 +00004922** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00004923*/
drhaaab5722002-02-19 13:39:21 +00004924case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00004925 int nRoot; /* Number of tables to check. (Number of root pages.) */
4926 int *aRoot; /* Array of rootpage numbers for tables to be checked */
4927 int j; /* Loop counter */
4928 int nErr; /* Number of errors reported */
4929 char *z; /* Text of the error report */
4930 Mem *pnErr; /* Register keeping track of errors remaining */
4931
4932 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00004933 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00004934 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00004935 if( aRoot==0 ) goto no_mem;
drh98757152008-01-09 23:04:12 +00004936 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00004937 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00004938 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00004939 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00004940 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00004941 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00004942 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00004943 }
4944 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00004945 assert( pOp->p5<db->nDb );
drhdddd7792011-04-03 18:19:25 +00004946 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
drh98757152008-01-09 23:04:12 +00004947 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00004948 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00004949 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00004950 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00004951 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00004952 if( nErr==0 ){
4953 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00004954 }else if( z==0 ){
4955 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00004956 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00004957 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00004958 }
drhb7654112008-01-12 12:48:07 +00004959 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00004960 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00004961 break;
4962}
drhb7f91642004-10-31 02:22:47 +00004963#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00004964
drh3d4501e2008-12-04 20:40:10 +00004965/* Opcode: RowSetAdd P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004966**
drh3d4501e2008-12-04 20:40:10 +00004967** Insert the integer value held by register P2 into a boolean index
4968** held in register P1.
4969**
4970** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00004971*/
drh93952eb2009-11-13 19:43:43 +00004972case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00004973 pIn1 = &aMem[pOp->p1];
4974 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00004975 assert( (pIn2->flags & MEM_Int)!=0 );
4976 if( (pIn1->flags & MEM_RowSet)==0 ){
4977 sqlite3VdbeMemSetRowSet(pIn1);
4978 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00004979 }
drh93952eb2009-11-13 19:43:43 +00004980 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00004981 break;
4982}
4983
4984/* Opcode: RowSetRead P1 P2 P3 * *
4985**
4986** Extract the smallest value from boolean index P1 and put that value into
4987** register P3. Or, if boolean index P1 is initially empty, leave P3
4988** unchanged and jump to instruction P2.
4989*/
drh93952eb2009-11-13 19:43:43 +00004990case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00004991 i64 val;
drh3d4501e2008-12-04 20:40:10 +00004992 CHECK_FOR_INTERRUPT;
drh3c657212009-11-17 23:59:58 +00004993 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00004994 if( (pIn1->flags & MEM_RowSet)==0
4995 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00004996 ){
4997 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00004998 sqlite3VdbeMemSetNull(pIn1);
drh3d4501e2008-12-04 20:40:10 +00004999 pc = pOp->p2 - 1;
5000 }else{
5001 /* A value was pulled from the index */
drh3c657212009-11-17 23:59:58 +00005002 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005003 }
drh5e00f6c2001-09-13 13:46:56 +00005004 break;
5005}
5006
drh1b26c7c2009-04-22 02:15:47 +00005007/* Opcode: RowSetTest P1 P2 P3 P4
danielk19771d461462009-04-21 09:02:45 +00005008**
drhade97602009-04-21 15:05:18 +00005009** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005010** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005011** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005012** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005013** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005014**
drh1b26c7c2009-04-22 02:15:47 +00005015** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005016** of integers, where each set contains no duplicates. Each set
5017** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005018** must have P4==0, the final set P4=-1. P4 must be either -1 or
5019** non-negative. For non-negative values of P4 only the lower 4
5020** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005021**
5022** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005023** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005024** (b) when P4==-1 there is no need to insert the value, as it will
5025** never be tested for, and (c) when a value that is part of set X is
5026** inserted, there is no need to search to see if the same value was
5027** previously inserted as part of set X (only if it was previously
5028** inserted as part of some other set).
5029*/
drh1b26c7c2009-04-22 02:15:47 +00005030case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005031 int iSet;
5032 int exists;
5033
drh3c657212009-11-17 23:59:58 +00005034 pIn1 = &aMem[pOp->p1];
5035 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005036 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005037 assert( pIn3->flags&MEM_Int );
5038
drh1b26c7c2009-04-22 02:15:47 +00005039 /* If there is anything other than a rowset object in memory cell P1,
5040 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005041 */
drh733bf1b2009-04-22 00:47:00 +00005042 if( (pIn1->flags & MEM_RowSet)==0 ){
5043 sqlite3VdbeMemSetRowSet(pIn1);
5044 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005045 }
5046
5047 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005048 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005049 if( iSet ){
shane60a4b532009-05-06 18:57:09 +00005050 exists = sqlite3RowSetTest(pIn1->u.pRowSet,
5051 (u8)(iSet>=0 ? iSet & 0xf : 0xff),
drh733bf1b2009-04-22 00:47:00 +00005052 pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005053 if( exists ){
5054 pc = pOp->p2 - 1;
5055 break;
5056 }
5057 }
5058 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005059 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005060 }
5061 break;
5062}
5063
drh5e00f6c2001-09-13 13:46:56 +00005064
danielk197793758c82005-01-21 08:13:14 +00005065#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005066
5067/* Opcode: Program P1 P2 P3 P4 *
5068**
dan76d462e2009-08-30 11:42:51 +00005069** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005070**
dan76d462e2009-08-30 11:42:51 +00005071** P1 contains the address of the memory cell that contains the first memory
5072** cell in an array of values used as arguments to the sub-program. P2
5073** contains the address to jump to if the sub-program throws an IGNORE
5074** exception using the RAISE() function. Register P3 contains the address
5075** of a memory cell in this (the parent) VM that is used to allocate the
5076** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005077**
5078** P4 is a pointer to the VM containing the trigger program.
5079*/
dan76d462e2009-08-30 11:42:51 +00005080case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005081 int nMem; /* Number of memory registers for sub-program */
5082 int nByte; /* Bytes of runtime space required for sub-program */
5083 Mem *pRt; /* Register to allocate runtime space */
5084 Mem *pMem; /* Used to iterate through memory cells */
5085 Mem *pEnd; /* Last memory cell in new array */
5086 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5087 SubProgram *pProgram; /* Sub-program to execute */
5088 void *t; /* Token identifying trigger */
5089
5090 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005091 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005092 assert( pProgram->nOp>0 );
5093
dan1da40a32009-09-19 17:00:31 +00005094 /* If the p5 flag is clear, then recursive invocation of triggers is
5095 ** disabled for backwards compatibility (p5 is set if this sub-program
5096 ** is really a trigger, not a foreign key action, and the flag set
5097 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005098 **
5099 ** It is recursive invocation of triggers, at the SQL level, that is
5100 ** disabled. In some cases a single trigger may generate more than one
5101 ** SubProgram (if the trigger may be executed with more than one different
5102 ** ON CONFLICT algorithm). SubProgram structures associated with a
5103 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005104 ** variable. */
5105 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005106 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005107 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5108 if( pFrame ) break;
5109 }
5110
danf5894502009-10-07 18:41:19 +00005111 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005112 rc = SQLITE_ERROR;
5113 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
5114 break;
5115 }
5116
5117 /* Register pRt is used to store the memory required to save the state
5118 ** of the current program, and the memory required at runtime to execute
5119 ** the trigger program. If this trigger has been fired before, then pRt
5120 ** is already allocated. Otherwise, it must be initialized. */
5121 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005122 /* SubProgram.nMem is set to the number of memory cells used by the
5123 ** program stored in SubProgram.aOp. As well as these, one memory
5124 ** cell is required for each cursor used by the program. Set local
5125 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5126 */
dan65a7cd12009-09-01 12:16:01 +00005127 nMem = pProgram->nMem + pProgram->nCsr;
5128 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005129 + nMem * sizeof(Mem)
dan1d8cb212011-12-09 13:24:16 +00005130 + pProgram->nCsr * sizeof(VdbeCursor *)
5131 + pProgram->nOnce * sizeof(u8);
dan165921a2009-08-28 18:53:45 +00005132 pFrame = sqlite3DbMallocZero(db, nByte);
5133 if( !pFrame ){
5134 goto no_mem;
5135 }
5136 sqlite3VdbeMemRelease(pRt);
5137 pRt->flags = MEM_Frame;
5138 pRt->u.pFrame = pFrame;
5139
5140 pFrame->v = p;
5141 pFrame->nChildMem = nMem;
5142 pFrame->nChildCsr = pProgram->nCsr;
5143 pFrame->pc = pc;
5144 pFrame->aMem = p->aMem;
5145 pFrame->nMem = p->nMem;
5146 pFrame->apCsr = p->apCsr;
5147 pFrame->nCursor = p->nCursor;
5148 pFrame->aOp = p->aOp;
5149 pFrame->nOp = p->nOp;
5150 pFrame->token = pProgram->token;
dan1d8cb212011-12-09 13:24:16 +00005151 pFrame->aOnceFlag = p->aOnceFlag;
5152 pFrame->nOnceFlag = p->nOnceFlag;
dan165921a2009-08-28 18:53:45 +00005153
5154 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5155 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drhec86c722011-12-09 17:27:51 +00005156 pMem->flags = MEM_Invalid;
dan165921a2009-08-28 18:53:45 +00005157 pMem->db = db;
5158 }
5159 }else{
5160 pFrame = pRt->u.pFrame;
5161 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5162 assert( pProgram->nCsr==pFrame->nChildCsr );
5163 assert( pc==pFrame->pc );
5164 }
5165
5166 p->nFrame++;
5167 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005168 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005169 pFrame->nChange = p->nChange;
dan2832ad42009-08-31 15:27:27 +00005170 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005171 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00005172 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00005173 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005174 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00005175 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00005176 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005177 p->nOp = pProgram->nOp;
dan1d8cb212011-12-09 13:24:16 +00005178 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5179 p->nOnceFlag = pProgram->nOnce;
dan165921a2009-08-28 18:53:45 +00005180 pc = -1;
dan1d8cb212011-12-09 13:24:16 +00005181 memset(p->aOnceFlag, 0, p->nOnceFlag);
dan165921a2009-08-28 18:53:45 +00005182
5183 break;
5184}
5185
dan76d462e2009-08-30 11:42:51 +00005186/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005187**
dan76d462e2009-08-30 11:42:51 +00005188** This opcode is only ever present in sub-programs called via the
5189** OP_Program instruction. Copy a value currently stored in a memory
5190** cell of the calling (parent) frame to cell P2 in the current frames
5191** address space. This is used by trigger programs to access the new.*
5192** and old.* values.
dan165921a2009-08-28 18:53:45 +00005193**
dan76d462e2009-08-30 11:42:51 +00005194** The address of the cell in the parent frame is determined by adding
5195** the value of the P1 argument to the value of the P1 argument to the
5196** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005197*/
dan76d462e2009-08-30 11:42:51 +00005198case OP_Param: { /* out2-prerelease */
dan65a7cd12009-09-01 12:16:01 +00005199 VdbeFrame *pFrame;
5200 Mem *pIn;
5201 pFrame = p->pFrame;
5202 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005203 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5204 break;
5205}
5206
danielk197793758c82005-01-21 08:13:14 +00005207#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005208
dan1da40a32009-09-19 17:00:31 +00005209#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005210/* Opcode: FkCounter P1 P2 * * *
dan1da40a32009-09-19 17:00:31 +00005211**
dan0ff297e2009-09-25 17:03:14 +00005212** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5213** If P1 is non-zero, the database constraint counter is incremented
5214** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005215** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005216*/
dan32b09f22009-09-23 17:29:59 +00005217case OP_FkCounter: {
dan0ff297e2009-09-25 17:03:14 +00005218 if( pOp->p1 ){
5219 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005220 }else{
dan0ff297e2009-09-25 17:03:14 +00005221 p->nFkConstraint += pOp->p2;
5222 }
5223 break;
5224}
5225
5226/* Opcode: FkIfZero P1 P2 * * *
5227**
5228** This opcode tests if a foreign key constraint-counter is currently zero.
5229** If so, jump to instruction P2. Otherwise, fall through to the next
5230** instruction.
5231**
5232** If P1 is non-zero, then the jump is taken if the database constraint-counter
5233** is zero (the one that counts deferred constraint violations). If P1 is
5234** zero, the jump is taken if the statement constraint-counter is zero
5235** (immediate foreign key constraint violations).
5236*/
5237case OP_FkIfZero: { /* jump */
5238 if( pOp->p1 ){
5239 if( db->nDeferredCons==0 ) pc = pOp->p2-1;
5240 }else{
5241 if( p->nFkConstraint==0 ) pc = pOp->p2-1;
dan32b09f22009-09-23 17:29:59 +00005242 }
dan1da40a32009-09-19 17:00:31 +00005243 break;
5244}
5245#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5246
drh205f48e2004-11-05 00:43:11 +00005247#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005248/* Opcode: MemMax P1 P2 * * *
drh205f48e2004-11-05 00:43:11 +00005249**
dan76d462e2009-08-30 11:42:51 +00005250** P1 is a register in the root frame of this VM (the root frame is
5251** different from the current frame if this instruction is being executed
5252** within a sub-program). Set the value of register P1 to the maximum of
5253** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005254**
5255** This instruction throws an error if the memory cell is not initially
5256** an integer.
5257*/
dan76d462e2009-08-30 11:42:51 +00005258case OP_MemMax: { /* in2 */
5259 Mem *pIn1;
5260 VdbeFrame *pFrame;
5261 if( p->pFrame ){
5262 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5263 pIn1 = &pFrame->aMem[pOp->p1];
5264 }else{
drha6c2ed92009-11-14 23:22:23 +00005265 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005266 }
drhec86c722011-12-09 17:27:51 +00005267 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005268 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005269 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005270 sqlite3VdbeMemIntegerify(pIn2);
5271 if( pIn1->u.i<pIn2->u.i){
5272 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005273 }
5274 break;
5275}
5276#endif /* SQLITE_OMIT_AUTOINCREMENT */
5277
drh98757152008-01-09 23:04:12 +00005278/* Opcode: IfPos P1 P2 * * *
danielk1977a2dc3b12005-02-05 12:48:48 +00005279**
drh98757152008-01-09 23:04:12 +00005280** If the value of register P1 is 1 or greater, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005281**
drh98757152008-01-09 23:04:12 +00005282** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005283** not contain an integer. An assertion fault will result if you try.
danielk1977a2dc3b12005-02-05 12:48:48 +00005284*/
drh9cbf3422008-01-17 16:22:13 +00005285case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005286 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005287 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005288 if( pIn1->u.i>0 ){
drhec7429a2005-10-06 16:53:14 +00005289 pc = pOp->p2 - 1;
5290 }
5291 break;
5292}
5293
drh98757152008-01-09 23:04:12 +00005294/* Opcode: IfNeg P1 P2 * * *
drh15007a92006-01-08 18:10:17 +00005295**
drh98757152008-01-09 23:04:12 +00005296** If the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005297**
drh98757152008-01-09 23:04:12 +00005298** It is illegal to use this instruction on a register that does
drh15007a92006-01-08 18:10:17 +00005299** not contain an integer. An assertion fault will result if you try.
5300*/
drh9cbf3422008-01-17 16:22:13 +00005301case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005302 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005303 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005304 if( pIn1->u.i<0 ){
drh15007a92006-01-08 18:10:17 +00005305 pc = pOp->p2 - 1;
5306 }
5307 break;
5308}
5309
drh9b918ed2009-11-12 03:13:26 +00005310/* Opcode: IfZero P1 P2 P3 * *
drhec7429a2005-10-06 16:53:14 +00005311**
drh9b918ed2009-11-12 03:13:26 +00005312** The register P1 must contain an integer. Add literal P3 to the
5313** value in register P1. If the result is exactly 0, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005314**
drh98757152008-01-09 23:04:12 +00005315** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005316** not contain an integer. An assertion fault will result if you try.
drhec7429a2005-10-06 16:53:14 +00005317*/
drh9cbf3422008-01-17 16:22:13 +00005318case OP_IfZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005319 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005320 assert( pIn1->flags&MEM_Int );
drh9b918ed2009-11-12 03:13:26 +00005321 pIn1->u.i += pOp->p3;
drh3c84ddf2008-01-09 02:15:38 +00005322 if( pIn1->u.i==0 ){
drha2a49dc2008-01-02 14:28:13 +00005323 pc = pOp->p2 - 1;
5324 }
5325 break;
5326}
5327
drh98757152008-01-09 23:04:12 +00005328/* Opcode: AggStep * P2 P3 P4 P5
drhe5095352002-02-24 03:25:14 +00005329**
drh0bce8352002-02-28 00:41:10 +00005330** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005331** function has P5 arguments. P4 is a pointer to the FuncDef
5332** structure that specifies the function. Use register
5333** P3 as the accumulator.
drhe5095352002-02-24 03:25:14 +00005334**
drh98757152008-01-09 23:04:12 +00005335** The P5 arguments are taken from register P2 and its
5336** successors.
drhe5095352002-02-24 03:25:14 +00005337*/
drh9cbf3422008-01-17 16:22:13 +00005338case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00005339 int n;
drhe5095352002-02-24 03:25:14 +00005340 int i;
drhc54a6172009-06-02 16:06:03 +00005341 Mem *pMem;
5342 Mem *pRec;
danielk197722322fd2004-05-25 23:35:17 +00005343 sqlite3_context ctx;
danielk19776ddcca52004-05-24 23:48:25 +00005344 sqlite3_value **apVal;
drhe5095352002-02-24 03:25:14 +00005345
drh856c1032009-06-02 15:21:42 +00005346 n = pOp->p5;
drh6810ce62004-01-31 19:22:56 +00005347 assert( n>=0 );
drha6c2ed92009-11-14 23:22:23 +00005348 pRec = &aMem[pOp->p2];
danielk19776ddcca52004-05-24 23:48:25 +00005349 apVal = p->apArg;
5350 assert( apVal || n==0 );
drh6810ce62004-01-31 19:22:56 +00005351 for(i=0; i<n; i++, pRec++){
drh2b4ded92010-09-27 21:09:31 +00005352 assert( memIsValid(pRec) );
danielk1977c572ef72004-05-27 09:28:41 +00005353 apVal[i] = pRec;
drh2b4ded92010-09-27 21:09:31 +00005354 memAboutToChange(p, pRec);
dan937d0de2009-10-15 18:35:38 +00005355 sqlite3VdbeMemStoreType(pRec);
drhe5095352002-02-24 03:25:14 +00005356 }
danielk19772dca4ac2008-01-03 11:50:29 +00005357 ctx.pFunc = pOp->p4.pFunc;
drh98757152008-01-09 23:04:12 +00005358 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005359 ctx.pMem = pMem = &aMem[pOp->p3];
drhabfcea22005-09-06 20:36:48 +00005360 pMem->n++;
drh90669c12006-01-20 15:45:36 +00005361 ctx.s.flags = MEM_Null;
5362 ctx.s.z = 0;
danielk19775f096132008-03-28 15:44:09 +00005363 ctx.s.zMalloc = 0;
drh90669c12006-01-20 15:45:36 +00005364 ctx.s.xDel = 0;
drhb21c8cd2007-08-21 19:33:56 +00005365 ctx.s.db = db;
drh1350b032002-02-27 19:00:20 +00005366 ctx.isError = 0;
danielk1977dc1bdc42004-06-11 10:51:27 +00005367 ctx.pColl = 0;
drh7a957892012-02-02 17:35:43 +00005368 ctx.skipFlag = 0;
drhe82f5d02008-10-07 19:53:14 +00005369 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
danielk1977dc1bdc42004-06-11 10:51:27 +00005370 assert( pOp>p->aOp );
drh66a51672008-01-03 00:01:23 +00005371 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00005372 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00005373 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00005374 }
drhee9ff672010-09-03 18:50:48 +00005375 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh1350b032002-02-27 19:00:20 +00005376 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00005377 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00005378 rc = ctx.isError;
drh1350b032002-02-27 19:00:20 +00005379 }
drh7a957892012-02-02 17:35:43 +00005380 if( ctx.skipFlag ){
5381 assert( pOp[-1].opcode==OP_CollSeq );
5382 i = pOp[-1].p1;
5383 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5384 }
drhbdaec522011-04-04 00:14:43 +00005385
drh90669c12006-01-20 15:45:36 +00005386 sqlite3VdbeMemRelease(&ctx.s);
drhbdaec522011-04-04 00:14:43 +00005387
drh5e00f6c2001-09-13 13:46:56 +00005388 break;
5389}
5390
drh98757152008-01-09 23:04:12 +00005391/* Opcode: AggFinal P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00005392**
drh13449892005-09-07 21:22:45 +00005393** Execute the finalizer function for an aggregate. P1 is
5394** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005395**
5396** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005397** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005398** argument is not used by this opcode. It is only there to disambiguate
5399** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005400** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005401** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005402*/
drh9cbf3422008-01-17 16:22:13 +00005403case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005404 Mem *pMem;
drh0a07c102008-01-03 18:03:08 +00005405 assert( pOp->p1>0 && pOp->p1<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005406 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005407 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005408 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005409 if( rc ){
drhf089aa42008-07-08 19:34:06 +00005410 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005411 }
drh2dca8682008-03-21 17:13:13 +00005412 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005413 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005414 if( sqlite3VdbeMemTooBig(pMem) ){
5415 goto too_big;
5416 }
drh5e00f6c2001-09-13 13:46:56 +00005417 break;
5418}
5419
dan5cf53532010-05-01 16:40:20 +00005420#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00005421/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005422**
5423** Checkpoint database P1. This is a no-op if P1 is not currently in
dancdc1f042010-11-18 12:11:05 +00005424** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
drh30aa3b92011-02-07 23:56:01 +00005425** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5426** SQLITE_BUSY or not, respectively. Write the number of pages in the
5427** WAL after the checkpoint into mem[P3+1] and the number of pages
5428** in the WAL that have been checkpointed after the checkpoint
5429** completes into mem[P3+2]. However on an error, mem[P3+1] and
5430** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00005431*/
5432case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00005433 int i; /* Loop counter */
5434 int aRes[3]; /* Results */
5435 Mem *pMem; /* Write results here */
5436
5437 aRes[0] = 0;
5438 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00005439 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5440 || pOp->p2==SQLITE_CHECKPOINT_FULL
5441 || pOp->p2==SQLITE_CHECKPOINT_RESTART
5442 );
drh30aa3b92011-02-07 23:56:01 +00005443 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
dancdc1f042010-11-18 12:11:05 +00005444 if( rc==SQLITE_BUSY ){
5445 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00005446 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00005447 }
drh30aa3b92011-02-07 23:56:01 +00005448 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5449 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5450 }
dan7c246102010-04-12 19:00:29 +00005451 break;
5452};
dan5cf53532010-05-01 16:40:20 +00005453#endif
drh5e00f6c2001-09-13 13:46:56 +00005454
drhcac29a62010-07-02 19:36:52 +00005455#ifndef SQLITE_OMIT_PRAGMA
drhab9b7442010-05-10 11:20:05 +00005456/* Opcode: JournalMode P1 P2 P3 * P5
dane04dc882010-04-20 18:53:15 +00005457**
5458** Change the journal mode of database P1 to P3. P3 must be one of the
5459** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5460** modes (delete, truncate, persist, off and memory), this is a simple
5461** operation. No IO is required.
5462**
5463** If changing into or out of WAL mode the procedure is more complicated.
5464**
5465** Write a string containing the final journal-mode to register P2.
5466*/
drhd80b2332010-05-01 00:59:37 +00005467case OP_JournalMode: { /* out2-prerelease */
dane04dc882010-04-20 18:53:15 +00005468 Btree *pBt; /* Btree to change journal mode of */
5469 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00005470 int eNew; /* New journal mode */
5471 int eOld; /* The old journal mode */
drhd80b2332010-05-01 00:59:37 +00005472 const char *zFilename; /* Name of database file for pPager */
dane04dc882010-04-20 18:53:15 +00005473
drhd80b2332010-05-01 00:59:37 +00005474 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00005475 assert( eNew==PAGER_JOURNALMODE_DELETE
5476 || eNew==PAGER_JOURNALMODE_TRUNCATE
5477 || eNew==PAGER_JOURNALMODE_PERSIST
5478 || eNew==PAGER_JOURNALMODE_OFF
5479 || eNew==PAGER_JOURNALMODE_MEMORY
5480 || eNew==PAGER_JOURNALMODE_WAL
5481 || eNew==PAGER_JOURNALMODE_QUERY
5482 );
5483 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh3ebaee92010-05-06 21:37:22 +00005484
dane04dc882010-04-20 18:53:15 +00005485 pBt = db->aDb[pOp->p1].pBt;
5486 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00005487 eOld = sqlite3PagerGetJournalMode(pPager);
5488 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5489 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00005490
5491#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00005492 zFilename = sqlite3PagerFilename(pPager);
dane04dc882010-04-20 18:53:15 +00005493
drhd80b2332010-05-01 00:59:37 +00005494 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00005495 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00005496 */
5497 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00005498 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00005499 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00005500 ){
drh0b9b4302010-06-11 17:01:24 +00005501 eNew = eOld;
dane180c292010-04-26 17:42:56 +00005502 }
5503
drh0b9b4302010-06-11 17:01:24 +00005504 if( (eNew!=eOld)
5505 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5506 ){
5507 if( !db->autoCommit || db->activeVdbeCnt>1 ){
5508 rc = SQLITE_ERROR;
5509 sqlite3SetString(&p->zErrMsg, db,
5510 "cannot change %s wal mode from within a transaction",
5511 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5512 );
5513 break;
5514 }else{
5515
5516 if( eOld==PAGER_JOURNALMODE_WAL ){
5517 /* If leaving WAL mode, close the log file. If successful, the call
5518 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5519 ** file. An EXCLUSIVE lock may still be held on the database file
5520 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00005521 */
drh0b9b4302010-06-11 17:01:24 +00005522 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00005523 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00005524 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00005525 }
drh242c4f72010-06-22 14:49:39 +00005526 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5527 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5528 ** as an intermediate */
5529 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00005530 }
5531
5532 /* Open a transaction on the database file. Regardless of the journal
5533 ** mode, this transaction always uses a rollback journal.
5534 */
5535 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5536 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00005537 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00005538 }
5539 }
5540 }
dan5cf53532010-05-01 16:40:20 +00005541#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00005542
dand956efe2010-06-18 16:13:45 +00005543 if( rc ){
dand956efe2010-06-18 16:13:45 +00005544 eNew = eOld;
5545 }
drh0b9b4302010-06-11 17:01:24 +00005546 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00005547
dane04dc882010-04-20 18:53:15 +00005548 pOut = &aMem[pOp->p2];
5549 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00005550 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00005551 pOut->n = sqlite3Strlen30(pOut->z);
5552 pOut->enc = SQLITE_UTF8;
5553 sqlite3VdbeChangeEncoding(pOut, encoding);
5554 break;
drhcac29a62010-07-02 19:36:52 +00005555};
5556#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00005557
drhfdbcdee2007-03-27 14:44:50 +00005558#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00005559/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00005560**
5561** Vacuum the entire database. This opcode will cause other virtual
5562** machines to be created and run. It may not be called from within
5563** a transaction.
5564*/
drh9cbf3422008-01-17 16:22:13 +00005565case OP_Vacuum: {
danielk19774adee202004-05-08 08:23:19 +00005566 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh6f8c91c2003-12-07 00:24:35 +00005567 break;
5568}
drh154d4b22006-09-21 11:02:16 +00005569#endif
drh6f8c91c2003-12-07 00:24:35 +00005570
danielk1977dddbcdc2007-04-26 14:42:34 +00005571#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00005572/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00005573**
5574** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00005575** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00005576** P2. Otherwise, fall through to the next instruction.
5577*/
drh9cbf3422008-01-17 16:22:13 +00005578case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00005579 Btree *pBt;
5580
5581 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005582 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drhca5557f2007-05-04 18:30:40 +00005583 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00005584 rc = sqlite3BtreeIncrVacuum(pBt);
5585 if( rc==SQLITE_DONE ){
5586 pc = pOp->p2 - 1;
5587 rc = SQLITE_OK;
5588 }
5589 break;
5590}
5591#endif
5592
drh98757152008-01-09 23:04:12 +00005593/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00005594**
5595** Cause precompiled statements to become expired. An expired statement
5596** fails with an error code of SQLITE_SCHEMA if it is ever executed
5597** (via sqlite3_step()).
5598**
5599** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5600** then only the currently executing statement is affected.
5601*/
drh9cbf3422008-01-17 16:22:13 +00005602case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00005603 if( !pOp->p1 ){
5604 sqlite3ExpirePreparedStatements(db);
5605 }else{
5606 p->expired = 1;
5607 }
5608 break;
5609}
5610
danielk1977c00da102006-01-07 13:21:04 +00005611#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00005612/* Opcode: TableLock P1 P2 P3 P4 *
danielk1977c00da102006-01-07 13:21:04 +00005613**
5614** Obtain a lock on a particular table. This instruction is only used when
5615** the shared-cache feature is enabled.
5616**
danielk197796d48e92009-06-29 06:00:37 +00005617** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00005618** on which the lock is acquired. A readlock is obtained if P3==0 or
5619** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00005620**
5621** P2 contains the root-page of the table to lock.
5622**
drh66a51672008-01-03 00:01:23 +00005623** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00005624** used to generate an error message if the lock cannot be obtained.
5625*/
drh9cbf3422008-01-17 16:22:13 +00005626case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00005627 u8 isWriteLock = (u8)pOp->p3;
5628 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5629 int p1 = pOp->p1;
5630 assert( p1>=0 && p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005631 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +00005632 assert( isWriteLock==0 || isWriteLock==1 );
5633 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5634 if( (rc&0xFF)==SQLITE_LOCKED ){
5635 const char *z = pOp->p4.z;
5636 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5637 }
danielk1977c00da102006-01-07 13:21:04 +00005638 }
5639 break;
5640}
drhb9bb7c12006-06-11 23:41:55 +00005641#endif /* SQLITE_OMIT_SHARED_CACHE */
5642
5643#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005644/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005645**
danielk19773e3a84d2008-08-01 17:37:40 +00005646** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5647** xBegin method for that table.
5648**
5649** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00005650** within a callback to a virtual table xSync() method. If it is, the error
5651** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00005652*/
drh9cbf3422008-01-17 16:22:13 +00005653case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00005654 VTable *pVTab;
5655 pVTab = pOp->p4.pVtab;
5656 rc = sqlite3VtabBegin(db, pVTab);
drhb9755982010-07-24 16:34:37 +00005657 if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
danielk1977f9e7dda2006-06-16 16:08:53 +00005658 break;
5659}
5660#endif /* SQLITE_OMIT_VIRTUALTABLE */
5661
5662#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005663/* Opcode: VCreate P1 * * P4 *
danielk1977f9e7dda2006-06-16 16:08:53 +00005664**
drh66a51672008-01-03 00:01:23 +00005665** P4 is the name of a virtual table in database P1. Call the xCreate method
danielk1977f9e7dda2006-06-16 16:08:53 +00005666** for that table.
5667*/
drh9cbf3422008-01-17 16:22:13 +00005668case OP_VCreate: {
danielk19772dca4ac2008-01-03 11:50:29 +00005669 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
drhb9bb7c12006-06-11 23:41:55 +00005670 break;
5671}
5672#endif /* SQLITE_OMIT_VIRTUALTABLE */
5673
5674#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005675/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005676**
drh66a51672008-01-03 00:01:23 +00005677** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00005678** of that table.
drhb9bb7c12006-06-11 23:41:55 +00005679*/
drh9cbf3422008-01-17 16:22:13 +00005680case OP_VDestroy: {
danielk1977212b2182006-06-23 14:32:08 +00005681 p->inVtabMethod = 2;
danielk19772dca4ac2008-01-03 11:50:29 +00005682 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
danielk1977212b2182006-06-23 14:32:08 +00005683 p->inVtabMethod = 0;
drhb9bb7c12006-06-11 23:41:55 +00005684 break;
5685}
5686#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00005687
drh9eff6162006-06-12 21:59:13 +00005688#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005689/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00005690**
drh66a51672008-01-03 00:01:23 +00005691** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00005692** P1 is a cursor number. This opcode opens a cursor to the virtual
5693** table and stores that cursor in P1.
5694*/
drh9cbf3422008-01-17 16:22:13 +00005695case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00005696 VdbeCursor *pCur;
5697 sqlite3_vtab_cursor *pVtabCursor;
5698 sqlite3_vtab *pVtab;
5699 sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005700
drh856c1032009-06-02 15:21:42 +00005701 pCur = 0;
5702 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00005703 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005704 pModule = (sqlite3_module *)pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005705 assert(pVtab && pModule);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005706 rc = pModule->xOpen(pVtab, &pVtabCursor);
drhb9755982010-07-24 16:34:37 +00005707 importVtabErrMsg(p, pVtab);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005708 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00005709 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005710 pVtabCursor->pVtab = pVtab;
5711
5712 /* Initialise vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00005713 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00005714 if( pCur ){
5715 pCur->pVtabCursor = pVtabCursor;
5716 pCur->pModule = pVtabCursor->pVtab->pModule;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005717 }else{
drh17435752007-08-16 04:30:38 +00005718 db->mallocFailed = 1;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005719 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00005720 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005721 }
drh9eff6162006-06-12 21:59:13 +00005722 break;
5723}
5724#endif /* SQLITE_OMIT_VIRTUALTABLE */
5725
5726#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00005727/* Opcode: VFilter P1 P2 P3 P4 *
drh9eff6162006-06-12 21:59:13 +00005728**
5729** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5730** the filtered result set is empty.
5731**
drh66a51672008-01-03 00:01:23 +00005732** P4 is either NULL or a string that was generated by the xBestIndex
5733** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00005734** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00005735**
drh9eff6162006-06-12 21:59:13 +00005736** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00005737** by P1. The integer query plan parameter to xFilter is stored in register
5738** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00005739** xFilter method. Registers P3+2..P3+1+argc are the argc
5740** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00005741** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00005742**
danielk19776dbee812008-01-03 18:39:41 +00005743** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00005744*/
drh9cbf3422008-01-17 16:22:13 +00005745case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005746 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00005747 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005748 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00005749 Mem *pQuery;
5750 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00005751 sqlite3_vtab_cursor *pVtabCursor;
5752 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00005753 VdbeCursor *pCur;
5754 int res;
5755 int i;
5756 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005757
drha6c2ed92009-11-14 23:22:23 +00005758 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005759 pArgc = &pQuery[1];
5760 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00005761 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00005762 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005763 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00005764 pVtabCursor = pCur->pVtabCursor;
5765 pVtab = pVtabCursor->pVtab;
5766 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005767
drh9cbf3422008-01-17 16:22:13 +00005768 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00005769 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00005770 nArg = (int)pArgc->u.i;
5771 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005772
drh644a5292006-12-20 14:53:38 +00005773 /* Invoke the xFilter method */
5774 {
drh856c1032009-06-02 15:21:42 +00005775 res = 0;
5776 apArg = p->apArg;
drh4be8b512006-06-13 23:51:34 +00005777 for(i = 0; i<nArg; i++){
danielk19776dbee812008-01-03 18:39:41 +00005778 apArg[i] = &pArgc[i+1];
dan937d0de2009-10-15 18:35:38 +00005779 sqlite3VdbeMemStoreType(apArg[i]);
danielk19775fac9f82006-06-13 14:16:58 +00005780 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005781
danielk1977be718892006-06-23 08:05:19 +00005782 p->inVtabMethod = 1;
drh4dc754d2008-07-23 18:17:32 +00005783 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
danielk1977be718892006-06-23 08:05:19 +00005784 p->inVtabMethod = 0;
drhb9755982010-07-24 16:34:37 +00005785 importVtabErrMsg(p, pVtab);
danielk1977a298e902006-06-22 09:53:48 +00005786 if( rc==SQLITE_OK ){
drh4dc754d2008-07-23 18:17:32 +00005787 res = pModule->xEof(pVtabCursor);
danielk1977a298e902006-06-22 09:53:48 +00005788 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005789
danielk1977a298e902006-06-22 09:53:48 +00005790 if( res ){
danielk1977b7a7b9a2006-06-13 10:24:42 +00005791 pc = pOp->p2 - 1;
5792 }
5793 }
drh1d454a32008-01-31 19:34:51 +00005794 pCur->nullRow = 0;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005795
drh9eff6162006-06-12 21:59:13 +00005796 break;
5797}
5798#endif /* SQLITE_OMIT_VIRTUALTABLE */
5799
5800#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005801/* Opcode: VColumn P1 P2 P3 * *
drh9eff6162006-06-12 21:59:13 +00005802**
drh2133d822008-01-03 18:44:59 +00005803** Store the value of the P2-th column of
5804** the row of the virtual-table that the
5805** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00005806*/
5807case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00005808 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005809 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00005810 Mem *pDest;
5811 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005812
drhdfe88ec2008-11-03 20:55:06 +00005813 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005814 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005815 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005816 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00005817 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00005818 if( pCur->nullRow ){
5819 sqlite3VdbeMemSetNull(pDest);
5820 break;
5821 }
danielk19773e3a84d2008-08-01 17:37:40 +00005822 pVtab = pCur->pVtabCursor->pVtab;
5823 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005824 assert( pModule->xColumn );
5825 memset(&sContext, 0, sizeof(sContext));
danielk1977a7a8e142008-02-13 18:25:27 +00005826
5827 /* The output cell may already have a buffer allocated. Move
5828 ** the current contents to sContext.s so in case the user-function
5829 ** can use the already allocated buffer instead of allocating a
5830 ** new one.
5831 */
5832 sqlite3VdbeMemMove(&sContext.s, pDest);
5833 MemSetTypeFlag(&sContext.s, MEM_Null);
5834
drhde4fcfd2008-01-19 23:50:26 +00005835 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
drhb9755982010-07-24 16:34:37 +00005836 importVtabErrMsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00005837 if( sContext.isError ){
5838 rc = sContext.isError;
5839 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005840
drhde4fcfd2008-01-19 23:50:26 +00005841 /* Copy the result of the function to the P3 register. We
shanebe217792009-03-05 04:20:31 +00005842 ** do this regardless of whether or not an error occurred to ensure any
drhde4fcfd2008-01-19 23:50:26 +00005843 ** dynamic allocation in sContext.s (a Mem struct) is released.
5844 */
5845 sqlite3VdbeChangeEncoding(&sContext.s, encoding);
drhde4fcfd2008-01-19 23:50:26 +00005846 sqlite3VdbeMemMove(pDest, &sContext.s);
drh5ff44372009-11-24 16:26:17 +00005847 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00005848 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005849
drhde4fcfd2008-01-19 23:50:26 +00005850 if( sqlite3VdbeMemTooBig(pDest) ){
5851 goto too_big;
5852 }
drh9eff6162006-06-12 21:59:13 +00005853 break;
5854}
5855#endif /* SQLITE_OMIT_VIRTUALTABLE */
5856
5857#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005858/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00005859**
5860** Advance virtual table P1 to the next row in its result set and
5861** jump to instruction P2. Or, if the virtual table has reached
5862** the end of its result set, then fall through to the next instruction.
5863*/
drh9cbf3422008-01-17 16:22:13 +00005864case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00005865 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005866 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00005867 int res;
drh856c1032009-06-02 15:21:42 +00005868 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005869
drhc54a6172009-06-02 16:06:03 +00005870 res = 0;
drh856c1032009-06-02 15:21:42 +00005871 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005872 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005873 if( pCur->nullRow ){
5874 break;
5875 }
danielk19773e3a84d2008-08-01 17:37:40 +00005876 pVtab = pCur->pVtabCursor->pVtab;
5877 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005878 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00005879
drhde4fcfd2008-01-19 23:50:26 +00005880 /* Invoke the xNext() method of the module. There is no way for the
5881 ** underlying implementation to return an error if one occurs during
5882 ** xNext(). Instead, if an error occurs, true is returned (indicating that
5883 ** data is available) and the error code returned when xColumn or
5884 ** some other method is next invoked on the save virtual table cursor.
5885 */
drhde4fcfd2008-01-19 23:50:26 +00005886 p->inVtabMethod = 1;
5887 rc = pModule->xNext(pCur->pVtabCursor);
5888 p->inVtabMethod = 0;
drhb9755982010-07-24 16:34:37 +00005889 importVtabErrMsg(p, pVtab);
drhde4fcfd2008-01-19 23:50:26 +00005890 if( rc==SQLITE_OK ){
5891 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005892 }
5893
drhde4fcfd2008-01-19 23:50:26 +00005894 if( !res ){
5895 /* If there is data, jump to P2 */
5896 pc = pOp->p2 - 1;
5897 }
drh9eff6162006-06-12 21:59:13 +00005898 break;
5899}
5900#endif /* SQLITE_OMIT_VIRTUALTABLE */
5901
danielk1977182c4ba2007-06-27 15:53:34 +00005902#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005903/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00005904**
drh66a51672008-01-03 00:01:23 +00005905** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00005906** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00005907** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00005908*/
drh9cbf3422008-01-17 16:22:13 +00005909case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00005910 sqlite3_vtab *pVtab;
5911 Mem *pName;
5912
danielk1977595a5232009-07-24 17:58:53 +00005913 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00005914 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00005915 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00005916 assert( memIsValid(pName) );
drh5b6afba2008-01-05 16:29:28 +00005917 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00005918 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00005919 testcase( pName->enc==SQLITE_UTF8 );
5920 testcase( pName->enc==SQLITE_UTF16BE );
5921 testcase( pName->enc==SQLITE_UTF16LE );
5922 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
5923 if( rc==SQLITE_OK ){
5924 rc = pVtab->pModule->xRename(pVtab, pName->z);
5925 importVtabErrMsg(p, pVtab);
5926 p->expired = 0;
5927 }
danielk1977182c4ba2007-06-27 15:53:34 +00005928 break;
5929}
5930#endif
drh4cbdda92006-06-14 19:00:20 +00005931
5932#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005933/* Opcode: VUpdate P1 P2 P3 P4 *
danielk1977399918f2006-06-14 13:03:23 +00005934**
drh66a51672008-01-03 00:01:23 +00005935** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00005936** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00005937** are contiguous memory cells starting at P3 to pass to the xUpdate
5938** invocation. The value in register (P3+P2-1) corresponds to the
5939** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00005940**
5941** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00005942** The argv[0] element (which corresponds to memory cell P3)
5943** is the rowid of a row to delete. If argv[0] is NULL then no
5944** deletion occurs. The argv[1] element is the rowid of the new
5945** row. This can be NULL to have the virtual table select the new
5946** rowid for itself. The subsequent elements in the array are
5947** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00005948**
5949** If P2==1 then no insert is performed. argv[0] is the rowid of
5950** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00005951**
5952** P1 is a boolean flag. If it is set to true and the xUpdate call
5953** is successful, then the value returned by sqlite3_last_insert_rowid()
5954** is set to the value of the rowid for the row just inserted.
danielk1977399918f2006-06-14 13:03:23 +00005955*/
drh9cbf3422008-01-17 16:22:13 +00005956case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00005957 sqlite3_vtab *pVtab;
5958 sqlite3_module *pModule;
5959 int nArg;
5960 int i;
5961 sqlite_int64 rowid;
5962 Mem **apArg;
5963 Mem *pX;
5964
danb061d052011-04-25 18:49:57 +00005965 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
5966 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
5967 );
danielk1977595a5232009-07-24 17:58:53 +00005968 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005969 pModule = (sqlite3_module *)pVtab->pModule;
5970 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00005971 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00005972 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00005973 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00005974 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00005975 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00005976 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00005977 assert( memIsValid(pX) );
5978 memAboutToChange(p, pX);
dan937d0de2009-10-15 18:35:38 +00005979 sqlite3VdbeMemStoreType(pX);
drh9c419382006-06-16 21:13:21 +00005980 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00005981 pX++;
danielk1977399918f2006-06-14 13:03:23 +00005982 }
danb061d052011-04-25 18:49:57 +00005983 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00005984 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00005985 db->vtabOnConflict = vtabOnConflict;
drhb9755982010-07-24 16:34:37 +00005986 importVtabErrMsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00005987 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00005988 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00005989 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00005990 }
danb061d052011-04-25 18:49:57 +00005991 if( rc==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
5992 if( pOp->p5==OE_Ignore ){
5993 rc = SQLITE_OK;
5994 }else{
5995 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
5996 }
5997 }else{
5998 p->nChange++;
5999 }
danielk1977399918f2006-06-14 13:03:23 +00006000 }
drh4cbdda92006-06-14 19:00:20 +00006001 break;
danielk1977399918f2006-06-14 13:03:23 +00006002}
6003#endif /* SQLITE_OMIT_VIRTUALTABLE */
6004
danielk197759a93792008-05-15 17:48:20 +00006005#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6006/* Opcode: Pagecount P1 P2 * * *
6007**
6008** Write the current number of pages in database P1 to memory cell P2.
6009*/
6010case OP_Pagecount: { /* out2-prerelease */
drhb1299152010-03-30 22:58:33 +00006011 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006012 break;
6013}
6014#endif
6015
drh60ac3f42010-11-23 18:59:27 +00006016
6017#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6018/* Opcode: MaxPgcnt P1 P2 P3 * *
6019**
6020** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006021** Do not let the maximum page count fall below the current page count and
6022** do not change the maximum page count value if P3==0.
6023**
drh60ac3f42010-11-23 18:59:27 +00006024** Store the maximum page count after the change in register P2.
6025*/
6026case OP_MaxPgcnt: { /* out2-prerelease */
drhc84e0332010-11-23 20:25:08 +00006027 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006028 Btree *pBt;
6029
6030 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006031 newMax = 0;
6032 if( pOp->p3 ){
6033 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006034 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006035 }
6036 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006037 break;
6038}
6039#endif
6040
6041
drh949f9cd2008-01-12 21:35:57 +00006042#ifndef SQLITE_OMIT_TRACE
6043/* Opcode: Trace * * * P4 *
6044**
6045** If tracing is enabled (by the sqlite3_trace()) interface, then
6046** the UTF-8 string contained in P4 is emitted on the trace callback.
6047*/
6048case OP_Trace: {
drh856c1032009-06-02 15:21:42 +00006049 char *zTrace;
drhc3f1d5f2011-05-30 23:42:16 +00006050 char *z;
drh856c1032009-06-02 15:21:42 +00006051
drhc3f1d5f2011-05-30 23:42:16 +00006052 if( db->xTrace && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){
6053 z = sqlite3VdbeExpandSql(p, zTrace);
6054 db->xTrace(db->pTraceArg, z);
6055 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00006056 }
drhc3f1d5f2011-05-30 23:42:16 +00006057#ifdef SQLITE_DEBUG
6058 if( (db->flags & SQLITE_SqlTrace)!=0
6059 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6060 ){
6061 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6062 }
6063#endif /* SQLITE_DEBUG */
drh949f9cd2008-01-12 21:35:57 +00006064 break;
6065}
6066#endif
6067
drh91fd4d42008-01-19 20:11:25 +00006068
6069/* Opcode: Noop * * * * *
6070**
6071** Do nothing. This instruction is often useful as a jump
6072** destination.
drh5e00f6c2001-09-13 13:46:56 +00006073*/
drh91fd4d42008-01-19 20:11:25 +00006074/*
6075** The magic Explain opcode are only inserted when explain==2 (which
6076** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6077** This opcode records information from the optimizer. It is the
6078** the same as a no-op. This opcodesnever appears in a real VM program.
6079*/
6080default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006081 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006082 break;
6083}
6084
6085/*****************************************************************************
6086** The cases of the switch statement above this line should all be indented
6087** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6088** readability. From this point on down, the normal indentation rules are
6089** restored.
6090*****************************************************************************/
6091 }
drh6e142f52000-06-08 13:36:40 +00006092
drh7b396862003-01-01 23:06:20 +00006093#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006094 {
shane9bcbdad2008-05-29 20:22:37 +00006095 u64 elapsed = sqlite3Hwtime() - start;
6096 pOp->cycles += elapsed;
drh8178a752003-01-05 21:41:40 +00006097 pOp->cnt++;
6098#if 0
shane9bcbdad2008-05-29 20:22:37 +00006099 fprintf(stdout, "%10llu ", elapsed);
drhbbe879d2009-11-14 18:04:35 +00006100 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
drh8178a752003-01-05 21:41:40 +00006101#endif
6102 }
drh7b396862003-01-01 23:06:20 +00006103#endif
6104
drh6e142f52000-06-08 13:36:40 +00006105 /* The following code adds nothing to the actual functionality
6106 ** of the program. It is only here for testing and debugging.
6107 ** On the other hand, it does burn CPU cycles every time through
6108 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6109 */
6110#ifndef NDEBUG
drha6110402005-07-28 20:51:19 +00006111 assert( pc>=-1 && pc<p->nOp );
drhae7e1512007-05-02 16:51:59 +00006112
drhcf1023c2007-05-08 20:59:49 +00006113#ifdef SQLITE_DEBUG
drh5b6afba2008-01-05 16:29:28 +00006114 if( p->trace ){
6115 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
drh3c657212009-11-17 23:59:58 +00006116 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
6117 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
drh75897232000-05-29 14:26:00 +00006118 }
drh3c657212009-11-17 23:59:58 +00006119 if( pOp->opflags & OPFLG_OUT3 ){
6120 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006121 }
drh75897232000-05-29 14:26:00 +00006122 }
danielk1977b5402fb2005-01-12 07:15:04 +00006123#endif /* SQLITE_DEBUG */
6124#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006125 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006126
drha05a7222008-01-19 03:35:58 +00006127 /* If we reach this point, it means that execution is finished with
6128 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00006129 */
drha05a7222008-01-19 03:35:58 +00006130vdbe_error_halt:
6131 assert( rc );
6132 p->rc = rc;
drha64fa912010-03-04 00:53:32 +00006133 testcase( sqlite3GlobalConfig.xLog!=0 );
6134 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6135 pc, p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00006136 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00006137 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6138 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00006139 if( resetSchemaOnFault>0 ){
6140 sqlite3ResetInternalSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00006141 }
drh900b31e2007-08-28 02:27:51 +00006142
6143 /* This is the only way out of this procedure. We have to
6144 ** release the mutexes on btrees that were acquired at the
6145 ** top. */
6146vdbe_return:
drh99a66922011-05-13 18:51:42 +00006147 db->lastRowid = lastRowid;
drhbdaec522011-04-04 00:14:43 +00006148 sqlite3VdbeLeave(p);
drhb86ccfb2003-01-28 23:13:10 +00006149 return rc;
6150
drh023ae032007-05-08 12:12:16 +00006151 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6152 ** is encountered.
6153 */
6154too_big:
drhf089aa42008-07-08 19:34:06 +00006155 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00006156 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00006157 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00006158
drh98640a32007-06-07 19:08:32 +00006159 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00006160 */
6161no_mem:
drh17435752007-08-16 04:30:38 +00006162 db->mallocFailed = 1;
drhf089aa42008-07-08 19:34:06 +00006163 sqlite3SetString(&p->zErrMsg, db, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00006164 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00006165 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006166
drhb86ccfb2003-01-28 23:13:10 +00006167 /* Jump to here for any other kind of fatal error. The "rc" variable
6168 ** should hold the error number.
6169 */
6170abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00006171 assert( p->zErrMsg==0 );
6172 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00006173 if( rc!=SQLITE_IOERR_NOMEM ){
drhf089aa42008-07-08 19:34:06 +00006174 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00006175 }
drha05a7222008-01-19 03:35:58 +00006176 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006177
danielk19776f8a5032004-05-10 10:34:51 +00006178 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00006179 ** flag.
6180 */
6181abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00006182 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00006183 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00006184 p->rc = rc;
drhf089aa42008-07-08 19:34:06 +00006185 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00006186 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006187}