blob: 4fe07a862a0bb2e9ade4eeb525bd6269a00f307c [file] [log] [blame]
drhc81c11f2009-11-10 01:30:52 +00001/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** Utility functions used throughout sqlite.
13**
14** This file contains functions for allocating memory, comparing
15** strings, and stuff like that.
16**
17*/
18#include "sqliteInt.h"
19#include <stdarg.h>
20#ifdef SQLITE_HAVE_ISNAN
21# include <math.h>
22#endif
23
24/*
25** Routine needed to support the testcase() macro.
26*/
27#ifdef SQLITE_COVERAGE_TEST
28void sqlite3Coverage(int x){
drh68bf0672011-04-11 15:35:24 +000029 static unsigned dummy = 0;
30 dummy += (unsigned)x;
drhc81c11f2009-11-10 01:30:52 +000031}
32#endif
33
drhc007f612014-05-16 14:17:01 +000034/*
35** Give a callback to the test harness that can be used to simulate faults
36** in places where it is difficult or expensive to do so purely by means
37** of inputs.
38**
39** The intent of the integer argument is to let the fault simulator know
40** which of multiple sqlite3FaultSim() calls has been hit.
41**
42** Return whatever integer value the test callback returns, or return
43** SQLITE_OK if no test callback is installed.
44*/
45#ifndef SQLITE_OMIT_BUILTIN_TEST
46int sqlite3FaultSim(int iTest){
47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48 return xCallback ? xCallback(iTest) : SQLITE_OK;
49}
50#endif
51
drh85c8f292010-01-13 17:39:53 +000052#ifndef SQLITE_OMIT_FLOATING_POINT
drhc81c11f2009-11-10 01:30:52 +000053/*
54** Return true if the floating point value is Not a Number (NaN).
55**
56** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57** Otherwise, we have our own implementation that works on most systems.
58*/
59int sqlite3IsNaN(double x){
60 int rc; /* The value return */
61#if !defined(SQLITE_HAVE_ISNAN)
62 /*
63 ** Systems that support the isnan() library function should probably
64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
65 ** found that many systems do not have a working isnan() function so
66 ** this implementation is provided as an alternative.
67 **
68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69 ** On the other hand, the use of -ffast-math comes with the following
70 ** warning:
71 **
72 ** This option [-ffast-math] should never be turned on by any
73 ** -O option since it can result in incorrect output for programs
74 ** which depend on an exact implementation of IEEE or ISO
75 ** rules/specifications for math functions.
76 **
77 ** Under MSVC, this NaN test may fail if compiled with a floating-
78 ** point precision mode other than /fp:precise. From the MSDN
79 ** documentation:
80 **
81 ** The compiler [with /fp:precise] will properly handle comparisons
82 ** involving NaN. For example, x != x evaluates to true if x is NaN
83 ** ...
84 */
85#ifdef __FAST_MATH__
86# error SQLite will not work correctly with the -ffast-math option of GCC.
87#endif
88 volatile double y = x;
89 volatile double z = y;
90 rc = (y!=z);
91#else /* if defined(SQLITE_HAVE_ISNAN) */
92 rc = isnan(x);
93#endif /* SQLITE_HAVE_ISNAN */
94 testcase( rc );
95 return rc;
96}
drh85c8f292010-01-13 17:39:53 +000097#endif /* SQLITE_OMIT_FLOATING_POINT */
drhc81c11f2009-11-10 01:30:52 +000098
99/*
100** Compute a string length that is limited to what can be stored in
101** lower 30 bits of a 32-bit signed integer.
102**
103** The value returned will never be negative. Nor will it ever be greater
104** than the actual length of the string. For very long strings (greater
105** than 1GiB) the value returned might be less than the true string length.
106*/
107int sqlite3Strlen30(const char *z){
108 const char *z2 = z;
109 if( z==0 ) return 0;
110 while( *z2 ){ z2++; }
111 return 0x3fffffff & (int)(z2 - z);
112}
113
114/*
115** Set the most recent error code and error string for the sqlite
116** handle "db". The error code is set to "err_code".
117**
118** If it is not NULL, string zFormat specifies the format of the
119** error string in the style of the printf functions: The following
120** format characters are allowed:
121**
122** %s Insert a string
123** %z A string that should be freed after use
124** %d Insert an integer
125** %T Insert a token
126** %S Insert the first element of a SrcList
127**
128** zFormat and any string tokens that follow it are assumed to be
129** encoded in UTF-8.
130**
131** To clear the most recent error for sqlite handle "db", sqlite3Error
132** should be called with err_code set to SQLITE_OK and zFormat set
133** to NULL.
134*/
135void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
drha3cc0072013-12-13 16:23:55 +0000136 assert( db!=0 );
137 db->errCode = err_code;
138 if( zFormat && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
139 char *z;
140 va_list ap;
141 va_start(ap, zFormat);
142 z = sqlite3VMPrintf(db, zFormat, ap);
143 va_end(ap);
144 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
145 }else if( db->pErr ){
146 sqlite3ValueSetNull(db->pErr);
drhc81c11f2009-11-10 01:30:52 +0000147 }
148}
149
150/*
151** Add an error message to pParse->zErrMsg and increment pParse->nErr.
152** The following formatting characters are allowed:
153**
154** %s Insert a string
155** %z A string that should be freed after use
156** %d Insert an integer
157** %T Insert a token
158** %S Insert the first element of a SrcList
159**
160** This function should be used to report any error that occurs whilst
161** compiling an SQL statement (i.e. within sqlite3_prepare()). The
162** last thing the sqlite3_prepare() function does is copy the error
163** stored by this function into the database handle using sqlite3Error().
164** Function sqlite3Error() should be used during statement execution
165** (sqlite3_step() etc.).
166*/
167void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
drha7564662010-02-22 19:32:31 +0000168 char *zMsg;
drhc81c11f2009-11-10 01:30:52 +0000169 va_list ap;
170 sqlite3 *db = pParse->db;
drhc81c11f2009-11-10 01:30:52 +0000171 va_start(ap, zFormat);
drha7564662010-02-22 19:32:31 +0000172 zMsg = sqlite3VMPrintf(db, zFormat, ap);
drhc81c11f2009-11-10 01:30:52 +0000173 va_end(ap);
drha7564662010-02-22 19:32:31 +0000174 if( db->suppressErr ){
175 sqlite3DbFree(db, zMsg);
176 }else{
177 pParse->nErr++;
178 sqlite3DbFree(db, pParse->zErrMsg);
179 pParse->zErrMsg = zMsg;
180 pParse->rc = SQLITE_ERROR;
drha7564662010-02-22 19:32:31 +0000181 }
drhc81c11f2009-11-10 01:30:52 +0000182}
183
184/*
185** Convert an SQL-style quoted string into a normal string by removing
186** the quote characters. The conversion is done in-place. If the
187** input does not begin with a quote character, then this routine
188** is a no-op.
189**
190** The input string must be zero-terminated. A new zero-terminator
191** is added to the dequoted string.
192**
193** The return value is -1 if no dequoting occurs or the length of the
194** dequoted string, exclusive of the zero terminator, if dequoting does
195** occur.
196**
197** 2002-Feb-14: This routine is extended to remove MS-Access style
198** brackets from around identifers. For example: "[a-b-c]" becomes
199** "a-b-c".
200*/
201int sqlite3Dequote(char *z){
202 char quote;
203 int i, j;
204 if( z==0 ) return -1;
205 quote = z[0];
206 switch( quote ){
207 case '\'': break;
208 case '"': break;
209 case '`': break; /* For MySQL compatibility */
210 case '[': quote = ']'; break; /* For MS SqlServer compatibility */
211 default: return -1;
212 }
drh9ccd8652013-09-13 16:36:46 +0000213 for(i=1, j=0;; i++){
214 assert( z[i] );
drhc81c11f2009-11-10 01:30:52 +0000215 if( z[i]==quote ){
216 if( z[i+1]==quote ){
217 z[j++] = quote;
218 i++;
219 }else{
220 break;
221 }
222 }else{
223 z[j++] = z[i];
224 }
225 }
226 z[j] = 0;
227 return j;
228}
229
230/* Convenient short-hand */
231#define UpperToLower sqlite3UpperToLower
232
233/*
234** Some systems have stricmp(). Others have strcasecmp(). Because
235** there is no consistency, we will define our own.
drh9f129f42010-08-31 15:27:32 +0000236**
drh0299b402012-03-19 17:42:46 +0000237** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
238** sqlite3_strnicmp() APIs allow applications and extensions to compare
239** the contents of two buffers containing UTF-8 strings in a
240** case-independent fashion, using the same definition of "case
241** independence" that SQLite uses internally when comparing identifiers.
drhc81c11f2009-11-10 01:30:52 +0000242*/
drh3fa97302012-02-22 16:58:36 +0000243int sqlite3_stricmp(const char *zLeft, const char *zRight){
drhc81c11f2009-11-10 01:30:52 +0000244 register unsigned char *a, *b;
245 a = (unsigned char *)zLeft;
246 b = (unsigned char *)zRight;
247 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
248 return UpperToLower[*a] - UpperToLower[*b];
249}
250int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
251 register unsigned char *a, *b;
252 a = (unsigned char *)zLeft;
253 b = (unsigned char *)zRight;
254 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
255 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
256}
257
258/*
drh9339da12010-09-30 00:50:49 +0000259** The string z[] is an text representation of a real number.
drh025586a2010-09-30 17:33:11 +0000260** Convert this string to a double and write it into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000261**
drh9339da12010-09-30 00:50:49 +0000262** The string z[] is length bytes in length (bytes, not characters) and
263** uses the encoding enc. The string is not necessarily zero-terminated.
drhc81c11f2009-11-10 01:30:52 +0000264**
drh9339da12010-09-30 00:50:49 +0000265** Return TRUE if the result is a valid real number (or integer) and FALSE
drh025586a2010-09-30 17:33:11 +0000266** if the string is empty or contains extraneous text. Valid numbers
267** are in one of these formats:
268**
269** [+-]digits[E[+-]digits]
270** [+-]digits.[digits][E[+-]digits]
271** [+-].digits[E[+-]digits]
272**
273** Leading and trailing whitespace is ignored for the purpose of determining
274** validity.
275**
276** If some prefix of the input string is a valid number, this routine
277** returns FALSE but it still converts the prefix and writes the result
278** into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000279*/
drh9339da12010-09-30 00:50:49 +0000280int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
drhc81c11f2009-11-10 01:30:52 +0000281#ifndef SQLITE_OMIT_FLOATING_POINT
drh0e5fba72013-03-20 12:04:29 +0000282 int incr;
drh9339da12010-09-30 00:50:49 +0000283 const char *zEnd = z + length;
drhc81c11f2009-11-10 01:30:52 +0000284 /* sign * significand * (10 ^ (esign * exponent)) */
drh025586a2010-09-30 17:33:11 +0000285 int sign = 1; /* sign of significand */
286 i64 s = 0; /* significand */
287 int d = 0; /* adjust exponent for shifting decimal point */
288 int esign = 1; /* sign of exponent */
289 int e = 0; /* exponent */
290 int eValid = 1; /* True exponent is either not used or is well-formed */
drhc81c11f2009-11-10 01:30:52 +0000291 double result;
292 int nDigits = 0;
drh0e5fba72013-03-20 12:04:29 +0000293 int nonNum = 0;
drhc81c11f2009-11-10 01:30:52 +0000294
drh0e5fba72013-03-20 12:04:29 +0000295 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
drh025586a2010-09-30 17:33:11 +0000296 *pResult = 0.0; /* Default return value, in case of an error */
297
drh0e5fba72013-03-20 12:04:29 +0000298 if( enc==SQLITE_UTF8 ){
299 incr = 1;
300 }else{
301 int i;
302 incr = 2;
303 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
304 for(i=3-enc; i<length && z[i]==0; i+=2){}
305 nonNum = i<length;
306 zEnd = z+i+enc-3;
307 z += (enc&1);
308 }
drh9339da12010-09-30 00:50:49 +0000309
drhc81c11f2009-11-10 01:30:52 +0000310 /* skip leading spaces */
drh9339da12010-09-30 00:50:49 +0000311 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
drh025586a2010-09-30 17:33:11 +0000312 if( z>=zEnd ) return 0;
drh9339da12010-09-30 00:50:49 +0000313
drhc81c11f2009-11-10 01:30:52 +0000314 /* get sign of significand */
315 if( *z=='-' ){
316 sign = -1;
drh9339da12010-09-30 00:50:49 +0000317 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000318 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000319 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000320 }
drh9339da12010-09-30 00:50:49 +0000321
drhc81c11f2009-11-10 01:30:52 +0000322 /* skip leading zeroes */
drh9339da12010-09-30 00:50:49 +0000323 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000324
325 /* copy max significant digits to significand */
drh9339da12010-09-30 00:50:49 +0000326 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
drhc81c11f2009-11-10 01:30:52 +0000327 s = s*10 + (*z - '0');
drh9339da12010-09-30 00:50:49 +0000328 z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000329 }
drh9339da12010-09-30 00:50:49 +0000330
drhc81c11f2009-11-10 01:30:52 +0000331 /* skip non-significant significand digits
332 ** (increase exponent by d to shift decimal left) */
drh9339da12010-09-30 00:50:49 +0000333 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
334 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000335
336 /* if decimal point is present */
337 if( *z=='.' ){
drh9339da12010-09-30 00:50:49 +0000338 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000339 /* copy digits from after decimal to significand
340 ** (decrease exponent by d to shift decimal right) */
drh9339da12010-09-30 00:50:49 +0000341 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
drhc81c11f2009-11-10 01:30:52 +0000342 s = s*10 + (*z - '0');
drh9339da12010-09-30 00:50:49 +0000343 z+=incr, nDigits++, d--;
drhc81c11f2009-11-10 01:30:52 +0000344 }
345 /* skip non-significant digits */
drh9339da12010-09-30 00:50:49 +0000346 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000347 }
drh9339da12010-09-30 00:50:49 +0000348 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000349
350 /* if exponent is present */
351 if( *z=='e' || *z=='E' ){
drh9339da12010-09-30 00:50:49 +0000352 z+=incr;
drh025586a2010-09-30 17:33:11 +0000353 eValid = 0;
drh9339da12010-09-30 00:50:49 +0000354 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000355 /* get sign of exponent */
356 if( *z=='-' ){
357 esign = -1;
drh9339da12010-09-30 00:50:49 +0000358 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000359 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000360 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000361 }
362 /* copy digits to exponent */
drh9339da12010-09-30 00:50:49 +0000363 while( z<zEnd && sqlite3Isdigit(*z) ){
drh57db4a72011-10-17 20:41:46 +0000364 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
drh9339da12010-09-30 00:50:49 +0000365 z+=incr;
drh025586a2010-09-30 17:33:11 +0000366 eValid = 1;
drhc81c11f2009-11-10 01:30:52 +0000367 }
368 }
369
drh025586a2010-09-30 17:33:11 +0000370 /* skip trailing spaces */
371 if( nDigits && eValid ){
372 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
373 }
374
drh9339da12010-09-30 00:50:49 +0000375do_atof_calc:
drhc81c11f2009-11-10 01:30:52 +0000376 /* adjust exponent by d, and update sign */
377 e = (e*esign) + d;
378 if( e<0 ) {
379 esign = -1;
380 e *= -1;
381 } else {
382 esign = 1;
383 }
384
385 /* if 0 significand */
386 if( !s ) {
387 /* In the IEEE 754 standard, zero is signed.
388 ** Add the sign if we've seen at least one digit */
389 result = (sign<0 && nDigits) ? -(double)0 : (double)0;
390 } else {
391 /* attempt to reduce exponent */
392 if( esign>0 ){
393 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
394 }else{
395 while( !(s%10) && e>0 ) e--,s/=10;
396 }
397
398 /* adjust the sign of significand */
399 s = sign<0 ? -s : s;
400
401 /* if exponent, scale significand as appropriate
402 ** and store in result. */
403 if( e ){
drh89f15082012-06-19 00:45:16 +0000404 LONGDOUBLE_TYPE scale = 1.0;
drhc81c11f2009-11-10 01:30:52 +0000405 /* attempt to handle extremely small/large numbers better */
406 if( e>307 && e<342 ){
407 while( e%308 ) { scale *= 1.0e+1; e -= 1; }
408 if( esign<0 ){
409 result = s / scale;
410 result /= 1.0e+308;
411 }else{
412 result = s * scale;
413 result *= 1.0e+308;
414 }
drh2458a2e2011-10-17 12:14:26 +0000415 }else if( e>=342 ){
416 if( esign<0 ){
417 result = 0.0*s;
418 }else{
419 result = 1e308*1e308*s; /* Infinity */
420 }
drhc81c11f2009-11-10 01:30:52 +0000421 }else{
422 /* 1.0e+22 is the largest power of 10 than can be
423 ** represented exactly. */
424 while( e%22 ) { scale *= 1.0e+1; e -= 1; }
425 while( e>0 ) { scale *= 1.0e+22; e -= 22; }
426 if( esign<0 ){
427 result = s / scale;
428 }else{
429 result = s * scale;
430 }
431 }
432 } else {
433 result = (double)s;
434 }
435 }
436
437 /* store the result */
438 *pResult = result;
439
drh025586a2010-09-30 17:33:11 +0000440 /* return true if number and no extra non-whitespace chracters after */
drh0e5fba72013-03-20 12:04:29 +0000441 return z>=zEnd && nDigits>0 && eValid && nonNum==0;
drhc81c11f2009-11-10 01:30:52 +0000442#else
shaneh5f1d6b62010-09-30 16:51:25 +0000443 return !sqlite3Atoi64(z, pResult, length, enc);
drhc81c11f2009-11-10 01:30:52 +0000444#endif /* SQLITE_OMIT_FLOATING_POINT */
445}
446
447/*
448** Compare the 19-character string zNum against the text representation
449** value 2^63: 9223372036854775808. Return negative, zero, or positive
450** if zNum is less than, equal to, or greater than the string.
shaneh5f1d6b62010-09-30 16:51:25 +0000451** Note that zNum must contain exactly 19 characters.
drhc81c11f2009-11-10 01:30:52 +0000452**
453** Unlike memcmp() this routine is guaranteed to return the difference
454** in the values of the last digit if the only difference is in the
455** last digit. So, for example,
456**
drh9339da12010-09-30 00:50:49 +0000457** compare2pow63("9223372036854775800", 1)
drhc81c11f2009-11-10 01:30:52 +0000458**
459** will return -8.
460*/
drh9339da12010-09-30 00:50:49 +0000461static int compare2pow63(const char *zNum, int incr){
462 int c = 0;
463 int i;
464 /* 012345678901234567 */
465 const char *pow63 = "922337203685477580";
466 for(i=0; c==0 && i<18; i++){
467 c = (zNum[i*incr]-pow63[i])*10;
468 }
drhc81c11f2009-11-10 01:30:52 +0000469 if( c==0 ){
drh9339da12010-09-30 00:50:49 +0000470 c = zNum[18*incr] - '8';
drh44dbca82010-01-13 04:22:20 +0000471 testcase( c==(-1) );
472 testcase( c==0 );
473 testcase( c==(+1) );
drhc81c11f2009-11-10 01:30:52 +0000474 }
475 return c;
476}
477
478
479/*
drh158b9cb2011-03-05 20:59:46 +0000480** Convert zNum to a 64-bit signed integer.
481**
482** If the zNum value is representable as a 64-bit twos-complement
483** integer, then write that value into *pNum and return 0.
484**
drha256c1a2013-12-01 01:18:29 +0000485** If zNum is exactly 9223372036854775808, return 2. This special
486** case is broken out because while 9223372036854775808 cannot be a
487** signed 64-bit integer, its negative -9223372036854775808 can be.
drh158b9cb2011-03-05 20:59:46 +0000488**
489** If zNum is too big for a 64-bit integer and is not
drha256c1a2013-12-01 01:18:29 +0000490** 9223372036854775808 or if zNum contains any non-numeric text,
drh0e5fba72013-03-20 12:04:29 +0000491** then return 1.
drhc81c11f2009-11-10 01:30:52 +0000492**
drh9339da12010-09-30 00:50:49 +0000493** length is the number of bytes in the string (bytes, not characters).
494** The string is not necessarily zero-terminated. The encoding is
495** given by enc.
drhc81c11f2009-11-10 01:30:52 +0000496*/
drh9339da12010-09-30 00:50:49 +0000497int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
drh0e5fba72013-03-20 12:04:29 +0000498 int incr;
drh158b9cb2011-03-05 20:59:46 +0000499 u64 u = 0;
shaneh5f1d6b62010-09-30 16:51:25 +0000500 int neg = 0; /* assume positive */
drh9339da12010-09-30 00:50:49 +0000501 int i;
502 int c = 0;
drh0e5fba72013-03-20 12:04:29 +0000503 int nonNum = 0;
drhc81c11f2009-11-10 01:30:52 +0000504 const char *zStart;
drh9339da12010-09-30 00:50:49 +0000505 const char *zEnd = zNum + length;
drh0e5fba72013-03-20 12:04:29 +0000506 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
507 if( enc==SQLITE_UTF8 ){
508 incr = 1;
509 }else{
510 incr = 2;
511 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
512 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
513 nonNum = i<length;
514 zEnd = zNum+i+enc-3;
515 zNum += (enc&1);
516 }
drh9339da12010-09-30 00:50:49 +0000517 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
drh158b9cb2011-03-05 20:59:46 +0000518 if( zNum<zEnd ){
519 if( *zNum=='-' ){
520 neg = 1;
521 zNum+=incr;
522 }else if( *zNum=='+' ){
523 zNum+=incr;
524 }
drhc81c11f2009-11-10 01:30:52 +0000525 }
526 zStart = zNum;
drh9339da12010-09-30 00:50:49 +0000527 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
528 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
drh158b9cb2011-03-05 20:59:46 +0000529 u = u*10 + c - '0';
drhc81c11f2009-11-10 01:30:52 +0000530 }
drh158b9cb2011-03-05 20:59:46 +0000531 if( u>LARGEST_INT64 ){
drhde1a8b82013-11-26 15:45:02 +0000532 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
drh158b9cb2011-03-05 20:59:46 +0000533 }else if( neg ){
534 *pNum = -(i64)u;
535 }else{
536 *pNum = (i64)u;
537 }
drh44dbca82010-01-13 04:22:20 +0000538 testcase( i==18 );
539 testcase( i==19 );
540 testcase( i==20 );
drh12886632013-03-28 11:40:14 +0000541 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ){
drhc81c11f2009-11-10 01:30:52 +0000542 /* zNum is empty or contains non-numeric text or is longer
shaneh5f1d6b62010-09-30 16:51:25 +0000543 ** than 19 digits (thus guaranteeing that it is too large) */
544 return 1;
drh9339da12010-09-30 00:50:49 +0000545 }else if( i<19*incr ){
drhc81c11f2009-11-10 01:30:52 +0000546 /* Less than 19 digits, so we know that it fits in 64 bits */
drh158b9cb2011-03-05 20:59:46 +0000547 assert( u<=LARGEST_INT64 );
shaneh5f1d6b62010-09-30 16:51:25 +0000548 return 0;
drhc81c11f2009-11-10 01:30:52 +0000549 }else{
drh158b9cb2011-03-05 20:59:46 +0000550 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
551 c = compare2pow63(zNum, incr);
552 if( c<0 ){
553 /* zNum is less than 9223372036854775808 so it fits */
554 assert( u<=LARGEST_INT64 );
555 return 0;
556 }else if( c>0 ){
557 /* zNum is greater than 9223372036854775808 so it overflows */
558 return 1;
559 }else{
560 /* zNum is exactly 9223372036854775808. Fits if negative. The
561 ** special case 2 overflow if positive */
562 assert( u-1==LARGEST_INT64 );
drh158b9cb2011-03-05 20:59:46 +0000563 return neg ? 0 : 2;
564 }
drhc81c11f2009-11-10 01:30:52 +0000565 }
566}
567
568/*
569** If zNum represents an integer that will fit in 32-bits, then set
570** *pValue to that integer and return true. Otherwise return false.
571**
572** Any non-numeric characters that following zNum are ignored.
573** This is different from sqlite3Atoi64() which requires the
574** input number to be zero-terminated.
575*/
576int sqlite3GetInt32(const char *zNum, int *pValue){
577 sqlite_int64 v = 0;
578 int i, c;
579 int neg = 0;
580 if( zNum[0]=='-' ){
581 neg = 1;
582 zNum++;
583 }else if( zNum[0]=='+' ){
584 zNum++;
585 }
586 while( zNum[0]=='0' ) zNum++;
587 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
588 v = v*10 + c;
589 }
590
591 /* The longest decimal representation of a 32 bit integer is 10 digits:
592 **
593 ** 1234567890
594 ** 2^31 -> 2147483648
595 */
drh44dbca82010-01-13 04:22:20 +0000596 testcase( i==10 );
drhc81c11f2009-11-10 01:30:52 +0000597 if( i>10 ){
598 return 0;
599 }
drh44dbca82010-01-13 04:22:20 +0000600 testcase( v-neg==2147483647 );
drhc81c11f2009-11-10 01:30:52 +0000601 if( v-neg>2147483647 ){
602 return 0;
603 }
604 if( neg ){
605 v = -v;
606 }
607 *pValue = (int)v;
608 return 1;
609}
610
611/*
drh60ac3f42010-11-23 18:59:27 +0000612** Return a 32-bit integer value extracted from a string. If the
613** string is not an integer, just return 0.
614*/
615int sqlite3Atoi(const char *z){
616 int x = 0;
617 if( z ) sqlite3GetInt32(z, &x);
618 return x;
619}
620
621/*
drhc81c11f2009-11-10 01:30:52 +0000622** The variable-length integer encoding is as follows:
623**
624** KEY:
625** A = 0xxxxxxx 7 bits of data and one flag bit
626** B = 1xxxxxxx 7 bits of data and one flag bit
627** C = xxxxxxxx 8 bits of data
628**
629** 7 bits - A
630** 14 bits - BA
631** 21 bits - BBA
632** 28 bits - BBBA
633** 35 bits - BBBBA
634** 42 bits - BBBBBA
635** 49 bits - BBBBBBA
636** 56 bits - BBBBBBBA
637** 64 bits - BBBBBBBBC
638*/
639
640/*
641** Write a 64-bit variable-length integer to memory starting at p[0].
642** The length of data write will be between 1 and 9 bytes. The number
643** of bytes written is returned.
644**
645** A variable-length integer consists of the lower 7 bits of each byte
646** for all bytes that have the 8th bit set and one byte with the 8th
647** bit clear. Except, if we get to the 9th byte, it stores the full
648** 8 bits and is the last byte.
649*/
650int sqlite3PutVarint(unsigned char *p, u64 v){
651 int i, j, n;
652 u8 buf[10];
653 if( v & (((u64)0xff000000)<<32) ){
654 p[8] = (u8)v;
655 v >>= 8;
656 for(i=7; i>=0; i--){
657 p[i] = (u8)((v & 0x7f) | 0x80);
658 v >>= 7;
659 }
660 return 9;
661 }
662 n = 0;
663 do{
664 buf[n++] = (u8)((v & 0x7f) | 0x80);
665 v >>= 7;
666 }while( v!=0 );
667 buf[0] &= 0x7f;
668 assert( n<=9 );
669 for(i=0, j=n-1; j>=0; j--, i++){
670 p[i] = buf[j];
671 }
672 return n;
673}
674
675/*
676** This routine is a faster version of sqlite3PutVarint() that only
677** works for 32-bit positive integers and which is optimized for
678** the common case of small integers. A MACRO version, putVarint32,
679** is provided which inlines the single-byte case. All code should use
680** the MACRO version as this function assumes the single-byte case has
681** already been handled.
682*/
683int sqlite3PutVarint32(unsigned char *p, u32 v){
684#ifndef putVarint32
685 if( (v & ~0x7f)==0 ){
686 p[0] = v;
687 return 1;
688 }
689#endif
690 if( (v & ~0x3fff)==0 ){
691 p[0] = (u8)((v>>7) | 0x80);
692 p[1] = (u8)(v & 0x7f);
693 return 2;
694 }
695 return sqlite3PutVarint(p, v);
696}
697
698/*
drh0b2864c2010-03-03 15:18:38 +0000699** Bitmasks used by sqlite3GetVarint(). These precomputed constants
700** are defined here rather than simply putting the constant expressions
701** inline in order to work around bugs in the RVT compiler.
702**
703** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
704**
705** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
706*/
707#define SLOT_2_0 0x001fc07f
708#define SLOT_4_2_0 0xf01fc07f
709
710
711/*
drhc81c11f2009-11-10 01:30:52 +0000712** Read a 64-bit variable-length integer from memory starting at p[0].
713** Return the number of bytes read. The value is stored in *v.
714*/
715u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
716 u32 a,b,s;
717
718 a = *p;
719 /* a: p0 (unmasked) */
720 if (!(a&0x80))
721 {
722 *v = a;
723 return 1;
724 }
725
726 p++;
727 b = *p;
728 /* b: p1 (unmasked) */
729 if (!(b&0x80))
730 {
731 a &= 0x7f;
732 a = a<<7;
733 a |= b;
734 *v = a;
735 return 2;
736 }
737
drh0b2864c2010-03-03 15:18:38 +0000738 /* Verify that constants are precomputed correctly */
739 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
shaneh1da207e2010-03-09 14:41:12 +0000740 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
drh0b2864c2010-03-03 15:18:38 +0000741
drhc81c11f2009-11-10 01:30:52 +0000742 p++;
743 a = a<<14;
744 a |= *p;
745 /* a: p0<<14 | p2 (unmasked) */
746 if (!(a&0x80))
747 {
drh0b2864c2010-03-03 15:18:38 +0000748 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000749 b &= 0x7f;
750 b = b<<7;
751 a |= b;
752 *v = a;
753 return 3;
754 }
755
756 /* CSE1 from below */
drh0b2864c2010-03-03 15:18:38 +0000757 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000758 p++;
759 b = b<<14;
760 b |= *p;
761 /* b: p1<<14 | p3 (unmasked) */
762 if (!(b&0x80))
763 {
drh0b2864c2010-03-03 15:18:38 +0000764 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000765 /* moved CSE1 up */
766 /* a &= (0x7f<<14)|(0x7f); */
767 a = a<<7;
768 a |= b;
769 *v = a;
770 return 4;
771 }
772
773 /* a: p0<<14 | p2 (masked) */
774 /* b: p1<<14 | p3 (unmasked) */
775 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
776 /* moved CSE1 up */
777 /* a &= (0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +0000778 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000779 s = a;
780 /* s: p0<<14 | p2 (masked) */
781
782 p++;
783 a = a<<14;
784 a |= *p;
785 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
786 if (!(a&0x80))
787 {
788 /* we can skip these cause they were (effectively) done above in calc'ing s */
789 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
790 /* b &= (0x7f<<14)|(0x7f); */
791 b = b<<7;
792 a |= b;
793 s = s>>18;
794 *v = ((u64)s)<<32 | a;
795 return 5;
796 }
797
798 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
799 s = s<<7;
800 s |= b;
801 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
802
803 p++;
804 b = b<<14;
805 b |= *p;
806 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
807 if (!(b&0x80))
808 {
809 /* we can skip this cause it was (effectively) done above in calc'ing s */
810 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +0000811 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000812 a = a<<7;
813 a |= b;
814 s = s>>18;
815 *v = ((u64)s)<<32 | a;
816 return 6;
817 }
818
819 p++;
820 a = a<<14;
821 a |= *p;
822 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
823 if (!(a&0x80))
824 {
drh0b2864c2010-03-03 15:18:38 +0000825 a &= SLOT_4_2_0;
826 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000827 b = b<<7;
828 a |= b;
829 s = s>>11;
830 *v = ((u64)s)<<32 | a;
831 return 7;
832 }
833
834 /* CSE2 from below */
drh0b2864c2010-03-03 15:18:38 +0000835 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000836 p++;
837 b = b<<14;
838 b |= *p;
839 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
840 if (!(b&0x80))
841 {
drh0b2864c2010-03-03 15:18:38 +0000842 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +0000843 /* moved CSE2 up */
844 /* a &= (0x7f<<14)|(0x7f); */
845 a = a<<7;
846 a |= b;
847 s = s>>4;
848 *v = ((u64)s)<<32 | a;
849 return 8;
850 }
851
852 p++;
853 a = a<<15;
854 a |= *p;
855 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
856
857 /* moved CSE2 up */
858 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
drh0b2864c2010-03-03 15:18:38 +0000859 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000860 b = b<<8;
861 a |= b;
862
863 s = s<<4;
864 b = p[-4];
865 b &= 0x7f;
866 b = b>>3;
867 s |= b;
868
869 *v = ((u64)s)<<32 | a;
870
871 return 9;
872}
873
874/*
875** Read a 32-bit variable-length integer from memory starting at p[0].
876** Return the number of bytes read. The value is stored in *v.
877**
878** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
879** integer, then set *v to 0xffffffff.
880**
881** A MACRO version, getVarint32, is provided which inlines the
882** single-byte case. All code should use the MACRO version as
883** this function assumes the single-byte case has already been handled.
884*/
885u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
886 u32 a,b;
887
888 /* The 1-byte case. Overwhelmingly the most common. Handled inline
889 ** by the getVarin32() macro */
890 a = *p;
891 /* a: p0 (unmasked) */
892#ifndef getVarint32
893 if (!(a&0x80))
894 {
895 /* Values between 0 and 127 */
896 *v = a;
897 return 1;
898 }
899#endif
900
901 /* The 2-byte case */
902 p++;
903 b = *p;
904 /* b: p1 (unmasked) */
905 if (!(b&0x80))
906 {
907 /* Values between 128 and 16383 */
908 a &= 0x7f;
909 a = a<<7;
910 *v = a | b;
911 return 2;
912 }
913
914 /* The 3-byte case */
915 p++;
916 a = a<<14;
917 a |= *p;
918 /* a: p0<<14 | p2 (unmasked) */
919 if (!(a&0x80))
920 {
921 /* Values between 16384 and 2097151 */
922 a &= (0x7f<<14)|(0x7f);
923 b &= 0x7f;
924 b = b<<7;
925 *v = a | b;
926 return 3;
927 }
928
929 /* A 32-bit varint is used to store size information in btrees.
930 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
931 ** A 3-byte varint is sufficient, for example, to record the size
932 ** of a 1048569-byte BLOB or string.
933 **
934 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
935 ** rare larger cases can be handled by the slower 64-bit varint
936 ** routine.
937 */
938#if 1
939 {
940 u64 v64;
941 u8 n;
942
943 p -= 2;
944 n = sqlite3GetVarint(p, &v64);
945 assert( n>3 && n<=9 );
946 if( (v64 & SQLITE_MAX_U32)!=v64 ){
947 *v = 0xffffffff;
948 }else{
949 *v = (u32)v64;
950 }
951 return n;
952 }
953
954#else
955 /* For following code (kept for historical record only) shows an
956 ** unrolling for the 3- and 4-byte varint cases. This code is
957 ** slightly faster, but it is also larger and much harder to test.
958 */
959 p++;
960 b = b<<14;
961 b |= *p;
962 /* b: p1<<14 | p3 (unmasked) */
963 if (!(b&0x80))
964 {
965 /* Values between 2097152 and 268435455 */
966 b &= (0x7f<<14)|(0x7f);
967 a &= (0x7f<<14)|(0x7f);
968 a = a<<7;
969 *v = a | b;
970 return 4;
971 }
972
973 p++;
974 a = a<<14;
975 a |= *p;
976 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
977 if (!(a&0x80))
978 {
dan3bbe7612010-03-03 16:02:05 +0000979 /* Values between 268435456 and 34359738367 */
980 a &= SLOT_4_2_0;
981 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +0000982 b = b<<7;
983 *v = a | b;
984 return 5;
985 }
986
987 /* We can only reach this point when reading a corrupt database
988 ** file. In that case we are not in any hurry. Use the (relatively
989 ** slow) general-purpose sqlite3GetVarint() routine to extract the
990 ** value. */
991 {
992 u64 v64;
993 u8 n;
994
995 p -= 4;
996 n = sqlite3GetVarint(p, &v64);
997 assert( n>5 && n<=9 );
998 *v = (u32)v64;
999 return n;
1000 }
1001#endif
1002}
1003
1004/*
1005** Return the number of bytes that will be needed to store the given
1006** 64-bit integer.
1007*/
1008int sqlite3VarintLen(u64 v){
1009 int i = 0;
1010 do{
1011 i++;
1012 v >>= 7;
1013 }while( v!=0 && ALWAYS(i<9) );
1014 return i;
1015}
1016
1017
1018/*
1019** Read or write a four-byte big-endian integer value.
1020*/
1021u32 sqlite3Get4byte(const u8 *p){
drh693e6712014-01-24 22:58:00 +00001022 testcase( p[0]&0x80 );
1023 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
drhc81c11f2009-11-10 01:30:52 +00001024}
1025void sqlite3Put4byte(unsigned char *p, u32 v){
1026 p[0] = (u8)(v>>24);
1027 p[1] = (u8)(v>>16);
1028 p[2] = (u8)(v>>8);
1029 p[3] = (u8)v;
1030}
1031
1032
1033
drhc81c11f2009-11-10 01:30:52 +00001034/*
1035** Translate a single byte of Hex into an integer.
1036** This routine only works if h really is a valid hexadecimal
1037** character: 0..9a..fA..F
1038*/
dancd74b612011-04-22 19:37:32 +00001039u8 sqlite3HexToInt(int h){
drhc81c11f2009-11-10 01:30:52 +00001040 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1041#ifdef SQLITE_ASCII
1042 h += 9*(1&(h>>6));
1043#endif
1044#ifdef SQLITE_EBCDIC
1045 h += 9*(1&~(h>>4));
1046#endif
1047 return (u8)(h & 0xf);
1048}
drhc81c11f2009-11-10 01:30:52 +00001049
1050#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1051/*
1052** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1053** value. Return a pointer to its binary value. Space to hold the
1054** binary value has been obtained from malloc and must be freed by
1055** the calling routine.
1056*/
1057void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1058 char *zBlob;
1059 int i;
1060
1061 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
1062 n--;
1063 if( zBlob ){
1064 for(i=0; i<n; i+=2){
dancd74b612011-04-22 19:37:32 +00001065 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
drhc81c11f2009-11-10 01:30:52 +00001066 }
1067 zBlob[i/2] = 0;
1068 }
1069 return zBlob;
1070}
1071#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1072
drh413c3d32010-02-23 20:11:56 +00001073/*
1074** Log an error that is an API call on a connection pointer that should
1075** not have been used. The "type" of connection pointer is given as the
1076** argument. The zType is a word like "NULL" or "closed" or "invalid".
1077*/
1078static void logBadConnection(const char *zType){
1079 sqlite3_log(SQLITE_MISUSE,
1080 "API call with %s database connection pointer",
1081 zType
1082 );
1083}
drhc81c11f2009-11-10 01:30:52 +00001084
1085/*
drhc81c11f2009-11-10 01:30:52 +00001086** Check to make sure we have a valid db pointer. This test is not
1087** foolproof but it does provide some measure of protection against
1088** misuse of the interface such as passing in db pointers that are
1089** NULL or which have been previously closed. If this routine returns
1090** 1 it means that the db pointer is valid and 0 if it should not be
1091** dereferenced for any reason. The calling function should invoke
1092** SQLITE_MISUSE immediately.
1093**
1094** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1095** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1096** open properly and is not fit for general use but which can be
1097** used as an argument to sqlite3_errmsg() or sqlite3_close().
1098*/
1099int sqlite3SafetyCheckOk(sqlite3 *db){
1100 u32 magic;
drh413c3d32010-02-23 20:11:56 +00001101 if( db==0 ){
1102 logBadConnection("NULL");
1103 return 0;
1104 }
drhc81c11f2009-11-10 01:30:52 +00001105 magic = db->magic;
drh9978c972010-02-23 17:36:32 +00001106 if( magic!=SQLITE_MAGIC_OPEN ){
drhe294da02010-02-25 23:44:15 +00001107 if( sqlite3SafetyCheckSickOrOk(db) ){
1108 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +00001109 logBadConnection("unopened");
1110 }
drhc81c11f2009-11-10 01:30:52 +00001111 return 0;
1112 }else{
1113 return 1;
1114 }
1115}
1116int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1117 u32 magic;
1118 magic = db->magic;
1119 if( magic!=SQLITE_MAGIC_SICK &&
1120 magic!=SQLITE_MAGIC_OPEN &&
drh413c3d32010-02-23 20:11:56 +00001121 magic!=SQLITE_MAGIC_BUSY ){
drhe294da02010-02-25 23:44:15 +00001122 testcase( sqlite3GlobalConfig.xLog!=0 );
drhaf46dc12010-02-24 21:44:07 +00001123 logBadConnection("invalid");
drh413c3d32010-02-23 20:11:56 +00001124 return 0;
1125 }else{
1126 return 1;
1127 }
drhc81c11f2009-11-10 01:30:52 +00001128}
drh158b9cb2011-03-05 20:59:46 +00001129
1130/*
1131** Attempt to add, substract, or multiply the 64-bit signed value iB against
1132** the other 64-bit signed integer at *pA and store the result in *pA.
1133** Return 0 on success. Or if the operation would have resulted in an
1134** overflow, leave *pA unchanged and return 1.
1135*/
1136int sqlite3AddInt64(i64 *pA, i64 iB){
1137 i64 iA = *pA;
1138 testcase( iA==0 ); testcase( iA==1 );
1139 testcase( iB==-1 ); testcase( iB==0 );
1140 if( iB>=0 ){
1141 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1142 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1143 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001144 }else{
1145 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1146 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1147 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001148 }
drh53a6eb32014-02-10 12:59:15 +00001149 *pA += iB;
drh158b9cb2011-03-05 20:59:46 +00001150 return 0;
1151}
1152int sqlite3SubInt64(i64 *pA, i64 iB){
1153 testcase( iB==SMALLEST_INT64+1 );
1154 if( iB==SMALLEST_INT64 ){
1155 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1156 if( (*pA)>=0 ) return 1;
1157 *pA -= iB;
1158 return 0;
1159 }else{
1160 return sqlite3AddInt64(pA, -iB);
1161 }
1162}
1163#define TWOPOWER32 (((i64)1)<<32)
1164#define TWOPOWER31 (((i64)1)<<31)
1165int sqlite3MulInt64(i64 *pA, i64 iB){
1166 i64 iA = *pA;
1167 i64 iA1, iA0, iB1, iB0, r;
1168
drh158b9cb2011-03-05 20:59:46 +00001169 iA1 = iA/TWOPOWER32;
1170 iA0 = iA % TWOPOWER32;
1171 iB1 = iB/TWOPOWER32;
1172 iB0 = iB % TWOPOWER32;
drh53a6eb32014-02-10 12:59:15 +00001173 if( iA1==0 ){
1174 if( iB1==0 ){
1175 *pA *= iB;
1176 return 0;
1177 }
1178 r = iA0*iB1;
1179 }else if( iB1==0 ){
1180 r = iA1*iB0;
1181 }else{
1182 /* If both iA1 and iB1 are non-zero, overflow will result */
1183 return 1;
1184 }
drh158b9cb2011-03-05 20:59:46 +00001185 testcase( r==(-TWOPOWER31)-1 );
1186 testcase( r==(-TWOPOWER31) );
1187 testcase( r==TWOPOWER31 );
1188 testcase( r==TWOPOWER31-1 );
1189 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
1190 r *= TWOPOWER32;
1191 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
1192 *pA = r;
1193 return 0;
1194}
drhd50ffc42011-03-08 02:38:28 +00001195
1196/*
1197** Compute the absolute value of a 32-bit signed integer, of possible. Or
1198** if the integer has a value of -2147483648, return +2147483647
1199*/
1200int sqlite3AbsInt32(int x){
1201 if( x>=0 ) return x;
drh87e79ae2011-03-08 13:06:41 +00001202 if( x==(int)0x80000000 ) return 0x7fffffff;
drhd50ffc42011-03-08 02:38:28 +00001203 return -x;
1204}
drh81cc5162011-05-17 20:36:21 +00001205
1206#ifdef SQLITE_ENABLE_8_3_NAMES
1207/*
drhb51bf432011-07-21 21:29:35 +00001208** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
drh81cc5162011-05-17 20:36:21 +00001209** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1210** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1211** three characters, then shorten the suffix on z[] to be the last three
1212** characters of the original suffix.
1213**
drhb51bf432011-07-21 21:29:35 +00001214** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1215** do the suffix shortening regardless of URI parameter.
1216**
drh81cc5162011-05-17 20:36:21 +00001217** Examples:
1218**
1219** test.db-journal => test.nal
1220** test.db-wal => test.wal
1221** test.db-shm => test.shm
drhf5808602011-12-16 00:33:04 +00001222** test.db-mj7f3319fa => test.9fa
drh81cc5162011-05-17 20:36:21 +00001223*/
1224void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
drhb51bf432011-07-21 21:29:35 +00001225#if SQLITE_ENABLE_8_3_NAMES<2
drh7d39e172012-01-02 12:41:53 +00001226 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
drhb51bf432011-07-21 21:29:35 +00001227#endif
1228 {
drh81cc5162011-05-17 20:36:21 +00001229 int i, sz;
1230 sz = sqlite3Strlen30(z);
drhc83f2d42011-05-18 02:41:10 +00001231 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
drhc02a43a2012-01-10 23:18:38 +00001232 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
drh81cc5162011-05-17 20:36:21 +00001233 }
1234}
1235#endif
drhbf539c42013-10-05 18:16:02 +00001236
1237/*
1238** Find (an approximate) sum of two LogEst values. This computation is
1239** not a simple "+" operator because LogEst is stored as a logarithmic
1240** value.
1241**
1242*/
1243LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1244 static const unsigned char x[] = {
1245 10, 10, /* 0,1 */
1246 9, 9, /* 2,3 */
1247 8, 8, /* 4,5 */
1248 7, 7, 7, /* 6,7,8 */
1249 6, 6, 6, /* 9,10,11 */
1250 5, 5, 5, /* 12-14 */
1251 4, 4, 4, 4, /* 15-18 */
1252 3, 3, 3, 3, 3, 3, /* 19-24 */
1253 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1254 };
1255 if( a>=b ){
1256 if( a>b+49 ) return a;
1257 if( a>b+31 ) return a+1;
1258 return a+x[a-b];
1259 }else{
1260 if( b>a+49 ) return b;
1261 if( b>a+31 ) return b+1;
1262 return b+x[b-a];
1263 }
1264}
1265
1266/*
drh224155d2014-04-30 13:19:09 +00001267** Convert an integer into a LogEst. In other words, compute an
1268** approximation for 10*log2(x).
drhbf539c42013-10-05 18:16:02 +00001269*/
1270LogEst sqlite3LogEst(u64 x){
1271 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1272 LogEst y = 40;
1273 if( x<8 ){
1274 if( x<2 ) return 0;
1275 while( x<8 ){ y -= 10; x <<= 1; }
1276 }else{
1277 while( x>255 ){ y += 40; x >>= 4; }
1278 while( x>15 ){ y += 10; x >>= 1; }
1279 }
1280 return a[x&7] + y - 10;
1281}
1282
1283#ifndef SQLITE_OMIT_VIRTUALTABLE
1284/*
1285** Convert a double into a LogEst
1286** In other words, compute an approximation for 10*log2(x).
1287*/
1288LogEst sqlite3LogEstFromDouble(double x){
1289 u64 a;
1290 LogEst e;
1291 assert( sizeof(x)==8 && sizeof(a)==8 );
1292 if( x<=1 ) return 0;
1293 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1294 memcpy(&a, &x, 8);
1295 e = (a>>52) - 1022;
1296 return e*10;
1297}
1298#endif /* SQLITE_OMIT_VIRTUALTABLE */
1299
1300/*
1301** Convert a LogEst into an integer.
1302*/
1303u64 sqlite3LogEstToInt(LogEst x){
1304 u64 n;
1305 if( x<10 ) return 1;
1306 n = x%10;
1307 x /= 10;
1308 if( n>=5 ) n -= 2;
1309 else if( n>=1 ) n -= 1;
drh47676fe2013-12-05 16:41:55 +00001310 if( x>=3 ){
1311 return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3);
1312 }
drhbf539c42013-10-05 18:16:02 +00001313 return (n+8)>>(3-x);
1314}