blob: bbccac8a90371fbb7982dce7ec99153cb3fd28da [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh9a324642003-09-06 20:12:01 +000012** The code in this file implements execution method of the
13** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14** handles housekeeping details such as creating and deleting
15** VDBE instances. This file is solely interested in executing
16** the VDBE program.
17**
danielk1977fc57d7b2004-05-26 02:04:57 +000018** In the external interface, an "sqlite3_stmt*" is an opaque pointer
drh9a324642003-09-06 20:12:01 +000019** to a VDBE.
drh75897232000-05-29 14:26:00 +000020**
21** The SQL parser generates a program which is then executed by
22** the VDBE to do the work of the SQL statement. VDBE programs are
23** similar in form to assembly language. The program consists of
24** a linear sequence of operations. Each operation has an opcode
drh9cbf3422008-01-17 16:22:13 +000025** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26** is a null-terminated string. Operand P5 is an unsigned character.
27** Few opcodes use all 5 operands.
drh75897232000-05-29 14:26:00 +000028**
drh9cbf3422008-01-17 16:22:13 +000029** Computation results are stored on a set of registers numbered beginning
30** with 1 and going up to Vdbe.nMem. Each register can store
31** either an integer, a null-terminated string, a floating point
shane21e7feb2008-05-30 15:59:49 +000032** number, or the SQL "NULL" value. An implicit conversion from one
drhb19a2bc2001-09-16 00:13:26 +000033** type to the other occurs as necessary.
drh75897232000-05-29 14:26:00 +000034**
danielk19774adee202004-05-08 08:23:19 +000035** Most of the code in this file is taken up by the sqlite3VdbeExec()
drh75897232000-05-29 14:26:00 +000036** function which does the work of interpreting a VDBE program.
37** But other routines are also provided to help in building up
38** a program instruction by instruction.
39**
drhac82fcf2002-09-08 17:23:41 +000040** Various scripts scan this source file in order to generate HTML
41** documentation, headers files, or other derived files. The formatting
42** of the code in this file is, therefore, important. See other comments
43** in this file for details. If in doubt, do not deviate from existing
44** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000045*/
46#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000047#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000048
49/*
drh2b4ded92010-09-27 21:09:31 +000050** Invoke this macro on memory cells just prior to changing the
51** value of the cell. This macro verifies that shallow copies are
52** not misused.
53*/
54#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000055# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000056#else
57# define memAboutToChange(P,M)
58#endif
59
60/*
drh487ab3c2001-11-08 00:45:21 +000061** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000062** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000063** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000064** working correctly. This variable has no function other than to
65** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000066*/
drh0f7eb612006-08-08 13:51:43 +000067#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000068int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000069#endif
drh487ab3c2001-11-08 00:45:21 +000070
drhf6038712004-02-08 18:07:34 +000071/*
72** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000073** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
74** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000075**
76** This facility is used for testing purposes only. It does not function
77** in an ordinary build.
78*/
drh0f7eb612006-08-08 13:51:43 +000079#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000080int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000081#endif
drh1350b032002-02-27 19:00:20 +000082
danielk19777e18c252004-05-25 11:47:24 +000083/*
drh6bf89572004-11-03 16:27:01 +000084** The next global variable is incremented each type the OP_Sort opcode
85** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000086** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000087** has no function other than to help verify the correct operation of the
88** library.
89*/
drh0f7eb612006-08-08 13:51:43 +000090#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000091int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000092#endif
drh6bf89572004-11-03 16:27:01 +000093
94/*
drhae7e1512007-05-02 16:51:59 +000095** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000096** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000097** use this information to make sure that the zero-blob functionality
98** is working correctly. This variable has no function other than to
99** help verify the correct operation of the library.
100*/
101#ifdef SQLITE_TEST
102int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +0000103static void updateMaxBlobsize(Mem *p){
104 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
105 sqlite3_max_blobsize = p->n;
106 }
107}
drhae7e1512007-05-02 16:51:59 +0000108#endif
109
110/*
dan0ff297e2009-09-25 17:03:14 +0000111** The next global variable is incremented each type the OP_Found opcode
112** is executed. This is used to test whether or not the foreign key
113** operation implemented using OP_FkIsZero is working. This variable
114** has no function other than to help verify the correct operation of the
115** library.
116*/
117#ifdef SQLITE_TEST
118int sqlite3_found_count = 0;
119#endif
120
121/*
drhb7654112008-01-12 12:48:07 +0000122** Test a register to see if it exceeds the current maximum blob size.
123** If it does, record the new maximum blob size.
124*/
drh678ccce2008-03-31 18:19:54 +0000125#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000126# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000127#else
128# define UPDATE_MAX_BLOBSIZE(P)
129#endif
130
131/*
drh9cbf3422008-01-17 16:22:13 +0000132** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000133** already. Return non-zero if a malloc() fails.
134*/
drhb21c8cd2007-08-21 19:33:56 +0000135#define Stringify(P, enc) \
136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
drhf4479502004-05-27 03:12:53 +0000137 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000138
139/*
danielk1977bd7e4602004-05-24 07:34:48 +0000140** An ephemeral string value (signified by the MEM_Ephem flag) contains
141** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000142** is responsible for deallocating that string. Because the register
143** does not control the string, it might be deleted without the register
144** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000145**
146** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000147** string that the register itself controls. In other words, it
danielk1977bd7e4602004-05-24 07:34:48 +0000148** converts an MEM_Ephem string into an MEM_Dyn string.
149*/
drhb21c8cd2007-08-21 19:33:56 +0000150#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000151 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000153
dan689ab892011-08-12 15:02:00 +0000154/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
155#ifdef SQLITE_OMIT_MERGE_SORT
156# define isSorter(x) 0
157#else
158# define isSorter(x) ((x)->pSorter!=0)
159#endif
160
danielk19771cc5ed82007-05-16 17:28:43 +0000161/*
shane21e7feb2008-05-30 15:59:49 +0000162** Argument pMem points at a register that will be passed to a
danielk1977c572ef72004-05-27 09:28:41 +0000163** user-defined function or returned to the user as the result of a query.
dan937d0de2009-10-15 18:35:38 +0000164** This routine sets the pMem->type variable used by the sqlite3_value_*()
165** routines.
danielk1977c572ef72004-05-27 09:28:41 +0000166*/
dan937d0de2009-10-15 18:35:38 +0000167void sqlite3VdbeMemStoreType(Mem *pMem){
danielk1977c572ef72004-05-27 09:28:41 +0000168 int flags = pMem->flags;
169 if( flags & MEM_Null ){
drh9c054832004-05-31 18:51:57 +0000170 pMem->type = SQLITE_NULL;
danielk1977c572ef72004-05-27 09:28:41 +0000171 }
172 else if( flags & MEM_Int ){
drh9c054832004-05-31 18:51:57 +0000173 pMem->type = SQLITE_INTEGER;
danielk1977c572ef72004-05-27 09:28:41 +0000174 }
175 else if( flags & MEM_Real ){
drh9c054832004-05-31 18:51:57 +0000176 pMem->type = SQLITE_FLOAT;
danielk1977c572ef72004-05-27 09:28:41 +0000177 }
178 else if( flags & MEM_Str ){
drh9c054832004-05-31 18:51:57 +0000179 pMem->type = SQLITE_TEXT;
danielk1977c572ef72004-05-27 09:28:41 +0000180 }else{
drh9c054832004-05-31 18:51:57 +0000181 pMem->type = SQLITE_BLOB;
danielk1977c572ef72004-05-27 09:28:41 +0000182 }
183}
danielk19778a6b5412004-05-24 07:04:25 +0000184
185/*
drhdfe88ec2008-11-03 20:55:06 +0000186** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000187** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000188*/
drhdfe88ec2008-11-03 20:55:06 +0000189static VdbeCursor *allocateCursor(
190 Vdbe *p, /* The virtual machine */
191 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000192 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000193 int iDb, /* Database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000194 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000195){
196 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000197 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000198 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000199 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000200 **
201 ** * Sometimes cursor numbers are used for a couple of different
202 ** purposes in a vdbe program. The different uses might require
203 ** different sized allocations. Memory cells provide growable
204 ** allocations.
205 **
206 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
207 ** be freed lazily via the sqlite3_release_memory() API. This
208 ** minimizes the number of malloc calls made by the system.
209 **
210 ** Memory cells for cursors are allocated at the top of the address
211 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
212 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
213 */
214 Mem *pMem = &p->aMem[p->nMem-iCur];
215
danielk19775f096132008-03-28 15:44:09 +0000216 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000217 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000218 nByte =
drhc54055b2009-11-13 17:05:53 +0000219 ROUND8(sizeof(VdbeCursor)) +
danielk1977cd3e8f72008-03-25 09:47:35 +0000220 (isBtreeCursor?sqlite3BtreeCursorSize():0) +
221 2*nField*sizeof(u32);
222
drh290c1942004-08-21 17:54:45 +0000223 assert( iCur<p->nCursor );
224 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000225 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000226 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000227 }
danielk1977cd3e8f72008-03-25 09:47:35 +0000228 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
drhdfe88ec2008-11-03 20:55:06 +0000229 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000230 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000231 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000232 pCx->nField = nField;
233 if( nField ){
drhc54055b2009-11-13 17:05:53 +0000234 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
danielk1977cd3e8f72008-03-25 09:47:35 +0000235 }
236 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000237 pCx->pCursor = (BtCursor*)
drhc54055b2009-11-13 17:05:53 +0000238 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
drhf25a5072009-11-18 23:01:25 +0000239 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000240 }
danielk197794eb6a12005-12-15 15:22:08 +0000241 }
drh4774b132004-06-12 20:12:51 +0000242 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000243}
244
danielk19773d1bfea2004-05-14 11:00:53 +0000245/*
drh29d72102006-02-09 22:13:41 +0000246** Try to convert a value into a numeric representation if we can
247** do so without loss of information. In other words, if the string
248** looks like a number, convert it into a number. If it does not
249** look like a number, leave it alone.
250*/
drhb21c8cd2007-08-21 19:33:56 +0000251static void applyNumericAffinity(Mem *pRec){
drh29d72102006-02-09 22:13:41 +0000252 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
drh9339da12010-09-30 00:50:49 +0000253 double rValue;
254 i64 iValue;
danb7dca7d2010-03-05 16:32:12 +0000255 u8 enc = pRec->enc;
drh9339da12010-09-30 00:50:49 +0000256 if( (pRec->flags&MEM_Str)==0 ) return;
257 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
shaneh5f1d6b62010-09-30 16:51:25 +0000258 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
drh9339da12010-09-30 00:50:49 +0000259 pRec->u.i = iValue;
260 pRec->flags |= MEM_Int;
261 }else{
262 pRec->r = rValue;
263 pRec->flags |= MEM_Real;
drh29d72102006-02-09 22:13:41 +0000264 }
265 }
266}
267
268/*
drh8a512562005-11-14 22:29:05 +0000269** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000270**
drh8a512562005-11-14 22:29:05 +0000271** SQLITE_AFF_INTEGER:
272** SQLITE_AFF_REAL:
273** SQLITE_AFF_NUMERIC:
274** Try to convert pRec to an integer representation or a
275** floating-point representation if an integer representation
276** is not possible. Note that the integer representation is
277** always preferred, even if the affinity is REAL, because
278** an integer representation is more space efficient on disk.
279**
280** SQLITE_AFF_TEXT:
281** Convert pRec to a text representation.
282**
283** SQLITE_AFF_NONE:
284** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000285*/
drh17435752007-08-16 04:30:38 +0000286static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000287 Mem *pRec, /* The value to apply affinity to */
288 char affinity, /* The affinity to be applied */
289 u8 enc /* Use this text encoding */
290){
drh8a512562005-11-14 22:29:05 +0000291 if( affinity==SQLITE_AFF_TEXT ){
drh17c40292004-07-21 02:53:29 +0000292 /* Only attempt the conversion to TEXT if there is an integer or real
293 ** representation (blob and NULL do not get converted) but no string
294 ** representation.
295 */
296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
drhb21c8cd2007-08-21 19:33:56 +0000297 sqlite3VdbeMemStringify(pRec, enc);
drh17c40292004-07-21 02:53:29 +0000298 }
299 pRec->flags &= ~(MEM_Real|MEM_Int);
drh8a512562005-11-14 22:29:05 +0000300 }else if( affinity!=SQLITE_AFF_NONE ){
301 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
302 || affinity==SQLITE_AFF_NUMERIC );
drhb21c8cd2007-08-21 19:33:56 +0000303 applyNumericAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000304 if( pRec->flags & MEM_Real ){
drh8df447f2005-11-01 15:48:24 +0000305 sqlite3VdbeIntegerAffinity(pRec);
drh17c40292004-07-21 02:53:29 +0000306 }
danielk19773d1bfea2004-05-14 11:00:53 +0000307 }
308}
309
danielk1977aee18ef2005-03-09 12:26:50 +0000310/*
drh29d72102006-02-09 22:13:41 +0000311** Try to convert the type of a function argument or a result column
312** into a numeric representation. Use either INTEGER or REAL whichever
313** is appropriate. But only do the conversion if it is possible without
314** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000315*/
316int sqlite3_value_numeric_type(sqlite3_value *pVal){
317 Mem *pMem = (Mem*)pVal;
drhe5a8a1d2010-11-18 12:31:24 +0000318 if( pMem->type==SQLITE_TEXT ){
319 applyNumericAffinity(pMem);
320 sqlite3VdbeMemStoreType(pMem);
321 }
drh29d72102006-02-09 22:13:41 +0000322 return pMem->type;
323}
324
325/*
danielk1977aee18ef2005-03-09 12:26:50 +0000326** Exported version of applyAffinity(). This one works on sqlite3_value*,
327** not the internal Mem* type.
328*/
danielk19771e536952007-08-16 10:09:01 +0000329void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000330 sqlite3_value *pVal,
331 u8 affinity,
332 u8 enc
333){
drhb21c8cd2007-08-21 19:33:56 +0000334 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000335}
336
danielk1977b5402fb2005-01-12 07:15:04 +0000337#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000338/*
danielk1977ca6b2912004-05-21 10:49:47 +0000339** Write a nice string representation of the contents of cell pMem
340** into buffer zBuf, length nBuf.
341*/
drh74161702006-02-24 02:53:49 +0000342void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000343 char *zCsr = zBuf;
344 int f = pMem->flags;
345
drh57196282004-10-06 15:41:16 +0000346 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000347
danielk1977ca6b2912004-05-21 10:49:47 +0000348 if( f&MEM_Blob ){
349 int i;
350 char c;
351 if( f & MEM_Dyn ){
352 c = 'z';
353 assert( (f & (MEM_Static|MEM_Ephem))==0 );
354 }else if( f & MEM_Static ){
355 c = 't';
356 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
357 }else if( f & MEM_Ephem ){
358 c = 'e';
359 assert( (f & (MEM_Static|MEM_Dyn))==0 );
360 }else{
361 c = 's';
362 }
363
drh5bb3eb92007-05-04 13:15:55 +0000364 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000365 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000366 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000367 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000368 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000369 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000370 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000371 }
372 for(i=0; i<16 && i<pMem->n; i++){
373 char z = pMem->z[i];
374 if( z<32 || z>126 ) *zCsr++ = '.';
375 else *zCsr++ = z;
376 }
377
drhe718efe2007-05-10 21:14:03 +0000378 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000379 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000380 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000381 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000382 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000383 }
danielk1977b1bc9532004-05-22 03:05:33 +0000384 *zCsr = '\0';
385 }else if( f & MEM_Str ){
386 int j, k;
387 zBuf[0] = ' ';
388 if( f & MEM_Dyn ){
389 zBuf[1] = 'z';
390 assert( (f & (MEM_Static|MEM_Ephem))==0 );
391 }else if( f & MEM_Static ){
392 zBuf[1] = 't';
393 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
394 }else if( f & MEM_Ephem ){
395 zBuf[1] = 'e';
396 assert( (f & (MEM_Static|MEM_Dyn))==0 );
397 }else{
398 zBuf[1] = 's';
399 }
400 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000401 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000402 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000403 zBuf[k++] = '[';
404 for(j=0; j<15 && j<pMem->n; j++){
405 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000406 if( c>=0x20 && c<0x7f ){
407 zBuf[k++] = c;
408 }else{
409 zBuf[k++] = '.';
410 }
411 }
412 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000413 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000414 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000415 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000416 }
danielk1977ca6b2912004-05-21 10:49:47 +0000417}
418#endif
419
drh5b6afba2008-01-05 16:29:28 +0000420#ifdef SQLITE_DEBUG
421/*
422** Print the value of a register for tracing purposes:
423*/
424static void memTracePrint(FILE *out, Mem *p){
425 if( p->flags & MEM_Null ){
426 fprintf(out, " NULL");
427 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
428 fprintf(out, " si:%lld", p->u.i);
429 }else if( p->flags & MEM_Int ){
430 fprintf(out, " i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000431#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000432 }else if( p->flags & MEM_Real ){
433 fprintf(out, " r:%g", p->r);
drh0b3bf922009-06-15 20:45:34 +0000434#endif
drh733bf1b2009-04-22 00:47:00 +0000435 }else if( p->flags & MEM_RowSet ){
436 fprintf(out, " (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000437 }else{
438 char zBuf[200];
439 sqlite3VdbeMemPrettyPrint(p, zBuf);
440 fprintf(out, " ");
441 fprintf(out, "%s", zBuf);
442 }
443}
444static void registerTrace(FILE *out, int iReg, Mem *p){
445 fprintf(out, "REG[%d] = ", iReg);
446 memTracePrint(out, p);
447 fprintf(out, "\n");
448}
449#endif
450
451#ifdef SQLITE_DEBUG
drhb21e7c72008-06-22 12:37:57 +0000452# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
drh5b6afba2008-01-05 16:29:28 +0000453#else
454# define REGISTER_TRACE(R,M)
455#endif
456
danielk197784ac9d02004-05-18 09:58:06 +0000457
drh7b396862003-01-01 23:06:20 +0000458#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000459
460/*
461** hwtime.h contains inline assembler code for implementing
462** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000463*/
shane9bcbdad2008-05-29 20:22:37 +0000464#include "hwtime.h"
465
drh7b396862003-01-01 23:06:20 +0000466#endif
467
drh8c74a8c2002-08-25 19:20:40 +0000468/*
drhcaec2f12003-01-07 02:47:47 +0000469** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
danielk19776f8a5032004-05-10 10:34:51 +0000470** sqlite3_interrupt() routine has been called. If it has been, then
drhcaec2f12003-01-07 02:47:47 +0000471** processing of the VDBE program is interrupted.
472**
473** This macro added to every instruction that does a jump in order to
474** implement a loop. This test used to be on every single instruction,
drhe4c88c02012-01-04 12:57:45 +0000475** but that meant we more testing than we needed. By only testing the
drhcaec2f12003-01-07 02:47:47 +0000476** flag on jump instructions, we get a (small) speed improvement.
477*/
478#define CHECK_FOR_INTERRUPT \
drh881feaa2006-07-26 01:39:30 +0000479 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drhcaec2f12003-01-07 02:47:47 +0000480
481
danielk1977fd7f0452008-12-17 17:30:26 +0000482#ifndef NDEBUG
483/*
484** This function is only called from within an assert() expression. It
485** checks that the sqlite3.nTransaction variable is correctly set to
486** the number of non-transaction savepoints currently in the
487** linked list starting at sqlite3.pSavepoint.
488**
489** Usage:
490**
491** assert( checkSavepointCount(db) );
492*/
493static int checkSavepointCount(sqlite3 *db){
494 int n = 0;
495 Savepoint *p;
496 for(p=db->pSavepoint; p; p=p->pNext) n++;
497 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
498 return 1;
499}
500#endif
501
drhcaec2f12003-01-07 02:47:47 +0000502/*
drhb9755982010-07-24 16:34:37 +0000503** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
504** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
505** in memory obtained from sqlite3DbMalloc).
506*/
507static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
508 sqlite3 *db = p->db;
509 sqlite3DbFree(db, p->zErrMsg);
510 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
511 sqlite3_free(pVtab->zErrMsg);
512 pVtab->zErrMsg = 0;
513}
514
515
516/*
drhb86ccfb2003-01-28 23:13:10 +0000517** Execute as much of a VDBE program as we can then return.
518**
danielk19774adee202004-05-08 08:23:19 +0000519** sqlite3VdbeMakeReady() must be called before this routine in order to
drhb86ccfb2003-01-28 23:13:10 +0000520** close the program with a final OP_Halt and to set up the callbacks
521** and the error message pointer.
522**
523** Whenever a row or result data is available, this routine will either
524** invoke the result callback (if there is one) or return with
drh326dce72003-01-29 14:06:07 +0000525** SQLITE_ROW.
drhb86ccfb2003-01-28 23:13:10 +0000526**
527** If an attempt is made to open a locked database, then this routine
528** will either invoke the busy callback (if there is one) or it will
529** return SQLITE_BUSY.
530**
531** If an error occurs, an error message is written to memory obtained
drh17435752007-08-16 04:30:38 +0000532** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
drhb86ccfb2003-01-28 23:13:10 +0000533** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
534**
535** If the callback ever returns non-zero, then the program exits
536** immediately. There will be no error message but the p->rc field is
537** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
538**
drh9468c7f2003-03-07 19:50:07 +0000539** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
540** routine to return SQLITE_ERROR.
drhb86ccfb2003-01-28 23:13:10 +0000541**
542** Other fatal errors return SQLITE_ERROR.
543**
danielk19774adee202004-05-08 08:23:19 +0000544** After this routine has finished, sqlite3VdbeFinalize() should be
drhb86ccfb2003-01-28 23:13:10 +0000545** used to clean up the mess that was left behind.
546*/
danielk19774adee202004-05-08 08:23:19 +0000547int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000548 Vdbe *p /* The VDBE */
549){
shaneh84f4b2f2010-02-26 01:46:54 +0000550 int pc=0; /* The program counter */
drhbbe879d2009-11-14 18:04:35 +0000551 Op *aOp = p->aOp; /* Copy of p->aOp */
drhb86ccfb2003-01-28 23:13:10 +0000552 Op *pOp; /* Current operation */
553 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000554 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000555 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000556 u8 encoding = ENC(db); /* The database encoding */
drha6c2ed92009-11-14 23:22:23 +0000557#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
shaneh5e17e8b2009-12-03 04:40:47 +0000558 int checkProgress; /* True if progress callbacks are enabled */
drha6c2ed92009-11-14 23:22:23 +0000559 int nProgressOps = 0; /* Opcodes executed since progress callback. */
560#endif
561 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000562 Mem *pIn1 = 0; /* 1st input operand */
563 Mem *pIn2 = 0; /* 2nd input operand */
564 Mem *pIn3 = 0; /* 3rd input operand */
565 Mem *pOut = 0; /* Output operand */
drh0acb7e42008-06-25 00:12:41 +0000566 int iCompare = 0; /* Result of last OP_Compare operation */
shanebe217792009-03-05 04:20:31 +0000567 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000568 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000569#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000570 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000571 int origPc; /* Program counter at start of opcode */
572#endif
drh856c1032009-06-02 15:21:42 +0000573 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000574
drhca48c902008-01-18 14:08:24 +0000575 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000576 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000577 if( p->rc==SQLITE_NOMEM ){
578 /* This happens if a malloc() inside a call to sqlite3_column_text() or
579 ** sqlite3_column_text16() failed. */
580 goto no_mem;
581 }
drh3a840692003-01-29 22:58:26 +0000582 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
583 p->rc = SQLITE_OK;
drhb86ccfb2003-01-28 23:13:10 +0000584 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000585 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000586 db->busyHandler.nBusy = 0;
drh93581642004-02-12 13:02:55 +0000587 CHECK_FOR_INTERRUPT;
drh602c2372007-03-01 00:29:13 +0000588 sqlite3VdbeIOTraceSql(p);
drha6c2ed92009-11-14 23:22:23 +0000589#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
590 checkProgress = db->xProgress!=0;
591#endif
drh3c23a882007-01-09 14:01:13 +0000592#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000593 sqlite3BeginBenignMalloc();
drh42224412010-05-31 14:28:25 +0000594 if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){
drh3c23a882007-01-09 14:01:13 +0000595 int i;
596 printf("VDBE Program Listing:\n");
597 sqlite3VdbePrintSql(p);
598 for(i=0; i<p->nOp; i++){
drhbbe879d2009-11-14 18:04:35 +0000599 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
drh3c23a882007-01-09 14:01:13 +0000600 }
601 }
danielk19772d1d86f2008-06-20 14:59:51 +0000602 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000603#endif
drhb86ccfb2003-01-28 23:13:10 +0000604 for(pc=p->pc; rc==SQLITE_OK; pc++){
drhcaec2f12003-01-07 02:47:47 +0000605 assert( pc>=0 && pc<p->nOp );
drh17435752007-08-16 04:30:38 +0000606 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000607#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +0000608 origPc = pc;
shane9bcbdad2008-05-29 20:22:37 +0000609 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000610#endif
drhbbe879d2009-11-14 18:04:35 +0000611 pOp = &aOp[pc];
drh6e142f52000-06-08 13:36:40 +0000612
danielk19778b60e0f2005-01-12 09:10:39 +0000613 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000614 */
danielk19778b60e0f2005-01-12 09:10:39 +0000615#ifdef SQLITE_DEBUG
drh75897232000-05-29 14:26:00 +0000616 if( p->trace ){
drh3f7d4e42004-07-24 14:35:58 +0000617 if( pc==0 ){
618 printf("VDBE Execution Trace:\n");
619 sqlite3VdbePrintSql(p);
620 }
danielk19774adee202004-05-08 08:23:19 +0000621 sqlite3VdbePrintOp(p->trace, pc, pOp);
drh75897232000-05-29 14:26:00 +0000622 }
drh3f7d4e42004-07-24 14:35:58 +0000623#endif
624
drh6e142f52000-06-08 13:36:40 +0000625
drhf6038712004-02-08 18:07:34 +0000626 /* Check to see if we need to simulate an interrupt. This only happens
627 ** if we have a special test build.
628 */
629#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000630 if( sqlite3_interrupt_count>0 ){
631 sqlite3_interrupt_count--;
632 if( sqlite3_interrupt_count==0 ){
633 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000634 }
635 }
636#endif
637
danielk1977348bb5d2003-10-18 09:37:26 +0000638#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
639 /* Call the progress callback if it is configured and the required number
640 ** of VDBE ops have been executed (either since this invocation of
danielk19774adee202004-05-08 08:23:19 +0000641 ** sqlite3VdbeExec() or since last time the progress callback was called).
danielk1977348bb5d2003-10-18 09:37:26 +0000642 ** If the progress callback returns non-zero, exit the virtual machine with
643 ** a return code SQLITE_ABORT.
644 */
drha6c2ed92009-11-14 23:22:23 +0000645 if( checkProgress ){
drh3914aed2004-01-31 20:40:42 +0000646 if( db->nProgressOps==nProgressOps ){
danielk1977de523ac2007-06-15 14:53:53 +0000647 int prc;
drh9978c972010-02-23 17:36:32 +0000648 prc = db->xProgress(db->pProgressArg);
danielk1977de523ac2007-06-15 14:53:53 +0000649 if( prc!=0 ){
650 rc = SQLITE_INTERRUPT;
drha05a7222008-01-19 03:35:58 +0000651 goto vdbe_error_halt;
danielk1977de523ac2007-06-15 14:53:53 +0000652 }
danielk19773fe11f32007-06-13 16:49:48 +0000653 nProgressOps = 0;
danielk1977348bb5d2003-10-18 09:37:26 +0000654 }
drh3914aed2004-01-31 20:40:42 +0000655 nProgressOps++;
danielk1977348bb5d2003-10-18 09:37:26 +0000656 }
danielk1977348bb5d2003-10-18 09:37:26 +0000657#endif
658
drhb5b407e2012-08-29 10:28:43 +0000659 /* On any opcode with the "out2-prerelease" tag, free any
drh3c657212009-11-17 23:59:58 +0000660 ** external allocations out of mem[p2] and set mem[p2] to be
661 ** an undefined integer. Opcodes will either fill in the integer
662 ** value or convert mem[p2] to a different type.
drh4c583122008-01-04 22:01:03 +0000663 */
drha6c2ed92009-11-14 23:22:23 +0000664 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000665 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
666 assert( pOp->p2>0 );
667 assert( pOp->p2<=p->nMem );
668 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +0000669 memAboutToChange(p, pOut);
drhe4c88c02012-01-04 12:57:45 +0000670 VdbeMemRelease(pOut);
drh3c657212009-11-17 23:59:58 +0000671 pOut->flags = MEM_Int;
drh4c583122008-01-04 22:01:03 +0000672 }
drh3c657212009-11-17 23:59:58 +0000673
674 /* Sanity checking on other operands */
675#ifdef SQLITE_DEBUG
676 if( (pOp->opflags & OPFLG_IN1)!=0 ){
677 assert( pOp->p1>0 );
678 assert( pOp->p1<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000679 assert( memIsValid(&aMem[pOp->p1]) );
drh3c657212009-11-17 23:59:58 +0000680 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
681 }
682 if( (pOp->opflags & OPFLG_IN2)!=0 ){
683 assert( pOp->p2>0 );
684 assert( pOp->p2<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000685 assert( memIsValid(&aMem[pOp->p2]) );
drh3c657212009-11-17 23:59:58 +0000686 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
687 }
688 if( (pOp->opflags & OPFLG_IN3)!=0 ){
689 assert( pOp->p3>0 );
690 assert( pOp->p3<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000691 assert( memIsValid(&aMem[pOp->p3]) );
drh3c657212009-11-17 23:59:58 +0000692 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
693 }
694 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
695 assert( pOp->p2>0 );
696 assert( pOp->p2<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000697 memAboutToChange(p, &aMem[pOp->p2]);
drh3c657212009-11-17 23:59:58 +0000698 }
699 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
700 assert( pOp->p3>0 );
701 assert( pOp->p3<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000702 memAboutToChange(p, &aMem[pOp->p3]);
drh3c657212009-11-17 23:59:58 +0000703 }
704#endif
drh93952eb2009-11-13 19:43:43 +0000705
drh75897232000-05-29 14:26:00 +0000706 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000707
drh5e00f6c2001-09-13 13:46:56 +0000708/*****************************************************************************
709** What follows is a massive switch statement where each case implements a
710** separate instruction in the virtual machine. If we follow the usual
711** indentation conventions, each case should be indented by 6 spaces. But
712** that is a lot of wasted space on the left margin. So the code within
713** the switch statement will break with convention and be flush-left. Another
714** big comment (similar to this one) will mark the point in the code where
715** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000716**
717** The formatting of each case is important. The makefile for SQLite
718** generates two C files "opcodes.h" and "opcodes.c" by scanning this
719** file looking for lines that begin with "case OP_". The opcodes.h files
720** will be filled with #defines that give unique integer values to each
721** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000722** each string is the symbolic name for the corresponding opcode. If the
723** case statement is followed by a comment of the form "/# same as ... #/"
724** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000725**
drh9cbf3422008-01-17 16:22:13 +0000726** Other keywords in the comment that follows each case are used to
727** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
728** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
729** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000730**
drhac82fcf2002-09-08 17:23:41 +0000731** Documentation about VDBE opcodes is generated by scanning this file
732** for lines of that contain "Opcode:". That line and all subsequent
733** comment lines are used in the generation of the opcode.html documentation
734** file.
735**
736** SUMMARY:
737**
738** Formatting is important to scripts that scan this file.
739** Do not deviate from the formatting style currently in use.
740**
drh5e00f6c2001-09-13 13:46:56 +0000741*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000742
drh9cbf3422008-01-17 16:22:13 +0000743/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000744**
745** An unconditional jump to address P2.
746** The next instruction executed will be
747** the one at index P2 from the beginning of
748** the program.
749*/
drh9cbf3422008-01-17 16:22:13 +0000750case OP_Goto: { /* jump */
drhcaec2f12003-01-07 02:47:47 +0000751 CHECK_FOR_INTERRUPT;
drh5e00f6c2001-09-13 13:46:56 +0000752 pc = pOp->p2 - 1;
753 break;
754}
drh75897232000-05-29 14:26:00 +0000755
drh2eb95372008-06-06 15:04:36 +0000756/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000757**
drh2eb95372008-06-06 15:04:36 +0000758** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000759** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000760*/
drhb8475df2011-12-09 16:21:19 +0000761case OP_Gosub: { /* jump */
762 assert( pOp->p1>0 && pOp->p1<=p->nMem );
drh3c657212009-11-17 23:59:58 +0000763 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000764 assert( (pIn1->flags & MEM_Dyn)==0 );
drh2b4ded92010-09-27 21:09:31 +0000765 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000766 pIn1->flags = MEM_Int;
767 pIn1->u.i = pc;
768 REGISTER_TRACE(pOp->p1, pIn1);
drh8c74a8c2002-08-25 19:20:40 +0000769 pc = pOp->p2 - 1;
770 break;
771}
772
drh2eb95372008-06-06 15:04:36 +0000773/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000774**
drh2eb95372008-06-06 15:04:36 +0000775** Jump to the next instruction after the address in register P1.
drh8c74a8c2002-08-25 19:20:40 +0000776*/
drh2eb95372008-06-06 15:04:36 +0000777case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000778 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000779 assert( pIn1->flags & MEM_Int );
drh9c1905f2008-12-10 22:32:56 +0000780 pc = (int)pIn1->u.i;
drh8c74a8c2002-08-25 19:20:40 +0000781 break;
782}
783
drhe00ee6e2008-06-20 15:24:01 +0000784/* Opcode: Yield P1 * * * *
785**
786** Swap the program counter with the value in register P1.
787*/
danielk1977f73ab8b2008-12-29 10:39:53 +0000788case OP_Yield: { /* in1 */
drhe00ee6e2008-06-20 15:24:01 +0000789 int pcDest;
drh3c657212009-11-17 23:59:58 +0000790 pIn1 = &aMem[pOp->p1];
drhe00ee6e2008-06-20 15:24:01 +0000791 assert( (pIn1->flags & MEM_Dyn)==0 );
792 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000793 pcDest = (int)pIn1->u.i;
drhe00ee6e2008-06-20 15:24:01 +0000794 pIn1->u.i = pc;
795 REGISTER_TRACE(pOp->p1, pIn1);
796 pc = pcDest;
797 break;
798}
799
drh5053a792009-02-20 03:02:23 +0000800/* Opcode: HaltIfNull P1 P2 P3 P4 *
801**
drhef8662b2011-06-20 21:47:58 +0000802** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000803** parameter P1, P2, and P4 as if this were a Halt instruction. If the
804** value in register P3 is not NULL, then this routine is a no-op.
805*/
806case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000807 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000808 if( (pIn3->flags & MEM_Null)==0 ) break;
809 /* Fall through into OP_Halt */
810}
drhe00ee6e2008-06-20 15:24:01 +0000811
drh9cbf3422008-01-17 16:22:13 +0000812/* Opcode: Halt P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +0000813**
drh3d4501e2008-12-04 20:40:10 +0000814** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000815** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000816**
drh92f02c32004-09-02 14:57:08 +0000817** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
818** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
819** For errors, it can be some other value. If P1!=0 then P2 will determine
820** whether or not to rollback the current transaction. Do not rollback
821** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
822** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000823** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000824**
drh66a51672008-01-03 00:01:23 +0000825** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000826**
drh9cfcf5d2002-01-29 18:41:24 +0000827** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000828** every program. So a jump past the last instruction of the program
829** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000830*/
drh9cbf3422008-01-17 16:22:13 +0000831case OP_Halt: {
dan165921a2009-08-28 18:53:45 +0000832 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000833 /* Halt the sub-program. Return control to the parent frame. */
dan165921a2009-08-28 18:53:45 +0000834 VdbeFrame *pFrame = p->pFrame;
835 p->pFrame = pFrame->pParent;
836 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000837 sqlite3VdbeSetChanges(db, p->nChange);
dan165921a2009-08-28 18:53:45 +0000838 pc = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000839 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000840 if( pOp->p2==OE_Ignore ){
dan2832ad42009-08-31 15:27:27 +0000841 /* Instruction pc is the OP_Program that invoked the sub-program
842 ** currently being halted. If the p2 instruction of this OP_Halt
843 ** instruction is set to OE_Ignore, then the sub-program is throwing
844 ** an IGNORE exception. In this case jump to the address specified
845 ** as the p2 of the calling OP_Program. */
dan76d462e2009-08-30 11:42:51 +0000846 pc = p->aOp[pc].p2-1;
dan165921a2009-08-28 18:53:45 +0000847 }
drhbbe879d2009-11-14 18:04:35 +0000848 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000849 aMem = p->aMem;
dan165921a2009-08-28 18:53:45 +0000850 break;
851 }
dan2832ad42009-08-31 15:27:27 +0000852
drh92f02c32004-09-02 14:57:08 +0000853 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000854 p->errorAction = (u8)pOp->p2;
dan165921a2009-08-28 18:53:45 +0000855 p->pc = pc;
danielk19772dca4ac2008-01-03 11:50:29 +0000856 if( pOp->p4.z ){
drh413c3d32010-02-23 20:11:56 +0000857 assert( p->rc!=SQLITE_OK );
drhf089aa42008-07-08 19:34:06 +0000858 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
drhaf46dc12010-02-24 21:44:07 +0000859 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +0000860 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
drhcda455b2010-02-24 19:23:56 +0000861 }else if( p->rc ){
drhaf46dc12010-02-24 21:44:07 +0000862 testcase( sqlite3GlobalConfig.xLog!=0 );
drhcda455b2010-02-24 19:23:56 +0000863 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
drh9cfcf5d2002-01-29 18:41:24 +0000864 }
drh92f02c32004-09-02 14:57:08 +0000865 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000866 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000867 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000868 p->rc = rc = SQLITE_BUSY;
869 }else{
dan1da40a32009-09-19 17:00:31 +0000870 assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
871 assert( rc==SQLITE_OK || db->nDeferredCons>0 );
drh900b31e2007-08-28 02:27:51 +0000872 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000873 }
drh900b31e2007-08-28 02:27:51 +0000874 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000875}
drhc61053b2000-06-04 12:58:36 +0000876
drh4c583122008-01-04 22:01:03 +0000877/* Opcode: Integer P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000878**
drh9cbf3422008-01-17 16:22:13 +0000879** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000880*/
drh4c583122008-01-04 22:01:03 +0000881case OP_Integer: { /* out2-prerelease */
drh4c583122008-01-04 22:01:03 +0000882 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000883 break;
884}
885
drh4c583122008-01-04 22:01:03 +0000886/* Opcode: Int64 * P2 * P4 *
drh29dda4a2005-07-21 18:23:20 +0000887**
drh66a51672008-01-03 00:01:23 +0000888** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +0000889** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +0000890*/
drh4c583122008-01-04 22:01:03 +0000891case OP_Int64: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000892 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +0000893 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +0000894 break;
895}
drh4f26d6c2004-05-26 23:25:30 +0000896
drh13573c72010-01-12 17:04:07 +0000897#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +0000898/* Opcode: Real * P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000899**
drh4c583122008-01-04 22:01:03 +0000900** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +0000901** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +0000902*/
drh4c583122008-01-04 22:01:03 +0000903case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
904 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +0000905 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh4c583122008-01-04 22:01:03 +0000906 pOut->r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +0000907 break;
908}
drh13573c72010-01-12 17:04:07 +0000909#endif
danielk1977cbb18d22004-05-28 11:37:27 +0000910
drh3c84ddf2008-01-09 02:15:38 +0000911/* Opcode: String8 * P2 * P4 *
danielk1977cbb18d22004-05-28 11:37:27 +0000912**
drh66a51672008-01-03 00:01:23 +0000913** P4 points to a nul terminated UTF-8 string. This opcode is transformed
danielk19770f69c1e2004-05-29 11:24:50 +0000914** into an OP_String before it is executed for the first time.
danielk1977cbb18d22004-05-28 11:37:27 +0000915*/
drh4c583122008-01-04 22:01:03 +0000916case OP_String8: { /* same as TK_STRING, out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000917 assert( pOp->p4.z!=0 );
drhed2df7f2005-11-16 04:34:32 +0000918 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +0000919 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +0000920
921#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +0000922 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +0000923 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
924 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +0000925 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh3a9cf172009-06-17 21:42:33 +0000926 assert( pOut->zMalloc==pOut->z );
927 assert( pOut->flags & MEM_Dyn );
danielk19775f096132008-03-28 15:44:09 +0000928 pOut->zMalloc = 0;
drh4c583122008-01-04 22:01:03 +0000929 pOut->flags |= MEM_Static;
drh191b54c2008-04-15 12:14:21 +0000930 pOut->flags &= ~MEM_Dyn;
drh66a51672008-01-03 00:01:23 +0000931 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000932 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +0000933 }
drh66a51672008-01-03 00:01:23 +0000934 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +0000935 pOp->p4.z = pOut->z;
936 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +0000937 }
danielk197793758c82005-01-21 08:13:14 +0000938#endif
drhbb4957f2008-03-20 14:03:29 +0000939 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +0000940 goto too_big;
941 }
942 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +0000943}
drhf4479502004-05-27 03:12:53 +0000944
drh4c583122008-01-04 22:01:03 +0000945/* Opcode: String P1 P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000946**
drh9cbf3422008-01-17 16:22:13 +0000947** The string value P4 of length P1 (bytes) is stored in register P2.
drhf4479502004-05-27 03:12:53 +0000948*/
drh4c583122008-01-04 22:01:03 +0000949case OP_String: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000950 assert( pOp->p4.z!=0 );
drh4c583122008-01-04 22:01:03 +0000951 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
952 pOut->z = pOp->p4.z;
953 pOut->n = pOp->p1;
954 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000955 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977c572ef72004-05-27 09:28:41 +0000956 break;
957}
958
drh053a1282012-09-19 21:15:46 +0000959/* Opcode: Null P1 P2 P3 * *
drhf0863fe2005-06-12 21:35:51 +0000960**
drhb8475df2011-12-09 16:21:19 +0000961** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +0000962** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +0000963** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +0000964** set to NULL.
965**
966** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
967** NULL values will not compare equal even if SQLITE_NULLEQ is set on
968** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +0000969*/
drh4c583122008-01-04 22:01:03 +0000970case OP_Null: { /* out2-prerelease */
drhb8475df2011-12-09 16:21:19 +0000971 int cnt;
drh053a1282012-09-19 21:15:46 +0000972 u16 nullFlag;
drhb8475df2011-12-09 16:21:19 +0000973 cnt = pOp->p3-pOp->p2;
974 assert( pOp->p3<=p->nMem );
drh053a1282012-09-19 21:15:46 +0000975 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drhb8475df2011-12-09 16:21:19 +0000976 while( cnt>0 ){
977 pOut++;
978 memAboutToChange(p, pOut);
drhe4c88c02012-01-04 12:57:45 +0000979 VdbeMemRelease(pOut);
drh053a1282012-09-19 21:15:46 +0000980 pOut->flags = nullFlag;
drhb8475df2011-12-09 16:21:19 +0000981 cnt--;
982 }
drhf0863fe2005-06-12 21:35:51 +0000983 break;
984}
985
986
drh9de221d2008-01-05 06:51:30 +0000987/* Opcode: Blob P1 P2 * P4
danielk1977c572ef72004-05-27 09:28:41 +0000988**
drh9de221d2008-01-05 06:51:30 +0000989** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +0000990** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +0000991*/
drh4c583122008-01-04 22:01:03 +0000992case OP_Blob: { /* out2-prerelease */
drhcbd2da92007-12-17 16:20:06 +0000993 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh4c583122008-01-04 22:01:03 +0000994 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +0000995 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000996 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +0000997 break;
998}
999
drheaf52d82010-05-12 13:50:23 +00001000/* Opcode: Variable P1 P2 * P4 *
drh50457892003-09-06 01:10:47 +00001001**
drheaf52d82010-05-12 13:50:23 +00001002** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001003**
1004** If the parameter is named, then its name appears in P4 and P3==1.
1005** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001006*/
drheaf52d82010-05-12 13:50:23 +00001007case OP_Variable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00001008 Mem *pVar; /* Value being transferred */
1009
drheaf52d82010-05-12 13:50:23 +00001010 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +00001011 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +00001012 pVar = &p->aVar[pOp->p1 - 1];
1013 if( sqlite3VdbeMemTooBig(pVar) ){
1014 goto too_big;
drh023ae032007-05-08 12:12:16 +00001015 }
drheaf52d82010-05-12 13:50:23 +00001016 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1017 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001018 break;
1019}
danielk1977295ba552004-05-19 10:34:51 +00001020
drhb21e7c72008-06-22 12:37:57 +00001021/* Opcode: Move P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001022**
drhe8e4af72012-09-21 00:04:28 +00001023** Move the values in register P1..P1+P3 over into
1024** registers P2..P2+P3. Registers P1..P1+P3 are
drhb21e7c72008-06-22 12:37:57 +00001025** left holding a NULL. It is an error for register ranges
drhe8e4af72012-09-21 00:04:28 +00001026** P1..P1+P3 and P2..P2+P3 to overlap.
drh5e00f6c2001-09-13 13:46:56 +00001027*/
drhe1349cb2008-04-01 00:36:10 +00001028case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001029 char *zMalloc; /* Holding variable for allocated memory */
1030 int n; /* Number of registers left to copy */
1031 int p1; /* Register to copy from */
1032 int p2; /* Register to copy to */
1033
drhe8e4af72012-09-21 00:04:28 +00001034 n = pOp->p3 + 1;
drh856c1032009-06-02 15:21:42 +00001035 p1 = pOp->p1;
1036 p2 = pOp->p2;
danielk19776ab3a2e2009-02-19 14:39:25 +00001037 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001038 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001039
drha6c2ed92009-11-14 23:22:23 +00001040 pIn1 = &aMem[p1];
1041 pOut = &aMem[p2];
drhb21e7c72008-06-22 12:37:57 +00001042 while( n-- ){
drha6c2ed92009-11-14 23:22:23 +00001043 assert( pOut<=&aMem[p->nMem] );
1044 assert( pIn1<=&aMem[p->nMem] );
drh2b4ded92010-09-27 21:09:31 +00001045 assert( memIsValid(pIn1) );
1046 memAboutToChange(p, pOut);
drhb21e7c72008-06-22 12:37:57 +00001047 zMalloc = pOut->zMalloc;
1048 pOut->zMalloc = 0;
1049 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001050#ifdef SQLITE_DEBUG
1051 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1052 pOut->pScopyFrom += p1 - pOp->p2;
1053 }
1054#endif
drhb21e7c72008-06-22 12:37:57 +00001055 pIn1->zMalloc = zMalloc;
1056 REGISTER_TRACE(p2++, pOut);
1057 pIn1++;
1058 pOut++;
1059 }
drhe1349cb2008-04-01 00:36:10 +00001060 break;
1061}
1062
drhe8e4af72012-09-21 00:04:28 +00001063/* Opcode: Copy P1 P2 P3 * *
drhb1fdb2a2008-01-05 04:06:03 +00001064**
drhe8e4af72012-09-21 00:04:28 +00001065** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001066**
1067** This instruction makes a deep copy of the value. A duplicate
1068** is made of any string or blob constant. See also OP_SCopy.
1069*/
drhe8e4af72012-09-21 00:04:28 +00001070case OP_Copy: {
1071 int n;
1072
1073 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001074 pIn1 = &aMem[pOp->p1];
1075 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001076 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001077 while( 1 ){
1078 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1079 Deephemeralize(pOut);
1080 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1081 if( (n--)==0 ) break;
1082 pOut++;
1083 pIn1++;
1084 }
drhe1349cb2008-04-01 00:36:10 +00001085 break;
1086}
1087
drhb1fdb2a2008-01-05 04:06:03 +00001088/* Opcode: SCopy P1 P2 * * *
1089**
drh9cbf3422008-01-17 16:22:13 +00001090** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001091**
1092** This instruction makes a shallow copy of the value. If the value
1093** is a string or blob, then the copy is only a pointer to the
1094** original and hence if the original changes so will the copy.
1095** Worse, if the original is deallocated, the copy becomes invalid.
1096** Thus the program must guarantee that the original will not change
1097** during the lifetime of the copy. Use OP_Copy to make a complete
1098** copy.
1099*/
drh93952eb2009-11-13 19:43:43 +00001100case OP_SCopy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001101 pIn1 = &aMem[pOp->p1];
1102 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001103 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001104 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001105#ifdef SQLITE_DEBUG
1106 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1107#endif
drh5b6afba2008-01-05 16:29:28 +00001108 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00001109 break;
1110}
drh75897232000-05-29 14:26:00 +00001111
drh9cbf3422008-01-17 16:22:13 +00001112/* Opcode: ResultRow P1 P2 * * *
drhd4e70eb2008-01-02 00:34:36 +00001113**
shane21e7feb2008-05-30 15:59:49 +00001114** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001115** results. This opcode causes the sqlite3_step() call to terminate
1116** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1117** structure to provide access to the top P1 values as the result
drh9cbf3422008-01-17 16:22:13 +00001118** row.
drhd4e70eb2008-01-02 00:34:36 +00001119*/
drh9cbf3422008-01-17 16:22:13 +00001120case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001121 Mem *pMem;
1122 int i;
1123 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001124 assert( pOp->p1>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001125 assert( pOp->p1+pOp->p2<=p->nMem+1 );
drhd4e70eb2008-01-02 00:34:36 +00001126
dan32b09f22009-09-23 17:29:59 +00001127 /* If this statement has violated immediate foreign key constraints, do
1128 ** not return the number of rows modified. And do not RELEASE the statement
1129 ** transaction. It needs to be rolled back. */
1130 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1131 assert( db->flags&SQLITE_CountRows );
1132 assert( p->usesStmtJournal );
1133 break;
1134 }
1135
danielk1977bd434552009-03-18 10:33:00 +00001136 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1137 ** DML statements invoke this opcode to return the number of rows
1138 ** modified to the user. This is the only way that a VM that
1139 ** opens a statement transaction may invoke this opcode.
1140 **
1141 ** In case this is such a statement, close any statement transaction
1142 ** opened by this VM before returning control to the user. This is to
1143 ** ensure that statement-transactions are always nested, not overlapping.
1144 ** If the open statement-transaction is not closed here, then the user
1145 ** may step another VM that opens its own statement transaction. This
1146 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001147 **
1148 ** The statement transaction is never a top-level transaction. Hence
1149 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001150 */
1151 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001152 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1153 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001154 break;
1155 }
1156
drhd4e70eb2008-01-02 00:34:36 +00001157 /* Invalidate all ephemeral cursor row caches */
1158 p->cacheCtr = (p->cacheCtr + 2)|1;
1159
1160 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001161 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001162 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001163 */
drha6c2ed92009-11-14 23:22:23 +00001164 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001165 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001166 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001167 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001168 assert( (pMem[i].flags & MEM_Ephem)==0
1169 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001170 sqlite3VdbeMemNulTerminate(&pMem[i]);
dan937d0de2009-10-15 18:35:38 +00001171 sqlite3VdbeMemStoreType(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001172 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001173 }
drh28039692008-03-17 16:54:01 +00001174 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001175
1176 /* Return SQLITE_ROW
1177 */
drhd4e70eb2008-01-02 00:34:36 +00001178 p->pc = pc + 1;
drhd4e70eb2008-01-02 00:34:36 +00001179 rc = SQLITE_ROW;
1180 goto vdbe_return;
1181}
1182
drh5b6afba2008-01-05 16:29:28 +00001183/* Opcode: Concat P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001184**
drh5b6afba2008-01-05 16:29:28 +00001185** Add the text in register P1 onto the end of the text in
1186** register P2 and store the result in register P3.
1187** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001188**
1189** P3 = P2 || P1
1190**
1191** It is illegal for P1 and P3 to be the same register. Sometimes,
1192** if P3 is the same register as P2, the implementation is able
1193** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001194*/
drh5b6afba2008-01-05 16:29:28 +00001195case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001196 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001197
drh3c657212009-11-17 23:59:58 +00001198 pIn1 = &aMem[pOp->p1];
1199 pIn2 = &aMem[pOp->p2];
1200 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001201 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001202 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001203 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001204 break;
drh5e00f6c2001-09-13 13:46:56 +00001205 }
drha0c06522009-06-17 22:50:41 +00001206 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001207 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001208 Stringify(pIn2, encoding);
1209 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001210 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001211 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001212 }
danielk1977a7a8e142008-02-13 18:25:27 +00001213 MemSetTypeFlag(pOut, MEM_Str);
drh9c1905f2008-12-10 22:32:56 +00001214 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001215 goto no_mem;
1216 }
danielk1977a7a8e142008-02-13 18:25:27 +00001217 if( pOut!=pIn2 ){
1218 memcpy(pOut->z, pIn2->z, pIn2->n);
1219 }
1220 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1221 pOut->z[nByte] = 0;
1222 pOut->z[nByte+1] = 0;
1223 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001224 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001225 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001226 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001227 break;
1228}
drh75897232000-05-29 14:26:00 +00001229
drh3c84ddf2008-01-09 02:15:38 +00001230/* Opcode: Add P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001231**
drh60a713c2008-01-21 16:22:45 +00001232** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001233** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001234** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001235*/
drh3c84ddf2008-01-09 02:15:38 +00001236/* Opcode: Multiply P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001237**
drh3c84ddf2008-01-09 02:15:38 +00001238**
shane21e7feb2008-05-30 15:59:49 +00001239** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001240** and store the result in register P3.
1241** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001242*/
drh3c84ddf2008-01-09 02:15:38 +00001243/* Opcode: Subtract P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001244**
drh60a713c2008-01-21 16:22:45 +00001245** Subtract the value in register P1 from the value in register P2
1246** and store the result in register P3.
1247** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001248*/
drh9cbf3422008-01-17 16:22:13 +00001249/* Opcode: Divide P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001250**
drh60a713c2008-01-21 16:22:45 +00001251** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001252** and store the result in register P3 (P3=P2/P1). If the value in
1253** register P1 is zero, then the result is NULL. If either input is
1254** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001255*/
drh9cbf3422008-01-17 16:22:13 +00001256/* Opcode: Remainder P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001257**
drh3c84ddf2008-01-09 02:15:38 +00001258** Compute the remainder after integer division of the value in
1259** register P1 by the value in register P2 and store the result in P3.
1260** If the value in register P2 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001261** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001262*/
drh5b6afba2008-01-05 16:29:28 +00001263case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1264case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1265case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1266case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1267case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001268 int flags; /* Combined MEM_* flags from both inputs */
1269 i64 iA; /* Integer value of left operand */
1270 i64 iB; /* Integer value of right operand */
1271 double rA; /* Real value of left operand */
1272 double rB; /* Real value of right operand */
1273
drh3c657212009-11-17 23:59:58 +00001274 pIn1 = &aMem[pOp->p1];
drh61669b32008-07-30 13:27:10 +00001275 applyNumericAffinity(pIn1);
drh3c657212009-11-17 23:59:58 +00001276 pIn2 = &aMem[pOp->p2];
drh61669b32008-07-30 13:27:10 +00001277 applyNumericAffinity(pIn2);
drh3c657212009-11-17 23:59:58 +00001278 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001279 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001280 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1281 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
drh856c1032009-06-02 15:21:42 +00001282 iA = pIn1->u.i;
1283 iB = pIn2->u.i;
drh5e00f6c2001-09-13 13:46:56 +00001284 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001285 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1286 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1287 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001288 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001289 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001290 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001291 iB /= iA;
drh75897232000-05-29 14:26:00 +00001292 break;
1293 }
drhbf4133c2001-10-13 02:59:08 +00001294 default: {
drh856c1032009-06-02 15:21:42 +00001295 if( iA==0 ) goto arithmetic_result_is_null;
1296 if( iA==-1 ) iA = 1;
1297 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001298 break;
1299 }
drh75897232000-05-29 14:26:00 +00001300 }
drh856c1032009-06-02 15:21:42 +00001301 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001302 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001303 }else{
drh158b9cb2011-03-05 20:59:46 +00001304fp_math:
drh856c1032009-06-02 15:21:42 +00001305 rA = sqlite3VdbeRealValue(pIn1);
1306 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001307 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001308 case OP_Add: rB += rA; break;
1309 case OP_Subtract: rB -= rA; break;
1310 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001311 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001312 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001313 if( rA==(double)0 ) goto arithmetic_result_is_null;
1314 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001315 break;
1316 }
drhbf4133c2001-10-13 02:59:08 +00001317 default: {
shane75ac1de2009-06-09 18:58:52 +00001318 iA = (i64)rA;
1319 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001320 if( iA==0 ) goto arithmetic_result_is_null;
1321 if( iA==-1 ) iA = 1;
1322 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001323 break;
1324 }
drh5e00f6c2001-09-13 13:46:56 +00001325 }
drhc5a7b512010-01-13 16:25:42 +00001326#ifdef SQLITE_OMIT_FLOATING_POINT
1327 pOut->u.i = rB;
1328 MemSetTypeFlag(pOut, MEM_Int);
1329#else
drh856c1032009-06-02 15:21:42 +00001330 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001331 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001332 }
drh856c1032009-06-02 15:21:42 +00001333 pOut->r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001334 MemSetTypeFlag(pOut, MEM_Real);
drh8a512562005-11-14 22:29:05 +00001335 if( (flags & MEM_Real)==0 ){
drh5b6afba2008-01-05 16:29:28 +00001336 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001337 }
drhc5a7b512010-01-13 16:25:42 +00001338#endif
drh5e00f6c2001-09-13 13:46:56 +00001339 }
1340 break;
1341
drha05a7222008-01-19 03:35:58 +00001342arithmetic_result_is_null:
1343 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001344 break;
1345}
1346
drh7a957892012-02-02 17:35:43 +00001347/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001348**
drh66a51672008-01-03 00:01:23 +00001349** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001350** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1351** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001352** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001353**
drh7a957892012-02-02 17:35:43 +00001354** If P1 is not zero, then it is a register that a subsequent min() or
1355** max() aggregate will set to 1 if the current row is not the minimum or
1356** maximum. The P1 register is initialized to 0 by this instruction.
1357**
danielk1977dc1bdc42004-06-11 10:51:27 +00001358** The interface used by the implementation of the aforementioned functions
1359** to retrieve the collation sequence set by this opcode is not available
1360** publicly, only to user functions defined in func.c.
1361*/
drh9cbf3422008-01-17 16:22:13 +00001362case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001363 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001364 if( pOp->p1 ){
1365 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1366 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001367 break;
1368}
1369
drh98757152008-01-09 23:04:12 +00001370/* Opcode: Function P1 P2 P3 P4 P5
drh8e0a2f92002-02-23 23:45:45 +00001371**
drh66a51672008-01-03 00:01:23 +00001372** Invoke a user function (P4 is a pointer to a Function structure that
drh98757152008-01-09 23:04:12 +00001373** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001374** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001375** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001376**
drh13449892005-09-07 21:22:45 +00001377** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001378** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001379** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001380** whether meta data associated with a user function argument using the
1381** sqlite3_set_auxdata() API may be safely retained until the next
1382** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001383**
drh13449892005-09-07 21:22:45 +00001384** See also: AggStep and AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001385*/
drh0bce8352002-02-28 00:41:10 +00001386case OP_Function: {
danielk197751ad0ec2004-05-24 12:39:02 +00001387 int i;
drh6810ce62004-01-31 19:22:56 +00001388 Mem *pArg;
danielk197722322fd2004-05-25 23:35:17 +00001389 sqlite3_context ctx;
danielk197751ad0ec2004-05-24 12:39:02 +00001390 sqlite3_value **apVal;
drh856c1032009-06-02 15:21:42 +00001391 int n;
drh1350b032002-02-27 19:00:20 +00001392
drh856c1032009-06-02 15:21:42 +00001393 n = pOp->p5;
danielk19776ddcca52004-05-24 23:48:25 +00001394 apVal = p->apArg;
danielk197751ad0ec2004-05-24 12:39:02 +00001395 assert( apVal || n==0 );
drhebc16712010-09-28 00:25:58 +00001396 assert( pOp->p3>0 && pOp->p3<=p->nMem );
1397 pOut = &aMem[pOp->p3];
1398 memAboutToChange(p, pOut);
danielk197751ad0ec2004-05-24 12:39:02 +00001399
danielk19776ab3a2e2009-02-19 14:39:25 +00001400 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
danielk1977a7a8e142008-02-13 18:25:27 +00001401 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drha6c2ed92009-11-14 23:22:23 +00001402 pArg = &aMem[pOp->p2];
drh6810ce62004-01-31 19:22:56 +00001403 for(i=0; i<n; i++, pArg++){
drh2b4ded92010-09-27 21:09:31 +00001404 assert( memIsValid(pArg) );
danielk197751ad0ec2004-05-24 12:39:02 +00001405 apVal[i] = pArg;
drhebc16712010-09-28 00:25:58 +00001406 Deephemeralize(pArg);
dan937d0de2009-10-15 18:35:38 +00001407 sqlite3VdbeMemStoreType(pArg);
drhab5cd702010-04-07 14:32:11 +00001408 REGISTER_TRACE(pOp->p2+i, pArg);
drh8e0a2f92002-02-23 23:45:45 +00001409 }
danielk197751ad0ec2004-05-24 12:39:02 +00001410
drh66a51672008-01-03 00:01:23 +00001411 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1412 if( pOp->p4type==P4_FUNCDEF ){
danielk19772dca4ac2008-01-03 11:50:29 +00001413 ctx.pFunc = pOp->p4.pFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001414 ctx.pVdbeFunc = 0;
1415 }else{
danielk19772dca4ac2008-01-03 11:50:29 +00001416 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001417 ctx.pFunc = ctx.pVdbeFunc->pFunc;
1418 }
1419
drh00706be2004-01-30 14:49:16 +00001420 ctx.s.flags = MEM_Null;
drhfa4a4b92008-03-19 21:45:51 +00001421 ctx.s.db = db;
danielk19775f096132008-03-28 15:44:09 +00001422 ctx.s.xDel = 0;
1423 ctx.s.zMalloc = 0;
danielk1977a7a8e142008-02-13 18:25:27 +00001424
1425 /* The output cell may already have a buffer allocated. Move
1426 ** the pointer to ctx.s so in case the user-function can use
1427 ** the already allocated buffer instead of allocating a new one.
1428 */
1429 sqlite3VdbeMemMove(&ctx.s, pOut);
1430 MemSetTypeFlag(&ctx.s, MEM_Null);
1431
drh8e0a2f92002-02-23 23:45:45 +00001432 ctx.isError = 0;
drhe82f5d02008-10-07 19:53:14 +00001433 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
drhbbe879d2009-11-14 18:04:35 +00001434 assert( pOp>aOp );
drh66a51672008-01-03 00:01:23 +00001435 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00001436 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00001437 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00001438 }
drh99a66922011-05-13 18:51:42 +00001439 db->lastRowid = lastRowid;
drhee9ff672010-09-03 18:50:48 +00001440 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh99a66922011-05-13 18:51:42 +00001441 lastRowid = db->lastRowid;
danielk19777e18c252004-05-25 11:47:24 +00001442
shane21e7feb2008-05-30 15:59:49 +00001443 /* If any auxiliary data functions have been called by this user function,
danielk1977682f68b2004-06-05 10:22:17 +00001444 ** immediately call the destructor for any non-static values.
1445 */
1446 if( ctx.pVdbeFunc ){
drh13449892005-09-07 21:22:45 +00001447 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
danielk19772dca4ac2008-01-03 11:50:29 +00001448 pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
drh66a51672008-01-03 00:01:23 +00001449 pOp->p4type = P4_VDBEFUNC;
danielk1977682f68b2004-06-05 10:22:17 +00001450 }
1451
dan5f84e142011-06-14 14:18:45 +00001452 if( db->mallocFailed ){
1453 /* Even though a malloc() has failed, the implementation of the
1454 ** user function may have called an sqlite3_result_XXX() function
1455 ** to return a value. The following call releases any resources
1456 ** associated with such a value.
1457 */
1458 sqlite3VdbeMemRelease(&ctx.s);
1459 goto no_mem;
1460 }
1461
drh90669c12006-01-20 15:45:36 +00001462 /* If the function returned an error, throw an exception */
1463 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00001464 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00001465 rc = ctx.isError;
drh90669c12006-01-20 15:45:36 +00001466 }
1467
drh9cbf3422008-01-17 16:22:13 +00001468 /* Copy the result of the function into register P3 */
drhb21c8cd2007-08-21 19:33:56 +00001469 sqlite3VdbeChangeEncoding(&ctx.s, encoding);
drh98757152008-01-09 23:04:12 +00001470 sqlite3VdbeMemMove(pOut, &ctx.s);
1471 if( sqlite3VdbeMemTooBig(pOut) ){
drh023ae032007-05-08 12:12:16 +00001472 goto too_big;
1473 }
drh7b94e7f2011-04-04 12:29:20 +00001474
1475#if 0
1476 /* The app-defined function has done something that as caused this
1477 ** statement to expire. (Perhaps the function called sqlite3_exec()
1478 ** with a CREATE TABLE statement.)
1479 */
1480 if( p->expired ) rc = SQLITE_ABORT;
1481#endif
1482
drh2dcef112008-01-12 19:03:48 +00001483 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00001484 UPDATE_MAX_BLOBSIZE(pOut);
drh8e0a2f92002-02-23 23:45:45 +00001485 break;
1486}
1487
drh98757152008-01-09 23:04:12 +00001488/* Opcode: BitAnd P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001489**
drh98757152008-01-09 23:04:12 +00001490** Take the bit-wise AND of the values in register P1 and P2 and
1491** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001492** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001493*/
drh98757152008-01-09 23:04:12 +00001494/* Opcode: BitOr P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001495**
drh98757152008-01-09 23:04:12 +00001496** Take the bit-wise OR of the values in register P1 and P2 and
1497** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001498** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001499*/
drh98757152008-01-09 23:04:12 +00001500/* Opcode: ShiftLeft P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001501**
drh98757152008-01-09 23:04:12 +00001502** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001503** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001504** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001505** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001506*/
drh98757152008-01-09 23:04:12 +00001507/* Opcode: ShiftRight P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001508**
drh98757152008-01-09 23:04:12 +00001509** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001510** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001511** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001512** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001513*/
drh5b6afba2008-01-05 16:29:28 +00001514case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1515case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1516case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1517case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001518 i64 iA;
1519 u64 uA;
1520 i64 iB;
1521 u8 op;
drh6810ce62004-01-31 19:22:56 +00001522
drh3c657212009-11-17 23:59:58 +00001523 pIn1 = &aMem[pOp->p1];
1524 pIn2 = &aMem[pOp->p2];
1525 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001526 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001527 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001528 break;
1529 }
drh158b9cb2011-03-05 20:59:46 +00001530 iA = sqlite3VdbeIntValue(pIn2);
1531 iB = sqlite3VdbeIntValue(pIn1);
1532 op = pOp->opcode;
1533 if( op==OP_BitAnd ){
1534 iA &= iB;
1535 }else if( op==OP_BitOr ){
1536 iA |= iB;
1537 }else if( iB!=0 ){
1538 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1539
1540 /* If shifting by a negative amount, shift in the other direction */
1541 if( iB<0 ){
1542 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1543 op = 2*OP_ShiftLeft + 1 - op;
1544 iB = iB>(-64) ? -iB : 64;
1545 }
1546
1547 if( iB>=64 ){
1548 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1549 }else{
1550 memcpy(&uA, &iA, sizeof(uA));
1551 if( op==OP_ShiftLeft ){
1552 uA <<= iB;
1553 }else{
1554 uA >>= iB;
1555 /* Sign-extend on a right shift of a negative number */
1556 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1557 }
1558 memcpy(&iA, &uA, sizeof(iA));
1559 }
drhbf4133c2001-10-13 02:59:08 +00001560 }
drh158b9cb2011-03-05 20:59:46 +00001561 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001562 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001563 break;
1564}
1565
drh8558cde2008-01-05 05:20:10 +00001566/* Opcode: AddImm P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00001567**
danielk19770cdc0222008-06-26 18:04:03 +00001568** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001569** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001570**
drh8558cde2008-01-05 05:20:10 +00001571** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001572*/
drh9cbf3422008-01-17 16:22:13 +00001573case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001574 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001575 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001576 sqlite3VdbeMemIntegerify(pIn1);
1577 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001578 break;
1579}
1580
drh9cbf3422008-01-17 16:22:13 +00001581/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001582**
drh9cbf3422008-01-17 16:22:13 +00001583** Force the value in register P1 to be an integer. If the value
1584** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001585** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001586** raise an SQLITE_MISMATCH exception.
1587*/
drh9cbf3422008-01-17 16:22:13 +00001588case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001589 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001590 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1591 if( (pIn1->flags & MEM_Int)==0 ){
drh17c40292004-07-21 02:53:29 +00001592 if( pOp->p2==0 ){
1593 rc = SQLITE_MISMATCH;
1594 goto abort_due_to_error;
drh3c84ddf2008-01-09 02:15:38 +00001595 }else{
drh17c40292004-07-21 02:53:29 +00001596 pc = pOp->p2 - 1;
drh8aff1012001-12-22 14:49:24 +00001597 }
drh8aff1012001-12-22 14:49:24 +00001598 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00001599 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001600 }
1601 break;
1602}
1603
drh13573c72010-01-12 17:04:07 +00001604#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001605/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001606**
drh2133d822008-01-03 18:44:59 +00001607** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001608**
drh8a512562005-11-14 22:29:05 +00001609** This opcode is used when extracting information from a column that
1610** has REAL affinity. Such column values may still be stored as
1611** integers, for space efficiency, but after extraction we want them
1612** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001613*/
drh9cbf3422008-01-17 16:22:13 +00001614case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001615 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001616 if( pIn1->flags & MEM_Int ){
1617 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001618 }
drh487e2622005-06-25 18:42:14 +00001619 break;
1620}
drh13573c72010-01-12 17:04:07 +00001621#endif
drh487e2622005-06-25 18:42:14 +00001622
drh8df447f2005-11-01 15:48:24 +00001623#ifndef SQLITE_OMIT_CAST
drh8558cde2008-01-05 05:20:10 +00001624/* Opcode: ToText P1 * * * *
drh487e2622005-06-25 18:42:14 +00001625**
drh8558cde2008-01-05 05:20:10 +00001626** Force the value in register P1 to be text.
drh31beae92005-11-24 14:34:36 +00001627** If the value is numeric, convert it to a string using the
drh487e2622005-06-25 18:42:14 +00001628** equivalent of printf(). Blob values are unchanged and
1629** are afterwards simply interpreted as text.
1630**
1631** A NULL value is not changed by this routine. It remains NULL.
1632*/
drh9cbf3422008-01-17 16:22:13 +00001633case OP_ToText: { /* same as TK_TO_TEXT, in1 */
drh3c657212009-11-17 23:59:58 +00001634 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001635 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001636 if( pIn1->flags & MEM_Null ) break;
drh487e2622005-06-25 18:42:14 +00001637 assert( MEM_Str==(MEM_Blob>>3) );
drh8558cde2008-01-05 05:20:10 +00001638 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1639 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1640 rc = ExpandBlob(pIn1);
danielk1977a7a8e142008-02-13 18:25:27 +00001641 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drh68ac65e2009-01-05 18:02:27 +00001642 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
drhb7654112008-01-12 12:48:07 +00001643 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001644 break;
1645}
1646
drh8558cde2008-01-05 05:20:10 +00001647/* Opcode: ToBlob P1 * * * *
drh487e2622005-06-25 18:42:14 +00001648**
drh8558cde2008-01-05 05:20:10 +00001649** Force the value in register P1 to be a BLOB.
drh487e2622005-06-25 18:42:14 +00001650** If the value is numeric, convert it to a string first.
1651** Strings are simply reinterpreted as blobs with no change
1652** to the underlying data.
1653**
1654** A NULL value is not changed by this routine. It remains NULL.
1655*/
drh9cbf3422008-01-17 16:22:13 +00001656case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
drh3c657212009-11-17 23:59:58 +00001657 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001658 if( pIn1->flags & MEM_Null ) break;
1659 if( (pIn1->flags & MEM_Blob)==0 ){
1660 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
danielk1977a7a8e142008-02-13 18:25:27 +00001661 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drhde58ddb2009-01-05 22:30:38 +00001662 MemSetTypeFlag(pIn1, MEM_Blob);
1663 }else{
1664 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
drh487e2622005-06-25 18:42:14 +00001665 }
drhb7654112008-01-12 12:48:07 +00001666 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001667 break;
1668}
drh8a512562005-11-14 22:29:05 +00001669
drh8558cde2008-01-05 05:20:10 +00001670/* Opcode: ToNumeric P1 * * * *
drh8a512562005-11-14 22:29:05 +00001671**
drh8558cde2008-01-05 05:20:10 +00001672** Force the value in register P1 to be numeric (either an
drh8a512562005-11-14 22:29:05 +00001673** integer or a floating-point number.)
1674** If the value is text or blob, try to convert it to an using the
1675** equivalent of atoi() or atof() and store 0 if no such conversion
1676** is possible.
1677**
1678** A NULL value is not changed by this routine. It remains NULL.
1679*/
drh9cbf3422008-01-17 16:22:13 +00001680case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
drh3c657212009-11-17 23:59:58 +00001681 pIn1 = &aMem[pOp->p1];
drh93518622010-09-30 14:48:06 +00001682 sqlite3VdbeMemNumerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001683 break;
1684}
1685#endif /* SQLITE_OMIT_CAST */
1686
drh8558cde2008-01-05 05:20:10 +00001687/* Opcode: ToInt P1 * * * *
drh8a512562005-11-14 22:29:05 +00001688**
drh710c4842010-08-30 01:17:20 +00001689** Force the value in register P1 to be an integer. If
drh8a512562005-11-14 22:29:05 +00001690** The value is currently a real number, drop its fractional part.
1691** If the value is text or blob, try to convert it to an integer using the
1692** equivalent of atoi() and store 0 if no such conversion is possible.
1693**
1694** A NULL value is not changed by this routine. It remains NULL.
1695*/
drh9cbf3422008-01-17 16:22:13 +00001696case OP_ToInt: { /* same as TK_TO_INT, in1 */
drh3c657212009-11-17 23:59:58 +00001697 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001698 if( (pIn1->flags & MEM_Null)==0 ){
1699 sqlite3VdbeMemIntegerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001700 }
1701 break;
1702}
1703
drh13573c72010-01-12 17:04:07 +00001704#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
drh8558cde2008-01-05 05:20:10 +00001705/* Opcode: ToReal P1 * * * *
drh8a512562005-11-14 22:29:05 +00001706**
drh8558cde2008-01-05 05:20:10 +00001707** Force the value in register P1 to be a floating point number.
drh8a512562005-11-14 22:29:05 +00001708** If The value is currently an integer, convert it.
1709** If the value is text or blob, try to convert it to an integer using the
drh60a713c2008-01-21 16:22:45 +00001710** equivalent of atoi() and store 0.0 if no such conversion is possible.
drh8a512562005-11-14 22:29:05 +00001711**
1712** A NULL value is not changed by this routine. It remains NULL.
1713*/
drh9cbf3422008-01-17 16:22:13 +00001714case OP_ToReal: { /* same as TK_TO_REAL, in1 */
drh3c657212009-11-17 23:59:58 +00001715 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001716 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001717 if( (pIn1->flags & MEM_Null)==0 ){
1718 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001719 }
1720 break;
1721}
drh13573c72010-01-12 17:04:07 +00001722#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
drh487e2622005-06-25 18:42:14 +00001723
drh35573352008-01-08 23:54:25 +00001724/* Opcode: Lt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001725**
drh35573352008-01-08 23:54:25 +00001726** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1727** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001728**
drh35573352008-01-08 23:54:25 +00001729** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1730** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001731** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001732**
drh35573352008-01-08 23:54:25 +00001733** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001734** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001735** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001736** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001737** affinity is used. Note that the affinity conversions are stored
1738** back into the input registers P1 and P3. So this opcode can cause
1739** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001740**
1741** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001742** the values are compared. If both values are blobs then memcmp() is
1743** used to determine the results of the comparison. If both values
1744** are text, then the appropriate collating function specified in
1745** P4 is used to do the comparison. If P4 is not specified then
1746** memcmp() is used to compare text string. If both values are
1747** numeric, then a numeric comparison is used. If the two values
1748** are of different types, then numbers are considered less than
1749** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001750**
drh35573352008-01-08 23:54:25 +00001751** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1752** store a boolean result (either 0, or 1, or NULL) in register P2.
drh053a1282012-09-19 21:15:46 +00001753**
1754** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1755** equal to one another, provided that they do not have their MEM_Cleared
1756** bit set.
drh5e00f6c2001-09-13 13:46:56 +00001757*/
drh9cbf3422008-01-17 16:22:13 +00001758/* Opcode: Ne P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001759**
drh35573352008-01-08 23:54:25 +00001760** This works just like the Lt opcode except that the jump is taken if
1761** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001762** additional information.
drh6a2fe092009-09-23 02:29:36 +00001763**
1764** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1765** true or false and is never NULL. If both operands are NULL then the result
1766** of comparison is false. If either operand is NULL then the result is true.
drhef8662b2011-06-20 21:47:58 +00001767** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001768** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001769*/
drh9cbf3422008-01-17 16:22:13 +00001770/* Opcode: Eq P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001771**
drh35573352008-01-08 23:54:25 +00001772** This works just like the Lt opcode except that the jump is taken if
1773** the operands in registers P1 and P3 are equal.
1774** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001775**
1776** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1777** true or false and is never NULL. If both operands are NULL then the result
1778** of comparison is true. If either operand is NULL then the result is false.
drhef8662b2011-06-20 21:47:58 +00001779** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001780** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001781*/
drh9cbf3422008-01-17 16:22:13 +00001782/* Opcode: Le P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001783**
drh35573352008-01-08 23:54:25 +00001784** This works just like the Lt opcode except that the jump is taken if
1785** the content of register P3 is less than or equal to the content of
1786** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001787*/
drh9cbf3422008-01-17 16:22:13 +00001788/* Opcode: Gt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001789**
drh35573352008-01-08 23:54:25 +00001790** This works just like the Lt opcode except that the jump is taken if
1791** the content of register P3 is greater than the content of
1792** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001793*/
drh9cbf3422008-01-17 16:22:13 +00001794/* Opcode: Ge P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001795**
drh35573352008-01-08 23:54:25 +00001796** This works just like the Lt opcode except that the jump is taken if
1797** the content of register P3 is greater than or equal to the content of
1798** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001799*/
drh9cbf3422008-01-17 16:22:13 +00001800case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1801case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1802case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1803case OP_Le: /* same as TK_LE, jump, in1, in3 */
1804case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1805case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001806 int res; /* Result of the comparison of pIn1 against pIn3 */
1807 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001808 u16 flags1; /* Copy of initial value of pIn1->flags */
1809 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001810
drh3c657212009-11-17 23:59:58 +00001811 pIn1 = &aMem[pOp->p1];
1812 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001813 flags1 = pIn1->flags;
1814 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001815 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001816 /* One or both operands are NULL */
1817 if( pOp->p5 & SQLITE_NULLEQ ){
1818 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1819 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1820 ** or not both operands are null.
1821 */
1822 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drh053a1282012-09-19 21:15:46 +00001823 assert( (flags1 & MEM_Cleared)==0 );
1824 if( (flags1&MEM_Null)!=0
1825 && (flags3&MEM_Null)!=0
1826 && (flags3&MEM_Cleared)==0
1827 ){
1828 res = 0; /* Results are equal */
1829 }else{
1830 res = 1; /* Results are not equal */
1831 }
drh6a2fe092009-09-23 02:29:36 +00001832 }else{
1833 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1834 ** then the result is always NULL.
1835 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1836 */
1837 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001838 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001839 MemSetTypeFlag(pOut, MEM_Null);
1840 REGISTER_TRACE(pOp->p2, pOut);
1841 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1842 pc = pOp->p2-1;
1843 }
1844 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001845 }
drh6a2fe092009-09-23 02:29:36 +00001846 }else{
1847 /* Neither operand is NULL. Do a comparison. */
1848 affinity = pOp->p5 & SQLITE_AFF_MASK;
1849 if( affinity ){
1850 applyAffinity(pIn1, affinity, encoding);
1851 applyAffinity(pIn3, affinity, encoding);
1852 if( db->mallocFailed ) goto no_mem;
1853 }
danielk1977a37cdde2004-05-16 11:15:36 +00001854
drh6a2fe092009-09-23 02:29:36 +00001855 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1856 ExpandBlob(pIn1);
1857 ExpandBlob(pIn3);
1858 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001859 }
danielk1977a37cdde2004-05-16 11:15:36 +00001860 switch( pOp->opcode ){
1861 case OP_Eq: res = res==0; break;
1862 case OP_Ne: res = res!=0; break;
1863 case OP_Lt: res = res<0; break;
1864 case OP_Le: res = res<=0; break;
1865 case OP_Gt: res = res>0; break;
1866 default: res = res>=0; break;
1867 }
1868
drh35573352008-01-08 23:54:25 +00001869 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001870 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00001871 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00001872 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00001873 pOut->u.i = res;
1874 REGISTER_TRACE(pOp->p2, pOut);
1875 }else if( res ){
1876 pc = pOp->p2-1;
danielk1977a37cdde2004-05-16 11:15:36 +00001877 }
danb7dca7d2010-03-05 16:32:12 +00001878
1879 /* Undo any changes made by applyAffinity() to the input registers. */
1880 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1881 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
danielk1977a37cdde2004-05-16 11:15:36 +00001882 break;
1883}
drhc9b84a12002-06-20 11:36:48 +00001884
drh0acb7e42008-06-25 00:12:41 +00001885/* Opcode: Permutation * * * P4 *
1886**
shanebe217792009-03-05 04:20:31 +00001887** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00001888** of integers in P4.
1889**
1890** The permutation is only valid until the next OP_Permutation, OP_Compare,
1891** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
1892** immediately prior to the OP_Compare.
1893*/
1894case OP_Permutation: {
1895 assert( pOp->p4type==P4_INTARRAY );
1896 assert( pOp->p4.ai );
1897 aPermute = pOp->p4.ai;
1898 break;
1899}
1900
drh16ee60f2008-06-20 18:13:25 +00001901/* Opcode: Compare P1 P2 P3 P4 *
1902**
drh710c4842010-08-30 01:17:20 +00001903** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1904** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00001905** the comparison for use by the next OP_Jump instruct.
1906**
drh0acb7e42008-06-25 00:12:41 +00001907** P4 is a KeyInfo structure that defines collating sequences and sort
1908** orders for the comparison. The permutation applies to registers
1909** only. The KeyInfo elements are used sequentially.
1910**
1911** The comparison is a sort comparison, so NULLs compare equal,
1912** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00001913** and strings are less than blobs.
1914*/
1915case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00001916 int n;
1917 int i;
1918 int p1;
1919 int p2;
1920 const KeyInfo *pKeyInfo;
1921 int idx;
1922 CollSeq *pColl; /* Collating sequence to use on this term */
1923 int bRev; /* True for DESCENDING sort order */
1924
1925 n = pOp->p3;
1926 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00001927 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00001928 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00001929 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00001930 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00001931#if SQLITE_DEBUG
1932 if( aPermute ){
1933 int k, mx = 0;
1934 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1935 assert( p1>0 && p1+mx<=p->nMem+1 );
1936 assert( p2>0 && p2+mx<=p->nMem+1 );
1937 }else{
1938 assert( p1>0 && p1+n<=p->nMem+1 );
1939 assert( p2>0 && p2+n<=p->nMem+1 );
1940 }
1941#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00001942 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00001943 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00001944 assert( memIsValid(&aMem[p1+idx]) );
1945 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00001946 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1947 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00001948 assert( i<pKeyInfo->nField );
1949 pColl = pKeyInfo->aColl[i];
1950 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00001951 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00001952 if( iCompare ){
1953 if( bRev ) iCompare = -iCompare;
1954 break;
1955 }
drh16ee60f2008-06-20 18:13:25 +00001956 }
drh0acb7e42008-06-25 00:12:41 +00001957 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00001958 break;
1959}
1960
1961/* Opcode: Jump P1 P2 P3 * *
1962**
1963** Jump to the instruction at address P1, P2, or P3 depending on whether
1964** in the most recent OP_Compare instruction the P1 vector was less than
1965** equal to, or greater than the P2 vector, respectively.
1966*/
drh0acb7e42008-06-25 00:12:41 +00001967case OP_Jump: { /* jump */
1968 if( iCompare<0 ){
drh16ee60f2008-06-20 18:13:25 +00001969 pc = pOp->p1 - 1;
drh0acb7e42008-06-25 00:12:41 +00001970 }else if( iCompare==0 ){
drh16ee60f2008-06-20 18:13:25 +00001971 pc = pOp->p2 - 1;
1972 }else{
1973 pc = pOp->p3 - 1;
1974 }
1975 break;
1976}
1977
drh5b6afba2008-01-05 16:29:28 +00001978/* Opcode: And P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001979**
drh5b6afba2008-01-05 16:29:28 +00001980** Take the logical AND of the values in registers P1 and P2 and
1981** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00001982**
drh5b6afba2008-01-05 16:29:28 +00001983** If either P1 or P2 is 0 (false) then the result is 0 even if
1984** the other input is NULL. A NULL and true or two NULLs give
1985** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00001986*/
drh5b6afba2008-01-05 16:29:28 +00001987/* Opcode: Or P1 P2 P3 * *
1988**
1989** Take the logical OR of the values in register P1 and P2 and
1990** store the answer in register P3.
1991**
1992** If either P1 or P2 is nonzero (true) then the result is 1 (true)
1993** even if the other input is NULL. A NULL and false or two NULLs
1994** give a NULL output.
1995*/
1996case OP_And: /* same as TK_AND, in1, in2, out3 */
1997case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001998 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1999 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002000
drh3c657212009-11-17 23:59:58 +00002001 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00002002 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002003 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00002004 }else{
drh5b6afba2008-01-05 16:29:28 +00002005 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00002006 }
drh3c657212009-11-17 23:59:58 +00002007 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00002008 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002009 v2 = 2;
2010 }else{
drh5b6afba2008-01-05 16:29:28 +00002011 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00002012 }
2013 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002014 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002015 v1 = and_logic[v1*3+v2];
2016 }else{
drh5b6afba2008-01-05 16:29:28 +00002017 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002018 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002019 }
drh3c657212009-11-17 23:59:58 +00002020 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002021 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002022 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002023 }else{
drh5b6afba2008-01-05 16:29:28 +00002024 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002025 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002026 }
drh5e00f6c2001-09-13 13:46:56 +00002027 break;
2028}
2029
drhe99fa2a2008-12-15 15:27:51 +00002030/* Opcode: Not P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002031**
drhe99fa2a2008-12-15 15:27:51 +00002032** Interpret the value in register P1 as a boolean value. Store the
2033** boolean complement in register P2. If the value in register P1 is
2034** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002035*/
drh93952eb2009-11-13 19:43:43 +00002036case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002037 pIn1 = &aMem[pOp->p1];
2038 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00002039 if( pIn1->flags & MEM_Null ){
2040 sqlite3VdbeMemSetNull(pOut);
2041 }else{
2042 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
2043 }
drh5e00f6c2001-09-13 13:46:56 +00002044 break;
2045}
2046
drhe99fa2a2008-12-15 15:27:51 +00002047/* Opcode: BitNot P1 P2 * * *
drhbf4133c2001-10-13 02:59:08 +00002048**
drhe99fa2a2008-12-15 15:27:51 +00002049** Interpret the content of register P1 as an integer. Store the
2050** ones-complement of the P1 value into register P2. If P1 holds
2051** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002052*/
drh93952eb2009-11-13 19:43:43 +00002053case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002054 pIn1 = &aMem[pOp->p1];
2055 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00002056 if( pIn1->flags & MEM_Null ){
2057 sqlite3VdbeMemSetNull(pOut);
2058 }else{
2059 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
2060 }
drhbf4133c2001-10-13 02:59:08 +00002061 break;
2062}
2063
drh48f2d3b2011-09-16 01:34:43 +00002064/* Opcode: Once P1 P2 * * *
2065**
dan1d8cb212011-12-09 13:24:16 +00002066** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
2067** set the flag and fall through to the next instruction.
drhb8475df2011-12-09 16:21:19 +00002068**
2069** See also: JumpOnce
drh48f2d3b2011-09-16 01:34:43 +00002070*/
dan1d8cb212011-12-09 13:24:16 +00002071case OP_Once: { /* jump */
2072 assert( pOp->p1<p->nOnceFlag );
2073 if( p->aOnceFlag[pOp->p1] ){
2074 pc = pOp->p2-1;
2075 }else{
2076 p->aOnceFlag[pOp->p1] = 1;
2077 }
2078 break;
2079}
2080
drh3c84ddf2008-01-09 02:15:38 +00002081/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002082**
drhef8662b2011-06-20 21:47:58 +00002083** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002084** is considered true if it is numeric and non-zero. If the value
drhb8475df2011-12-09 16:21:19 +00002085** in P1 is NULL then take the jump if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002086*/
drh3c84ddf2008-01-09 02:15:38 +00002087/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002088**
drhef8662b2011-06-20 21:47:58 +00002089** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002090** is considered false if it has a numeric value of zero. If the value
2091** in P1 is NULL then take the jump if P3 is zero.
drhf5905aa2002-05-26 20:54:33 +00002092*/
drh9cbf3422008-01-17 16:22:13 +00002093case OP_If: /* jump, in1 */
2094case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002095 int c;
drh3c657212009-11-17 23:59:58 +00002096 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002097 if( pIn1->flags & MEM_Null ){
2098 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002099 }else{
drhba0232a2005-06-06 17:27:19 +00002100#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002101 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002102#else
drh3c84ddf2008-01-09 02:15:38 +00002103 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002104#endif
drhf5905aa2002-05-26 20:54:33 +00002105 if( pOp->opcode==OP_IfNot ) c = !c;
2106 }
drh3c84ddf2008-01-09 02:15:38 +00002107 if( c ){
2108 pc = pOp->p2-1;
2109 }
drh5e00f6c2001-09-13 13:46:56 +00002110 break;
2111}
2112
drh830ecf92009-06-18 00:41:55 +00002113/* Opcode: IsNull P1 P2 * * *
drh477df4b2008-01-05 18:48:24 +00002114**
drh830ecf92009-06-18 00:41:55 +00002115** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002116*/
drh9cbf3422008-01-17 16:22:13 +00002117case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002118 pIn1 = &aMem[pOp->p1];
drh830ecf92009-06-18 00:41:55 +00002119 if( (pIn1->flags & MEM_Null)!=0 ){
2120 pc = pOp->p2 - 1;
2121 }
drh477df4b2008-01-05 18:48:24 +00002122 break;
2123}
2124
drh98757152008-01-09 23:04:12 +00002125/* Opcode: NotNull P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002126**
drh6a288a32008-01-07 19:20:24 +00002127** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002128*/
drh9cbf3422008-01-17 16:22:13 +00002129case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002130 pIn1 = &aMem[pOp->p1];
drh6a288a32008-01-07 19:20:24 +00002131 if( (pIn1->flags & MEM_Null)==0 ){
2132 pc = pOp->p2 - 1;
2133 }
drh5e00f6c2001-09-13 13:46:56 +00002134 break;
2135}
2136
drh3e9ca092009-09-08 01:14:48 +00002137/* Opcode: Column P1 P2 P3 P4 P5
danielk1977192ac1d2004-05-10 07:17:30 +00002138**
danielk1977cfcdaef2004-05-12 07:33:33 +00002139** Interpret the data that cursor P1 points to as a structure built using
2140** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002141** information about the format of the data.) Extract the P2-th column
2142** from this record. If there are less that (P2+1)
2143** values in the record, extract a NULL.
2144**
drh9cbf3422008-01-17 16:22:13 +00002145** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002146**
danielk19771f4aa332008-01-03 09:51:55 +00002147** If the column contains fewer than P2 fields, then extract a NULL. Or,
2148** if the P4 argument is a P4_MEM use the value of the P4 argument as
2149** the result.
drh3e9ca092009-09-08 01:14:48 +00002150**
2151** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2152** then the cache of the cursor is reset prior to extracting the column.
2153** The first OP_Column against a pseudo-table after the value of the content
2154** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002155**
drhdda5c082012-03-28 13:41:10 +00002156** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2157** the result is guaranteed to only be used as the argument of a length()
2158** or typeof() function, respectively. The loading of large blobs can be
2159** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002160*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002161case OP_Column: {
drh35cd6432009-06-05 14:17:21 +00002162 u32 payloadSize; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002163 i64 payloadSize64; /* Number of bytes in the record */
2164 int p1; /* P1 value of the opcode */
2165 int p2; /* column number to retrieve */
2166 VdbeCursor *pC; /* The VDBE cursor */
drhe61cffc2004-06-12 18:12:15 +00002167 char *zRec; /* Pointer to complete record-data */
drhd3194f52004-05-27 19:59:32 +00002168 BtCursor *pCrsr; /* The BTree cursor */
2169 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
2170 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk197764202cf2008-11-17 15:31:47 +00002171 int nField; /* number of fields in the record */
danielk1977cfcdaef2004-05-12 07:33:33 +00002172 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002173 int i; /* Loop counter */
2174 char *zData; /* Part of the record being decoded */
drhd4e70eb2008-01-02 00:34:36 +00002175 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002176 Mem sMem; /* For storing the record being decoded */
drh35cd6432009-06-05 14:17:21 +00002177 u8 *zIdx; /* Index into header */
2178 u8 *zEndHdr; /* Pointer to first byte after the header */
2179 u32 offset; /* Offset into the data */
drh6658cd92010-02-05 14:12:53 +00002180 u32 szField; /* Number of bytes in the content of a field */
drh35cd6432009-06-05 14:17:21 +00002181 int szHdr; /* Size of the header size field at start of record */
2182 int avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002183 u32 t; /* A type code from the record header */
drh3e9ca092009-09-08 01:14:48 +00002184 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002185
drh856c1032009-06-02 15:21:42 +00002186
2187 p1 = pOp->p1;
2188 p2 = pOp->p2;
2189 pC = 0;
drhb27b7f52008-12-10 18:03:45 +00002190 memset(&sMem, 0, sizeof(sMem));
drhd3194f52004-05-27 19:59:32 +00002191 assert( p1<p->nCursor );
drh9cbf3422008-01-17 16:22:13 +00002192 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00002193 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002194 memAboutToChange(p, pDest);
shane36840fd2009-06-26 16:32:13 +00002195 zRec = 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00002196
drhe61cffc2004-06-12 18:12:15 +00002197 /* This block sets the variable payloadSize to be the total number of
2198 ** bytes in the record.
2199 **
2200 ** zRec is set to be the complete text of the record if it is available.
drhb73857f2006-03-17 00:25:59 +00002201 ** The complete record text is always available for pseudo-tables
2202 ** If the record is stored in a cursor, the complete record text
2203 ** might be available in the pC->aRow cache. Or it might not be.
2204 ** If the data is unavailable, zRec is set to NULL.
drhd3194f52004-05-27 19:59:32 +00002205 **
2206 ** We also compute the number of columns in the record. For cursors,
drhdfe88ec2008-11-03 20:55:06 +00002207 ** the number of columns is stored in the VdbeCursor.nField element.
danielk1977cfcdaef2004-05-12 07:33:33 +00002208 */
drhb73857f2006-03-17 00:25:59 +00002209 pC = p->apCsr[p1];
drha5759672012-10-30 14:39:12 +00002210 assert( pC!=0 );
danielk19770817d0d2007-02-14 09:19:36 +00002211#ifndef SQLITE_OMIT_VIRTUALTABLE
2212 assert( pC->pVtabCursor==0 );
2213#endif
shane36840fd2009-06-26 16:32:13 +00002214 pCrsr = pC->pCursor;
2215 if( pCrsr!=0 ){
drhe61cffc2004-06-12 18:12:15 +00002216 /* The record is stored in a B-Tree */
drh536065a2005-01-26 21:55:31 +00002217 rc = sqlite3VdbeCursorMoveto(pC);
drh52f159e2005-01-27 00:33:21 +00002218 if( rc ) goto abort_due_to_error;
danielk1977192ac1d2004-05-10 07:17:30 +00002219 if( pC->nullRow ){
2220 payloadSize = 0;
drh76873ab2006-01-07 18:48:26 +00002221 }else if( pC->cacheStatus==p->cacheCtr ){
drh9188b382004-05-14 21:12:22 +00002222 payloadSize = pC->payloadSize;
drh2646da72005-12-09 20:02:05 +00002223 zRec = (char*)pC->aRow;
drhf0863fe2005-06-12 21:35:51 +00002224 }else if( pC->isIndex ){
drhea8ffdf2009-07-22 00:35:23 +00002225 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhb07028f2011-10-14 21:49:18 +00002226 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
drhc27ae612009-07-14 18:35:44 +00002227 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhaa736092009-06-22 00:55:30 +00002228 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2229 ** payload size, so it is impossible for payloadSize64 to be
2230 ** larger than 32 bits. */
2231 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
drh35cd6432009-06-05 14:17:21 +00002232 payloadSize = (u32)payloadSize64;
danielk1977192ac1d2004-05-10 07:17:30 +00002233 }else{
drhea8ffdf2009-07-22 00:35:23 +00002234 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhb07028f2011-10-14 21:49:18 +00002235 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &payloadSize);
drhea8ffdf2009-07-22 00:35:23 +00002236 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
danielk1977192ac1d2004-05-10 07:17:30 +00002237 }
drh4a6f3aa2011-08-28 00:19:26 +00002238 }else if( ALWAYS(pC->pseudoTableReg>0) ){
drha6c2ed92009-11-14 23:22:23 +00002239 pReg = &aMem[pC->pseudoTableReg];
drh21172c42012-10-30 00:29:07 +00002240 if( pC->multiPseudo ){
2241 sqlite3VdbeMemShallowCopy(pDest, pReg+p2, MEM_Ephem);
2242 Deephemeralize(pDest);
2243 goto op_column_out;
2244 }
drh3e9ca092009-09-08 01:14:48 +00002245 assert( pReg->flags & MEM_Blob );
drh2b4ded92010-09-27 21:09:31 +00002246 assert( memIsValid(pReg) );
drh3e9ca092009-09-08 01:14:48 +00002247 payloadSize = pReg->n;
2248 zRec = pReg->z;
2249 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002250 assert( payloadSize==0 || zRec!=0 );
drh9a65f2c2009-06-22 19:05:40 +00002251 }else{
2252 /* Consider the row to be NULL */
2253 payloadSize = 0;
danielk1977192ac1d2004-05-10 07:17:30 +00002254 }
2255
drhe6f43fc2011-08-28 02:15:34 +00002256 /* If payloadSize is 0, then just store a NULL. This can happen because of
2257 ** nullRow or because of a corrupt database. */
danielk1977192ac1d2004-05-10 07:17:30 +00002258 if( payloadSize==0 ){
drhe6f43fc2011-08-28 02:15:34 +00002259 MemSetTypeFlag(pDest, MEM_Null);
drhd4e70eb2008-01-02 00:34:36 +00002260 goto op_column_out;
danielk1977192ac1d2004-05-10 07:17:30 +00002261 }
drh35cd6432009-06-05 14:17:21 +00002262 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2263 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002264 goto too_big;
2265 }
danielk1977192ac1d2004-05-10 07:17:30 +00002266
shane36840fd2009-06-26 16:32:13 +00002267 nField = pC->nField;
drhd3194f52004-05-27 19:59:32 +00002268 assert( p2<nField );
danielk1977b4964b72004-05-18 01:23:38 +00002269
drh9188b382004-05-14 21:12:22 +00002270 /* Read and parse the table header. Store the results of the parse
2271 ** into the record header cache fields of the cursor.
danielk1977192ac1d2004-05-10 07:17:30 +00002272 */
danielk1977cd3e8f72008-03-25 09:47:35 +00002273 aType = pC->aType;
drha05a7222008-01-19 03:35:58 +00002274 if( pC->cacheStatus==p->cacheCtr ){
drhd3194f52004-05-27 19:59:32 +00002275 aOffset = pC->aOffset;
2276 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00002277 assert(aType);
drh856c1032009-06-02 15:21:42 +00002278 avail = 0;
drhb73857f2006-03-17 00:25:59 +00002279 pC->aOffset = aOffset = &aType[nField];
2280 pC->payloadSize = payloadSize;
2281 pC->cacheStatus = p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002282
drhd3194f52004-05-27 19:59:32 +00002283 /* Figure out how many bytes are in the header */
danielk197784ac9d02004-05-18 09:58:06 +00002284 if( zRec ){
2285 zData = zRec;
2286 }else{
drhf0863fe2005-06-12 21:35:51 +00002287 if( pC->isIndex ){
drhe51c44f2004-05-30 20:46:09 +00002288 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
drhd3194f52004-05-27 19:59:32 +00002289 }else{
drhe51c44f2004-05-30 20:46:09 +00002290 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002291 }
drhe61cffc2004-06-12 18:12:15 +00002292 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2293 ** save the payload in the pC->aRow cache. That will save us from
2294 ** having to make additional calls to fetch the content portion of
2295 ** the record.
2296 */
drh35cd6432009-06-05 14:17:21 +00002297 assert( avail>=0 );
2298 if( payloadSize <= (u32)avail ){
drh2646da72005-12-09 20:02:05 +00002299 zRec = zData;
2300 pC->aRow = (u8*)zData;
drhe61cffc2004-06-12 18:12:15 +00002301 }else{
2302 pC->aRow = 0;
2303 }
drhd3194f52004-05-27 19:59:32 +00002304 }
drhdda5c082012-03-28 13:41:10 +00002305 /* The following assert is true in all cases except when
drh588f5bc2007-01-02 18:41:54 +00002306 ** the database file has been corrupted externally.
2307 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
drh35cd6432009-06-05 14:17:21 +00002308 szHdr = getVarint32((u8*)zData, offset);
2309
2310 /* Make sure a corrupt database has not given us an oversize header.
2311 ** Do this now to avoid an oversize memory allocation.
2312 **
2313 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2314 ** types use so much data space that there can only be 4096 and 32 of
2315 ** them, respectively. So the maximum header length results from a
2316 ** 3-byte type for each of the maximum of 32768 columns plus three
2317 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2318 */
2319 if( offset > 98307 ){
2320 rc = SQLITE_CORRUPT_BKPT;
2321 goto op_column_out;
2322 }
2323
2324 /* Compute in len the number of bytes of data we need to read in order
2325 ** to get nField type values. offset is an upper bound on this. But
2326 ** nField might be significantly less than the true number of columns
2327 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2328 ** We want to minimize len in order to limit the size of the memory
2329 ** allocation, especially if a corrupt database file has caused offset
2330 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2331 ** still exceed Robson memory allocation limits on some configurations.
2332 ** On systems that cannot tolerate large memory allocations, nField*5+3
2333 ** will likely be much smaller since nField will likely be less than
2334 ** 20 or so. This insures that Robson memory allocation limits are
2335 ** not exceeded even for corrupt database files.
2336 */
2337 len = nField*5 + 3;
shane75ac1de2009-06-09 18:58:52 +00002338 if( len > (int)offset ) len = (int)offset;
drhe61cffc2004-06-12 18:12:15 +00002339
2340 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2341 ** record header in most cases. But they will fail to get the complete
2342 ** record header if the record header does not fit on a single page
2343 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2344 ** acquire the complete header text.
2345 */
drh35cd6432009-06-05 14:17:21 +00002346 if( !zRec && avail<len ){
danielk1977a7a8e142008-02-13 18:25:27 +00002347 sMem.flags = 0;
2348 sMem.db = 0;
drh35cd6432009-06-05 14:17:21 +00002349 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
danielk197784ac9d02004-05-18 09:58:06 +00002350 if( rc!=SQLITE_OK ){
danielk19773c9cc8d2005-01-17 03:40:08 +00002351 goto op_column_out;
drh9188b382004-05-14 21:12:22 +00002352 }
drhb6f54522004-05-20 02:42:16 +00002353 zData = sMem.z;
drh9188b382004-05-14 21:12:22 +00002354 }
drh35cd6432009-06-05 14:17:21 +00002355 zEndHdr = (u8 *)&zData[len];
2356 zIdx = (u8 *)&zData[szHdr];
drh9188b382004-05-14 21:12:22 +00002357
drhd3194f52004-05-27 19:59:32 +00002358 /* Scan the header and use it to fill in the aType[] and aOffset[]
2359 ** arrays. aType[i] will contain the type integer for the i-th
2360 ** column and aOffset[i] will contain the offset from the beginning
2361 ** of the record to the start of the data for the i-th column
drh9188b382004-05-14 21:12:22 +00002362 */
danielk1977dedf45b2006-01-13 17:12:01 +00002363 for(i=0; i<nField; i++){
2364 if( zIdx<zEndHdr ){
drh6658cd92010-02-05 14:12:53 +00002365 aOffset[i] = offset;
drh5a077b72011-08-29 02:16:18 +00002366 if( zIdx[0]<0x80 ){
2367 t = zIdx[0];
2368 zIdx++;
2369 }else{
2370 zIdx += sqlite3GetVarint32(zIdx, &t);
2371 }
2372 aType[i] = t;
2373 szField = sqlite3VdbeSerialTypeLen(t);
drh6658cd92010-02-05 14:12:53 +00002374 offset += szField;
2375 if( offset<szField ){ /* True if offset overflows */
2376 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2377 break;
2378 }
danielk1977dedf45b2006-01-13 17:12:01 +00002379 }else{
drhdda5c082012-03-28 13:41:10 +00002380 /* If i is less that nField, then there are fewer fields in this
danielk1977dedf45b2006-01-13 17:12:01 +00002381 ** record than SetNumColumns indicated there are columns in the
2382 ** table. Set the offset for any extra columns not present in
drhdda5c082012-03-28 13:41:10 +00002383 ** the record to 0. This tells code below to store the default value
2384 ** for the column instead of deserializing a value from the record.
danielk1977dedf45b2006-01-13 17:12:01 +00002385 */
2386 aOffset[i] = 0;
2387 }
drh9188b382004-05-14 21:12:22 +00002388 }
danielk19775f096132008-03-28 15:44:09 +00002389 sqlite3VdbeMemRelease(&sMem);
drhd3194f52004-05-27 19:59:32 +00002390 sMem.flags = MEM_Null;
2391
danielk19779792eef2006-01-13 15:58:43 +00002392 /* If we have read more header data than was contained in the header,
2393 ** or if the end of the last field appears to be past the end of the
shane2ca8bc02008-05-07 18:59:28 +00002394 ** record, or if the end of the last field appears to be before the end
2395 ** of the record (when all fields present), then we must be dealing
2396 ** with a corrupt database.
drhd3194f52004-05-27 19:59:32 +00002397 */
drh6658cd92010-02-05 14:12:53 +00002398 if( (zIdx > zEndHdr) || (offset > payloadSize)
2399 || (zIdx==zEndHdr && offset!=payloadSize) ){
drh49285702005-09-17 15:20:26 +00002400 rc = SQLITE_CORRUPT_BKPT;
danielk19773c9cc8d2005-01-17 03:40:08 +00002401 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002402 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002403 }
danielk1977192ac1d2004-05-10 07:17:30 +00002404
danielk197736963fd2005-02-19 08:18:05 +00002405 /* Get the column information. If aOffset[p2] is non-zero, then
2406 ** deserialize the value from the record. If aOffset[p2] is zero,
2407 ** then there are not enough fields in the record to satisfy the
drh66a51672008-01-03 00:01:23 +00002408 ** request. In this case, set the value NULL or to P4 if P4 is
drh29dda4a2005-07-21 18:23:20 +00002409 ** a pointer to a Mem object.
drh9188b382004-05-14 21:12:22 +00002410 */
danielk197736963fd2005-02-19 08:18:05 +00002411 if( aOffset[p2] ){
2412 assert( rc==SQLITE_OK );
2413 if( zRec ){
drhac5e7492012-03-28 16:14:50 +00002414 /* This is the common case where the whole row fits on a single page */
drhe4c88c02012-01-04 12:57:45 +00002415 VdbeMemRelease(pDest);
danielk1977808ec7c2008-07-29 10:18:57 +00002416 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
danielk197736963fd2005-02-19 08:18:05 +00002417 }else{
drhac5e7492012-03-28 16:14:50 +00002418 /* This branch happens only when the row overflows onto multiple pages */
drhdda5c082012-03-28 13:41:10 +00002419 t = aType[p2];
drha748fdc2012-03-28 01:34:47 +00002420 if( (pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
drhdda5c082012-03-28 13:41:10 +00002421 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)
drha748fdc2012-03-28 01:34:47 +00002422 ){
2423 /* Content is irrelevant for the typeof() function and for
drhdda5c082012-03-28 13:41:10 +00002424 ** the length(X) function if X is a blob. So we might as well use
drha748fdc2012-03-28 01:34:47 +00002425 ** bogus content rather than reading content from disk. NULL works
2426 ** for text and blob and whatever is in the payloadSize64 variable
2427 ** will work for everything else. */
2428 zData = t<12 ? (char*)&payloadSize64 : 0;
2429 }else{
drhac5e7492012-03-28 16:14:50 +00002430 len = sqlite3VdbeSerialTypeLen(t);
drha748fdc2012-03-28 01:34:47 +00002431 sqlite3VdbeMemMove(&sMem, pDest);
2432 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex,
2433 &sMem);
2434 if( rc!=SQLITE_OK ){
2435 goto op_column_out;
2436 }
2437 zData = sMem.z;
danielk197736963fd2005-02-19 08:18:05 +00002438 }
drhdda5c082012-03-28 13:41:10 +00002439 sqlite3VdbeSerialGet((u8*)zData, t, pDest);
danielk19777701e812005-01-10 12:59:51 +00002440 }
drhd4e70eb2008-01-02 00:34:36 +00002441 pDest->enc = encoding;
danielk197736963fd2005-02-19 08:18:05 +00002442 }else{
danielk197760585dd2008-01-03 08:08:40 +00002443 if( pOp->p4type==P4_MEM ){
danielk19772dca4ac2008-01-03 11:50:29 +00002444 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
danielk1977aee18ef2005-03-09 12:26:50 +00002445 }else{
drhe6f43fc2011-08-28 02:15:34 +00002446 MemSetTypeFlag(pDest, MEM_Null);
danielk1977aee18ef2005-03-09 12:26:50 +00002447 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002448 }
drhfebe1062004-08-28 18:17:48 +00002449
2450 /* If we dynamically allocated space to hold the data (in the
2451 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
drhd4e70eb2008-01-02 00:34:36 +00002452 ** dynamically allocated space over to the pDest structure.
drhfebe1062004-08-28 18:17:48 +00002453 ** This prevents a memory copy.
2454 */
danielk19775f096132008-03-28 15:44:09 +00002455 if( sMem.zMalloc ){
2456 assert( sMem.z==sMem.zMalloc );
danielk1977a7a8e142008-02-13 18:25:27 +00002457 assert( !(pDest->flags & MEM_Dyn) );
2458 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2459 pDest->flags &= ~(MEM_Ephem|MEM_Static);
danielk19775f096132008-03-28 15:44:09 +00002460 pDest->flags |= MEM_Term;
danielk1977a7a8e142008-02-13 18:25:27 +00002461 pDest->z = sMem.z;
danielk19775f096132008-03-28 15:44:09 +00002462 pDest->zMalloc = sMem.zMalloc;
danielk1977b1bc9532004-05-22 03:05:33 +00002463 }
drhfebe1062004-08-28 18:17:48 +00002464
drhd4e70eb2008-01-02 00:34:36 +00002465 rc = sqlite3VdbeMemMakeWriteable(pDest);
drhd3194f52004-05-27 19:59:32 +00002466
danielk19773c9cc8d2005-01-17 03:40:08 +00002467op_column_out:
drhb7654112008-01-12 12:48:07 +00002468 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002469 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002470 break;
2471}
2472
danielk1977751de562008-04-18 09:01:15 +00002473/* Opcode: Affinity P1 P2 * P4 *
2474**
2475** Apply affinities to a range of P2 registers starting with P1.
2476**
2477** P4 is a string that is P2 characters long. The nth character of the
2478** string indicates the column affinity that should be used for the nth
2479** memory cell in the range.
2480*/
2481case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002482 const char *zAffinity; /* The affinity to be applied */
2483 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002484
drh856c1032009-06-02 15:21:42 +00002485 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002486 assert( zAffinity!=0 );
2487 assert( zAffinity[pOp->p2]==0 );
2488 pIn1 = &aMem[pOp->p1];
2489 while( (cAff = *(zAffinity++))!=0 ){
2490 assert( pIn1 <= &p->aMem[p->nMem] );
drh2b4ded92010-09-27 21:09:31 +00002491 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002492 ExpandBlob(pIn1);
2493 applyAffinity(pIn1, cAff, encoding);
2494 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002495 }
2496 break;
2497}
2498
drh1db639c2008-01-17 02:36:28 +00002499/* Opcode: MakeRecord P1 P2 P3 P4 *
drh7a224de2004-06-02 01:22:02 +00002500**
drh710c4842010-08-30 01:17:20 +00002501** Convert P2 registers beginning with P1 into the [record format]
2502** use as a data record in a database table or as a key
2503** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002504**
danielk1977751de562008-04-18 09:01:15 +00002505** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002506** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002507** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002508**
drh8a512562005-11-14 22:29:05 +00002509** The mapping from character to affinity is given by the SQLITE_AFF_
2510** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002511**
drh66a51672008-01-03 00:01:23 +00002512** If P4 is NULL then all index fields have the affinity NONE.
drh7f057c92005-06-24 03:53:06 +00002513*/
drh1db639c2008-01-17 02:36:28 +00002514case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002515 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2516 Mem *pRec; /* The new record */
2517 u64 nData; /* Number of bytes of data space */
2518 int nHdr; /* Number of bytes of header space */
2519 i64 nByte; /* Data space required for this record */
2520 int nZero; /* Number of zero bytes at the end of the record */
2521 int nVarint; /* Number of bytes in a varint */
2522 u32 serial_type; /* Type field */
2523 Mem *pData0; /* First field to be combined into the record */
2524 Mem *pLast; /* Last field of the record */
2525 int nField; /* Number of fields in the record */
2526 char *zAffinity; /* The affinity string for the record */
2527 int file_format; /* File format to use for encoding */
2528 int i; /* Space used in zNewRecord[] */
2529 int len; /* Length of a field */
2530
drhf3218fe2004-05-28 08:21:02 +00002531 /* Assuming the record contains N fields, the record format looks
2532 ** like this:
2533 **
drh7a224de2004-06-02 01:22:02 +00002534 ** ------------------------------------------------------------------------
2535 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2536 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002537 **
drh9cbf3422008-01-17 16:22:13 +00002538 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2539 ** and so froth.
drhf3218fe2004-05-28 08:21:02 +00002540 **
2541 ** Each type field is a varint representing the serial type of the
2542 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002543 ** hdr-size field is also a varint which is the offset from the beginning
2544 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002545 */
drh856c1032009-06-02 15:21:42 +00002546 nData = 0; /* Number of bytes of data space */
2547 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002548 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002549 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002550 zAffinity = pOp->p4.z;
danielk19776ab3a2e2009-02-19 14:39:25 +00002551 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
drha6c2ed92009-11-14 23:22:23 +00002552 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002553 nField = pOp->p2;
2554 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002555 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002556
drh2b4ded92010-09-27 21:09:31 +00002557 /* Identify the output register */
2558 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2559 pOut = &aMem[pOp->p3];
2560 memAboutToChange(p, pOut);
2561
drhf3218fe2004-05-28 08:21:02 +00002562 /* Loop through the elements that will make up the record to figure
2563 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002564 */
drha2a49dc2008-01-02 14:28:13 +00002565 for(pRec=pData0; pRec<=pLast; pRec++){
drh2b4ded92010-09-27 21:09:31 +00002566 assert( memIsValid(pRec) );
drhd3d39e92004-05-20 22:16:29 +00002567 if( zAffinity ){
drhb21c8cd2007-08-21 19:33:56 +00002568 applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
drhd3d39e92004-05-20 22:16:29 +00002569 }
danielk1977d908f5a2007-05-11 07:08:28 +00002570 if( pRec->flags&MEM_Zero && pRec->n>0 ){
drha05a7222008-01-19 03:35:58 +00002571 sqlite3VdbeMemExpandBlob(pRec);
danielk1977d908f5a2007-05-11 07:08:28 +00002572 }
drhd946db02005-12-29 19:23:06 +00002573 serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002574 len = sqlite3VdbeSerialTypeLen(serial_type);
2575 nData += len;
drhf3218fe2004-05-28 08:21:02 +00002576 nHdr += sqlite3VarintLen(serial_type);
drhfdf972a2007-05-02 13:30:27 +00002577 if( pRec->flags & MEM_Zero ){
2578 /* Only pure zero-filled BLOBs can be input to this Opcode.
2579 ** We do not allow blobs with a prefix and a zero-filled tail. */
drh8df32842008-12-09 02:51:23 +00002580 nZero += pRec->u.nZero;
drhae7e1512007-05-02 16:51:59 +00002581 }else if( len ){
drhfdf972a2007-05-02 13:30:27 +00002582 nZero = 0;
2583 }
danielk19778d059842004-05-12 11:24:02 +00002584 }
danielk19773d1bfea2004-05-14 11:00:53 +00002585
drhf3218fe2004-05-28 08:21:02 +00002586 /* Add the initial header varint and total the size */
drhcb9882a2005-03-17 03:15:40 +00002587 nHdr += nVarint = sqlite3VarintLen(nHdr);
2588 if( nVarint<sqlite3VarintLen(nHdr) ){
2589 nHdr++;
2590 }
drhfdf972a2007-05-02 13:30:27 +00002591 nByte = nHdr+nData-nZero;
drhbb4957f2008-03-20 14:03:29 +00002592 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002593 goto too_big;
2594 }
drhf3218fe2004-05-28 08:21:02 +00002595
danielk1977a7a8e142008-02-13 18:25:27 +00002596 /* Make sure the output register has a buffer large enough to store
2597 ** the new record. The output register (pOp->p3) is not allowed to
2598 ** be one of the input registers (because the following call to
2599 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2600 */
drh9c1905f2008-12-10 22:32:56 +00002601 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002602 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002603 }
danielk1977a7a8e142008-02-13 18:25:27 +00002604 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002605
2606 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002607 i = putVarint32(zNewRecord, nHdr);
drha2a49dc2008-01-02 14:28:13 +00002608 for(pRec=pData0; pRec<=pLast; pRec++){
drhd946db02005-12-29 19:23:06 +00002609 serial_type = sqlite3VdbeSerialType(pRec, file_format);
shane3f8d5cf2008-04-24 19:15:09 +00002610 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
danielk19778d059842004-05-12 11:24:02 +00002611 }
drha2a49dc2008-01-02 14:28:13 +00002612 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
drh9c1905f2008-12-10 22:32:56 +00002613 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
drhf3218fe2004-05-28 08:21:02 +00002614 }
drhfdf972a2007-05-02 13:30:27 +00002615 assert( i==nByte );
drhf3218fe2004-05-28 08:21:02 +00002616
drh9cbf3422008-01-17 16:22:13 +00002617 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drh9c1905f2008-12-10 22:32:56 +00002618 pOut->n = (int)nByte;
danielk1977a7a8e142008-02-13 18:25:27 +00002619 pOut->flags = MEM_Blob | MEM_Dyn;
2620 pOut->xDel = 0;
drhfdf972a2007-05-02 13:30:27 +00002621 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002622 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002623 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002624 }
drh477df4b2008-01-05 18:48:24 +00002625 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002626 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002627 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002628 break;
2629}
2630
danielk1977a5533162009-02-24 10:01:51 +00002631/* Opcode: Count P1 P2 * * *
2632**
2633** Store the number of entries (an integer value) in the table or index
2634** opened by cursor P1 in register P2
2635*/
2636#ifndef SQLITE_OMIT_BTREECOUNT
2637case OP_Count: { /* out2-prerelease */
2638 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002639 BtCursor *pCrsr;
2640
2641 pCrsr = p->apCsr[pOp->p1]->pCursor;
dana205a482011-08-27 18:48:57 +00002642 if( ALWAYS(pCrsr) ){
drh818e39a2009-04-02 20:27:28 +00002643 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2644 }else{
2645 nEntry = 0;
2646 }
danielk1977a5533162009-02-24 10:01:51 +00002647 pOut->u.i = nEntry;
2648 break;
2649}
2650#endif
2651
danielk1977fd7f0452008-12-17 17:30:26 +00002652/* Opcode: Savepoint P1 * * P4 *
2653**
2654** Open, release or rollback the savepoint named by parameter P4, depending
2655** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2656** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2657*/
2658case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002659 int p1; /* Value of P1 operand */
2660 char *zName; /* Name of savepoint */
2661 int nName;
2662 Savepoint *pNew;
2663 Savepoint *pSavepoint;
2664 Savepoint *pTmp;
2665 int iSavepoint;
2666 int ii;
2667
2668 p1 = pOp->p1;
2669 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002670
2671 /* Assert that the p1 parameter is valid. Also that if there is no open
2672 ** transaction, then there cannot be any savepoints.
2673 */
2674 assert( db->pSavepoint==0 || db->autoCommit==0 );
2675 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2676 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2677 assert( checkSavepointCount(db) );
2678
2679 if( p1==SAVEPOINT_BEGIN ){
danielk197734cf35d2008-12-18 18:31:38 +00002680 if( db->writeVdbeCnt>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002681 /* A new savepoint cannot be created if there are active write
2682 ** statements (i.e. open read/write incremental blob handles).
2683 */
2684 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2685 "SQL statements in progress");
2686 rc = SQLITE_BUSY;
2687 }else{
drh856c1032009-06-02 15:21:42 +00002688 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002689
drhbe07ec52011-06-03 12:15:26 +00002690#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002691 /* This call is Ok even if this savepoint is actually a transaction
2692 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2693 ** If this is a transaction savepoint being opened, it is guaranteed
2694 ** that the db->aVTrans[] array is empty. */
2695 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002696 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2697 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002698 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002699#endif
dand9495cd2011-04-27 12:08:04 +00002700
danielk1977fd7f0452008-12-17 17:30:26 +00002701 /* Create a new savepoint structure. */
2702 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2703 if( pNew ){
2704 pNew->zName = (char *)&pNew[1];
2705 memcpy(pNew->zName, zName, nName+1);
2706
2707 /* If there is no open transaction, then mark this as a special
2708 ** "transaction savepoint". */
2709 if( db->autoCommit ){
2710 db->autoCommit = 0;
2711 db->isTransactionSavepoint = 1;
2712 }else{
2713 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002714 }
danielk1977fd7f0452008-12-17 17:30:26 +00002715
2716 /* Link the new savepoint into the database handle's list. */
2717 pNew->pNext = db->pSavepoint;
2718 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002719 pNew->nDeferredCons = db->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002720 }
2721 }
2722 }else{
drh856c1032009-06-02 15:21:42 +00002723 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002724
2725 /* Find the named savepoint. If there is no such savepoint, then an
2726 ** an error is returned to the user. */
2727 for(
drh856c1032009-06-02 15:21:42 +00002728 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002729 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002730 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002731 ){
2732 iSavepoint++;
2733 }
2734 if( !pSavepoint ){
2735 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2736 rc = SQLITE_ERROR;
drh0f198a72012-02-13 16:43:16 +00002737 }else if( db->writeVdbeCnt>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00002738 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00002739 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00002740 */
2741 sqlite3SetString(&p->zErrMsg, db,
drh0f198a72012-02-13 16:43:16 +00002742 "cannot release savepoint - SQL statements in progress"
danielk1977fd7f0452008-12-17 17:30:26 +00002743 );
2744 rc = SQLITE_BUSY;
2745 }else{
2746
2747 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002748 ** and this is a RELEASE command, then the current transaction
2749 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002750 */
2751 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2752 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002753 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002754 goto vdbe_return;
2755 }
danielk1977fd7f0452008-12-17 17:30:26 +00002756 db->autoCommit = 1;
2757 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2758 p->pc = pc;
2759 db->autoCommit = 0;
2760 p->rc = rc = SQLITE_BUSY;
2761 goto vdbe_return;
2762 }
danielk197734cf35d2008-12-18 18:31:38 +00002763 db->isTransactionSavepoint = 0;
2764 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002765 }else{
danielk1977fd7f0452008-12-17 17:30:26 +00002766 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00002767 if( p1==SAVEPOINT_ROLLBACK ){
2768 for(ii=0; ii<db->nDb; ii++){
2769 sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);
2770 }
drh0f198a72012-02-13 16:43:16 +00002771 }
2772 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00002773 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2774 if( rc!=SQLITE_OK ){
2775 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002776 }
danielk1977fd7f0452008-12-17 17:30:26 +00002777 }
drh9f0bbf92009-01-02 21:08:09 +00002778 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002779 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00002780 sqlite3ResetAllSchemasOfConnection(db);
danc311fee2010-08-31 16:25:19 +00002781 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002782 }
2783 }
2784
2785 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2786 ** savepoints nested inside of the savepoint being operated on. */
2787 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002788 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002789 db->pSavepoint = pTmp->pNext;
2790 sqlite3DbFree(db, pTmp);
2791 db->nSavepoint--;
2792 }
2793
dan1da40a32009-09-19 17:00:31 +00002794 /* If it is a RELEASE, then destroy the savepoint being operated on
2795 ** too. If it is a ROLLBACK TO, then set the number of deferred
2796 ** constraint violations present in the database to the value stored
2797 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002798 if( p1==SAVEPOINT_RELEASE ){
2799 assert( pSavepoint==db->pSavepoint );
2800 db->pSavepoint = pSavepoint->pNext;
2801 sqlite3DbFree(db, pSavepoint);
2802 if( !isTransaction ){
2803 db->nSavepoint--;
2804 }
dan1da40a32009-09-19 17:00:31 +00002805 }else{
2806 db->nDeferredCons = pSavepoint->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002807 }
dand9495cd2011-04-27 12:08:04 +00002808
2809 if( !isTransaction ){
2810 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2811 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2812 }
danielk1977fd7f0452008-12-17 17:30:26 +00002813 }
2814 }
2815
2816 break;
2817}
2818
drh98757152008-01-09 23:04:12 +00002819/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002820**
2821** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002822** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002823** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2824** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002825**
2826** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002827*/
drh9cbf3422008-01-17 16:22:13 +00002828case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002829 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002830 int iRollback;
drh856c1032009-06-02 15:21:42 +00002831 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002832
drh856c1032009-06-02 15:21:42 +00002833 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002834 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002835 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002836 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002837 assert( desiredAutoCommit==1 || iRollback==0 );
drh92f02c32004-09-02 14:57:08 +00002838 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
danielk197746c43ed2004-06-30 06:30:25 +00002839
drh0f198a72012-02-13 16:43:16 +00002840#if 0
shane68c02732009-06-09 18:14:18 +00002841 if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
drhad4a4b82008-11-05 16:37:34 +00002842 /* If this instruction implements a ROLLBACK and other VMs are
danielk197746c43ed2004-06-30 06:30:25 +00002843 ** still running, and a transaction is active, return an error indicating
2844 ** that the other VMs must complete first.
2845 */
drhad4a4b82008-11-05 16:37:34 +00002846 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2847 "SQL statements in progress");
drh99dfe5e2008-10-30 15:03:15 +00002848 rc = SQLITE_BUSY;
drh0f198a72012-02-13 16:43:16 +00002849 }else
2850#endif
2851 if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
drhad4a4b82008-11-05 16:37:34 +00002852 /* If this instruction implements a COMMIT and other VMs are writing
2853 ** return an error indicating that the other VMs must complete first.
2854 */
2855 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2856 "SQL statements in progress");
2857 rc = SQLITE_BUSY;
2858 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00002859 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00002860 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00002861 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00002862 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00002863 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002864 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002865 }else{
shane7d3846a2008-12-11 02:58:26 +00002866 db->autoCommit = (u8)desiredAutoCommit;
danielk1977f3f06bb2005-12-16 15:24:28 +00002867 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
danielk1977f3f06bb2005-12-16 15:24:28 +00002868 p->pc = pc;
drh9c1905f2008-12-10 22:32:56 +00002869 db->autoCommit = (u8)(1-desiredAutoCommit);
drh900b31e2007-08-28 02:27:51 +00002870 p->rc = rc = SQLITE_BUSY;
2871 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002872 }
danielk19771d850a72004-05-31 08:26:49 +00002873 }
danielk1977bd434552009-03-18 10:33:00 +00002874 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00002875 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00002876 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00002877 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00002878 }else{
drh900b31e2007-08-28 02:27:51 +00002879 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00002880 }
drh900b31e2007-08-28 02:27:51 +00002881 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00002882 }else{
drhf089aa42008-07-08 19:34:06 +00002883 sqlite3SetString(&p->zErrMsg, db,
drhad4a4b82008-11-05 16:37:34 +00002884 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00002885 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00002886 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00002887
2888 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00002889 }
2890 break;
2891}
2892
drh98757152008-01-09 23:04:12 +00002893/* Opcode: Transaction P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002894**
2895** Begin a transaction. The transaction ends when a Commit or Rollback
drh663fc632002-02-02 18:49:19 +00002896** opcode is encountered. Depending on the ON CONFLICT setting, the
2897** transaction might also be rolled back if an error is encountered.
drh5e00f6c2001-09-13 13:46:56 +00002898**
drh001bbcb2003-03-19 03:14:00 +00002899** P1 is the index of the database file on which the transaction is
2900** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00002901** file used for temporary tables. Indices of 2 or more are used for
2902** attached databases.
drhcabb0812002-09-14 13:47:32 +00002903**
drh80242052004-06-09 00:48:12 +00002904** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
danielk1977ee5741e2004-05-31 10:01:34 +00002905** obtained on the database file when a write-transaction is started. No
drh80242052004-06-09 00:48:12 +00002906** other process can start another write transaction while this transaction is
2907** underway. Starting a write transaction also creates a rollback journal. A
2908** write transaction must be started before any changes can be made to the
drh684917c2004-10-05 02:41:42 +00002909** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2910** on the file.
danielk1977ee5741e2004-05-31 10:01:34 +00002911**
dane0af83a2009-09-08 19:15:01 +00002912** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2913** true (this flag is set if the Vdbe may modify more than one row and may
2914** throw an ABORT exception), a statement transaction may also be opened.
2915** More specifically, a statement transaction is opened iff the database
2916** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00002917** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00002918** VDBE to be rolled back after an error without having to roll back the
2919** entire transaction. If no error is encountered, the statement transaction
2920** will automatically commit when the VDBE halts.
2921**
danielk1977ee5741e2004-05-31 10:01:34 +00002922** If P2 is zero, then a read-lock is obtained on the database file.
drh5e00f6c2001-09-13 13:46:56 +00002923*/
drh9cbf3422008-01-17 16:22:13 +00002924case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00002925 Btree *pBt;
2926
drh653b82a2009-06-22 11:10:47 +00002927 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00002928 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh653b82a2009-06-22 11:10:47 +00002929 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00002930
danielk197724162fe2004-06-04 06:22:00 +00002931 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00002932 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
danielk197724162fe2004-06-04 06:22:00 +00002933 if( rc==SQLITE_BUSY ){
danielk19772a764eb2004-06-12 01:43:26 +00002934 p->pc = pc;
drh900b31e2007-08-28 02:27:51 +00002935 p->rc = rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00002936 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00002937 }
drh9e9f1bd2009-10-13 15:36:51 +00002938 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00002939 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00002940 }
dane0af83a2009-09-08 19:15:01 +00002941
2942 if( pOp->p2 && p->usesStmtJournal
2943 && (db->autoCommit==0 || db->activeVdbeCnt>1)
2944 ){
2945 assert( sqlite3BtreeIsInTrans(pBt) );
2946 if( p->iStatement==0 ){
2947 assert( db->nStatement>=0 && db->nSavepoint>=0 );
2948 db->nStatement++;
2949 p->iStatement = db->nSavepoint + db->nStatement;
2950 }
dana311b802011-04-26 19:21:34 +00002951
drh346506f2011-05-25 01:16:42 +00002952 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00002953 if( rc==SQLITE_OK ){
2954 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
2955 }
dan1da40a32009-09-19 17:00:31 +00002956
2957 /* Store the current value of the database handles deferred constraint
2958 ** counter. If the statement transaction needs to be rolled back,
2959 ** the value of this counter needs to be restored too. */
2960 p->nStmtDefCons = db->nDeferredCons;
dane0af83a2009-09-08 19:15:01 +00002961 }
drhb86ccfb2003-01-28 23:13:10 +00002962 }
drh5e00f6c2001-09-13 13:46:56 +00002963 break;
2964}
2965
drhb1fdb2a2008-01-05 04:06:03 +00002966/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002967**
drh9cbf3422008-01-17 16:22:13 +00002968** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00002969** P3==1 is the schema version. P3==2 is the database format.
2970** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00002971** the main database file and P1==1 is the database file used to store
2972** temporary tables.
drh4a324312001-12-21 14:30:42 +00002973**
drh50e5dad2001-09-15 00:57:28 +00002974** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00002975** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00002976** executing this instruction.
2977*/
drh4c583122008-01-04 22:01:03 +00002978case OP_ReadCookie: { /* out2-prerelease */
drhf328bc82004-05-10 23:29:49 +00002979 int iMeta;
drh856c1032009-06-02 15:21:42 +00002980 int iDb;
2981 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00002982
drh856c1032009-06-02 15:21:42 +00002983 iDb = pOp->p1;
2984 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00002985 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00002986 assert( iDb>=0 && iDb<db->nDb );
2987 assert( db->aDb[iDb].pBt!=0 );
drhdddd7792011-04-03 18:19:25 +00002988 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
danielk19770d19f7a2009-06-03 11:25:07 +00002989
danielk1977602b4662009-07-02 07:47:33 +00002990 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh4c583122008-01-04 22:01:03 +00002991 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00002992 break;
2993}
2994
drh98757152008-01-09 23:04:12 +00002995/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002996**
drh98757152008-01-09 23:04:12 +00002997** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00002998** into cookie number P2 of database P1. P2==1 is the schema version.
2999** P2==2 is the database format. P2==3 is the recommended pager cache
3000** size, and so forth. P1==0 is the main database file and P1==1 is the
3001** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003002**
3003** A transaction must be started before executing this opcode.
3004*/
drh9cbf3422008-01-17 16:22:13 +00003005case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00003006 Db *pDb;
drh4a324312001-12-21 14:30:42 +00003007 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003008 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003009 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh3f7d4e42004-07-24 14:35:58 +00003010 pDb = &db->aDb[pOp->p1];
3011 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003012 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drh3c657212009-11-17 23:59:58 +00003013 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00003014 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00003015 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00003016 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3017 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003018 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00003019 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003020 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00003021 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003022 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00003023 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003024 }
drhfd426c62006-01-30 15:34:22 +00003025 if( pOp->p1==1 ){
3026 /* Invalidate all prepared statements whenever the TEMP database
3027 ** schema is changed. Ticket #1644 */
3028 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00003029 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003030 }
drh50e5dad2001-09-15 00:57:28 +00003031 break;
3032}
3033
drhc2a75552011-03-18 21:55:46 +00003034/* Opcode: VerifyCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003035**
drh001bbcb2003-03-19 03:14:00 +00003036** Check the value of global database parameter number 0 (the
drhc2a75552011-03-18 21:55:46 +00003037** schema version) and make sure it is equal to P2 and that the
3038** generation counter on the local schema parse equals P3.
3039**
drh001bbcb2003-03-19 03:14:00 +00003040** P1 is the database number which is 0 for the main database file
3041** and 1 for the file holding temporary tables and some higher number
3042** for auxiliary databases.
drh50e5dad2001-09-15 00:57:28 +00003043**
3044** The cookie changes its value whenever the database schema changes.
drhb19a2bc2001-09-16 00:13:26 +00003045** This operation is used to detect when that the cookie has changed
drh50e5dad2001-09-15 00:57:28 +00003046** and that the current process needs to reread the schema.
3047**
3048** Either a transaction needs to have been started or an OP_Open needs
3049** to be executed (to establish a read lock) before this opcode is
3050** invoked.
3051*/
drh9cbf3422008-01-17 16:22:13 +00003052case OP_VerifyCookie: {
drhf328bc82004-05-10 23:29:49 +00003053 int iMeta;
drhc2a75552011-03-18 21:55:46 +00003054 int iGen;
drhc275b4e2004-07-19 17:25:24 +00003055 Btree *pBt;
drhc2a75552011-03-18 21:55:46 +00003056
drh001bbcb2003-03-19 03:14:00 +00003057 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003058 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh21206082011-04-04 18:22:02 +00003059 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drhc275b4e2004-07-19 17:25:24 +00003060 pBt = db->aDb[pOp->p1].pBt;
3061 if( pBt ){
danielk1977602b4662009-07-02 07:47:33 +00003062 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
drhc2a75552011-03-18 21:55:46 +00003063 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
drhc275b4e2004-07-19 17:25:24 +00003064 }else{
drhfcd71b62011-04-05 22:08:24 +00003065 iGen = iMeta = 0;
drhc275b4e2004-07-19 17:25:24 +00003066 }
drhc2a75552011-03-18 21:55:46 +00003067 if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
drh633e6d52008-07-28 19:34:53 +00003068 sqlite3DbFree(db, p->zErrMsg);
danielk1977a1644fd2007-08-29 12:31:25 +00003069 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
danielk1977896e7922007-04-17 08:32:33 +00003070 /* If the schema-cookie from the database file matches the cookie
3071 ** stored with the in-memory representation of the schema, do
3072 ** not reload the schema from the database file.
3073 **
shane21e7feb2008-05-30 15:59:49 +00003074 ** If virtual-tables are in use, this is not just an optimization.
danielk1977896e7922007-04-17 08:32:33 +00003075 ** Often, v-tables store their data in other SQLite tables, which
3076 ** are queried from within xNext() and other v-table methods using
3077 ** prepared queries. If such a query is out-of-date, we do not want to
3078 ** discard the database schema, as the user code implementing the
3079 ** v-table would have to be ready for the sqlite3_vtab structure itself
3080 ** to be invalidated whenever sqlite3_step() is called from within
3081 ** a v-table method.
3082 */
3083 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
drh81028a42012-05-15 18:28:27 +00003084 sqlite3ResetOneSchema(db, pOp->p1);
danielk1977896e7922007-04-17 08:32:33 +00003085 }
3086
drh5b6c5452011-02-22 03:34:56 +00003087 p->expired = 1;
drh50e5dad2001-09-15 00:57:28 +00003088 rc = SQLITE_SCHEMA;
3089 }
3090 break;
3091}
3092
drh98757152008-01-09 23:04:12 +00003093/* Opcode: OpenRead P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003094**
drhecdc7532001-09-23 02:35:53 +00003095** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003096** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003097** P3==0 means the main database, P3==1 means the database used for
3098** temporary tables, and P3>1 means used the corresponding attached
3099** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003100** values need not be contiguous but all P1 values should be small integers.
3101** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003102**
drh98757152008-01-09 23:04:12 +00003103** If P5!=0 then use the content of register P2 as the root page, not
3104** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003105**
drhb19a2bc2001-09-16 00:13:26 +00003106** There will be a read lock on the database whenever there is an
3107** open cursor. If the database was unlocked prior to this instruction
3108** then a read lock is acquired as part of this instruction. A read
3109** lock allows other processes to read the database but prohibits
3110** any other process from modifying the database. The read lock is
3111** released when all cursors are closed. If this instruction attempts
3112** to get a read lock but fails, the script terminates with an
3113** SQLITE_BUSY error code.
3114**
danielk1977d336e222009-02-20 10:58:41 +00003115** The P4 value may be either an integer (P4_INT32) or a pointer to
3116** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3117** structure, then said structure defines the content and collating
3118** sequence of the index being opened. Otherwise, if P4 is an integer
3119** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003120**
drh001bbcb2003-03-19 03:14:00 +00003121** See also OpenWrite.
drh5e00f6c2001-09-13 13:46:56 +00003122*/
drh98757152008-01-09 23:04:12 +00003123/* Opcode: OpenWrite P1 P2 P3 P4 P5
drhecdc7532001-09-23 02:35:53 +00003124**
3125** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003126** page is P2. Or if P5!=0 use the content of register P2 to find the
3127** root page.
drhecdc7532001-09-23 02:35:53 +00003128**
danielk1977d336e222009-02-20 10:58:41 +00003129** The P4 value may be either an integer (P4_INT32) or a pointer to
3130** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3131** structure, then said structure defines the content and collating
3132** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003133** value, it is set to the number of columns in the table, or to the
3134** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003135**
drh001bbcb2003-03-19 03:14:00 +00003136** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003137** in read/write mode. For a given table, there can be one or more read-only
3138** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003139**
drh001bbcb2003-03-19 03:14:00 +00003140** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003141*/
drh9cbf3422008-01-17 16:22:13 +00003142case OP_OpenRead:
3143case OP_OpenWrite: {
drh856c1032009-06-02 15:21:42 +00003144 int nField;
3145 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003146 int p2;
3147 int iDb;
drhf57b3392001-10-08 13:22:32 +00003148 int wrFlag;
3149 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003150 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003151 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003152
dan428c2182012-08-06 18:50:11 +00003153 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
3154 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
3155
danfa401de2009-10-16 14:55:03 +00003156 if( p->expired ){
3157 rc = SQLITE_ABORT;
3158 break;
3159 }
3160
drh856c1032009-06-02 15:21:42 +00003161 nField = 0;
3162 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003163 p2 = pOp->p2;
3164 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003165 assert( iDb>=0 && iDb<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003166 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
drhd946db02005-12-29 19:23:06 +00003167 pDb = &db->aDb[iDb];
3168 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003169 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003170 if( pOp->opcode==OP_OpenWrite ){
3171 wrFlag = 1;
drh21206082011-04-04 18:22:02 +00003172 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003173 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3174 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003175 }
3176 }else{
3177 wrFlag = 0;
3178 }
dan428c2182012-08-06 18:50:11 +00003179 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003180 assert( p2>0 );
3181 assert( p2<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003182 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003183 assert( memIsValid(pIn2) );
3184 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003185 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003186 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003187 /* The p2 value always comes from a prior OP_CreateTable opcode and
3188 ** that opcode will always set the p2 value to 2 or more or else fail.
3189 ** If there were a failure, the prepared statement would have halted
3190 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00003191 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00003192 rc = SQLITE_CORRUPT_BKPT;
3193 goto abort_due_to_error;
3194 }
drh5edc3122001-09-13 21:53:09 +00003195 }
danielk1977d336e222009-02-20 10:58:41 +00003196 if( pOp->p4type==P4_KEYINFO ){
3197 pKeyInfo = pOp->p4.pKeyInfo;
3198 pKeyInfo->enc = ENC(p->db);
3199 nField = pKeyInfo->nField+1;
3200 }else if( pOp->p4type==P4_INT32 ){
3201 nField = pOp->p4.i;
3202 }
drh653b82a2009-06-22 11:10:47 +00003203 assert( pOp->p1>=0 );
3204 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003205 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003206 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003207 pCur->isOrdered = 1;
danielk1977d336e222009-02-20 10:58:41 +00003208 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3209 pCur->pKeyInfo = pKeyInfo;
dan428c2182012-08-06 18:50:11 +00003210 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3211 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
danielk1977d336e222009-02-20 10:58:41 +00003212
dana205a482011-08-27 18:48:57 +00003213 /* Since it performs no memory allocation or IO, the only value that
3214 ** sqlite3BtreeCursor() may return is SQLITE_OK. */
3215 assert( rc==SQLITE_OK );
danielk1977172114a2009-07-07 15:47:12 +00003216
3217 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3218 ** SQLite used to check if the root-page flags were sane at this point
3219 ** and report database corruption if they were not, but this check has
3220 ** since moved into the btree layer. */
3221 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3222 pCur->isIndex = !pCur->isTable;
drh5e00f6c2001-09-13 13:46:56 +00003223 break;
3224}
3225
drh2a5d9902011-08-26 00:34:45 +00003226/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003227**
drhb9bb7c12006-06-11 23:41:55 +00003228** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003229** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003230** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003231** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003232**
drh25d3adb2010-04-05 15:11:08 +00003233** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003234** The cursor points to a BTree table if P4==0 and to a BTree index
3235** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003236** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003237**
3238** This opcode was once called OpenTemp. But that created
3239** confusion because the term "temp table", might refer either
3240** to a TEMP table at the SQL level, or to a table opened by
3241** this opcode. Then this opcode was call OpenVirtual. But
3242** that created confusion with the whole virtual-table idea.
drh2a5d9902011-08-26 00:34:45 +00003243**
3244** The P5 parameter can be a mask of the BTREE_* flags defined
3245** in btree.h. These flags control aspects of the operation of
3246** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3247** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003248*/
drha21a64d2010-04-06 22:33:55 +00003249/* Opcode: OpenAutoindex P1 P2 * P4 *
3250**
3251** This opcode works the same as OP_OpenEphemeral. It has a
3252** different name to distinguish its use. Tables created using
3253** by this opcode will be used for automatically created transient
3254** indices in joins.
3255*/
3256case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003257case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003258 VdbeCursor *pCx;
drhd4187c72010-08-30 22:15:45 +00003259 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003260 SQLITE_OPEN_READWRITE |
3261 SQLITE_OPEN_CREATE |
3262 SQLITE_OPEN_EXCLUSIVE |
3263 SQLITE_OPEN_DELETEONCLOSE |
3264 SQLITE_OPEN_TRANSIENT_DB;
3265
drh653b82a2009-06-22 11:10:47 +00003266 assert( pOp->p1>=0 );
3267 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003268 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003269 pCx->nullRow = 1;
dan689ab892011-08-12 15:02:00 +00003270 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3271 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003272 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003273 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003274 }
3275 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003276 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003277 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003278 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003279 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003280 */
danielk19772dca4ac2008-01-03 11:50:29 +00003281 if( pOp->p4.pKeyInfo ){
drhc6b52df2002-01-04 03:09:29 +00003282 int pgno;
drh66a51672008-01-03 00:01:23 +00003283 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003284 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003285 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003286 assert( pgno==MASTER_ROOT+1 );
drh1e968a02008-03-25 00:22:21 +00003287 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
danielk1977cd3e8f72008-03-25 09:47:35 +00003288 (KeyInfo*)pOp->p4.z, pCx->pCursor);
danielk19772dca4ac2008-01-03 11:50:29 +00003289 pCx->pKeyInfo = pOp->p4.pKeyInfo;
dan689ab892011-08-12 15:02:00 +00003290 pCx->pKeyInfo->enc = ENC(p->db);
drhc6b52df2002-01-04 03:09:29 +00003291 }
drhf0863fe2005-06-12 21:35:51 +00003292 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003293 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003294 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003295 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003296 }
drh5e00f6c2001-09-13 13:46:56 +00003297 }
drhd4187c72010-08-30 22:15:45 +00003298 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
drhf0863fe2005-06-12 21:35:51 +00003299 pCx->isIndex = !pCx->isTable;
dan5134d132011-09-02 10:31:11 +00003300 break;
3301}
3302
drhfc5e5462012-12-03 17:04:40 +00003303/* Opcode: SorterOpen P1 P2 * P4 *
dan5134d132011-09-02 10:31:11 +00003304**
3305** This opcode works like OP_OpenEphemeral except that it opens
3306** a transient index that is specifically designed to sort large
3307** tables using an external merge-sort algorithm.
3308*/
drhca892a72011-09-03 00:17:51 +00003309case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003310 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003311
drhca892a72011-09-03 00:17:51 +00003312#ifndef SQLITE_OMIT_MERGE_SORT
dan5134d132011-09-02 10:31:11 +00003313 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3314 if( pCx==0 ) goto no_mem;
3315 pCx->pKeyInfo = pOp->p4.pKeyInfo;
3316 pCx->pKeyInfo->enc = ENC(p->db);
3317 pCx->isSorter = 1;
3318 rc = sqlite3VdbeSorterInit(db, pCx);
drhca892a72011-09-03 00:17:51 +00003319#else
3320 pOp->opcode = OP_OpenEphemeral;
3321 pc--;
3322#endif
drh5e00f6c2001-09-13 13:46:56 +00003323 break;
3324}
3325
drh980db4b2012-10-30 14:44:14 +00003326/* Opcode: OpenPseudo P1 P2 P3 * P5
drh70ce3f02003-04-15 19:22:22 +00003327**
3328** Open a new cursor that points to a fake table that contains a single
drh3e9ca092009-09-08 01:14:48 +00003329** row of data. The content of that one row in the content of memory
drh21172c42012-10-30 00:29:07 +00003330** register P2 when P5==0. In other words, cursor P1 becomes an alias for the
3331** MEM_Blob content contained in register P2. When P5==1, then the
3332** row is represented by P3 consecutive registers beginning with P2.
drh70ce3f02003-04-15 19:22:22 +00003333**
drh2d8d7ce2010-02-15 15:17:05 +00003334** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003335** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003336** individual columns using the OP_Column opcode. The OP_Column opcode
3337** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003338**
3339** P3 is the number of fields in the records that will be stored by
3340** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003341*/
drh9cbf3422008-01-17 16:22:13 +00003342case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003343 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003344
drh653b82a2009-06-22 11:10:47 +00003345 assert( pOp->p1>=0 );
3346 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003347 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003348 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003349 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003350 pCx->isTable = 1;
3351 pCx->isIndex = 0;
drh21172c42012-10-30 00:29:07 +00003352 pCx->multiPseudo = pOp->p5;
drh70ce3f02003-04-15 19:22:22 +00003353 break;
3354}
3355
drh98757152008-01-09 23:04:12 +00003356/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003357**
3358** Close a cursor previously opened as P1. If P1 is not
3359** currently open, this instruction is a no-op.
3360*/
drh9cbf3422008-01-17 16:22:13 +00003361case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003362 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3363 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3364 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003365 break;
3366}
3367
drh959403f2008-12-12 17:56:16 +00003368/* Opcode: SeekGe P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003369**
danielk1977b790c6c2008-04-18 10:25:24 +00003370** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003371** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003372** to an SQL index, then P3 is the first in an array of P4 registers
3373** that are used as an unpacked index key.
3374**
3375** Reposition cursor P1 so that it points to the smallest entry that
3376** is greater than or equal to the key value. If there are no records
3377** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003378**
drh959403f2008-12-12 17:56:16 +00003379** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003380*/
drh959403f2008-12-12 17:56:16 +00003381/* Opcode: SeekGt P1 P2 P3 P4 *
drh7cf6e4d2004-05-19 14:56:55 +00003382**
danielk1977b790c6c2008-04-18 10:25:24 +00003383** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003384** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003385** to an SQL index, then P3 is the first in an array of P4 registers
3386** that are used as an unpacked index key.
3387**
3388** Reposition cursor P1 so that it points to the smallest entry that
3389** is greater than the key value. If there are no records greater than
3390** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003391**
drh959403f2008-12-12 17:56:16 +00003392** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003393*/
drh959403f2008-12-12 17:56:16 +00003394/* Opcode: SeekLt P1 P2 P3 P4 *
drhc045ec52002-12-04 20:01:06 +00003395**
danielk1977b790c6c2008-04-18 10:25:24 +00003396** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003397** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003398** to an SQL index, then P3 is the first in an array of P4 registers
3399** that are used as an unpacked index key.
3400**
3401** Reposition cursor P1 so that it points to the largest entry that
3402** is less than the key value. If there are no records less than
3403** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003404**
drh959403f2008-12-12 17:56:16 +00003405** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003406*/
drh959403f2008-12-12 17:56:16 +00003407/* Opcode: SeekLe P1 P2 P3 P4 *
danielk19773d1bfea2004-05-14 11:00:53 +00003408**
danielk1977b790c6c2008-04-18 10:25:24 +00003409** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003410** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003411** to an SQL index, then P3 is the first in an array of P4 registers
3412** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003413**
danielk1977b790c6c2008-04-18 10:25:24 +00003414** Reposition cursor P1 so that it points to the largest entry that
3415** is less than or equal to the key value. If there are no records
3416** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003417**
drh959403f2008-12-12 17:56:16 +00003418** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003419*/
drh959403f2008-12-12 17:56:16 +00003420case OP_SeekLt: /* jump, in3 */
3421case OP_SeekLe: /* jump, in3 */
3422case OP_SeekGe: /* jump, in3 */
3423case OP_SeekGt: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003424 int res;
3425 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003426 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003427 UnpackedRecord r;
3428 int nField;
3429 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003430
drh653b82a2009-06-22 11:10:47 +00003431 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003432 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003433 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003434 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003435 assert( pC->pseudoTableReg==0 );
drh1f350122009-11-13 20:52:43 +00003436 assert( OP_SeekLe == OP_SeekLt+1 );
3437 assert( OP_SeekGe == OP_SeekLt+2 );
3438 assert( OP_SeekGt == OP_SeekLt+3 );
drhd4187c72010-08-30 22:15:45 +00003439 assert( pC->isOrdered );
dana205a482011-08-27 18:48:57 +00003440 if( ALWAYS(pC->pCursor!=0) ){
drh7cf6e4d2004-05-19 14:56:55 +00003441 oc = pOp->opcode;
drha11846b2004-01-07 18:52:56 +00003442 pC->nullRow = 0;
drhf0863fe2005-06-12 21:35:51 +00003443 if( pC->isTable ){
drh959403f2008-12-12 17:56:16 +00003444 /* The input value in P3 might be of any type: integer, real, string,
3445 ** blob, or NULL. But it needs to be an integer before we can do
3446 ** the seek, so covert it. */
drh3c657212009-11-17 23:59:58 +00003447 pIn3 = &aMem[pOp->p3];
drh959403f2008-12-12 17:56:16 +00003448 applyNumericAffinity(pIn3);
3449 iKey = sqlite3VdbeIntValue(pIn3);
3450 pC->rowidIsValid = 0;
3451
3452 /* If the P3 value could not be converted into an integer without
3453 ** loss of information, then special processing is required... */
3454 if( (pIn3->flags & MEM_Int)==0 ){
3455 if( (pIn3->flags & MEM_Real)==0 ){
3456 /* If the P3 value cannot be converted into any kind of a number,
3457 ** then the seek is not possible, so jump to P2 */
3458 pc = pOp->p2 - 1;
3459 break;
3460 }
3461 /* If we reach this point, then the P3 value must be a floating
3462 ** point number. */
3463 assert( (pIn3->flags & MEM_Real)!=0 );
3464
3465 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
drhaa736092009-06-22 00:55:30 +00003466 /* The P3 value is too large in magnitude to be expressed as an
drh959403f2008-12-12 17:56:16 +00003467 ** integer. */
3468 res = 1;
3469 if( pIn3->r<0 ){
drh1f350122009-11-13 20:52:43 +00003470 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003471 rc = sqlite3BtreeFirst(pC->pCursor, &res);
3472 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3473 }
3474 }else{
drh1f350122009-11-13 20:52:43 +00003475 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
drh959403f2008-12-12 17:56:16 +00003476 rc = sqlite3BtreeLast(pC->pCursor, &res);
3477 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3478 }
3479 }
3480 if( res ){
3481 pc = pOp->p2 - 1;
3482 }
3483 break;
3484 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3485 /* Use the ceiling() function to convert real->int */
3486 if( pIn3->r > (double)iKey ) iKey++;
3487 }else{
3488 /* Use the floor() function to convert real->int */
3489 assert( oc==OP_SeekLe || oc==OP_SeekGt );
3490 if( pIn3->r < (double)iKey ) iKey--;
3491 }
3492 }
drhe63d9992008-08-13 19:11:48 +00003493 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003494 if( rc!=SQLITE_OK ){
3495 goto abort_due_to_error;
3496 }
drh959403f2008-12-12 17:56:16 +00003497 if( res==0 ){
3498 pC->rowidIsValid = 1;
3499 pC->lastRowid = iKey;
3500 }
drh5e00f6c2001-09-13 13:46:56 +00003501 }else{
drh856c1032009-06-02 15:21:42 +00003502 nField = pOp->p4.i;
danielk1977b790c6c2008-04-18 10:25:24 +00003503 assert( pOp->p4type==P4_INT32 );
3504 assert( nField>0 );
3505 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00003506 r.nField = (u16)nField;
drh1f350122009-11-13 20:52:43 +00003507
3508 /* The next line of code computes as follows, only faster:
3509 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3510 ** r.flags = UNPACKED_INCRKEY;
3511 ** }else{
3512 ** r.flags = 0;
3513 ** }
3514 */
shaneh5e17e8b2009-12-03 04:40:47 +00003515 r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
drh1f350122009-11-13 20:52:43 +00003516 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3517 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3518 assert( oc!=OP_SeekGe || r.flags==0 );
3519 assert( oc!=OP_SeekLt || r.flags==0 );
3520
drha6c2ed92009-11-14 23:22:23 +00003521 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00003522#ifdef SQLITE_DEBUG
3523 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3524#endif
drh039fc322009-11-17 18:31:47 +00003525 ExpandBlob(r.aMem);
drhe63d9992008-08-13 19:11:48 +00003526 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003527 if( rc!=SQLITE_OK ){
3528 goto abort_due_to_error;
3529 }
drhf0863fe2005-06-12 21:35:51 +00003530 pC->rowidIsValid = 0;
drh5e00f6c2001-09-13 13:46:56 +00003531 }
drha11846b2004-01-07 18:52:56 +00003532 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003533 pC->cacheStatus = CACHE_STALE;
drh0f7eb612006-08-08 13:51:43 +00003534#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +00003535 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00003536#endif
drh1f350122009-11-13 20:52:43 +00003537 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003538 if( res<0 || (res==0 && oc==OP_SeekGt) ){
danielk197728129562005-01-11 10:25:06 +00003539 rc = sqlite3BtreeNext(pC->pCursor, &res);
danielk197701427a62005-01-11 13:02:33 +00003540 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003541 pC->rowidIsValid = 0;
drh1af3fdb2004-07-18 21:33:01 +00003542 }else{
3543 res = 0;
drh8721ce42001-11-07 14:22:00 +00003544 }
drh7cf6e4d2004-05-19 14:56:55 +00003545 }else{
drh959403f2008-12-12 17:56:16 +00003546 assert( oc==OP_SeekLt || oc==OP_SeekLe );
3547 if( res>0 || (res==0 && oc==OP_SeekLt) ){
danielk197701427a62005-01-11 13:02:33 +00003548 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3549 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003550 pC->rowidIsValid = 0;
drh1a844c32002-12-04 22:29:28 +00003551 }else{
3552 /* res might be negative because the table is empty. Check to
3553 ** see if this is the case.
3554 */
drhf328bc82004-05-10 23:29:49 +00003555 res = sqlite3BtreeEof(pC->pCursor);
drh1a844c32002-12-04 22:29:28 +00003556 }
drh1af3fdb2004-07-18 21:33:01 +00003557 }
drh91fd4d42008-01-19 20:11:25 +00003558 assert( pOp->p2>0 );
drh1af3fdb2004-07-18 21:33:01 +00003559 if( res ){
drh91fd4d42008-01-19 20:11:25 +00003560 pc = pOp->p2 - 1;
drh8721ce42001-11-07 14:22:00 +00003561 }
drhaa736092009-06-22 00:55:30 +00003562 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003563 /* This happens when attempting to open the sqlite3_master table
3564 ** for read access returns SQLITE_EMPTY. In this case always
3565 ** take the jump (since there are no records in the table).
3566 */
3567 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00003568 }
drh5e00f6c2001-09-13 13:46:56 +00003569 break;
3570}
3571
drh959403f2008-12-12 17:56:16 +00003572/* Opcode: Seek P1 P2 * * *
3573**
3574** P1 is an open table cursor and P2 is a rowid integer. Arrange
3575** for P1 to move so that it points to the rowid given by P2.
3576**
3577** This is actually a deferred seek. Nothing actually happens until
3578** the cursor is used to read a record. That way, if no reads
3579** occur, no unnecessary I/O happens.
3580*/
3581case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003582 VdbeCursor *pC;
3583
drh653b82a2009-06-22 11:10:47 +00003584 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3585 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003586 assert( pC!=0 );
drhaa736092009-06-22 00:55:30 +00003587 if( ALWAYS(pC->pCursor!=0) ){
drh959403f2008-12-12 17:56:16 +00003588 assert( pC->isTable );
3589 pC->nullRow = 0;
drh3c657212009-11-17 23:59:58 +00003590 pIn2 = &aMem[pOp->p2];
drh959403f2008-12-12 17:56:16 +00003591 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3592 pC->rowidIsValid = 0;
3593 pC->deferredMoveto = 1;
3594 }
3595 break;
3596}
3597
3598
drh8cff69d2009-11-12 19:59:44 +00003599/* Opcode: Found P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003600**
drh8cff69d2009-11-12 19:59:44 +00003601** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3602** P4>0 then register P3 is the first of P4 registers that form an unpacked
3603** record.
3604**
3605** Cursor P1 is on an index btree. If the record identified by P3 and P4
3606** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003607** P1 is left pointing at the matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003608*/
drh8cff69d2009-11-12 19:59:44 +00003609/* Opcode: NotFound P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003610**
drh8cff69d2009-11-12 19:59:44 +00003611** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3612** P4>0 then register P3 is the first of P4 registers that form an unpacked
3613** record.
3614**
3615** Cursor P1 is on an index btree. If the record identified by P3 and P4
3616** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3617** does contain an entry whose prefix matches the P3/P4 record then control
3618** falls through to the next instruction and P1 is left pointing at the
3619** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003620**
drhcb6d50e2008-08-21 19:28:30 +00003621** See also: Found, NotExists, IsUnique
drh5e00f6c2001-09-13 13:46:56 +00003622*/
drh9cbf3422008-01-17 16:22:13 +00003623case OP_NotFound: /* jump, in3 */
3624case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003625 int alreadyExists;
drhdfe88ec2008-11-03 20:55:06 +00003626 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003627 int res;
dan03e9cfc2011-09-05 14:20:27 +00003628 char *pFree;
drh856c1032009-06-02 15:21:42 +00003629 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003630 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00003631 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3632
dan0ff297e2009-09-25 17:03:14 +00003633#ifdef SQLITE_TEST
3634 sqlite3_found_count++;
3635#endif
3636
drh856c1032009-06-02 15:21:42 +00003637 alreadyExists = 0;
drhaa736092009-06-22 00:55:30 +00003638 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003639 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003640 pC = p->apCsr[pOp->p1];
3641 assert( pC!=0 );
drh3c657212009-11-17 23:59:58 +00003642 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003643 if( ALWAYS(pC->pCursor!=0) ){
drhe63d9992008-08-13 19:11:48 +00003644
drhf0863fe2005-06-12 21:35:51 +00003645 assert( pC->isTable==0 );
drh8cff69d2009-11-12 19:59:44 +00003646 if( pOp->p4.i>0 ){
3647 r.pKeyInfo = pC->pKeyInfo;
shaneh5e17e8b2009-12-03 04:40:47 +00003648 r.nField = (u16)pOp->p4.i;
drh8cff69d2009-11-12 19:59:44 +00003649 r.aMem = pIn3;
drh2b4ded92010-09-27 21:09:31 +00003650#ifdef SQLITE_DEBUG
3651 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3652#endif
drh8cff69d2009-11-12 19:59:44 +00003653 r.flags = UNPACKED_PREFIX_MATCH;
3654 pIdxKey = &r;
3655 }else{
dan03e9cfc2011-09-05 14:20:27 +00003656 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3657 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3658 );
3659 if( pIdxKey==0 ) goto no_mem;
drh8cff69d2009-11-12 19:59:44 +00003660 assert( pIn3->flags & MEM_Blob );
drhd81a1422010-09-28 07:11:24 +00003661 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
dan03e9cfc2011-09-05 14:20:27 +00003662 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh8cff69d2009-11-12 19:59:44 +00003663 pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
danielk19779a96b662007-11-29 17:05:18 +00003664 }
drhe63d9992008-08-13 19:11:48 +00003665 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
drh8cff69d2009-11-12 19:59:44 +00003666 if( pOp->p4.i==0 ){
dan03e9cfc2011-09-05 14:20:27 +00003667 sqlite3DbFree(db, pFree);
drh8cff69d2009-11-12 19:59:44 +00003668 }
danielk197777519402007-08-30 11:48:31 +00003669 if( rc!=SQLITE_OK ){
3670 break;
3671 }
3672 alreadyExists = (res==0);
drha11846b2004-01-07 18:52:56 +00003673 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003674 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003675 }
3676 if( pOp->opcode==OP_Found ){
3677 if( alreadyExists ) pc = pOp->p2 - 1;
3678 }else{
3679 if( !alreadyExists ) pc = pOp->p2 - 1;
3680 }
drh5e00f6c2001-09-13 13:46:56 +00003681 break;
3682}
3683
drh98757152008-01-09 23:04:12 +00003684/* Opcode: IsUnique P1 P2 P3 P4 *
drh9cfcf5d2002-01-29 18:41:24 +00003685**
drh8cff69d2009-11-12 19:59:44 +00003686** Cursor P1 is open on an index b-tree - that is to say, a btree which
3687** no data and where the key are records generated by OP_MakeRecord with
3688** the list field being the integer ROWID of the entry that the index
3689** entry refers to.
danielk1977de630352009-05-04 11:42:29 +00003690**
3691** The P3 register contains an integer record number. Call this record
3692** number R. Register P4 is the first in a set of N contiguous registers
3693** that make up an unpacked index key that can be used with cursor P1.
3694** The value of N can be inferred from the cursor. N includes the rowid
3695** value appended to the end of the index record. This rowid value may
3696** or may not be the same as R.
3697**
3698** If any of the N registers beginning with register P4 contains a NULL
3699** value, jump immediately to P2.
3700**
3701** Otherwise, this instruction checks if cursor P1 contains an entry
3702** where the first (N-1) fields match but the rowid value at the end
3703** of the index entry is not R. If there is no such entry, control jumps
3704** to instruction P2. Otherwise, the rowid of the conflicting index
3705** entry is copied to register P3 and control falls through to the next
3706** instruction.
drh9cfcf5d2002-01-29 18:41:24 +00003707**
drh9cbf3422008-01-17 16:22:13 +00003708** See also: NotFound, NotExists, Found
drh9cfcf5d2002-01-29 18:41:24 +00003709*/
drh9cbf3422008-01-17 16:22:13 +00003710case OP_IsUnique: { /* jump, in3 */
shane60a4b532009-05-06 18:57:09 +00003711 u16 ii;
drhdfe88ec2008-11-03 20:55:06 +00003712 VdbeCursor *pCx;
drh9cfcf5d2002-01-29 18:41:24 +00003713 BtCursor *pCrsr;
shane60a4b532009-05-06 18:57:09 +00003714 u16 nField;
drha6c2ed92009-11-14 23:22:23 +00003715 Mem *aMx;
drh856c1032009-06-02 15:21:42 +00003716 UnpackedRecord r; /* B-Tree index search key */
3717 i64 R; /* Rowid stored in register P3 */
drh9cfcf5d2002-01-29 18:41:24 +00003718
drh3c657212009-11-17 23:59:58 +00003719 pIn3 = &aMem[pOp->p3];
drha6c2ed92009-11-14 23:22:23 +00003720 aMx = &aMem[pOp->p4.i];
danielk1977de630352009-05-04 11:42:29 +00003721 /* Assert that the values of parameters P1 and P4 are in range. */
drh98757152008-01-09 23:04:12 +00003722 assert( pOp->p4type==P4_INT32 );
drh9cbf3422008-01-17 16:22:13 +00003723 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
danielk1977de630352009-05-04 11:42:29 +00003724 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3725
3726 /* Find the index cursor. */
3727 pCx = p->apCsr[pOp->p1];
3728 assert( pCx->deferredMoveto==0 );
3729 pCx->seekResult = 0;
3730 pCx->cacheStatus = CACHE_STALE;
drhf328bc82004-05-10 23:29:49 +00003731 pCrsr = pCx->pCursor;
danielk1977de630352009-05-04 11:42:29 +00003732
3733 /* If any of the values are NULL, take the jump. */
3734 nField = pCx->pKeyInfo->nField;
3735 for(ii=0; ii<nField; ii++){
drha6c2ed92009-11-14 23:22:23 +00003736 if( aMx[ii].flags & MEM_Null ){
danielk1977de630352009-05-04 11:42:29 +00003737 pc = pOp->p2 - 1;
3738 pCrsr = 0;
3739 break;
3740 }
3741 }
drha6c2ed92009-11-14 23:22:23 +00003742 assert( (aMx[nField].flags & MEM_Null)==0 );
danielk1977de630352009-05-04 11:42:29 +00003743
drhf328bc82004-05-10 23:29:49 +00003744 if( pCrsr!=0 ){
danielk1977de630352009-05-04 11:42:29 +00003745 /* Populate the index search key. */
3746 r.pKeyInfo = pCx->pKeyInfo;
3747 r.nField = nField + 1;
3748 r.flags = UNPACKED_PREFIX_SEARCH;
drha6c2ed92009-11-14 23:22:23 +00003749 r.aMem = aMx;
drh2b4ded92010-09-27 21:09:31 +00003750#ifdef SQLITE_DEBUG
3751 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3752#endif
danielk1977452c9892004-05-13 05:16:15 +00003753
danielk1977de630352009-05-04 11:42:29 +00003754 /* Extract the value of R from register P3. */
3755 sqlite3VdbeMemIntegerify(pIn3);
3756 R = pIn3->u.i;
3757
3758 /* Search the B-Tree index. If no conflicting record is found, jump
3759 ** to P2. Otherwise, copy the rowid of the conflicting record to
3760 ** register P3 and fall through to the next instruction. */
3761 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3762 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
drh9cfcf5d2002-01-29 18:41:24 +00003763 pc = pOp->p2 - 1;
danielk1977de630352009-05-04 11:42:29 +00003764 }else{
3765 pIn3->u.i = r.rowid;
drh9cfcf5d2002-01-29 18:41:24 +00003766 }
drh9cfcf5d2002-01-29 18:41:24 +00003767 }
3768 break;
3769}
3770
drh9cbf3422008-01-17 16:22:13 +00003771/* Opcode: NotExists P1 P2 P3 * *
drh6b125452002-01-28 15:53:03 +00003772**
drhef8662b2011-06-20 21:47:58 +00003773** Use the content of register P3 as an integer key. If a record
danielk197796cb76f2008-01-04 13:24:28 +00003774** with that key does not exist in table of P1, then jump to P2.
drh710c4842010-08-30 01:17:20 +00003775** If the record does exist, then fall through. The cursor is left
drh9cbf3422008-01-17 16:22:13 +00003776** pointing to the record if it exists.
drh6b125452002-01-28 15:53:03 +00003777**
3778** The difference between this operation and NotFound is that this
drhf0863fe2005-06-12 21:35:51 +00003779** operation assumes the key is an integer and that P1 is a table whereas
3780** NotFound assumes key is a blob constructed from MakeRecord and
3781** P1 is an index.
drh6b125452002-01-28 15:53:03 +00003782**
drhcb6d50e2008-08-21 19:28:30 +00003783** See also: Found, NotFound, IsUnique
drh6b125452002-01-28 15:53:03 +00003784*/
drh9cbf3422008-01-17 16:22:13 +00003785case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003786 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003787 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003788 int res;
3789 u64 iKey;
3790
drh3c657212009-11-17 23:59:58 +00003791 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003792 assert( pIn3->flags & MEM_Int );
3793 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3794 pC = p->apCsr[pOp->p1];
3795 assert( pC!=0 );
3796 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00003797 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00003798 pCrsr = pC->pCursor;
dana205a482011-08-27 18:48:57 +00003799 if( ALWAYS(pCrsr!=0) ){
drh856c1032009-06-02 15:21:42 +00003800 res = 0;
drhaa736092009-06-22 00:55:30 +00003801 iKey = pIn3->u.i;
danielk1977de630352009-05-04 11:42:29 +00003802 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drh98757152008-01-09 23:04:12 +00003803 pC->lastRowid = pIn3->u.i;
drh9c1905f2008-12-10 22:32:56 +00003804 pC->rowidIsValid = res==0 ?1:0;
drh9188b382004-05-14 21:12:22 +00003805 pC->nullRow = 0;
drh76873ab2006-01-07 18:48:26 +00003806 pC->cacheStatus = CACHE_STALE;
danielk19771d461462009-04-21 09:02:45 +00003807 pC->deferredMoveto = 0;
danielk197728129562005-01-11 10:25:06 +00003808 if( res!=0 ){
drh17f71932002-02-21 12:01:27 +00003809 pc = pOp->p2 - 1;
drh91fd4d42008-01-19 20:11:25 +00003810 assert( pC->rowidIsValid==0 );
drh6b125452002-01-28 15:53:03 +00003811 }
danielk1977de630352009-05-04 11:42:29 +00003812 pC->seekResult = res;
drhaa736092009-06-22 00:55:30 +00003813 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003814 /* This happens when an attempt to open a read cursor on the
3815 ** sqlite_master table returns SQLITE_EMPTY.
3816 */
danielk1977f7b9d662008-06-23 18:49:43 +00003817 pc = pOp->p2 - 1;
3818 assert( pC->rowidIsValid==0 );
danielk1977de630352009-05-04 11:42:29 +00003819 pC->seekResult = 0;
drh6b125452002-01-28 15:53:03 +00003820 }
drh6b125452002-01-28 15:53:03 +00003821 break;
3822}
3823
drh4c583122008-01-04 22:01:03 +00003824/* Opcode: Sequence P1 P2 * * *
drh4db38a72005-09-01 12:16:28 +00003825**
drh4c583122008-01-04 22:01:03 +00003826** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00003827** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00003828** The sequence number on the cursor is incremented after this
3829** instruction.
drh4db38a72005-09-01 12:16:28 +00003830*/
drh4c583122008-01-04 22:01:03 +00003831case OP_Sequence: { /* out2-prerelease */
drh653b82a2009-06-22 11:10:47 +00003832 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3833 assert( p->apCsr[pOp->p1]!=0 );
3834 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00003835 break;
3836}
3837
3838
drh98757152008-01-09 23:04:12 +00003839/* Opcode: NewRowid P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00003840**
drhf0863fe2005-06-12 21:35:51 +00003841** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00003842** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00003843** table that cursor P1 points to. The new record number is written
3844** written to register P2.
drh205f48e2004-11-05 00:43:11 +00003845**
dan76d462e2009-08-30 11:42:51 +00003846** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3847** the largest previously generated record number. No new record numbers are
3848** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00003849** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00003850** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00003851** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00003852*/
drh4c583122008-01-04 22:01:03 +00003853case OP_NewRowid: { /* out2-prerelease */
drhaa736092009-06-22 00:55:30 +00003854 i64 v; /* The new rowid */
3855 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3856 int res; /* Result of an sqlite3BtreeLast() */
3857 int cnt; /* Counter to limit the number of searches */
3858 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00003859 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00003860
drh856c1032009-06-02 15:21:42 +00003861 v = 0;
3862 res = 0;
drhaa736092009-06-22 00:55:30 +00003863 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3864 pC = p->apCsr[pOp->p1];
3865 assert( pC!=0 );
3866 if( NEVER(pC->pCursor==0) ){
drhf328bc82004-05-10 23:29:49 +00003867 /* The zero initialization above is all that is needed */
drh5e00f6c2001-09-13 13:46:56 +00003868 }else{
drh5cf8e8c2002-02-19 22:42:05 +00003869 /* The next rowid or record number (different terms for the same
3870 ** thing) is obtained in a two-step algorithm.
3871 **
3872 ** First we attempt to find the largest existing rowid and add one
3873 ** to that. But if the largest existing rowid is already the maximum
3874 ** positive integer, we have to fall through to the second
3875 ** probabilistic algorithm
3876 **
3877 ** The second algorithm is to select a rowid at random and see if
3878 ** it already exists in the table. If it does not exist, we have
3879 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00003880 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00003881 */
drhaa736092009-06-22 00:55:30 +00003882 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00003883
drh75f86a42005-02-17 00:03:06 +00003884#ifdef SQLITE_32BIT_ROWID
3885# define MAX_ROWID 0x7fffffff
3886#else
drhfe2093d2005-01-20 22:48:47 +00003887 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3888 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3889 ** to provide the constant while making all compilers happy.
3890 */
danielk197764202cf2008-11-17 15:31:47 +00003891# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00003892#endif
drhfe2093d2005-01-20 22:48:47 +00003893
drh5cf8e8c2002-02-19 22:42:05 +00003894 if( !pC->useRandomRowid ){
drh7f751222009-03-17 22:33:00 +00003895 v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3896 if( v==0 ){
danielk1977261919c2005-12-06 12:52:59 +00003897 rc = sqlite3BtreeLast(pC->pCursor, &res);
3898 if( rc!=SQLITE_OK ){
3899 goto abort_due_to_error;
3900 }
drh32fbe342002-10-19 20:16:37 +00003901 if( res ){
drhc79c7612010-01-01 18:57:48 +00003902 v = 1; /* IMP: R-61914-48074 */
drh5cf8e8c2002-02-19 22:42:05 +00003903 }else{
drhea8ffdf2009-07-22 00:35:23 +00003904 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
drhc27ae612009-07-14 18:35:44 +00003905 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3906 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
drha40eb7c2012-02-24 00:02:28 +00003907 if( v>=MAX_ROWID ){
drh32fbe342002-10-19 20:16:37 +00003908 pC->useRandomRowid = 1;
3909 }else{
drhc79c7612010-01-01 18:57:48 +00003910 v++; /* IMP: R-29538-34987 */
drh32fbe342002-10-19 20:16:37 +00003911 }
drh5cf8e8c2002-02-19 22:42:05 +00003912 }
drh3fc190c2001-09-14 03:24:23 +00003913 }
drh205f48e2004-11-05 00:43:11 +00003914
3915#ifndef SQLITE_OMIT_AUTOINCREMENT
drh4c583122008-01-04 22:01:03 +00003916 if( pOp->p3 ){
shaneabc6b892009-09-10 19:09:03 +00003917 /* Assert that P3 is a valid memory cell. */
3918 assert( pOp->p3>0 );
dan76d462e2009-08-30 11:42:51 +00003919 if( p->pFrame ){
3920 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00003921 /* Assert that P3 is a valid memory cell. */
3922 assert( pOp->p3<=pFrame->nMem );
dan76d462e2009-08-30 11:42:51 +00003923 pMem = &pFrame->aMem[pOp->p3];
3924 }else{
shaneabc6b892009-09-10 19:09:03 +00003925 /* Assert that P3 is a valid memory cell. */
3926 assert( pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003927 pMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00003928 memAboutToChange(p, pMem);
dan76d462e2009-08-30 11:42:51 +00003929 }
drh2b4ded92010-09-27 21:09:31 +00003930 assert( memIsValid(pMem) );
dan76d462e2009-08-30 11:42:51 +00003931
3932 REGISTER_TRACE(pOp->p3, pMem);
drh8a512562005-11-14 22:29:05 +00003933 sqlite3VdbeMemIntegerify(pMem);
drh4c583122008-01-04 22:01:03 +00003934 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
drh3c024d62007-03-30 11:23:45 +00003935 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
drhc79c7612010-01-01 18:57:48 +00003936 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
drh205f48e2004-11-05 00:43:11 +00003937 goto abort_due_to_error;
3938 }
drh3c024d62007-03-30 11:23:45 +00003939 if( v<pMem->u.i+1 ){
3940 v = pMem->u.i + 1;
drh205f48e2004-11-05 00:43:11 +00003941 }
drh3c024d62007-03-30 11:23:45 +00003942 pMem->u.i = v;
drh205f48e2004-11-05 00:43:11 +00003943 }
3944#endif
3945
drh7f751222009-03-17 22:33:00 +00003946 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
drh5cf8e8c2002-02-19 22:42:05 +00003947 }
3948 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00003949 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00003950 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00003951 ** engine starts picking positive candidate ROWIDs at random until
3952 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00003953 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
3954 ** an AUTOINCREMENT table. */
shanehc4d340a2010-09-01 02:37:56 +00003955 /* on the first attempt, simply do one more than previous */
drh99a66922011-05-13 18:51:42 +00003956 v = lastRowid;
shanehc4d340a2010-09-01 02:37:56 +00003957 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3958 v++; /* ensure non-zero */
drh5cf8e8c2002-02-19 22:42:05 +00003959 cnt = 0;
drh748a52c2010-09-01 11:50:08 +00003960 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
3961 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00003962 && (res==0)
3963 && (++cnt<100)){
3964 /* collision - try another random rowid */
3965 sqlite3_randomness(sizeof(v), &v);
3966 if( cnt<5 ){
3967 /* try "small" random rowids for the initial attempts */
3968 v &= 0xffffff;
drh91fd4d42008-01-19 20:11:25 +00003969 }else{
shanehc4d340a2010-09-01 02:37:56 +00003970 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
drh5cf8e8c2002-02-19 22:42:05 +00003971 }
shanehc4d340a2010-09-01 02:37:56 +00003972 v++; /* ensure non-zero */
3973 }
drhaa736092009-06-22 00:55:30 +00003974 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00003975 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00003976 goto abort_due_to_error;
3977 }
drh748a52c2010-09-01 11:50:08 +00003978 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00003979 }
drhf0863fe2005-06-12 21:35:51 +00003980 pC->rowidIsValid = 0;
drha11846b2004-01-07 18:52:56 +00003981 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003982 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003983 }
drh4c583122008-01-04 22:01:03 +00003984 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00003985 break;
3986}
3987
danielk19771f4aa332008-01-03 09:51:55 +00003988/* Opcode: Insert P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003989**
jplyon5a564222003-06-02 06:15:58 +00003990** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00003991** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00003992** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00003993** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00003994** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00003995**
danielk19771f4aa332008-01-03 09:51:55 +00003996** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
3997** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00003998** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00003999** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004000**
drh3e9ca092009-09-08 01:14:48 +00004001** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4002** the last seek operation (OP_NotExists) was a success, then this
4003** operation will not attempt to find the appropriate row before doing
4004** the insert but will instead overwrite the row that the cursor is
4005** currently pointing to. Presumably, the prior OP_NotExists opcode
4006** has already positioned the cursor correctly. This is an optimization
4007** that boosts performance by avoiding redundant seeks.
4008**
4009** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4010** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4011** is part of an INSERT operation. The difference is only important to
4012** the update hook.
4013**
drh66a51672008-01-03 00:01:23 +00004014** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00004015** may be NULL. If it is not NULL, then the update-hook
4016** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4017**
drh93aed5a2008-01-16 17:46:38 +00004018** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4019** allocated, then ownership of P2 is transferred to the pseudo-cursor
4020** and register P2 becomes ephemeral. If the cursor is changed, the
4021** value of register P2 will then change. Make sure this does not
4022** cause any problems.)
4023**
drhf0863fe2005-06-12 21:35:51 +00004024** This instruction only works on tables. The equivalent instruction
4025** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004026*/
drhe05c9292009-10-29 13:48:10 +00004027/* Opcode: InsertInt P1 P2 P3 P4 P5
4028**
4029** This works exactly like OP_Insert except that the key is the
4030** integer value P3, not the value of the integer stored in register P3.
4031*/
4032case OP_Insert:
4033case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00004034 Mem *pData; /* MEM cell holding data for the record to be inserted */
4035 Mem *pKey; /* MEM cell holding key for the record */
4036 i64 iKey; /* The integer ROWID or key for the record to be inserted */
4037 VdbeCursor *pC; /* Cursor to table into which insert is written */
4038 int nZero; /* Number of zero-bytes to append */
4039 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4040 const char *zDb; /* database name - used by the update hook */
4041 const char *zTbl; /* Table name - used by the opdate hook */
4042 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00004043
drha6c2ed92009-11-14 23:22:23 +00004044 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004045 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004046 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004047 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004048 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004049 assert( pC->pCursor!=0 );
4050 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00004051 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00004052 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004053
drhe05c9292009-10-29 13:48:10 +00004054 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004055 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004056 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004057 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004058 REGISTER_TRACE(pOp->p3, pKey);
4059 iKey = pKey->u.i;
4060 }else{
4061 assert( pOp->opcode==OP_InsertInt );
4062 iKey = pOp->p3;
4063 }
4064
drha05a7222008-01-19 03:35:58 +00004065 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh99a66922011-05-13 18:51:42 +00004066 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00004067 if( pData->flags & MEM_Null ){
4068 pData->z = 0;
4069 pData->n = 0;
4070 }else{
4071 assert( pData->flags & (MEM_Blob|MEM_Str) );
4072 }
drh3e9ca092009-09-08 01:14:48 +00004073 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4074 if( pData->flags & MEM_Zero ){
4075 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004076 }else{
drh3e9ca092009-09-08 01:14:48 +00004077 nZero = 0;
drha05a7222008-01-19 03:35:58 +00004078 }
drh3e9ca092009-09-08 01:14:48 +00004079 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
4080 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4081 pData->z, pData->n, nZero,
4082 pOp->p5 & OPFLAG_APPEND, seekResult
4083 );
drha05a7222008-01-19 03:35:58 +00004084 pC->rowidIsValid = 0;
4085 pC->deferredMoveto = 0;
4086 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004087
drha05a7222008-01-19 03:35:58 +00004088 /* Invoke the update-hook if required. */
4089 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00004090 zDb = db->aDb[pC->iDb].zName;
4091 zTbl = pOp->p4.z;
4092 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00004093 assert( pC->isTable );
4094 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4095 assert( pC->iDb>=0 );
4096 }
drh5e00f6c2001-09-13 13:46:56 +00004097 break;
4098}
4099
drh98757152008-01-09 23:04:12 +00004100/* Opcode: Delete P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00004101**
drh5edc3122001-09-13 21:53:09 +00004102** Delete the record at which the P1 cursor is currently pointing.
4103**
4104** The cursor will be left pointing at either the next or the previous
4105** record in the table. If it is left pointing at the next record, then
drhb19a2bc2001-09-16 00:13:26 +00004106** the next Next instruction will be a no-op. Hence it is OK to delete
4107** a record from within an Next loop.
drhc8d30ac2002-04-12 10:08:59 +00004108**
rdcb0c374f2004-02-20 22:53:38 +00004109** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00004110** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004111**
drh91fd4d42008-01-19 20:11:25 +00004112** P1 must not be pseudo-table. It has to be a real table with
4113** multiple rows.
4114**
4115** If P4 is not NULL, then it is the name of the table that P1 is
4116** pointing to. The update hook will be invoked, if it exists.
4117** If P4 is not NULL then the P1 cursor must have been positioned
4118** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00004119*/
drh9cbf3422008-01-17 16:22:13 +00004120case OP_Delete: {
drh856c1032009-06-02 15:21:42 +00004121 i64 iKey;
drhdfe88ec2008-11-03 20:55:06 +00004122 VdbeCursor *pC;
drh91fd4d42008-01-19 20:11:25 +00004123
drh856c1032009-06-02 15:21:42 +00004124 iKey = 0;
drh653b82a2009-06-22 11:10:47 +00004125 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4126 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004127 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00004128 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
danielk197794eb6a12005-12-15 15:22:08 +00004129
drh91fd4d42008-01-19 20:11:25 +00004130 /* If the update-hook will be invoked, set iKey to the rowid of the
4131 ** row being deleted.
4132 */
4133 if( db->xUpdateCallback && pOp->p4.z ){
4134 assert( pC->isTable );
4135 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
4136 iKey = pC->lastRowid;
4137 }
danielk197794eb6a12005-12-15 15:22:08 +00004138
drh9a65f2c2009-06-22 19:05:40 +00004139 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
4140 ** OP_Column on the same table without any intervening operations that
4141 ** might move or invalidate the cursor. Hence cursor pC is always pointing
4142 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
4143 ** below is always a no-op and cannot fail. We will run it anyhow, though,
4144 ** to guard against future changes to the code generator.
4145 **/
4146 assert( pC->deferredMoveto==0 );
drh91fd4d42008-01-19 20:11:25 +00004147 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004148 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4149
drh7f751222009-03-17 22:33:00 +00004150 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
drh91fd4d42008-01-19 20:11:25 +00004151 rc = sqlite3BtreeDelete(pC->pCursor);
drh91fd4d42008-01-19 20:11:25 +00004152 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004153
drh91fd4d42008-01-19 20:11:25 +00004154 /* Invoke the update-hook if required. */
4155 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4156 const char *zDb = db->aDb[pC->iDb].zName;
4157 const char *zTbl = pOp->p4.z;
4158 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
4159 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00004160 }
danielk1977b28af712004-06-21 06:50:26 +00004161 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00004162 break;
4163}
drhb7f1d9a2009-09-08 02:27:58 +00004164/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004165**
drhb7f1d9a2009-09-08 02:27:58 +00004166** The value of the change counter is copied to the database handle
4167** change counter (returned by subsequent calls to sqlite3_changes()).
4168** Then the VMs internal change counter resets to 0.
4169** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004170*/
drh9cbf3422008-01-17 16:22:13 +00004171case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004172 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004173 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004174 break;
4175}
4176
dan5134d132011-09-02 10:31:11 +00004177/* Opcode: SorterCompare P1 P2 P3
4178**
4179** P1 is a sorter cursor. This instruction compares the record blob in
4180** register P3 with the entry that the sorter cursor currently points to.
4181** If, excluding the rowid fields at the end, the two records are a match,
4182** fall through to the next instruction. Otherwise, jump to instruction P2.
4183*/
4184case OP_SorterCompare: {
4185 VdbeCursor *pC;
4186 int res;
4187
4188 pC = p->apCsr[pOp->p1];
4189 assert( isSorter(pC) );
4190 pIn3 = &aMem[pOp->p3];
4191 rc = sqlite3VdbeSorterCompare(pC, pIn3, &res);
4192 if( res ){
4193 pc = pOp->p2-1;
4194 }
4195 break;
4196};
4197
4198/* Opcode: SorterData P1 P2 * * *
4199**
4200** Write into register P2 the current sorter data for sorter cursor P1.
4201*/
4202case OP_SorterData: {
4203 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00004204
drhca892a72011-09-03 00:17:51 +00004205#ifndef SQLITE_OMIT_MERGE_SORT
dan5134d132011-09-02 10:31:11 +00004206 pOut = &aMem[pOp->p2];
4207 pC = p->apCsr[pOp->p1];
4208 assert( pC->isSorter );
4209 rc = sqlite3VdbeSorterRowkey(pC, pOut);
drhca892a72011-09-03 00:17:51 +00004210#else
4211 pOp->opcode = OP_RowKey;
4212 pc--;
4213#endif
dan5134d132011-09-02 10:31:11 +00004214 break;
4215}
4216
drh98757152008-01-09 23:04:12 +00004217/* Opcode: RowData P1 P2 * * *
drh70ce3f02003-04-15 19:22:22 +00004218**
drh98757152008-01-09 23:04:12 +00004219** Write into register P2 the complete row data for cursor P1.
4220** There is no interpretation of the data.
4221** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004222** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004223**
drhde4fcfd2008-01-19 23:50:26 +00004224** If the P1 cursor must be pointing to a valid row (not a NULL row)
4225** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004226*/
drh98757152008-01-09 23:04:12 +00004227/* Opcode: RowKey P1 P2 * * *
drh143f3c42004-01-07 20:37:52 +00004228**
drh98757152008-01-09 23:04:12 +00004229** Write into register P2 the complete row key for cursor P1.
4230** There is no interpretation of the data.
drh9cbf3422008-01-17 16:22:13 +00004231** The key is copied onto the P3 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004232** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004233**
drhde4fcfd2008-01-19 23:50:26 +00004234** If the P1 cursor must be pointing to a valid row (not a NULL row)
4235** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004236*/
danielk1977a7a8e142008-02-13 18:25:27 +00004237case OP_RowKey:
4238case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004239 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004240 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004241 u32 n;
drh856c1032009-06-02 15:21:42 +00004242 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00004243
drha6c2ed92009-11-14 23:22:23 +00004244 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004245 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004246
drhf0863fe2005-06-12 21:35:51 +00004247 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004248 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4249 pC = p->apCsr[pOp->p1];
dan5134d132011-09-02 10:31:11 +00004250 assert( pC->isSorter==0 );
drhc6aff302011-09-01 15:32:47 +00004251 assert( pC->isTable || pOp->opcode!=OP_RowData );
drhf0863fe2005-06-12 21:35:51 +00004252 assert( pC->isIndex || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00004253 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00004254 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00004255 assert( pC->pseudoTableReg==0 );
drhde4fcfd2008-01-19 23:50:26 +00004256 assert( pC->pCursor!=0 );
4257 pCrsr = pC->pCursor;
drhea8ffdf2009-07-22 00:35:23 +00004258 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drh9a65f2c2009-06-22 19:05:40 +00004259
4260 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4261 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4262 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
4263 ** a no-op and can never fail. But we leave it in place as a safety.
4264 */
4265 assert( pC->deferredMoveto==0 );
drhde4fcfd2008-01-19 23:50:26 +00004266 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004267 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4268
drhde4fcfd2008-01-19 23:50:26 +00004269 if( pC->isIndex ){
drhde4fcfd2008-01-19 23:50:26 +00004270 assert( !pC->isTable );
drhb07028f2011-10-14 21:49:18 +00004271 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
drhc27ae612009-07-14 18:35:44 +00004272 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004273 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004274 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004275 }
drhbfb19dc2009-06-05 16:46:53 +00004276 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004277 }else{
drhb07028f2011-10-14 21:49:18 +00004278 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004279 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004280 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004281 goto too_big;
4282 }
drhde4fcfd2008-01-19 23:50:26 +00004283 }
danielk1977a7a8e142008-02-13 18:25:27 +00004284 if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4285 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004286 }
danielk1977a7a8e142008-02-13 18:25:27 +00004287 pOut->n = n;
4288 MemSetTypeFlag(pOut, MEM_Blob);
drhde4fcfd2008-01-19 23:50:26 +00004289 if( pC->isIndex ){
4290 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4291 }else{
4292 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004293 }
danielk197796cb76f2008-01-04 13:24:28 +00004294 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004295 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00004296 break;
4297}
4298
drh2133d822008-01-03 18:44:59 +00004299/* Opcode: Rowid P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004300**
drh2133d822008-01-03 18:44:59 +00004301** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004302** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004303**
4304** P1 can be either an ordinary table or a virtual table. There used to
4305** be a separate OP_VRowid opcode for use with virtual tables, but this
4306** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004307*/
drh4c583122008-01-04 22:01:03 +00004308case OP_Rowid: { /* out2-prerelease */
drhdfe88ec2008-11-03 20:55:06 +00004309 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004310 i64 v;
drh856c1032009-06-02 15:21:42 +00004311 sqlite3_vtab *pVtab;
4312 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004313
drh653b82a2009-06-22 11:10:47 +00004314 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4315 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004316 assert( pC!=0 );
drh21172c42012-10-30 00:29:07 +00004317 assert( pC->pseudoTableReg==0 || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00004318 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004319 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004320 break;
4321 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004322 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004323#ifndef SQLITE_OMIT_VIRTUALTABLE
4324 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004325 pVtab = pC->pVtabCursor->pVtab;
4326 pModule = pVtab->pModule;
4327 assert( pModule->xRowid );
drh044925b2009-04-22 17:15:02 +00004328 rc = pModule->xRowid(pC->pVtabCursor, &v);
drhb9755982010-07-24 16:34:37 +00004329 importVtabErrMsg(p, pVtab);
drh044925b2009-04-22 17:15:02 +00004330#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004331 }else{
drh6be240e2009-07-14 02:33:02 +00004332 assert( pC->pCursor!=0 );
drh61495262009-04-22 15:32:59 +00004333 rc = sqlite3VdbeCursorMoveto(pC);
4334 if( rc ) goto abort_due_to_error;
4335 if( pC->rowidIsValid ){
4336 v = pC->lastRowid;
drh61495262009-04-22 15:32:59 +00004337 }else{
drhc27ae612009-07-14 18:35:44 +00004338 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4339 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
drh61495262009-04-22 15:32:59 +00004340 }
drh5e00f6c2001-09-13 13:46:56 +00004341 }
drh4c583122008-01-04 22:01:03 +00004342 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004343 break;
4344}
4345
drh9cbf3422008-01-17 16:22:13 +00004346/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004347**
4348** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004349** that occur while the cursor is on the null row will always
4350** write a NULL.
drh17f71932002-02-21 12:01:27 +00004351*/
drh9cbf3422008-01-17 16:22:13 +00004352case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004353 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004354
drh653b82a2009-06-22 11:10:47 +00004355 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4356 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004357 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004358 pC->nullRow = 1;
drhf0863fe2005-06-12 21:35:51 +00004359 pC->rowidIsValid = 0;
dana205a482011-08-27 18:48:57 +00004360 assert( pC->pCursor || pC->pVtabCursor );
danielk1977be51a652008-10-08 17:58:48 +00004361 if( pC->pCursor ){
4362 sqlite3BtreeClearCursor(pC->pCursor);
4363 }
drh17f71932002-02-21 12:01:27 +00004364 break;
4365}
4366
drh9cbf3422008-01-17 16:22:13 +00004367/* Opcode: Last P1 P2 * * *
drh9562b552002-02-19 15:00:07 +00004368**
drhf0863fe2005-06-12 21:35:51 +00004369** The next use of the Rowid or Column or Next instruction for P1
drh9562b552002-02-19 15:00:07 +00004370** will refer to the last entry in the database table or index.
4371** If the table or index is empty and P2>0, then jump immediately to P2.
4372** If P2 is 0 or if the table or index is not empty, fall through
4373** to the following instruction.
4374*/
drh9cbf3422008-01-17 16:22:13 +00004375case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004376 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004377 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004378 int res;
drh9562b552002-02-19 15:00:07 +00004379
drh653b82a2009-06-22 11:10:47 +00004380 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4381 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004382 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004383 pCrsr = pC->pCursor;
drh7abc5402011-10-22 21:00:46 +00004384 res = 0;
4385 if( ALWAYS(pCrsr!=0) ){
drh9a65f2c2009-06-22 19:05:40 +00004386 rc = sqlite3BtreeLast(pCrsr, &res);
4387 }
drh9c1905f2008-12-10 22:32:56 +00004388 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004389 pC->deferredMoveto = 0;
drha7e77062009-01-14 00:55:09 +00004390 pC->rowidIsValid = 0;
drha05a7222008-01-19 03:35:58 +00004391 pC->cacheStatus = CACHE_STALE;
drh9a65f2c2009-06-22 19:05:40 +00004392 if( pOp->p2>0 && res ){
drha05a7222008-01-19 03:35:58 +00004393 pc = pOp->p2 - 1;
drh9562b552002-02-19 15:00:07 +00004394 }
4395 break;
4396}
4397
drh0342b1f2005-09-01 03:07:44 +00004398
drh9cbf3422008-01-17 16:22:13 +00004399/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004400**
4401** This opcode does exactly the same thing as OP_Rewind except that
4402** it increments an undocumented global variable used for testing.
4403**
4404** Sorting is accomplished by writing records into a sorting index,
4405** then rewinding that index and playing it back from beginning to
4406** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4407** rewinding so that the global variable will be incremented and
4408** regression tests can determine whether or not the optimizer is
4409** correctly optimizing out sorts.
4410*/
drhc6aff302011-09-01 15:32:47 +00004411case OP_SorterSort: /* jump */
drhca892a72011-09-03 00:17:51 +00004412#ifdef SQLITE_OMIT_MERGE_SORT
4413 pOp->opcode = OP_Sort;
4414#endif
drh9cbf3422008-01-17 16:22:13 +00004415case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004416#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004417 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004418 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004419#endif
drhd1d38482008-10-07 23:46:38 +00004420 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
drh0342b1f2005-09-01 03:07:44 +00004421 /* Fall through into OP_Rewind */
4422}
drh9cbf3422008-01-17 16:22:13 +00004423/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004424**
drhf0863fe2005-06-12 21:35:51 +00004425** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004426** will refer to the first entry in the database table or index.
4427** If the table or index is empty and P2>0, then jump immediately to P2.
4428** If P2 is 0 or if the table or index is not empty, fall through
4429** to the following instruction.
drh5e00f6c2001-09-13 13:46:56 +00004430*/
drh9cbf3422008-01-17 16:22:13 +00004431case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004432 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004433 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004434 int res;
drh5e00f6c2001-09-13 13:46:56 +00004435
drh653b82a2009-06-22 11:10:47 +00004436 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4437 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004438 assert( pC!=0 );
drhc6aff302011-09-01 15:32:47 +00004439 assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004440 res = 1;
dan689ab892011-08-12 15:02:00 +00004441 if( isSorter(pC) ){
dana20fde62011-07-12 14:28:05 +00004442 rc = sqlite3VdbeSorterRewind(db, pC, &res);
dana205a482011-08-27 18:48:57 +00004443 }else{
4444 pCrsr = pC->pCursor;
4445 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004446 rc = sqlite3BtreeFirst(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004447 pC->atFirst = res==0 ?1:0;
drha11846b2004-01-07 18:52:56 +00004448 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004449 pC->cacheStatus = CACHE_STALE;
drha7e77062009-01-14 00:55:09 +00004450 pC->rowidIsValid = 0;
drhf4dada72004-05-11 09:57:35 +00004451 }
drh9c1905f2008-12-10 22:32:56 +00004452 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004453 assert( pOp->p2>0 && pOp->p2<p->nOp );
4454 if( res ){
drhf4dada72004-05-11 09:57:35 +00004455 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00004456 }
4457 break;
4458}
4459
dana205a482011-08-27 18:48:57 +00004460/* Opcode: Next P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004461**
4462** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004463** table or index. If there are no more key/value pairs then fall through
4464** to the following instruction. But if the cursor advance was successful,
4465** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004466**
drh60a713c2008-01-21 16:22:45 +00004467** The P1 cursor must be for a real table, not a pseudo-table.
4468**
dana205a482011-08-27 18:48:57 +00004469** P4 is always of type P4_ADVANCE. The function pointer points to
4470** sqlite3BtreeNext().
4471**
drhafc266a2010-03-31 17:47:44 +00004472** If P5 is positive and the jump is taken, then event counter
4473** number P5-1 in the prepared statement is incremented.
4474**
drhc045ec52002-12-04 20:01:06 +00004475** See also: Prev
drh8721ce42001-11-07 14:22:00 +00004476*/
drhafc266a2010-03-31 17:47:44 +00004477/* Opcode: Prev P1 P2 * * P5
drhc045ec52002-12-04 20:01:06 +00004478**
4479** Back up cursor P1 so that it points to the previous key/data pair in its
4480** table or index. If there is no previous key/value pairs then fall through
4481** to the following instruction. But if the cursor backup was successful,
4482** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004483**
4484** The P1 cursor must be for a real table, not a pseudo-table.
drhafc266a2010-03-31 17:47:44 +00004485**
dana205a482011-08-27 18:48:57 +00004486** P4 is always of type P4_ADVANCE. The function pointer points to
4487** sqlite3BtreePrevious().
4488**
drhafc266a2010-03-31 17:47:44 +00004489** If P5 is positive and the jump is taken, then event counter
4490** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004491*/
drhc6aff302011-09-01 15:32:47 +00004492case OP_SorterNext: /* jump */
drhca892a72011-09-03 00:17:51 +00004493#ifdef SQLITE_OMIT_MERGE_SORT
4494 pOp->opcode = OP_Next;
4495#endif
drh9cbf3422008-01-17 16:22:13 +00004496case OP_Prev: /* jump */
4497case OP_Next: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004498 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004499 int res;
drh8721ce42001-11-07 14:22:00 +00004500
drhcaec2f12003-01-07 02:47:47 +00004501 CHECK_FOR_INTERRUPT;
drh70ce3f02003-04-15 19:22:22 +00004502 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drhafc266a2010-03-31 17:47:44 +00004503 assert( pOp->p5<=ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004504 pC = p->apCsr[pOp->p1];
drh72e8fa42007-03-28 14:30:06 +00004505 if( pC==0 ){
4506 break; /* See ticket #2273 */
4507 }
drhc6aff302011-09-01 15:32:47 +00004508 assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
dan689ab892011-08-12 15:02:00 +00004509 if( isSorter(pC) ){
dan5134d132011-09-02 10:31:11 +00004510 assert( pOp->opcode==OP_SorterNext );
dana20fde62011-07-12 14:28:05 +00004511 rc = sqlite3VdbeSorterNext(db, pC, &res);
4512 }else{
dana20fde62011-07-12 14:28:05 +00004513 res = 1;
4514 assert( pC->deferredMoveto==0 );
dana205a482011-08-27 18:48:57 +00004515 assert( pC->pCursor );
4516 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4517 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4518 rc = pOp->p4.xAdvance(pC->pCursor, &res);
drh9a65f2c2009-06-22 19:05:40 +00004519 }
drh9c1905f2008-12-10 22:32:56 +00004520 pC->nullRow = (u8)res;
drha3460582008-07-11 21:02:53 +00004521 pC->cacheStatus = CACHE_STALE;
4522 if( res==0 ){
4523 pc = pOp->p2 - 1;
drhd1d38482008-10-07 23:46:38 +00004524 if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
drh0f7eb612006-08-08 13:51:43 +00004525#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004526 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004527#endif
drh8721ce42001-11-07 14:22:00 +00004528 }
drhf0863fe2005-06-12 21:35:51 +00004529 pC->rowidIsValid = 0;
drh8721ce42001-11-07 14:22:00 +00004530 break;
4531}
4532
danielk1977de630352009-05-04 11:42:29 +00004533/* Opcode: IdxInsert P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004534**
drhef8662b2011-06-20 21:47:58 +00004535** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004536** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004537** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004538**
drhaa9b8962008-01-08 02:57:55 +00004539** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004540** insert is likely to be an append.
4541**
drhf0863fe2005-06-12 21:35:51 +00004542** This instruction only works for indices. The equivalent instruction
4543** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004544*/
drhca892a72011-09-03 00:17:51 +00004545case OP_SorterInsert: /* in2 */
4546#ifdef SQLITE_OMIT_MERGE_SORT
4547 pOp->opcode = OP_IdxInsert;
4548#endif
drh9cbf3422008-01-17 16:22:13 +00004549case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004550 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004551 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004552 int nKey;
4553 const char *zKey;
4554
drh653b82a2009-06-22 11:10:47 +00004555 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4556 pC = p->apCsr[pOp->p1];
4557 assert( pC!=0 );
drhc6aff302011-09-01 15:32:47 +00004558 assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00004559 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004560 assert( pIn2->flags & MEM_Blob );
drh653b82a2009-06-22 11:10:47 +00004561 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004562 if( ALWAYS(pCrsr!=0) ){
drhf0863fe2005-06-12 21:35:51 +00004563 assert( pC->isTable==0 );
drhaa9b8962008-01-08 02:57:55 +00004564 rc = ExpandBlob(pIn2);
danielk1977d908f5a2007-05-11 07:08:28 +00004565 if( rc==SQLITE_OK ){
dan5134d132011-09-02 10:31:11 +00004566 if( isSorter(pC) ){
4567 rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
4568 }else{
4569 nKey = pIn2->n;
4570 zKey = pIn2->z;
dan1e74e602011-08-06 12:01:58 +00004571 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4572 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
dan5134d132011-09-02 10:31:11 +00004573 );
dan1e74e602011-08-06 12:01:58 +00004574 assert( pC->deferredMoveto==0 );
dan5134d132011-09-02 10:31:11 +00004575 pC->cacheStatus = CACHE_STALE;
dan1e74e602011-08-06 12:01:58 +00004576 }
danielk1977d908f5a2007-05-11 07:08:28 +00004577 }
drh5e00f6c2001-09-13 13:46:56 +00004578 }
drh5e00f6c2001-09-13 13:46:56 +00004579 break;
4580}
4581
drhd1d38482008-10-07 23:46:38 +00004582/* Opcode: IdxDelete P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004583**
drhe14006d2008-03-25 17:23:32 +00004584** The content of P3 registers starting at register P2 form
4585** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004586** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004587*/
drhe14006d2008-03-25 17:23:32 +00004588case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004589 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004590 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004591 int res;
4592 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004593
drhe14006d2008-03-25 17:23:32 +00004594 assert( pOp->p3>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00004595 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
drh653b82a2009-06-22 11:10:47 +00004596 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4597 pC = p->apCsr[pOp->p1];
4598 assert( pC!=0 );
4599 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004600 if( ALWAYS(pCrsr!=0) ){
drhe14006d2008-03-25 17:23:32 +00004601 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004602 r.nField = (u16)pOp->p3;
drhe63d9992008-08-13 19:11:48 +00004603 r.flags = 0;
drha6c2ed92009-11-14 23:22:23 +00004604 r.aMem = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004605#ifdef SQLITE_DEBUG
4606 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4607#endif
drhe63d9992008-08-13 19:11:48 +00004608 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
danielk197775bab7d2006-01-23 13:09:45 +00004609 if( rc==SQLITE_OK && res==0 ){
danielk19774adee202004-05-08 08:23:19 +00004610 rc = sqlite3BtreeDelete(pCrsr);
drh5e00f6c2001-09-13 13:46:56 +00004611 }
drh9188b382004-05-14 21:12:22 +00004612 assert( pC->deferredMoveto==0 );
drh76873ab2006-01-07 18:48:26 +00004613 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004614 }
drh5e00f6c2001-09-13 13:46:56 +00004615 break;
4616}
4617
drh2133d822008-01-03 18:44:59 +00004618/* Opcode: IdxRowid P1 P2 * * *
drh8721ce42001-11-07 14:22:00 +00004619**
drh2133d822008-01-03 18:44:59 +00004620** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004621** the end of the index key pointed to by cursor P1. This integer should be
4622** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004623**
drh9437bd22009-02-01 00:29:56 +00004624** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004625*/
drh4c583122008-01-04 22:01:03 +00004626case OP_IdxRowid: { /* out2-prerelease */
drh8721ce42001-11-07 14:22:00 +00004627 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004628 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004629 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004630
drh653b82a2009-06-22 11:10:47 +00004631 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4632 pC = p->apCsr[pOp->p1];
4633 assert( pC!=0 );
4634 pCrsr = pC->pCursor;
drh3c657212009-11-17 23:59:58 +00004635 pOut->flags = MEM_Null;
drh9a65f2c2009-06-22 19:05:40 +00004636 if( ALWAYS(pCrsr!=0) ){
danielk1977c4d201c2009-04-07 09:16:56 +00004637 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004638 if( NEVER(rc) ) goto abort_due_to_error;
drhd7556d22004-05-14 21:59:40 +00004639 assert( pC->deferredMoveto==0 );
drhf0863fe2005-06-12 21:35:51 +00004640 assert( pC->isTable==0 );
drh4c583122008-01-04 22:01:03 +00004641 if( !pC->nullRow ){
drh35f6b932009-06-23 14:15:04 +00004642 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
danielk19771d850a72004-05-31 08:26:49 +00004643 if( rc!=SQLITE_OK ){
4644 goto abort_due_to_error;
4645 }
drh4c583122008-01-04 22:01:03 +00004646 pOut->u.i = rowid;
drh3c657212009-11-17 23:59:58 +00004647 pOut->flags = MEM_Int;
danielk19773d1bfea2004-05-14 11:00:53 +00004648 }
drh8721ce42001-11-07 14:22:00 +00004649 }
4650 break;
4651}
4652
danielk197761dd5832008-04-18 11:31:12 +00004653/* Opcode: IdxGE P1 P2 P3 P4 P5
drh8721ce42001-11-07 14:22:00 +00004654**
danielk197761dd5832008-04-18 11:31:12 +00004655** The P4 register values beginning with P3 form an unpacked index
4656** key that omits the ROWID. Compare this key value against the index
4657** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004658**
danielk197761dd5832008-04-18 11:31:12 +00004659** If the P1 index entry is greater than or equal to the key value
4660** then jump to P2. Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004661**
danielk197761dd5832008-04-18 11:31:12 +00004662** If P5 is non-zero then the key value is increased by an epsilon
4663** prior to the comparison. This make the opcode work like IdxGT except
4664** that if the key from register P3 is a prefix of the key in the cursor,
4665** the result is false whereas it would be true with IdxGT.
drh8721ce42001-11-07 14:22:00 +00004666*/
drh3bb9b932010-08-06 02:10:00 +00004667/* Opcode: IdxLT P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004668**
danielk197761dd5832008-04-18 11:31:12 +00004669** The P4 register values beginning with P3 form an unpacked index
4670** key that omits the ROWID. Compare this key value against the index
4671** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004672**
danielk197761dd5832008-04-18 11:31:12 +00004673** If the P1 index entry is less than the key value then jump to P2.
4674** Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004675**
danielk197761dd5832008-04-18 11:31:12 +00004676** If P5 is non-zero then the key value is increased by an epsilon prior
4677** to the comparison. This makes the opcode work like IdxLE.
drhc045ec52002-12-04 20:01:06 +00004678*/
drh93952eb2009-11-13 19:43:43 +00004679case OP_IdxLT: /* jump */
4680case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004681 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004682 int res;
4683 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004684
drh653b82a2009-06-22 11:10:47 +00004685 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4686 pC = p->apCsr[pOp->p1];
4687 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00004688 assert( pC->isOrdered );
drh9a65f2c2009-06-22 19:05:40 +00004689 if( ALWAYS(pC->pCursor!=0) ){
drhd7556d22004-05-14 21:59:40 +00004690 assert( pC->deferredMoveto==0 );
drha05a7222008-01-19 03:35:58 +00004691 assert( pOp->p5==0 || pOp->p5==1 );
danielk197761dd5832008-04-18 11:31:12 +00004692 assert( pOp->p4type==P4_INT32 );
4693 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004694 r.nField = (u16)pOp->p4.i;
drhe63d9992008-08-13 19:11:48 +00004695 if( pOp->p5 ){
dan0c733f62011-11-16 15:27:09 +00004696 r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH;
drhe63d9992008-08-13 19:11:48 +00004697 }else{
dan0c733f62011-11-16 15:27:09 +00004698 r.flags = UNPACKED_PREFIX_MATCH;
drhe63d9992008-08-13 19:11:48 +00004699 }
drha6c2ed92009-11-14 23:22:23 +00004700 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00004701#ifdef SQLITE_DEBUG
4702 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4703#endif
drhe63d9992008-08-13 19:11:48 +00004704 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
drhc045ec52002-12-04 20:01:06 +00004705 if( pOp->opcode==OP_IdxLT ){
4706 res = -res;
drha05a7222008-01-19 03:35:58 +00004707 }else{
4708 assert( pOp->opcode==OP_IdxGE );
drh8721ce42001-11-07 14:22:00 +00004709 res++;
4710 }
4711 if( res>0 ){
4712 pc = pOp->p2 - 1 ;
4713 }
4714 }
4715 break;
4716}
4717
drh98757152008-01-09 23:04:12 +00004718/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004719**
4720** Delete an entire database table or index whose root page in the database
4721** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00004722**
drh98757152008-01-09 23:04:12 +00004723** The table being destroyed is in the main database file if P3==0. If
4724** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00004725** that is used to store tables create using CREATE TEMPORARY TABLE.
4726**
drh205f48e2004-11-05 00:43:11 +00004727** If AUTOVACUUM is enabled then it is possible that another root page
4728** might be moved into the newly deleted root page in order to keep all
4729** root pages contiguous at the beginning of the database. The former
4730** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00004731** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00004732** movement was required (because the table being dropped was already
4733** the last one in the database) then a zero is stored in register P2.
4734** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00004735**
drhb19a2bc2001-09-16 00:13:26 +00004736** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00004737*/
drh98757152008-01-09 23:04:12 +00004738case OP_Destroy: { /* out2-prerelease */
danielk1977a0bf2652004-11-04 14:30:04 +00004739 int iMoved;
drh3765df42006-06-28 18:18:09 +00004740 int iCnt;
drh5a91a532007-01-05 16:39:43 +00004741 Vdbe *pVdbe;
drh856c1032009-06-02 15:21:42 +00004742 int iDb;
drh3a949872012-09-18 13:20:13 +00004743
drh856c1032009-06-02 15:21:42 +00004744#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk1977212b2182006-06-23 14:32:08 +00004745 iCnt = 0;
drh856c1032009-06-02 15:21:42 +00004746 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
danielk1977212b2182006-06-23 14:32:08 +00004747 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4748 iCnt++;
4749 }
4750 }
drh3765df42006-06-28 18:18:09 +00004751#else
4752 iCnt = db->activeVdbeCnt;
danielk1977212b2182006-06-23 14:32:08 +00004753#endif
drh3c657212009-11-17 23:59:58 +00004754 pOut->flags = MEM_Null;
danielk1977212b2182006-06-23 14:32:08 +00004755 if( iCnt>1 ){
danielk1977e6efa742004-11-10 11:55:10 +00004756 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00004757 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00004758 }else{
drh856c1032009-06-02 15:21:42 +00004759 iDb = pOp->p3;
danielk1977212b2182006-06-23 14:32:08 +00004760 assert( iCnt==1 );
drhdddd7792011-04-03 18:19:25 +00004761 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
drh98757152008-01-09 23:04:12 +00004762 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00004763 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00004764 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00004765#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00004766 if( rc==SQLITE_OK && iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00004767 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4768 /* All OP_Destroy operations occur on the same btree */
4769 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4770 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00004771 }
drh3765df42006-06-28 18:18:09 +00004772#endif
danielk1977a0bf2652004-11-04 14:30:04 +00004773 }
drh5e00f6c2001-09-13 13:46:56 +00004774 break;
4775}
4776
danielk1977c7af4842008-10-27 13:59:33 +00004777/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00004778**
4779** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00004780** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00004781** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00004782**
drhf57b3392001-10-08 13:22:32 +00004783** The table being clear is in the main database file if P2==0. If
4784** P2==1 then the table to be clear is in the auxiliary database file
4785** that is used to store tables create using CREATE TEMPORARY TABLE.
4786**
shanebe217792009-03-05 04:20:31 +00004787** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00004788** intkey table (an SQL table, not an index). In this case the row change
4789** count is incremented by the number of rows in the table being cleared.
4790** If P3 is greater than zero, then the value stored in register P3 is
4791** also incremented by the number of rows in the table being cleared.
4792**
drhb19a2bc2001-09-16 00:13:26 +00004793** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00004794*/
drh9cbf3422008-01-17 16:22:13 +00004795case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00004796 int nChange;
4797
4798 nChange = 0;
drhdddd7792011-04-03 18:19:25 +00004799 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
danielk1977c7af4842008-10-27 13:59:33 +00004800 rc = sqlite3BtreeClearTable(
4801 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4802 );
4803 if( pOp->p3 ){
4804 p->nChange += nChange;
4805 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00004806 assert( memIsValid(&aMem[pOp->p3]) );
4807 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00004808 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00004809 }
4810 }
drh5edc3122001-09-13 21:53:09 +00004811 break;
4812}
4813
drh4c583122008-01-04 22:01:03 +00004814/* Opcode: CreateTable P1 P2 * * *
drh5b2fd562001-09-13 15:21:31 +00004815**
drh4c583122008-01-04 22:01:03 +00004816** Allocate a new table in the main database file if P1==0 or in the
4817** auxiliary database file if P1==1 or in an attached database if
4818** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004819** register P2
drh5b2fd562001-09-13 15:21:31 +00004820**
drhc6b52df2002-01-04 03:09:29 +00004821** The difference between a table and an index is this: A table must
4822** have a 4-byte integer key and can have arbitrary data. An index
4823** has an arbitrary key but no data.
4824**
drhb19a2bc2001-09-16 00:13:26 +00004825** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00004826*/
drh4c583122008-01-04 22:01:03 +00004827/* Opcode: CreateIndex P1 P2 * * *
drhf57b3392001-10-08 13:22:32 +00004828**
drh4c583122008-01-04 22:01:03 +00004829** Allocate a new index in the main database file if P1==0 or in the
4830** auxiliary database file if P1==1 or in an attached database if
4831** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004832** register P2.
drhf57b3392001-10-08 13:22:32 +00004833**
drhc6b52df2002-01-04 03:09:29 +00004834** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00004835*/
drh4c583122008-01-04 22:01:03 +00004836case OP_CreateIndex: /* out2-prerelease */
4837case OP_CreateTable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00004838 int pgno;
drhf328bc82004-05-10 23:29:49 +00004839 int flags;
drh234c39d2004-07-24 03:30:47 +00004840 Db *pDb;
drh856c1032009-06-02 15:21:42 +00004841
4842 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00004843 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00004844 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh234c39d2004-07-24 03:30:47 +00004845 pDb = &db->aDb[pOp->p1];
4846 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00004847 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00004848 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00004849 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00004850 }else{
drhd4187c72010-08-30 22:15:45 +00004851 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00004852 }
drh234c39d2004-07-24 03:30:47 +00004853 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00004854 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00004855 break;
4856}
4857
drh22645842011-03-24 01:34:03 +00004858/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00004859**
4860** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00004861** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00004862**
4863** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00004864** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00004865*/
drh9cbf3422008-01-17 16:22:13 +00004866case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00004867 int iDb;
4868 const char *zMaster;
4869 char *zSql;
4870 InitData initData;
4871
drhbdaec522011-04-04 00:14:43 +00004872 /* Any prepared statement that invokes this opcode will hold mutexes
4873 ** on every btree. This is a prerequisite for invoking
4874 ** sqlite3InitCallback().
4875 */
4876#ifdef SQLITE_DEBUG
4877 for(iDb=0; iDb<db->nDb; iDb++){
4878 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4879 }
4880#endif
drhbdaec522011-04-04 00:14:43 +00004881
drh856c1032009-06-02 15:21:42 +00004882 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00004883 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00004884 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00004885 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00004886 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00004887 initData.db = db;
4888 initData.iDb = pOp->p1;
4889 initData.pzErrMsg = &p->zErrMsg;
4890 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00004891 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00004892 db->aDb[iDb].zName, zMaster, pOp->p4.z);
4893 if( zSql==0 ){
4894 rc = SQLITE_NOMEM;
4895 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00004896 assert( db->init.busy==0 );
4897 db->init.busy = 1;
4898 initData.rc = SQLITE_OK;
4899 assert( !db->mallocFailed );
4900 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4901 if( rc==SQLITE_OK ) rc = initData.rc;
4902 sqlite3DbFree(db, zSql);
4903 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00004904 }
drh3c23a882007-01-09 14:01:13 +00004905 }
drh81028a42012-05-15 18:28:27 +00004906 if( rc ) sqlite3ResetAllSchemasOfConnection(db);
danielk1977261919c2005-12-06 12:52:59 +00004907 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00004908 goto no_mem;
4909 }
drh234c39d2004-07-24 03:30:47 +00004910 break;
4911}
4912
drh8bfdf722009-06-19 14:06:03 +00004913#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00004914/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00004915**
4916** Read the sqlite_stat1 table for database P1 and load the content
4917** of that table into the internal index hash table. This will cause
4918** the analysis to be used when preparing all subsequent queries.
4919*/
drh9cbf3422008-01-17 16:22:13 +00004920case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00004921 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4922 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00004923 break;
4924}
drh8bfdf722009-06-19 14:06:03 +00004925#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00004926
drh98757152008-01-09 23:04:12 +00004927/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004928**
4929** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004930** the table named P4 in database P1. This is called after a table
drh956bc922004-07-24 17:38:29 +00004931** is dropped in order to keep the internal representation of the
4932** schema consistent with what is on disk.
4933*/
drh9cbf3422008-01-17 16:22:13 +00004934case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00004935 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004936 break;
4937}
4938
drh98757152008-01-09 23:04:12 +00004939/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004940**
4941** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004942** the index named P4 in database P1. This is called after an index
drh956bc922004-07-24 17:38:29 +00004943** is dropped in order to keep the internal representation of the
4944** schema consistent with what is on disk.
4945*/
drh9cbf3422008-01-17 16:22:13 +00004946case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00004947 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004948 break;
4949}
4950
drh98757152008-01-09 23:04:12 +00004951/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004952**
4953** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004954** the trigger named P4 in database P1. This is called after a trigger
drh956bc922004-07-24 17:38:29 +00004955** is dropped in order to keep the internal representation of the
4956** schema consistent with what is on disk.
4957*/
drh9cbf3422008-01-17 16:22:13 +00004958case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00004959 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004960 break;
4961}
4962
drh234c39d2004-07-24 03:30:47 +00004963
drhb7f91642004-10-31 02:22:47 +00004964#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00004965/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004966**
drh98757152008-01-09 23:04:12 +00004967** Do an analysis of the currently open database. Store in
4968** register P1 the text of an error message describing any problems.
4969** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00004970**
drh98757152008-01-09 23:04:12 +00004971** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00004972** At most reg(P3) errors will be reported.
4973** In other words, the analysis stops as soon as reg(P1) errors are
4974** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00004975**
drh79069752004-05-22 21:30:40 +00004976** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00004977** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00004978** total.
drh21504322002-06-25 13:16:02 +00004979**
drh98757152008-01-09 23:04:12 +00004980** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00004981** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00004982**
drh1dcdbc02007-01-27 02:24:54 +00004983** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00004984*/
drhaaab5722002-02-19 13:39:21 +00004985case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00004986 int nRoot; /* Number of tables to check. (Number of root pages.) */
4987 int *aRoot; /* Array of rootpage numbers for tables to be checked */
4988 int j; /* Loop counter */
4989 int nErr; /* Number of errors reported */
4990 char *z; /* Text of the error report */
4991 Mem *pnErr; /* Register keeping track of errors remaining */
4992
4993 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00004994 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00004995 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00004996 if( aRoot==0 ) goto no_mem;
drh98757152008-01-09 23:04:12 +00004997 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00004998 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00004999 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00005000 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00005001 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00005002 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00005003 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00005004 }
5005 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00005006 assert( pOp->p5<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005007 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
drh98757152008-01-09 23:04:12 +00005008 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00005009 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00005010 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00005011 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00005012 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00005013 if( nErr==0 ){
5014 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00005015 }else if( z==0 ){
5016 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00005017 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00005018 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00005019 }
drhb7654112008-01-12 12:48:07 +00005020 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00005021 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00005022 break;
5023}
drhb7f91642004-10-31 02:22:47 +00005024#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00005025
drh3d4501e2008-12-04 20:40:10 +00005026/* Opcode: RowSetAdd P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00005027**
drh3d4501e2008-12-04 20:40:10 +00005028** Insert the integer value held by register P2 into a boolean index
5029** held in register P1.
5030**
5031** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00005032*/
drh93952eb2009-11-13 19:43:43 +00005033case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00005034 pIn1 = &aMem[pOp->p1];
5035 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00005036 assert( (pIn2->flags & MEM_Int)!=0 );
5037 if( (pIn1->flags & MEM_RowSet)==0 ){
5038 sqlite3VdbeMemSetRowSet(pIn1);
5039 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005040 }
drh93952eb2009-11-13 19:43:43 +00005041 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005042 break;
5043}
5044
5045/* Opcode: RowSetRead P1 P2 P3 * *
5046**
5047** Extract the smallest value from boolean index P1 and put that value into
5048** register P3. Or, if boolean index P1 is initially empty, leave P3
5049** unchanged and jump to instruction P2.
5050*/
drh93952eb2009-11-13 19:43:43 +00005051case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005052 i64 val;
drh3d4501e2008-12-04 20:40:10 +00005053 CHECK_FOR_INTERRUPT;
drh3c657212009-11-17 23:59:58 +00005054 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005055 if( (pIn1->flags & MEM_RowSet)==0
5056 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005057 ){
5058 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005059 sqlite3VdbeMemSetNull(pIn1);
drh3d4501e2008-12-04 20:40:10 +00005060 pc = pOp->p2 - 1;
5061 }else{
5062 /* A value was pulled from the index */
drh3c657212009-11-17 23:59:58 +00005063 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005064 }
drh5e00f6c2001-09-13 13:46:56 +00005065 break;
5066}
5067
drh1b26c7c2009-04-22 02:15:47 +00005068/* Opcode: RowSetTest P1 P2 P3 P4
danielk19771d461462009-04-21 09:02:45 +00005069**
drhade97602009-04-21 15:05:18 +00005070** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005071** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005072** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005073** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005074** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005075**
drh1b26c7c2009-04-22 02:15:47 +00005076** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005077** of integers, where each set contains no duplicates. Each set
5078** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005079** must have P4==0, the final set P4=-1. P4 must be either -1 or
5080** non-negative. For non-negative values of P4 only the lower 4
5081** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005082**
5083** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005084** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005085** (b) when P4==-1 there is no need to insert the value, as it will
5086** never be tested for, and (c) when a value that is part of set X is
5087** inserted, there is no need to search to see if the same value was
5088** previously inserted as part of set X (only if it was previously
5089** inserted as part of some other set).
5090*/
drh1b26c7c2009-04-22 02:15:47 +00005091case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005092 int iSet;
5093 int exists;
5094
drh3c657212009-11-17 23:59:58 +00005095 pIn1 = &aMem[pOp->p1];
5096 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005097 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005098 assert( pIn3->flags&MEM_Int );
5099
drh1b26c7c2009-04-22 02:15:47 +00005100 /* If there is anything other than a rowset object in memory cell P1,
5101 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005102 */
drh733bf1b2009-04-22 00:47:00 +00005103 if( (pIn1->flags & MEM_RowSet)==0 ){
5104 sqlite3VdbeMemSetRowSet(pIn1);
5105 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005106 }
5107
5108 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005109 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005110 if( iSet ){
shane60a4b532009-05-06 18:57:09 +00005111 exists = sqlite3RowSetTest(pIn1->u.pRowSet,
5112 (u8)(iSet>=0 ? iSet & 0xf : 0xff),
drh733bf1b2009-04-22 00:47:00 +00005113 pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005114 if( exists ){
5115 pc = pOp->p2 - 1;
5116 break;
5117 }
5118 }
5119 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005120 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005121 }
5122 break;
5123}
5124
drh5e00f6c2001-09-13 13:46:56 +00005125
danielk197793758c82005-01-21 08:13:14 +00005126#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005127
5128/* Opcode: Program P1 P2 P3 P4 *
5129**
dan76d462e2009-08-30 11:42:51 +00005130** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005131**
dan76d462e2009-08-30 11:42:51 +00005132** P1 contains the address of the memory cell that contains the first memory
5133** cell in an array of values used as arguments to the sub-program. P2
5134** contains the address to jump to if the sub-program throws an IGNORE
5135** exception using the RAISE() function. Register P3 contains the address
5136** of a memory cell in this (the parent) VM that is used to allocate the
5137** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005138**
5139** P4 is a pointer to the VM containing the trigger program.
5140*/
dan76d462e2009-08-30 11:42:51 +00005141case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005142 int nMem; /* Number of memory registers for sub-program */
5143 int nByte; /* Bytes of runtime space required for sub-program */
5144 Mem *pRt; /* Register to allocate runtime space */
5145 Mem *pMem; /* Used to iterate through memory cells */
5146 Mem *pEnd; /* Last memory cell in new array */
5147 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5148 SubProgram *pProgram; /* Sub-program to execute */
5149 void *t; /* Token identifying trigger */
5150
5151 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005152 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005153 assert( pProgram->nOp>0 );
5154
dan1da40a32009-09-19 17:00:31 +00005155 /* If the p5 flag is clear, then recursive invocation of triggers is
5156 ** disabled for backwards compatibility (p5 is set if this sub-program
5157 ** is really a trigger, not a foreign key action, and the flag set
5158 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005159 **
5160 ** It is recursive invocation of triggers, at the SQL level, that is
5161 ** disabled. In some cases a single trigger may generate more than one
5162 ** SubProgram (if the trigger may be executed with more than one different
5163 ** ON CONFLICT algorithm). SubProgram structures associated with a
5164 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005165 ** variable. */
5166 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005167 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005168 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5169 if( pFrame ) break;
5170 }
5171
danf5894502009-10-07 18:41:19 +00005172 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005173 rc = SQLITE_ERROR;
5174 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
5175 break;
5176 }
5177
5178 /* Register pRt is used to store the memory required to save the state
5179 ** of the current program, and the memory required at runtime to execute
5180 ** the trigger program. If this trigger has been fired before, then pRt
5181 ** is already allocated. Otherwise, it must be initialized. */
5182 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005183 /* SubProgram.nMem is set to the number of memory cells used by the
5184 ** program stored in SubProgram.aOp. As well as these, one memory
5185 ** cell is required for each cursor used by the program. Set local
5186 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5187 */
dan65a7cd12009-09-01 12:16:01 +00005188 nMem = pProgram->nMem + pProgram->nCsr;
5189 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005190 + nMem * sizeof(Mem)
dan1d8cb212011-12-09 13:24:16 +00005191 + pProgram->nCsr * sizeof(VdbeCursor *)
5192 + pProgram->nOnce * sizeof(u8);
dan165921a2009-08-28 18:53:45 +00005193 pFrame = sqlite3DbMallocZero(db, nByte);
5194 if( !pFrame ){
5195 goto no_mem;
5196 }
5197 sqlite3VdbeMemRelease(pRt);
5198 pRt->flags = MEM_Frame;
5199 pRt->u.pFrame = pFrame;
5200
5201 pFrame->v = p;
5202 pFrame->nChildMem = nMem;
5203 pFrame->nChildCsr = pProgram->nCsr;
5204 pFrame->pc = pc;
5205 pFrame->aMem = p->aMem;
5206 pFrame->nMem = p->nMem;
5207 pFrame->apCsr = p->apCsr;
5208 pFrame->nCursor = p->nCursor;
5209 pFrame->aOp = p->aOp;
5210 pFrame->nOp = p->nOp;
5211 pFrame->token = pProgram->token;
dan1d8cb212011-12-09 13:24:16 +00005212 pFrame->aOnceFlag = p->aOnceFlag;
5213 pFrame->nOnceFlag = p->nOnceFlag;
dan165921a2009-08-28 18:53:45 +00005214
5215 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5216 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drhec86c722011-12-09 17:27:51 +00005217 pMem->flags = MEM_Invalid;
dan165921a2009-08-28 18:53:45 +00005218 pMem->db = db;
5219 }
5220 }else{
5221 pFrame = pRt->u.pFrame;
5222 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5223 assert( pProgram->nCsr==pFrame->nChildCsr );
5224 assert( pc==pFrame->pc );
5225 }
5226
5227 p->nFrame++;
5228 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005229 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005230 pFrame->nChange = p->nChange;
dan2832ad42009-08-31 15:27:27 +00005231 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005232 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00005233 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00005234 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005235 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00005236 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00005237 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005238 p->nOp = pProgram->nOp;
dan1d8cb212011-12-09 13:24:16 +00005239 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5240 p->nOnceFlag = pProgram->nOnce;
dan165921a2009-08-28 18:53:45 +00005241 pc = -1;
dan1d8cb212011-12-09 13:24:16 +00005242 memset(p->aOnceFlag, 0, p->nOnceFlag);
dan165921a2009-08-28 18:53:45 +00005243
5244 break;
5245}
5246
dan76d462e2009-08-30 11:42:51 +00005247/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005248**
dan76d462e2009-08-30 11:42:51 +00005249** This opcode is only ever present in sub-programs called via the
5250** OP_Program instruction. Copy a value currently stored in a memory
5251** cell of the calling (parent) frame to cell P2 in the current frames
5252** address space. This is used by trigger programs to access the new.*
5253** and old.* values.
dan165921a2009-08-28 18:53:45 +00005254**
dan76d462e2009-08-30 11:42:51 +00005255** The address of the cell in the parent frame is determined by adding
5256** the value of the P1 argument to the value of the P1 argument to the
5257** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005258*/
dan76d462e2009-08-30 11:42:51 +00005259case OP_Param: { /* out2-prerelease */
dan65a7cd12009-09-01 12:16:01 +00005260 VdbeFrame *pFrame;
5261 Mem *pIn;
5262 pFrame = p->pFrame;
5263 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005264 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5265 break;
5266}
5267
danielk197793758c82005-01-21 08:13:14 +00005268#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005269
dan1da40a32009-09-19 17:00:31 +00005270#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005271/* Opcode: FkCounter P1 P2 * * *
dan1da40a32009-09-19 17:00:31 +00005272**
dan0ff297e2009-09-25 17:03:14 +00005273** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5274** If P1 is non-zero, the database constraint counter is incremented
5275** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005276** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005277*/
dan32b09f22009-09-23 17:29:59 +00005278case OP_FkCounter: {
dan0ff297e2009-09-25 17:03:14 +00005279 if( pOp->p1 ){
5280 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005281 }else{
dan0ff297e2009-09-25 17:03:14 +00005282 p->nFkConstraint += pOp->p2;
5283 }
5284 break;
5285}
5286
5287/* Opcode: FkIfZero P1 P2 * * *
5288**
5289** This opcode tests if a foreign key constraint-counter is currently zero.
5290** If so, jump to instruction P2. Otherwise, fall through to the next
5291** instruction.
5292**
5293** If P1 is non-zero, then the jump is taken if the database constraint-counter
5294** is zero (the one that counts deferred constraint violations). If P1 is
5295** zero, the jump is taken if the statement constraint-counter is zero
5296** (immediate foreign key constraint violations).
5297*/
5298case OP_FkIfZero: { /* jump */
5299 if( pOp->p1 ){
5300 if( db->nDeferredCons==0 ) pc = pOp->p2-1;
5301 }else{
5302 if( p->nFkConstraint==0 ) pc = pOp->p2-1;
dan32b09f22009-09-23 17:29:59 +00005303 }
dan1da40a32009-09-19 17:00:31 +00005304 break;
5305}
5306#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5307
drh205f48e2004-11-05 00:43:11 +00005308#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005309/* Opcode: MemMax P1 P2 * * *
drh205f48e2004-11-05 00:43:11 +00005310**
dan76d462e2009-08-30 11:42:51 +00005311** P1 is a register in the root frame of this VM (the root frame is
5312** different from the current frame if this instruction is being executed
5313** within a sub-program). Set the value of register P1 to the maximum of
5314** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005315**
5316** This instruction throws an error if the memory cell is not initially
5317** an integer.
5318*/
dan76d462e2009-08-30 11:42:51 +00005319case OP_MemMax: { /* in2 */
5320 Mem *pIn1;
5321 VdbeFrame *pFrame;
5322 if( p->pFrame ){
5323 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5324 pIn1 = &pFrame->aMem[pOp->p1];
5325 }else{
drha6c2ed92009-11-14 23:22:23 +00005326 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005327 }
drhec86c722011-12-09 17:27:51 +00005328 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005329 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005330 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005331 sqlite3VdbeMemIntegerify(pIn2);
5332 if( pIn1->u.i<pIn2->u.i){
5333 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005334 }
5335 break;
5336}
5337#endif /* SQLITE_OMIT_AUTOINCREMENT */
5338
drh98757152008-01-09 23:04:12 +00005339/* Opcode: IfPos P1 P2 * * *
danielk1977a2dc3b12005-02-05 12:48:48 +00005340**
drh98757152008-01-09 23:04:12 +00005341** If the value of register P1 is 1 or greater, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005342**
drh98757152008-01-09 23:04:12 +00005343** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005344** not contain an integer. An assertion fault will result if you try.
danielk1977a2dc3b12005-02-05 12:48:48 +00005345*/
drh9cbf3422008-01-17 16:22:13 +00005346case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005347 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005348 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005349 if( pIn1->u.i>0 ){
drhec7429a2005-10-06 16:53:14 +00005350 pc = pOp->p2 - 1;
5351 }
5352 break;
5353}
5354
drh98757152008-01-09 23:04:12 +00005355/* Opcode: IfNeg P1 P2 * * *
drh15007a92006-01-08 18:10:17 +00005356**
drh98757152008-01-09 23:04:12 +00005357** If the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005358**
drh98757152008-01-09 23:04:12 +00005359** It is illegal to use this instruction on a register that does
drh15007a92006-01-08 18:10:17 +00005360** not contain an integer. An assertion fault will result if you try.
5361*/
drh9cbf3422008-01-17 16:22:13 +00005362case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005363 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005364 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005365 if( pIn1->u.i<0 ){
drh15007a92006-01-08 18:10:17 +00005366 pc = pOp->p2 - 1;
5367 }
5368 break;
5369}
5370
drh9b918ed2009-11-12 03:13:26 +00005371/* Opcode: IfZero P1 P2 P3 * *
drhec7429a2005-10-06 16:53:14 +00005372**
drh9b918ed2009-11-12 03:13:26 +00005373** The register P1 must contain an integer. Add literal P3 to the
5374** value in register P1. If the result is exactly 0, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005375**
drh98757152008-01-09 23:04:12 +00005376** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005377** not contain an integer. An assertion fault will result if you try.
drhec7429a2005-10-06 16:53:14 +00005378*/
drh9cbf3422008-01-17 16:22:13 +00005379case OP_IfZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005380 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005381 assert( pIn1->flags&MEM_Int );
drh9b918ed2009-11-12 03:13:26 +00005382 pIn1->u.i += pOp->p3;
drh3c84ddf2008-01-09 02:15:38 +00005383 if( pIn1->u.i==0 ){
drha2a49dc2008-01-02 14:28:13 +00005384 pc = pOp->p2 - 1;
5385 }
5386 break;
5387}
5388
drh98757152008-01-09 23:04:12 +00005389/* Opcode: AggStep * P2 P3 P4 P5
drhe5095352002-02-24 03:25:14 +00005390**
drh0bce8352002-02-28 00:41:10 +00005391** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005392** function has P5 arguments. P4 is a pointer to the FuncDef
5393** structure that specifies the function. Use register
5394** P3 as the accumulator.
drhe5095352002-02-24 03:25:14 +00005395**
drh98757152008-01-09 23:04:12 +00005396** The P5 arguments are taken from register P2 and its
5397** successors.
drhe5095352002-02-24 03:25:14 +00005398*/
drh9cbf3422008-01-17 16:22:13 +00005399case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00005400 int n;
drhe5095352002-02-24 03:25:14 +00005401 int i;
drhc54a6172009-06-02 16:06:03 +00005402 Mem *pMem;
5403 Mem *pRec;
danielk197722322fd2004-05-25 23:35:17 +00005404 sqlite3_context ctx;
danielk19776ddcca52004-05-24 23:48:25 +00005405 sqlite3_value **apVal;
drhe5095352002-02-24 03:25:14 +00005406
drh856c1032009-06-02 15:21:42 +00005407 n = pOp->p5;
drh6810ce62004-01-31 19:22:56 +00005408 assert( n>=0 );
drha6c2ed92009-11-14 23:22:23 +00005409 pRec = &aMem[pOp->p2];
danielk19776ddcca52004-05-24 23:48:25 +00005410 apVal = p->apArg;
5411 assert( apVal || n==0 );
drh6810ce62004-01-31 19:22:56 +00005412 for(i=0; i<n; i++, pRec++){
drh2b4ded92010-09-27 21:09:31 +00005413 assert( memIsValid(pRec) );
danielk1977c572ef72004-05-27 09:28:41 +00005414 apVal[i] = pRec;
drh2b4ded92010-09-27 21:09:31 +00005415 memAboutToChange(p, pRec);
dan937d0de2009-10-15 18:35:38 +00005416 sqlite3VdbeMemStoreType(pRec);
drhe5095352002-02-24 03:25:14 +00005417 }
danielk19772dca4ac2008-01-03 11:50:29 +00005418 ctx.pFunc = pOp->p4.pFunc;
drh98757152008-01-09 23:04:12 +00005419 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005420 ctx.pMem = pMem = &aMem[pOp->p3];
drhabfcea22005-09-06 20:36:48 +00005421 pMem->n++;
drh90669c12006-01-20 15:45:36 +00005422 ctx.s.flags = MEM_Null;
5423 ctx.s.z = 0;
danielk19775f096132008-03-28 15:44:09 +00005424 ctx.s.zMalloc = 0;
drh90669c12006-01-20 15:45:36 +00005425 ctx.s.xDel = 0;
drhb21c8cd2007-08-21 19:33:56 +00005426 ctx.s.db = db;
drh1350b032002-02-27 19:00:20 +00005427 ctx.isError = 0;
danielk1977dc1bdc42004-06-11 10:51:27 +00005428 ctx.pColl = 0;
drh7a957892012-02-02 17:35:43 +00005429 ctx.skipFlag = 0;
drhe82f5d02008-10-07 19:53:14 +00005430 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
danielk1977dc1bdc42004-06-11 10:51:27 +00005431 assert( pOp>p->aOp );
drh66a51672008-01-03 00:01:23 +00005432 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00005433 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00005434 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00005435 }
drhee9ff672010-09-03 18:50:48 +00005436 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh1350b032002-02-27 19:00:20 +00005437 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00005438 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00005439 rc = ctx.isError;
drh1350b032002-02-27 19:00:20 +00005440 }
drh7a957892012-02-02 17:35:43 +00005441 if( ctx.skipFlag ){
5442 assert( pOp[-1].opcode==OP_CollSeq );
5443 i = pOp[-1].p1;
5444 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5445 }
drhbdaec522011-04-04 00:14:43 +00005446
drh90669c12006-01-20 15:45:36 +00005447 sqlite3VdbeMemRelease(&ctx.s);
drhbdaec522011-04-04 00:14:43 +00005448
drh5e00f6c2001-09-13 13:46:56 +00005449 break;
5450}
5451
drh98757152008-01-09 23:04:12 +00005452/* Opcode: AggFinal P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00005453**
drh13449892005-09-07 21:22:45 +00005454** Execute the finalizer function for an aggregate. P1 is
5455** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005456**
5457** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005458** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005459** argument is not used by this opcode. It is only there to disambiguate
5460** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005461** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005462** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005463*/
drh9cbf3422008-01-17 16:22:13 +00005464case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005465 Mem *pMem;
drh0a07c102008-01-03 18:03:08 +00005466 assert( pOp->p1>0 && pOp->p1<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005467 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005468 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005469 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005470 if( rc ){
drhf089aa42008-07-08 19:34:06 +00005471 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005472 }
drh2dca8682008-03-21 17:13:13 +00005473 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005474 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005475 if( sqlite3VdbeMemTooBig(pMem) ){
5476 goto too_big;
5477 }
drh5e00f6c2001-09-13 13:46:56 +00005478 break;
5479}
5480
dan5cf53532010-05-01 16:40:20 +00005481#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00005482/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005483**
5484** Checkpoint database P1. This is a no-op if P1 is not currently in
dancdc1f042010-11-18 12:11:05 +00005485** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
drh30aa3b92011-02-07 23:56:01 +00005486** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5487** SQLITE_BUSY or not, respectively. Write the number of pages in the
5488** WAL after the checkpoint into mem[P3+1] and the number of pages
5489** in the WAL that have been checkpointed after the checkpoint
5490** completes into mem[P3+2]. However on an error, mem[P3+1] and
5491** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00005492*/
5493case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00005494 int i; /* Loop counter */
5495 int aRes[3]; /* Results */
5496 Mem *pMem; /* Write results here */
5497
5498 aRes[0] = 0;
5499 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00005500 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5501 || pOp->p2==SQLITE_CHECKPOINT_FULL
5502 || pOp->p2==SQLITE_CHECKPOINT_RESTART
5503 );
drh30aa3b92011-02-07 23:56:01 +00005504 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
dancdc1f042010-11-18 12:11:05 +00005505 if( rc==SQLITE_BUSY ){
5506 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00005507 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00005508 }
drh30aa3b92011-02-07 23:56:01 +00005509 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5510 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5511 }
dan7c246102010-04-12 19:00:29 +00005512 break;
5513};
dan5cf53532010-05-01 16:40:20 +00005514#endif
drh5e00f6c2001-09-13 13:46:56 +00005515
drhcac29a62010-07-02 19:36:52 +00005516#ifndef SQLITE_OMIT_PRAGMA
drhab9b7442010-05-10 11:20:05 +00005517/* Opcode: JournalMode P1 P2 P3 * P5
dane04dc882010-04-20 18:53:15 +00005518**
5519** Change the journal mode of database P1 to P3. P3 must be one of the
5520** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5521** modes (delete, truncate, persist, off and memory), this is a simple
5522** operation. No IO is required.
5523**
5524** If changing into or out of WAL mode the procedure is more complicated.
5525**
5526** Write a string containing the final journal-mode to register P2.
5527*/
drhd80b2332010-05-01 00:59:37 +00005528case OP_JournalMode: { /* out2-prerelease */
dane04dc882010-04-20 18:53:15 +00005529 Btree *pBt; /* Btree to change journal mode of */
5530 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00005531 int eNew; /* New journal mode */
5532 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00005533#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00005534 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00005535#endif
dane04dc882010-04-20 18:53:15 +00005536
drhd80b2332010-05-01 00:59:37 +00005537 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00005538 assert( eNew==PAGER_JOURNALMODE_DELETE
5539 || eNew==PAGER_JOURNALMODE_TRUNCATE
5540 || eNew==PAGER_JOURNALMODE_PERSIST
5541 || eNew==PAGER_JOURNALMODE_OFF
5542 || eNew==PAGER_JOURNALMODE_MEMORY
5543 || eNew==PAGER_JOURNALMODE_WAL
5544 || eNew==PAGER_JOURNALMODE_QUERY
5545 );
5546 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh3ebaee92010-05-06 21:37:22 +00005547
dane04dc882010-04-20 18:53:15 +00005548 pBt = db->aDb[pOp->p1].pBt;
5549 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00005550 eOld = sqlite3PagerGetJournalMode(pPager);
5551 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5552 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00005553
5554#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00005555 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00005556
drhd80b2332010-05-01 00:59:37 +00005557 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00005558 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00005559 */
5560 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00005561 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00005562 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00005563 ){
drh0b9b4302010-06-11 17:01:24 +00005564 eNew = eOld;
dane180c292010-04-26 17:42:56 +00005565 }
5566
drh0b9b4302010-06-11 17:01:24 +00005567 if( (eNew!=eOld)
5568 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5569 ){
5570 if( !db->autoCommit || db->activeVdbeCnt>1 ){
5571 rc = SQLITE_ERROR;
5572 sqlite3SetString(&p->zErrMsg, db,
5573 "cannot change %s wal mode from within a transaction",
5574 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5575 );
5576 break;
5577 }else{
5578
5579 if( eOld==PAGER_JOURNALMODE_WAL ){
5580 /* If leaving WAL mode, close the log file. If successful, the call
5581 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5582 ** file. An EXCLUSIVE lock may still be held on the database file
5583 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00005584 */
drh0b9b4302010-06-11 17:01:24 +00005585 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00005586 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00005587 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00005588 }
drh242c4f72010-06-22 14:49:39 +00005589 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5590 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5591 ** as an intermediate */
5592 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00005593 }
5594
5595 /* Open a transaction on the database file. Regardless of the journal
5596 ** mode, this transaction always uses a rollback journal.
5597 */
5598 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5599 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00005600 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00005601 }
5602 }
5603 }
dan5cf53532010-05-01 16:40:20 +00005604#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00005605
dand956efe2010-06-18 16:13:45 +00005606 if( rc ){
dand956efe2010-06-18 16:13:45 +00005607 eNew = eOld;
5608 }
drh0b9b4302010-06-11 17:01:24 +00005609 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00005610
dane04dc882010-04-20 18:53:15 +00005611 pOut = &aMem[pOp->p2];
5612 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00005613 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00005614 pOut->n = sqlite3Strlen30(pOut->z);
5615 pOut->enc = SQLITE_UTF8;
5616 sqlite3VdbeChangeEncoding(pOut, encoding);
5617 break;
drhcac29a62010-07-02 19:36:52 +00005618};
5619#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00005620
drhfdbcdee2007-03-27 14:44:50 +00005621#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00005622/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00005623**
5624** Vacuum the entire database. This opcode will cause other virtual
5625** machines to be created and run. It may not be called from within
5626** a transaction.
5627*/
drh9cbf3422008-01-17 16:22:13 +00005628case OP_Vacuum: {
danielk19774adee202004-05-08 08:23:19 +00005629 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh6f8c91c2003-12-07 00:24:35 +00005630 break;
5631}
drh154d4b22006-09-21 11:02:16 +00005632#endif
drh6f8c91c2003-12-07 00:24:35 +00005633
danielk1977dddbcdc2007-04-26 14:42:34 +00005634#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00005635/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00005636**
5637** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00005638** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00005639** P2. Otherwise, fall through to the next instruction.
5640*/
drh9cbf3422008-01-17 16:22:13 +00005641case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00005642 Btree *pBt;
5643
5644 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005645 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drhca5557f2007-05-04 18:30:40 +00005646 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00005647 rc = sqlite3BtreeIncrVacuum(pBt);
5648 if( rc==SQLITE_DONE ){
5649 pc = pOp->p2 - 1;
5650 rc = SQLITE_OK;
5651 }
5652 break;
5653}
5654#endif
5655
drh98757152008-01-09 23:04:12 +00005656/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00005657**
5658** Cause precompiled statements to become expired. An expired statement
5659** fails with an error code of SQLITE_SCHEMA if it is ever executed
5660** (via sqlite3_step()).
5661**
5662** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5663** then only the currently executing statement is affected.
5664*/
drh9cbf3422008-01-17 16:22:13 +00005665case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00005666 if( !pOp->p1 ){
5667 sqlite3ExpirePreparedStatements(db);
5668 }else{
5669 p->expired = 1;
5670 }
5671 break;
5672}
5673
danielk1977c00da102006-01-07 13:21:04 +00005674#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00005675/* Opcode: TableLock P1 P2 P3 P4 *
danielk1977c00da102006-01-07 13:21:04 +00005676**
5677** Obtain a lock on a particular table. This instruction is only used when
5678** the shared-cache feature is enabled.
5679**
danielk197796d48e92009-06-29 06:00:37 +00005680** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00005681** on which the lock is acquired. A readlock is obtained if P3==0 or
5682** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00005683**
5684** P2 contains the root-page of the table to lock.
5685**
drh66a51672008-01-03 00:01:23 +00005686** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00005687** used to generate an error message if the lock cannot be obtained.
5688*/
drh9cbf3422008-01-17 16:22:13 +00005689case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00005690 u8 isWriteLock = (u8)pOp->p3;
5691 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5692 int p1 = pOp->p1;
5693 assert( p1>=0 && p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005694 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +00005695 assert( isWriteLock==0 || isWriteLock==1 );
5696 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5697 if( (rc&0xFF)==SQLITE_LOCKED ){
5698 const char *z = pOp->p4.z;
5699 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5700 }
danielk1977c00da102006-01-07 13:21:04 +00005701 }
5702 break;
5703}
drhb9bb7c12006-06-11 23:41:55 +00005704#endif /* SQLITE_OMIT_SHARED_CACHE */
5705
5706#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005707/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005708**
danielk19773e3a84d2008-08-01 17:37:40 +00005709** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5710** xBegin method for that table.
5711**
5712** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00005713** within a callback to a virtual table xSync() method. If it is, the error
5714** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00005715*/
drh9cbf3422008-01-17 16:22:13 +00005716case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00005717 VTable *pVTab;
5718 pVTab = pOp->p4.pVtab;
5719 rc = sqlite3VtabBegin(db, pVTab);
drhb9755982010-07-24 16:34:37 +00005720 if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
danielk1977f9e7dda2006-06-16 16:08:53 +00005721 break;
5722}
5723#endif /* SQLITE_OMIT_VIRTUALTABLE */
5724
5725#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005726/* Opcode: VCreate P1 * * P4 *
danielk1977f9e7dda2006-06-16 16:08:53 +00005727**
drh66a51672008-01-03 00:01:23 +00005728** P4 is the name of a virtual table in database P1. Call the xCreate method
danielk1977f9e7dda2006-06-16 16:08:53 +00005729** for that table.
5730*/
drh9cbf3422008-01-17 16:22:13 +00005731case OP_VCreate: {
danielk19772dca4ac2008-01-03 11:50:29 +00005732 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
drhb9bb7c12006-06-11 23:41:55 +00005733 break;
5734}
5735#endif /* SQLITE_OMIT_VIRTUALTABLE */
5736
5737#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005738/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005739**
drh66a51672008-01-03 00:01:23 +00005740** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00005741** of that table.
drhb9bb7c12006-06-11 23:41:55 +00005742*/
drh9cbf3422008-01-17 16:22:13 +00005743case OP_VDestroy: {
danielk1977212b2182006-06-23 14:32:08 +00005744 p->inVtabMethod = 2;
danielk19772dca4ac2008-01-03 11:50:29 +00005745 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
danielk1977212b2182006-06-23 14:32:08 +00005746 p->inVtabMethod = 0;
drhb9bb7c12006-06-11 23:41:55 +00005747 break;
5748}
5749#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00005750
drh9eff6162006-06-12 21:59:13 +00005751#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005752/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00005753**
drh66a51672008-01-03 00:01:23 +00005754** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00005755** P1 is a cursor number. This opcode opens a cursor to the virtual
5756** table and stores that cursor in P1.
5757*/
drh9cbf3422008-01-17 16:22:13 +00005758case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00005759 VdbeCursor *pCur;
5760 sqlite3_vtab_cursor *pVtabCursor;
5761 sqlite3_vtab *pVtab;
5762 sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005763
drh856c1032009-06-02 15:21:42 +00005764 pCur = 0;
5765 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00005766 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005767 pModule = (sqlite3_module *)pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005768 assert(pVtab && pModule);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005769 rc = pModule->xOpen(pVtab, &pVtabCursor);
drhb9755982010-07-24 16:34:37 +00005770 importVtabErrMsg(p, pVtab);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005771 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00005772 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005773 pVtabCursor->pVtab = pVtab;
5774
5775 /* Initialise vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00005776 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00005777 if( pCur ){
5778 pCur->pVtabCursor = pVtabCursor;
5779 pCur->pModule = pVtabCursor->pVtab->pModule;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005780 }else{
drh17435752007-08-16 04:30:38 +00005781 db->mallocFailed = 1;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005782 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00005783 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005784 }
drh9eff6162006-06-12 21:59:13 +00005785 break;
5786}
5787#endif /* SQLITE_OMIT_VIRTUALTABLE */
5788
5789#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00005790/* Opcode: VFilter P1 P2 P3 P4 *
drh9eff6162006-06-12 21:59:13 +00005791**
5792** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5793** the filtered result set is empty.
5794**
drh66a51672008-01-03 00:01:23 +00005795** P4 is either NULL or a string that was generated by the xBestIndex
5796** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00005797** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00005798**
drh9eff6162006-06-12 21:59:13 +00005799** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00005800** by P1. The integer query plan parameter to xFilter is stored in register
5801** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00005802** xFilter method. Registers P3+2..P3+1+argc are the argc
5803** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00005804** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00005805**
danielk19776dbee812008-01-03 18:39:41 +00005806** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00005807*/
drh9cbf3422008-01-17 16:22:13 +00005808case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005809 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00005810 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005811 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00005812 Mem *pQuery;
5813 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00005814 sqlite3_vtab_cursor *pVtabCursor;
5815 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00005816 VdbeCursor *pCur;
5817 int res;
5818 int i;
5819 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005820
drha6c2ed92009-11-14 23:22:23 +00005821 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005822 pArgc = &pQuery[1];
5823 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00005824 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00005825 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005826 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00005827 pVtabCursor = pCur->pVtabCursor;
5828 pVtab = pVtabCursor->pVtab;
5829 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005830
drh9cbf3422008-01-17 16:22:13 +00005831 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00005832 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00005833 nArg = (int)pArgc->u.i;
5834 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005835
drh644a5292006-12-20 14:53:38 +00005836 /* Invoke the xFilter method */
5837 {
drh856c1032009-06-02 15:21:42 +00005838 res = 0;
5839 apArg = p->apArg;
drh4be8b512006-06-13 23:51:34 +00005840 for(i = 0; i<nArg; i++){
danielk19776dbee812008-01-03 18:39:41 +00005841 apArg[i] = &pArgc[i+1];
dan937d0de2009-10-15 18:35:38 +00005842 sqlite3VdbeMemStoreType(apArg[i]);
danielk19775fac9f82006-06-13 14:16:58 +00005843 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005844
danielk1977be718892006-06-23 08:05:19 +00005845 p->inVtabMethod = 1;
drh4dc754d2008-07-23 18:17:32 +00005846 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
danielk1977be718892006-06-23 08:05:19 +00005847 p->inVtabMethod = 0;
drhb9755982010-07-24 16:34:37 +00005848 importVtabErrMsg(p, pVtab);
danielk1977a298e902006-06-22 09:53:48 +00005849 if( rc==SQLITE_OK ){
drh4dc754d2008-07-23 18:17:32 +00005850 res = pModule->xEof(pVtabCursor);
danielk1977a298e902006-06-22 09:53:48 +00005851 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005852
danielk1977a298e902006-06-22 09:53:48 +00005853 if( res ){
danielk1977b7a7b9a2006-06-13 10:24:42 +00005854 pc = pOp->p2 - 1;
5855 }
5856 }
drh1d454a32008-01-31 19:34:51 +00005857 pCur->nullRow = 0;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005858
drh9eff6162006-06-12 21:59:13 +00005859 break;
5860}
5861#endif /* SQLITE_OMIT_VIRTUALTABLE */
5862
5863#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005864/* Opcode: VColumn P1 P2 P3 * *
drh9eff6162006-06-12 21:59:13 +00005865**
drh2133d822008-01-03 18:44:59 +00005866** Store the value of the P2-th column of
5867** the row of the virtual-table that the
5868** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00005869*/
5870case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00005871 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005872 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00005873 Mem *pDest;
5874 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005875
drhdfe88ec2008-11-03 20:55:06 +00005876 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005877 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005878 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005879 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00005880 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00005881 if( pCur->nullRow ){
5882 sqlite3VdbeMemSetNull(pDest);
5883 break;
5884 }
danielk19773e3a84d2008-08-01 17:37:40 +00005885 pVtab = pCur->pVtabCursor->pVtab;
5886 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005887 assert( pModule->xColumn );
5888 memset(&sContext, 0, sizeof(sContext));
danielk1977a7a8e142008-02-13 18:25:27 +00005889
5890 /* The output cell may already have a buffer allocated. Move
5891 ** the current contents to sContext.s so in case the user-function
5892 ** can use the already allocated buffer instead of allocating a
5893 ** new one.
5894 */
5895 sqlite3VdbeMemMove(&sContext.s, pDest);
5896 MemSetTypeFlag(&sContext.s, MEM_Null);
5897
drhde4fcfd2008-01-19 23:50:26 +00005898 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
drhb9755982010-07-24 16:34:37 +00005899 importVtabErrMsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00005900 if( sContext.isError ){
5901 rc = sContext.isError;
5902 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005903
drhde4fcfd2008-01-19 23:50:26 +00005904 /* Copy the result of the function to the P3 register. We
shanebe217792009-03-05 04:20:31 +00005905 ** do this regardless of whether or not an error occurred to ensure any
drhde4fcfd2008-01-19 23:50:26 +00005906 ** dynamic allocation in sContext.s (a Mem struct) is released.
5907 */
5908 sqlite3VdbeChangeEncoding(&sContext.s, encoding);
drhde4fcfd2008-01-19 23:50:26 +00005909 sqlite3VdbeMemMove(pDest, &sContext.s);
drh5ff44372009-11-24 16:26:17 +00005910 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00005911 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005912
drhde4fcfd2008-01-19 23:50:26 +00005913 if( sqlite3VdbeMemTooBig(pDest) ){
5914 goto too_big;
5915 }
drh9eff6162006-06-12 21:59:13 +00005916 break;
5917}
5918#endif /* SQLITE_OMIT_VIRTUALTABLE */
5919
5920#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005921/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00005922**
5923** Advance virtual table P1 to the next row in its result set and
5924** jump to instruction P2. Or, if the virtual table has reached
5925** the end of its result set, then fall through to the next instruction.
5926*/
drh9cbf3422008-01-17 16:22:13 +00005927case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00005928 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005929 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00005930 int res;
drh856c1032009-06-02 15:21:42 +00005931 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005932
drhc54a6172009-06-02 16:06:03 +00005933 res = 0;
drh856c1032009-06-02 15:21:42 +00005934 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005935 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005936 if( pCur->nullRow ){
5937 break;
5938 }
danielk19773e3a84d2008-08-01 17:37:40 +00005939 pVtab = pCur->pVtabCursor->pVtab;
5940 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005941 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00005942
drhde4fcfd2008-01-19 23:50:26 +00005943 /* Invoke the xNext() method of the module. There is no way for the
5944 ** underlying implementation to return an error if one occurs during
5945 ** xNext(). Instead, if an error occurs, true is returned (indicating that
5946 ** data is available) and the error code returned when xColumn or
5947 ** some other method is next invoked on the save virtual table cursor.
5948 */
drhde4fcfd2008-01-19 23:50:26 +00005949 p->inVtabMethod = 1;
5950 rc = pModule->xNext(pCur->pVtabCursor);
5951 p->inVtabMethod = 0;
drhb9755982010-07-24 16:34:37 +00005952 importVtabErrMsg(p, pVtab);
drhde4fcfd2008-01-19 23:50:26 +00005953 if( rc==SQLITE_OK ){
5954 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005955 }
5956
drhde4fcfd2008-01-19 23:50:26 +00005957 if( !res ){
5958 /* If there is data, jump to P2 */
5959 pc = pOp->p2 - 1;
5960 }
drh9eff6162006-06-12 21:59:13 +00005961 break;
5962}
5963#endif /* SQLITE_OMIT_VIRTUALTABLE */
5964
danielk1977182c4ba2007-06-27 15:53:34 +00005965#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005966/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00005967**
drh66a51672008-01-03 00:01:23 +00005968** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00005969** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00005970** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00005971*/
drh9cbf3422008-01-17 16:22:13 +00005972case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00005973 sqlite3_vtab *pVtab;
5974 Mem *pName;
5975
danielk1977595a5232009-07-24 17:58:53 +00005976 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00005977 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00005978 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00005979 assert( memIsValid(pName) );
drh5b6afba2008-01-05 16:29:28 +00005980 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00005981 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00005982 testcase( pName->enc==SQLITE_UTF8 );
5983 testcase( pName->enc==SQLITE_UTF16BE );
5984 testcase( pName->enc==SQLITE_UTF16LE );
5985 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
5986 if( rc==SQLITE_OK ){
5987 rc = pVtab->pModule->xRename(pVtab, pName->z);
5988 importVtabErrMsg(p, pVtab);
5989 p->expired = 0;
5990 }
danielk1977182c4ba2007-06-27 15:53:34 +00005991 break;
5992}
5993#endif
drh4cbdda92006-06-14 19:00:20 +00005994
5995#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005996/* Opcode: VUpdate P1 P2 P3 P4 *
danielk1977399918f2006-06-14 13:03:23 +00005997**
drh66a51672008-01-03 00:01:23 +00005998** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00005999** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00006000** are contiguous memory cells starting at P3 to pass to the xUpdate
6001** invocation. The value in register (P3+P2-1) corresponds to the
6002** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00006003**
6004** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00006005** The argv[0] element (which corresponds to memory cell P3)
6006** is the rowid of a row to delete. If argv[0] is NULL then no
6007** deletion occurs. The argv[1] element is the rowid of the new
6008** row. This can be NULL to have the virtual table select the new
6009** rowid for itself. The subsequent elements in the array are
6010** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00006011**
6012** If P2==1 then no insert is performed. argv[0] is the rowid of
6013** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00006014**
6015** P1 is a boolean flag. If it is set to true and the xUpdate call
6016** is successful, then the value returned by sqlite3_last_insert_rowid()
6017** is set to the value of the rowid for the row just inserted.
danielk1977399918f2006-06-14 13:03:23 +00006018*/
drh9cbf3422008-01-17 16:22:13 +00006019case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00006020 sqlite3_vtab *pVtab;
6021 sqlite3_module *pModule;
6022 int nArg;
6023 int i;
6024 sqlite_int64 rowid;
6025 Mem **apArg;
6026 Mem *pX;
6027
danb061d052011-04-25 18:49:57 +00006028 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6029 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6030 );
danielk1977595a5232009-07-24 17:58:53 +00006031 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00006032 pModule = (sqlite3_module *)pVtab->pModule;
6033 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00006034 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00006035 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00006036 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00006037 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00006038 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00006039 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00006040 assert( memIsValid(pX) );
6041 memAboutToChange(p, pX);
dan937d0de2009-10-15 18:35:38 +00006042 sqlite3VdbeMemStoreType(pX);
drh9c419382006-06-16 21:13:21 +00006043 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006044 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006045 }
danb061d052011-04-25 18:49:57 +00006046 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006047 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006048 db->vtabOnConflict = vtabOnConflict;
drhb9755982010-07-24 16:34:37 +00006049 importVtabErrMsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006050 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006051 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00006052 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006053 }
danb061d052011-04-25 18:49:57 +00006054 if( rc==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6055 if( pOp->p5==OE_Ignore ){
6056 rc = SQLITE_OK;
6057 }else{
6058 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6059 }
6060 }else{
6061 p->nChange++;
6062 }
danielk1977399918f2006-06-14 13:03:23 +00006063 }
drh4cbdda92006-06-14 19:00:20 +00006064 break;
danielk1977399918f2006-06-14 13:03:23 +00006065}
6066#endif /* SQLITE_OMIT_VIRTUALTABLE */
6067
danielk197759a93792008-05-15 17:48:20 +00006068#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6069/* Opcode: Pagecount P1 P2 * * *
6070**
6071** Write the current number of pages in database P1 to memory cell P2.
6072*/
6073case OP_Pagecount: { /* out2-prerelease */
drhb1299152010-03-30 22:58:33 +00006074 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006075 break;
6076}
6077#endif
6078
drh60ac3f42010-11-23 18:59:27 +00006079
6080#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6081/* Opcode: MaxPgcnt P1 P2 P3 * *
6082**
6083** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006084** Do not let the maximum page count fall below the current page count and
6085** do not change the maximum page count value if P3==0.
6086**
drh60ac3f42010-11-23 18:59:27 +00006087** Store the maximum page count after the change in register P2.
6088*/
6089case OP_MaxPgcnt: { /* out2-prerelease */
drhc84e0332010-11-23 20:25:08 +00006090 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006091 Btree *pBt;
6092
6093 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006094 newMax = 0;
6095 if( pOp->p3 ){
6096 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006097 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006098 }
6099 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006100 break;
6101}
6102#endif
6103
6104
drh949f9cd2008-01-12 21:35:57 +00006105#ifndef SQLITE_OMIT_TRACE
6106/* Opcode: Trace * * * P4 *
6107**
6108** If tracing is enabled (by the sqlite3_trace()) interface, then
6109** the UTF-8 string contained in P4 is emitted on the trace callback.
6110*/
6111case OP_Trace: {
drh856c1032009-06-02 15:21:42 +00006112 char *zTrace;
drhc3f1d5f2011-05-30 23:42:16 +00006113 char *z;
drh856c1032009-06-02 15:21:42 +00006114
drh37f58e92012-09-04 21:34:26 +00006115 if( db->xTrace
6116 && !p->doingRerun
6117 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6118 ){
drhc3f1d5f2011-05-30 23:42:16 +00006119 z = sqlite3VdbeExpandSql(p, zTrace);
6120 db->xTrace(db->pTraceArg, z);
6121 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00006122 }
drhc3f1d5f2011-05-30 23:42:16 +00006123#ifdef SQLITE_DEBUG
6124 if( (db->flags & SQLITE_SqlTrace)!=0
6125 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6126 ){
6127 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6128 }
6129#endif /* SQLITE_DEBUG */
drh949f9cd2008-01-12 21:35:57 +00006130 break;
6131}
6132#endif
6133
drh91fd4d42008-01-19 20:11:25 +00006134
6135/* Opcode: Noop * * * * *
6136**
6137** Do nothing. This instruction is often useful as a jump
6138** destination.
drh5e00f6c2001-09-13 13:46:56 +00006139*/
drh91fd4d42008-01-19 20:11:25 +00006140/*
6141** The magic Explain opcode are only inserted when explain==2 (which
6142** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6143** This opcode records information from the optimizer. It is the
6144** the same as a no-op. This opcodesnever appears in a real VM program.
6145*/
6146default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006147 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006148 break;
6149}
6150
6151/*****************************************************************************
6152** The cases of the switch statement above this line should all be indented
6153** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6154** readability. From this point on down, the normal indentation rules are
6155** restored.
6156*****************************************************************************/
6157 }
drh6e142f52000-06-08 13:36:40 +00006158
drh7b396862003-01-01 23:06:20 +00006159#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006160 {
shane9bcbdad2008-05-29 20:22:37 +00006161 u64 elapsed = sqlite3Hwtime() - start;
6162 pOp->cycles += elapsed;
drh8178a752003-01-05 21:41:40 +00006163 pOp->cnt++;
6164#if 0
shane9bcbdad2008-05-29 20:22:37 +00006165 fprintf(stdout, "%10llu ", elapsed);
drhbbe879d2009-11-14 18:04:35 +00006166 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
drh8178a752003-01-05 21:41:40 +00006167#endif
6168 }
drh7b396862003-01-01 23:06:20 +00006169#endif
6170
drh6e142f52000-06-08 13:36:40 +00006171 /* The following code adds nothing to the actual functionality
6172 ** of the program. It is only here for testing and debugging.
6173 ** On the other hand, it does burn CPU cycles every time through
6174 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6175 */
6176#ifndef NDEBUG
drha6110402005-07-28 20:51:19 +00006177 assert( pc>=-1 && pc<p->nOp );
drhae7e1512007-05-02 16:51:59 +00006178
drhcf1023c2007-05-08 20:59:49 +00006179#ifdef SQLITE_DEBUG
drh5b6afba2008-01-05 16:29:28 +00006180 if( p->trace ){
6181 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
drh3c657212009-11-17 23:59:58 +00006182 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
6183 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
drh75897232000-05-29 14:26:00 +00006184 }
drh3c657212009-11-17 23:59:58 +00006185 if( pOp->opflags & OPFLG_OUT3 ){
6186 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006187 }
drh75897232000-05-29 14:26:00 +00006188 }
danielk1977b5402fb2005-01-12 07:15:04 +00006189#endif /* SQLITE_DEBUG */
6190#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006191 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006192
drha05a7222008-01-19 03:35:58 +00006193 /* If we reach this point, it means that execution is finished with
6194 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00006195 */
drha05a7222008-01-19 03:35:58 +00006196vdbe_error_halt:
6197 assert( rc );
6198 p->rc = rc;
drha64fa912010-03-04 00:53:32 +00006199 testcase( sqlite3GlobalConfig.xLog!=0 );
6200 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6201 pc, p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00006202 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00006203 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6204 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00006205 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00006206 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00006207 }
drh900b31e2007-08-28 02:27:51 +00006208
6209 /* This is the only way out of this procedure. We have to
6210 ** release the mutexes on btrees that were acquired at the
6211 ** top. */
6212vdbe_return:
drh99a66922011-05-13 18:51:42 +00006213 db->lastRowid = lastRowid;
drhbdaec522011-04-04 00:14:43 +00006214 sqlite3VdbeLeave(p);
drhb86ccfb2003-01-28 23:13:10 +00006215 return rc;
6216
drh023ae032007-05-08 12:12:16 +00006217 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6218 ** is encountered.
6219 */
6220too_big:
drhf089aa42008-07-08 19:34:06 +00006221 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00006222 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00006223 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00006224
drh98640a32007-06-07 19:08:32 +00006225 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00006226 */
6227no_mem:
drh17435752007-08-16 04:30:38 +00006228 db->mallocFailed = 1;
drhf089aa42008-07-08 19:34:06 +00006229 sqlite3SetString(&p->zErrMsg, db, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00006230 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00006231 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006232
drhb86ccfb2003-01-28 23:13:10 +00006233 /* Jump to here for any other kind of fatal error. The "rc" variable
6234 ** should hold the error number.
6235 */
6236abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00006237 assert( p->zErrMsg==0 );
6238 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00006239 if( rc!=SQLITE_IOERR_NOMEM ){
drhf089aa42008-07-08 19:34:06 +00006240 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00006241 }
drha05a7222008-01-19 03:35:58 +00006242 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006243
danielk19776f8a5032004-05-10 10:34:51 +00006244 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00006245 ** flag.
6246 */
6247abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00006248 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00006249 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00006250 p->rc = rc;
drhf089aa42008-07-08 19:34:06 +00006251 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00006252 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006253}