blob: 74df7d9c2bc7333526c4155a4a88ef665e8b7dc3 [file] [log] [blame]
peah522d71b2017-02-23 05:16:26 -08001/*
2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include "webrtc/modules/audio_processing/aec3/suppression_gain.h"
12
13#include "webrtc/typedefs.h"
14#if defined(WEBRTC_ARCH_X86_FAMILY)
15#include <emmintrin.h>
16#endif
17#include <math.h>
18#include <algorithm>
19#include <functional>
20
peahcf02cf12017-04-05 14:18:07 -070021#include "webrtc/base/checks.h"
22
peah522d71b2017-02-23 05:16:26 -080023namespace webrtc {
24namespace {
25
peaha2376e72017-02-27 01:15:24 -080026void GainPostProcessing(std::array<float, kFftLengthBy2Plus1>* gain_squared) {
27 // Limit the low frequency gains to avoid the impact of the high-pass filter
28 // on the lower-frequency gain influencing the overall achieved gain.
29 (*gain_squared)[1] = std::min((*gain_squared)[1], (*gain_squared)[2]);
30 (*gain_squared)[0] = (*gain_squared)[1];
31
32 // Limit the high frequency gains to avoid the impact of the anti-aliasing
33 // filter on the upper-frequency gains influencing the overall achieved
34 // gain. TODO(peah): Update this when new anti-aliasing filters are
35 // implemented.
36 constexpr size_t kAntiAliasingImpactLimit = 64 * 0.7f;
37 std::for_each(gain_squared->begin() + kAntiAliasingImpactLimit,
38 gain_squared->end(),
39 [gain_squared, kAntiAliasingImpactLimit](float& a) {
40 a = std::min(a, (*gain_squared)[kAntiAliasingImpactLimit]);
41 });
42 (*gain_squared)[kFftLengthBy2] = (*gain_squared)[kFftLengthBy2Minus1];
43}
44
peah522d71b2017-02-23 05:16:26 -080045constexpr int kNumIterations = 2;
46constexpr float kEchoMaskingMargin = 1.f / 10.f;
47constexpr float kBandMaskingFactor = 1.f / 2.f;
48constexpr float kTimeMaskingFactor = 1.f / 10.f;
49
50} // namespace
51
52namespace aec3 {
53
54#if defined(WEBRTC_ARCH_X86_FAMILY)
55
56// Optimized SSE2 code for the gain computation.
57// TODO(peah): Add further optimizations, in particular for the divisions.
58void ComputeGains_SSE2(
59 const std::array<float, kFftLengthBy2Plus1>& nearend_power,
60 const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
61 const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
62 float strong_nearend_margin,
63 std::array<float, kFftLengthBy2Minus1>* previous_gain_squared,
64 std::array<float, kFftLengthBy2Minus1>* previous_masker,
65 std::array<float, kFftLengthBy2Plus1>* gain) {
66 std::array<float, kFftLengthBy2Minus1> masker;
67 std::array<float, kFftLengthBy2Minus1> same_band_masker;
68 std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power;
69 std::array<bool, kFftLengthBy2Minus1> strong_nearend;
70 std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker;
71 std::array<float, kFftLengthBy2Plus1>* gain_squared = gain;
72
73 // Precompute 1/residual_echo_power.
74 std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
75 one_by_residual_echo_power.begin(),
76 [](float a) { return a > 0.f ? 1.f / a : -1.f; });
77
78 // Precompute indicators for bands with strong nearend.
79 std::transform(
80 residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
81 nearend_power.begin() + 1, strong_nearend.begin(),
82 [&](float a, float b) { return a <= strong_nearend_margin * b; });
83
84 // Precompute masker for the same band.
85 std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1,
86 previous_masker->begin(), same_band_masker.begin(),
87 [&](float a, float b) { return a + kTimeMaskingFactor * b; });
88
89 for (int k = 0; k < kNumIterations; ++k) {
90 if (k == 0) {
91 // Add masker from the same band.
92 std::copy(same_band_masker.begin(), same_band_masker.end(),
93 masker.begin());
94 } else {
95 // Add masker for neighboring bands.
96 std::transform(nearend_power.begin(), nearend_power.end(),
97 gain_squared->begin(), neighboring_bands_masker.begin(),
98 std::multiplies<float>());
99 std::transform(neighboring_bands_masker.begin(),
100 neighboring_bands_masker.end(),
101 comfort_noise_power.begin(),
102 neighboring_bands_masker.begin(), std::plus<float>());
103 std::transform(
104 neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2,
105 neighboring_bands_masker.begin() + 2, masker.begin(),
106 [&](float a, float b) { return kBandMaskingFactor * (a + b); });
107
108 // Add masker from the same band.
109 std::transform(same_band_masker.begin(), same_band_masker.end(),
110 masker.begin(), masker.begin(), std::plus<float>());
111 }
112
113 // Compute new gain as:
114 // G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) *
115 // kTimeMaskingFactor
116 // * kEchoMaskingMargin / residual_echo_power(t,f).
117 // or
118 // G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) *
119 // nearend_power(t-1)) * kTimeMaskingFactor +
120 // (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) +
121 // (G2(t,f-1)*nearend_power(t, f-1) +
122 // G2(t,f+1)*nearend_power(t, f+1)) *
123 // kTimeMaskingFactor) * kBandMaskingFactor)
124 // * kEchoMaskingMargin / residual_echo_power(t,f).
125 std::transform(
126 masker.begin(), masker.end(), one_by_residual_echo_power.begin(),
127 gain_squared->begin() + 1, [&](float a, float b) {
128 return b >= 0 ? std::min(kEchoMaskingMargin * a * b, 1.f) : 1.f;
129 });
130
131 // Limit gain for bands with strong nearend.
132 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
133 strong_nearend.begin(), gain_squared->begin() + 1,
134 [](float a, bool b) { return b ? 1.f : a; });
135
136 // Limit the allowed gain update over time.
137 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
138 previous_gain_squared->begin(), gain_squared->begin() + 1,
139 [](float a, float b) {
140 return b < 0.0001f ? std::min(a, 0.0001f)
141 : std::min(a, b * 2.f);
142 });
143
peaha2376e72017-02-27 01:15:24 -0800144 // Process the gains to avoid artefacts caused by gain realization in the
145 // filterbank and impact of external pre-processing of the signal.
146 GainPostProcessing(gain_squared);
peah522d71b2017-02-23 05:16:26 -0800147 }
148
149 std::copy(gain_squared->begin() + 1, gain_squared->end() - 1,
150 previous_gain_squared->begin());
151
152 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
153 nearend_power.begin() + 1, previous_masker->begin(),
154 std::multiplies<float>());
155 std::transform(previous_masker->begin(), previous_masker->end(),
156 comfort_noise_power.begin() + 1, previous_masker->begin(),
157 std::plus<float>());
158
159 for (size_t k = 0; k < kFftLengthBy2; k += 4) {
160 __m128 g = _mm_loadu_ps(&(*gain_squared)[k]);
161 g = _mm_sqrt_ps(g);
162 _mm_storeu_ps(&(*gain)[k], g);
163 }
164
165 (*gain)[kFftLengthBy2] = sqrtf((*gain)[kFftLengthBy2]);
166}
167
168#endif
169
170void ComputeGains(
171 const std::array<float, kFftLengthBy2Plus1>& nearend_power,
172 const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
173 const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
174 float strong_nearend_margin,
175 std::array<float, kFftLengthBy2Minus1>* previous_gain_squared,
176 std::array<float, kFftLengthBy2Minus1>* previous_masker,
177 std::array<float, kFftLengthBy2Plus1>* gain) {
178 std::array<float, kFftLengthBy2Minus1> masker;
179 std::array<float, kFftLengthBy2Minus1> same_band_masker;
180 std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power;
181 std::array<bool, kFftLengthBy2Minus1> strong_nearend;
182 std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker;
183 std::array<float, kFftLengthBy2Plus1>* gain_squared = gain;
184
185 // Precompute 1/residual_echo_power.
186 std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
187 one_by_residual_echo_power.begin(),
188 [](float a) { return a > 0.f ? 1.f / a : -1.f; });
189
190 // Precompute indicators for bands with strong nearend.
191 std::transform(
192 residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
193 nearend_power.begin() + 1, strong_nearend.begin(),
194 [&](float a, float b) { return a <= strong_nearend_margin * b; });
195
196 // Precompute masker for the same band.
197 std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1,
198 previous_masker->begin(), same_band_masker.begin(),
199 [&](float a, float b) { return a + kTimeMaskingFactor * b; });
200
201 for (int k = 0; k < kNumIterations; ++k) {
202 if (k == 0) {
203 // Add masker from the same band.
204 std::copy(same_band_masker.begin(), same_band_masker.end(),
205 masker.begin());
206 } else {
207 // Add masker for neightboring bands.
208 std::transform(nearend_power.begin(), nearend_power.end(),
209 gain_squared->begin(), neighboring_bands_masker.begin(),
210 std::multiplies<float>());
211 std::transform(neighboring_bands_masker.begin(),
212 neighboring_bands_masker.end(),
213 comfort_noise_power.begin(),
214 neighboring_bands_masker.begin(), std::plus<float>());
215 std::transform(
216 neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2,
217 neighboring_bands_masker.begin() + 2, masker.begin(),
218 [&](float a, float b) { return kBandMaskingFactor * (a + b); });
219
220 // Add masker from the same band.
221 std::transform(same_band_masker.begin(), same_band_masker.end(),
222 masker.begin(), masker.begin(), std::plus<float>());
223 }
224
225 // Compute new gain as:
226 // G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) *
227 // kTimeMaskingFactor
228 // * kEchoMaskingMargin / residual_echo_power(t,f).
229 // or
230 // G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) *
231 // nearend_power(t-1)) * kTimeMaskingFactor +
232 // (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) +
233 // (G2(t,f-1)*nearend_power(t, f-1) +
234 // G2(t,f+1)*nearend_power(t, f+1)) *
235 // kTimeMaskingFactor) * kBandMaskingFactor)
236 // * kEchoMaskingMargin / residual_echo_power(t,f).
237 std::transform(
238 masker.begin(), masker.end(), one_by_residual_echo_power.begin(),
239 gain_squared->begin() + 1, [&](float a, float b) {
240 return b >= 0 ? std::min(kEchoMaskingMargin * a * b, 1.f) : 1.f;
241 });
242
243 // Limit gain for bands with strong nearend.
244 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
245 strong_nearend.begin(), gain_squared->begin() + 1,
246 [](float a, bool b) { return b ? 1.f : a; });
247
248 // Limit the allowed gain update over time.
249 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
250 previous_gain_squared->begin(), gain_squared->begin() + 1,
251 [](float a, float b) {
252 return b < 0.0001f ? std::min(a, 0.0001f)
253 : std::min(a, b * 2.f);
254 });
255
peaha2376e72017-02-27 01:15:24 -0800256 // Process the gains to avoid artefacts caused by gain realization in the
257 // filterbank and impact of external pre-processing of the signal.
258 GainPostProcessing(gain_squared);
peah522d71b2017-02-23 05:16:26 -0800259 }
260
261 std::copy(gain_squared->begin() + 1, gain_squared->end() - 1,
262 previous_gain_squared->begin());
263
264 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
265 nearend_power.begin() + 1, previous_masker->begin(),
266 std::multiplies<float>());
267 std::transform(previous_masker->begin(), previous_masker->end(),
268 comfort_noise_power.begin() + 1, previous_masker->begin(),
269 std::plus<float>());
270
271 std::transform(gain_squared->begin(), gain_squared->end(), gain->begin(),
272 [](float a) { return sqrtf(a); });
273}
274
275} // namespace aec3
276
277SuppressionGain::SuppressionGain(Aec3Optimization optimization)
278 : optimization_(optimization) {
279 previous_gain_squared_.fill(1.f);
280 previous_masker_.fill(0.f);
281}
282
283void SuppressionGain::GetGain(
284 const std::array<float, kFftLengthBy2Plus1>& nearend_power,
285 const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
286 const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
287 float strong_nearend_margin,
288 std::array<float, kFftLengthBy2Plus1>* gain) {
289 RTC_DCHECK(gain);
290 switch (optimization_) {
291#if defined(WEBRTC_ARCH_X86_FAMILY)
292 case Aec3Optimization::kSse2:
293 aec3::ComputeGains_SSE2(nearend_power, residual_echo_power,
294 comfort_noise_power, strong_nearend_margin,
295 &previous_gain_squared_, &previous_masker_, gain);
296 break;
297#endif
298 default:
299 aec3::ComputeGains(nearend_power, residual_echo_power,
300 comfort_noise_power, strong_nearend_margin,
301 &previous_gain_squared_, &previous_masker_, gain);
302 }
303}
304
305} // namespace webrtc