blob: aa37e8cdbd467ff2ef77c6c13006b3e176e52bdc [file] [log] [blame]
peah522d71b2017-02-23 05:16:26 -08001/*
2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include "webrtc/modules/audio_processing/aec3/suppression_gain.h"
12
13#include "webrtc/typedefs.h"
14#if defined(WEBRTC_ARCH_X86_FAMILY)
15#include <emmintrin.h>
16#endif
17#include <math.h>
18#include <algorithm>
19#include <functional>
20
21namespace webrtc {
22namespace {
23
peaha2376e72017-02-27 01:15:24 -080024void GainPostProcessing(std::array<float, kFftLengthBy2Plus1>* gain_squared) {
25 // Limit the low frequency gains to avoid the impact of the high-pass filter
26 // on the lower-frequency gain influencing the overall achieved gain.
27 (*gain_squared)[1] = std::min((*gain_squared)[1], (*gain_squared)[2]);
28 (*gain_squared)[0] = (*gain_squared)[1];
29
30 // Limit the high frequency gains to avoid the impact of the anti-aliasing
31 // filter on the upper-frequency gains influencing the overall achieved
32 // gain. TODO(peah): Update this when new anti-aliasing filters are
33 // implemented.
34 constexpr size_t kAntiAliasingImpactLimit = 64 * 0.7f;
35 std::for_each(gain_squared->begin() + kAntiAliasingImpactLimit,
36 gain_squared->end(),
37 [gain_squared, kAntiAliasingImpactLimit](float& a) {
38 a = std::min(a, (*gain_squared)[kAntiAliasingImpactLimit]);
39 });
40 (*gain_squared)[kFftLengthBy2] = (*gain_squared)[kFftLengthBy2Minus1];
41}
42
peah522d71b2017-02-23 05:16:26 -080043constexpr int kNumIterations = 2;
44constexpr float kEchoMaskingMargin = 1.f / 10.f;
45constexpr float kBandMaskingFactor = 1.f / 2.f;
46constexpr float kTimeMaskingFactor = 1.f / 10.f;
47
48} // namespace
49
50namespace aec3 {
51
52#if defined(WEBRTC_ARCH_X86_FAMILY)
53
54// Optimized SSE2 code for the gain computation.
55// TODO(peah): Add further optimizations, in particular for the divisions.
56void ComputeGains_SSE2(
57 const std::array<float, kFftLengthBy2Plus1>& nearend_power,
58 const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
59 const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
60 float strong_nearend_margin,
61 std::array<float, kFftLengthBy2Minus1>* previous_gain_squared,
62 std::array<float, kFftLengthBy2Minus1>* previous_masker,
63 std::array<float, kFftLengthBy2Plus1>* gain) {
64 std::array<float, kFftLengthBy2Minus1> masker;
65 std::array<float, kFftLengthBy2Minus1> same_band_masker;
66 std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power;
67 std::array<bool, kFftLengthBy2Minus1> strong_nearend;
68 std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker;
69 std::array<float, kFftLengthBy2Plus1>* gain_squared = gain;
70
71 // Precompute 1/residual_echo_power.
72 std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
73 one_by_residual_echo_power.begin(),
74 [](float a) { return a > 0.f ? 1.f / a : -1.f; });
75
76 // Precompute indicators for bands with strong nearend.
77 std::transform(
78 residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
79 nearend_power.begin() + 1, strong_nearend.begin(),
80 [&](float a, float b) { return a <= strong_nearend_margin * b; });
81
82 // Precompute masker for the same band.
83 std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1,
84 previous_masker->begin(), same_band_masker.begin(),
85 [&](float a, float b) { return a + kTimeMaskingFactor * b; });
86
87 for (int k = 0; k < kNumIterations; ++k) {
88 if (k == 0) {
89 // Add masker from the same band.
90 std::copy(same_band_masker.begin(), same_band_masker.end(),
91 masker.begin());
92 } else {
93 // Add masker for neighboring bands.
94 std::transform(nearend_power.begin(), nearend_power.end(),
95 gain_squared->begin(), neighboring_bands_masker.begin(),
96 std::multiplies<float>());
97 std::transform(neighboring_bands_masker.begin(),
98 neighboring_bands_masker.end(),
99 comfort_noise_power.begin(),
100 neighboring_bands_masker.begin(), std::plus<float>());
101 std::transform(
102 neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2,
103 neighboring_bands_masker.begin() + 2, masker.begin(),
104 [&](float a, float b) { return kBandMaskingFactor * (a + b); });
105
106 // Add masker from the same band.
107 std::transform(same_band_masker.begin(), same_band_masker.end(),
108 masker.begin(), masker.begin(), std::plus<float>());
109 }
110
111 // Compute new gain as:
112 // G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) *
113 // kTimeMaskingFactor
114 // * kEchoMaskingMargin / residual_echo_power(t,f).
115 // or
116 // G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) *
117 // nearend_power(t-1)) * kTimeMaskingFactor +
118 // (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) +
119 // (G2(t,f-1)*nearend_power(t, f-1) +
120 // G2(t,f+1)*nearend_power(t, f+1)) *
121 // kTimeMaskingFactor) * kBandMaskingFactor)
122 // * kEchoMaskingMargin / residual_echo_power(t,f).
123 std::transform(
124 masker.begin(), masker.end(), one_by_residual_echo_power.begin(),
125 gain_squared->begin() + 1, [&](float a, float b) {
126 return b >= 0 ? std::min(kEchoMaskingMargin * a * b, 1.f) : 1.f;
127 });
128
129 // Limit gain for bands with strong nearend.
130 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
131 strong_nearend.begin(), gain_squared->begin() + 1,
132 [](float a, bool b) { return b ? 1.f : a; });
133
134 // Limit the allowed gain update over time.
135 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
136 previous_gain_squared->begin(), gain_squared->begin() + 1,
137 [](float a, float b) {
138 return b < 0.0001f ? std::min(a, 0.0001f)
139 : std::min(a, b * 2.f);
140 });
141
peaha2376e72017-02-27 01:15:24 -0800142 // Process the gains to avoid artefacts caused by gain realization in the
143 // filterbank and impact of external pre-processing of the signal.
144 GainPostProcessing(gain_squared);
peah522d71b2017-02-23 05:16:26 -0800145 }
146
147 std::copy(gain_squared->begin() + 1, gain_squared->end() - 1,
148 previous_gain_squared->begin());
149
150 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
151 nearend_power.begin() + 1, previous_masker->begin(),
152 std::multiplies<float>());
153 std::transform(previous_masker->begin(), previous_masker->end(),
154 comfort_noise_power.begin() + 1, previous_masker->begin(),
155 std::plus<float>());
156
157 for (size_t k = 0; k < kFftLengthBy2; k += 4) {
158 __m128 g = _mm_loadu_ps(&(*gain_squared)[k]);
159 g = _mm_sqrt_ps(g);
160 _mm_storeu_ps(&(*gain)[k], g);
161 }
162
163 (*gain)[kFftLengthBy2] = sqrtf((*gain)[kFftLengthBy2]);
164}
165
166#endif
167
168void ComputeGains(
169 const std::array<float, kFftLengthBy2Plus1>& nearend_power,
170 const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
171 const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
172 float strong_nearend_margin,
173 std::array<float, kFftLengthBy2Minus1>* previous_gain_squared,
174 std::array<float, kFftLengthBy2Minus1>* previous_masker,
175 std::array<float, kFftLengthBy2Plus1>* gain) {
176 std::array<float, kFftLengthBy2Minus1> masker;
177 std::array<float, kFftLengthBy2Minus1> same_band_masker;
178 std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power;
179 std::array<bool, kFftLengthBy2Minus1> strong_nearend;
180 std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker;
181 std::array<float, kFftLengthBy2Plus1>* gain_squared = gain;
182
183 // Precompute 1/residual_echo_power.
184 std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
185 one_by_residual_echo_power.begin(),
186 [](float a) { return a > 0.f ? 1.f / a : -1.f; });
187
188 // Precompute indicators for bands with strong nearend.
189 std::transform(
190 residual_echo_power.begin() + 1, residual_echo_power.end() - 1,
191 nearend_power.begin() + 1, strong_nearend.begin(),
192 [&](float a, float b) { return a <= strong_nearend_margin * b; });
193
194 // Precompute masker for the same band.
195 std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1,
196 previous_masker->begin(), same_band_masker.begin(),
197 [&](float a, float b) { return a + kTimeMaskingFactor * b; });
198
199 for (int k = 0; k < kNumIterations; ++k) {
200 if (k == 0) {
201 // Add masker from the same band.
202 std::copy(same_band_masker.begin(), same_band_masker.end(),
203 masker.begin());
204 } else {
205 // Add masker for neightboring bands.
206 std::transform(nearend_power.begin(), nearend_power.end(),
207 gain_squared->begin(), neighboring_bands_masker.begin(),
208 std::multiplies<float>());
209 std::transform(neighboring_bands_masker.begin(),
210 neighboring_bands_masker.end(),
211 comfort_noise_power.begin(),
212 neighboring_bands_masker.begin(), std::plus<float>());
213 std::transform(
214 neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2,
215 neighboring_bands_masker.begin() + 2, masker.begin(),
216 [&](float a, float b) { return kBandMaskingFactor * (a + b); });
217
218 // Add masker from the same band.
219 std::transform(same_band_masker.begin(), same_band_masker.end(),
220 masker.begin(), masker.begin(), std::plus<float>());
221 }
222
223 // Compute new gain as:
224 // G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) *
225 // kTimeMaskingFactor
226 // * kEchoMaskingMargin / residual_echo_power(t,f).
227 // or
228 // G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) *
229 // nearend_power(t-1)) * kTimeMaskingFactor +
230 // (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) +
231 // (G2(t,f-1)*nearend_power(t, f-1) +
232 // G2(t,f+1)*nearend_power(t, f+1)) *
233 // kTimeMaskingFactor) * kBandMaskingFactor)
234 // * kEchoMaskingMargin / residual_echo_power(t,f).
235 std::transform(
236 masker.begin(), masker.end(), one_by_residual_echo_power.begin(),
237 gain_squared->begin() + 1, [&](float a, float b) {
238 return b >= 0 ? std::min(kEchoMaskingMargin * a * b, 1.f) : 1.f;
239 });
240
241 // Limit gain for bands with strong nearend.
242 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
243 strong_nearend.begin(), gain_squared->begin() + 1,
244 [](float a, bool b) { return b ? 1.f : a; });
245
246 // Limit the allowed gain update over time.
247 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
248 previous_gain_squared->begin(), gain_squared->begin() + 1,
249 [](float a, float b) {
250 return b < 0.0001f ? std::min(a, 0.0001f)
251 : std::min(a, b * 2.f);
252 });
253
peaha2376e72017-02-27 01:15:24 -0800254 // Process the gains to avoid artefacts caused by gain realization in the
255 // filterbank and impact of external pre-processing of the signal.
256 GainPostProcessing(gain_squared);
peah522d71b2017-02-23 05:16:26 -0800257 }
258
259 std::copy(gain_squared->begin() + 1, gain_squared->end() - 1,
260 previous_gain_squared->begin());
261
262 std::transform(gain_squared->begin() + 1, gain_squared->end() - 1,
263 nearend_power.begin() + 1, previous_masker->begin(),
264 std::multiplies<float>());
265 std::transform(previous_masker->begin(), previous_masker->end(),
266 comfort_noise_power.begin() + 1, previous_masker->begin(),
267 std::plus<float>());
268
269 std::transform(gain_squared->begin(), gain_squared->end(), gain->begin(),
270 [](float a) { return sqrtf(a); });
271}
272
273} // namespace aec3
274
275SuppressionGain::SuppressionGain(Aec3Optimization optimization)
276 : optimization_(optimization) {
277 previous_gain_squared_.fill(1.f);
278 previous_masker_.fill(0.f);
279}
280
281void SuppressionGain::GetGain(
282 const std::array<float, kFftLengthBy2Plus1>& nearend_power,
283 const std::array<float, kFftLengthBy2Plus1>& residual_echo_power,
284 const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power,
285 float strong_nearend_margin,
286 std::array<float, kFftLengthBy2Plus1>* gain) {
287 RTC_DCHECK(gain);
288 switch (optimization_) {
289#if defined(WEBRTC_ARCH_X86_FAMILY)
290 case Aec3Optimization::kSse2:
291 aec3::ComputeGains_SSE2(nearend_power, residual_echo_power,
292 comfort_noise_power, strong_nearend_margin,
293 &previous_gain_squared_, &previous_masker_, gain);
294 break;
295#endif
296 default:
297 aec3::ComputeGains(nearend_power, residual_echo_power,
298 comfort_noise_power, strong_nearend_margin,
299 &previous_gain_squared_, &previous_masker_, gain);
300 }
301}
302
303} // namespace webrtc