blob: fb7fc17709539679b73d7945b7438564fd961973 [file] [log] [blame]
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001/*
2 * Copyright 2004 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include "webrtc/p2p/base/basicpacketsocketfactory.h"
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +000012#include "webrtc/p2p/base/relayport.h"
13#include "webrtc/p2p/base/stunport.h"
14#include "webrtc/p2p/base/tcpport.h"
15#include "webrtc/p2p/base/testrelayserver.h"
16#include "webrtc/p2p/base/teststunserver.h"
17#include "webrtc/p2p/base/testturnserver.h"
18#include "webrtc/p2p/base/transport.h"
19#include "webrtc/p2p/base/turnport.h"
20#include "webrtc/base/crc32.h"
21#include "webrtc/base/gunit.h"
22#include "webrtc/base/helpers.h"
23#include "webrtc/base/logging.h"
24#include "webrtc/base/natserver.h"
25#include "webrtc/base/natsocketfactory.h"
26#include "webrtc/base/physicalsocketserver.h"
27#include "webrtc/base/scoped_ptr.h"
28#include "webrtc/base/socketaddress.h"
29#include "webrtc/base/ssladapter.h"
30#include "webrtc/base/stringutils.h"
31#include "webrtc/base/thread.h"
32#include "webrtc/base/virtualsocketserver.h"
33
34using rtc::AsyncPacketSocket;
35using rtc::ByteBuffer;
36using rtc::NATType;
37using rtc::NAT_OPEN_CONE;
38using rtc::NAT_ADDR_RESTRICTED;
39using rtc::NAT_PORT_RESTRICTED;
40using rtc::NAT_SYMMETRIC;
41using rtc::PacketSocketFactory;
42using rtc::scoped_ptr;
43using rtc::Socket;
44using rtc::SocketAddress;
45using namespace cricket;
46
47static const int kTimeout = 1000;
48static const SocketAddress kLocalAddr1("192.168.1.2", 0);
49static const SocketAddress kLocalAddr2("192.168.1.3", 0);
50static const SocketAddress kNatAddr1("77.77.77.77", rtc::NAT_SERVER_PORT);
51static const SocketAddress kNatAddr2("88.88.88.88", rtc::NAT_SERVER_PORT);
52static const SocketAddress kStunAddr("99.99.99.1", STUN_SERVER_PORT);
53static const SocketAddress kRelayUdpIntAddr("99.99.99.2", 5000);
54static const SocketAddress kRelayUdpExtAddr("99.99.99.3", 5001);
55static const SocketAddress kRelayTcpIntAddr("99.99.99.2", 5002);
56static const SocketAddress kRelayTcpExtAddr("99.99.99.3", 5003);
57static const SocketAddress kRelaySslTcpIntAddr("99.99.99.2", 5004);
58static const SocketAddress kRelaySslTcpExtAddr("99.99.99.3", 5005);
59static const SocketAddress kTurnUdpIntAddr("99.99.99.4", STUN_SERVER_PORT);
60static const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0);
61static const RelayCredentials kRelayCredentials("test", "test");
62
63// TODO: Update these when RFC5245 is completely supported.
64// Magic value of 30 is from RFC3484, for IPv4 addresses.
65static const uint32 kDefaultPrflxPriority = ICE_TYPE_PREFERENCE_PRFLX << 24 |
66 30 << 8 | (256 - ICE_CANDIDATE_COMPONENT_DEFAULT);
67static const int STUN_ERROR_BAD_REQUEST_AS_GICE =
68 STUN_ERROR_BAD_REQUEST / 256 * 100 + STUN_ERROR_BAD_REQUEST % 256;
69static const int STUN_ERROR_UNAUTHORIZED_AS_GICE =
70 STUN_ERROR_UNAUTHORIZED / 256 * 100 + STUN_ERROR_UNAUTHORIZED % 256;
71static const int STUN_ERROR_SERVER_ERROR_AS_GICE =
72 STUN_ERROR_SERVER_ERROR / 256 * 100 + STUN_ERROR_SERVER_ERROR % 256;
73
74static const int kTiebreaker1 = 11111;
75static const int kTiebreaker2 = 22222;
76
Guo-wei Shiehbe508a12015-04-06 12:48:47 -070077static const char* data = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";
78
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +000079static Candidate GetCandidate(Port* port) {
80 assert(port->Candidates().size() == 1);
81 return port->Candidates()[0];
82}
83
84static SocketAddress GetAddress(Port* port) {
85 return GetCandidate(port).address();
86}
87
88static IceMessage* CopyStunMessage(const IceMessage* src) {
89 IceMessage* dst = new IceMessage();
90 ByteBuffer buf;
91 src->Write(&buf);
92 dst->Read(&buf);
93 return dst;
94}
95
96static bool WriteStunMessage(const StunMessage* msg, ByteBuffer* buf) {
97 buf->Resize(0); // clear out any existing buffer contents
98 return msg->Write(buf);
99}
100
101// Stub port class for testing STUN generation and processing.
102class TestPort : public Port {
103 public:
pkasting@chromium.org332331f2014-11-06 20:19:22 +0000104 TestPort(rtc::Thread* thread,
105 const std::string& type,
106 rtc::PacketSocketFactory* factory,
107 rtc::Network* network,
108 const rtc::IPAddress& ip,
109 uint16 min_port,
110 uint16 max_port,
111 const std::string& username_fragment,
112 const std::string& password)
113 : Port(thread, type, factory, network, ip, min_port, max_port,
114 username_fragment, password) {
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000115 }
116 ~TestPort() {}
117
118 // Expose GetStunMessage so that we can test it.
119 using cricket::Port::GetStunMessage;
120
121 // The last StunMessage that was sent on this Port.
122 // TODO: Make these const; requires changes to SendXXXXResponse.
123 ByteBuffer* last_stun_buf() { return last_stun_buf_.get(); }
124 IceMessage* last_stun_msg() { return last_stun_msg_.get(); }
125 int last_stun_error_code() {
126 int code = 0;
127 if (last_stun_msg_) {
128 const StunErrorCodeAttribute* error_attr = last_stun_msg_->GetErrorCode();
129 if (error_attr) {
130 code = error_attr->code();
131 }
132 }
133 return code;
134 }
135
136 virtual void PrepareAddress() {
137 rtc::SocketAddress addr(ip(), min_port());
138 AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", Type(),
139 ICE_TYPE_PREFERENCE_HOST, 0, true);
140 }
141
142 // Exposed for testing candidate building.
143 void AddCandidateAddress(const rtc::SocketAddress& addr) {
144 AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", Type(),
145 type_preference_, 0, false);
146 }
147 void AddCandidateAddress(const rtc::SocketAddress& addr,
148 const rtc::SocketAddress& base_address,
149 const std::string& type,
150 int type_preference,
151 bool final) {
152 AddAddress(addr, base_address, rtc::SocketAddress(), "udp", "", type,
153 type_preference, 0, final);
154 }
155
156 virtual Connection* CreateConnection(const Candidate& remote_candidate,
157 CandidateOrigin origin) {
158 Connection* conn = new ProxyConnection(this, 0, remote_candidate);
159 AddConnection(conn);
160 // Set use-candidate attribute flag as this will add USE-CANDIDATE attribute
161 // in STUN binding requests.
162 conn->set_use_candidate_attr(true);
163 return conn;
164 }
165 virtual int SendTo(
166 const void* data, size_t size, const rtc::SocketAddress& addr,
167 const rtc::PacketOptions& options, bool payload) {
168 if (!payload) {
169 IceMessage* msg = new IceMessage;
170 ByteBuffer* buf = new ByteBuffer(static_cast<const char*>(data), size);
171 ByteBuffer::ReadPosition pos(buf->GetReadPosition());
172 if (!msg->Read(buf)) {
173 delete msg;
174 delete buf;
175 return -1;
176 }
177 buf->SetReadPosition(pos);
178 last_stun_buf_.reset(buf);
179 last_stun_msg_.reset(msg);
180 }
181 return static_cast<int>(size);
182 }
183 virtual int SetOption(rtc::Socket::Option opt, int value) {
184 return 0;
185 }
186 virtual int GetOption(rtc::Socket::Option opt, int* value) {
187 return -1;
188 }
189 virtual int GetError() {
190 return 0;
191 }
192 void Reset() {
193 last_stun_buf_.reset();
194 last_stun_msg_.reset();
195 }
196 void set_type_preference(int type_preference) {
197 type_preference_ = type_preference;
198 }
199
200 private:
201 rtc::scoped_ptr<ByteBuffer> last_stun_buf_;
202 rtc::scoped_ptr<IceMessage> last_stun_msg_;
203 int type_preference_;
204};
205
206class TestChannel : public sigslot::has_slots<> {
207 public:
208 // Takes ownership of |p1| (but not |p2|).
209 TestChannel(Port* p1, Port* p2)
210 : ice_mode_(ICEMODE_FULL), src_(p1), dst_(p2), complete_count_(0),
pthatcher@webrtc.org0ba15332015-01-10 00:47:02 +0000211 conn_(NULL), remote_request_(), nominated_(false) {
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000212 src_->SignalPortComplete.connect(
213 this, &TestChannel::OnPortComplete);
214 src_->SignalUnknownAddress.connect(this, &TestChannel::OnUnknownAddress);
215 src_->SignalDestroyed.connect(this, &TestChannel::OnSrcPortDestroyed);
216 }
217
218 int complete_count() { return complete_count_; }
219 Connection* conn() { return conn_; }
220 const SocketAddress& remote_address() { return remote_address_; }
221 const std::string remote_fragment() { return remote_frag_; }
222
223 void Start() {
224 src_->PrepareAddress();
225 }
226 void CreateConnection() {
227 conn_ = src_->CreateConnection(GetCandidate(dst_), Port::ORIGIN_MESSAGE);
228 IceMode remote_ice_mode =
229 (ice_mode_ == ICEMODE_FULL) ? ICEMODE_LITE : ICEMODE_FULL;
230 conn_->set_remote_ice_mode(remote_ice_mode);
231 conn_->set_use_candidate_attr(remote_ice_mode == ICEMODE_FULL);
232 conn_->SignalStateChange.connect(
233 this, &TestChannel::OnConnectionStateChange);
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700234 conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000235 }
236 void OnConnectionStateChange(Connection* conn) {
237 if (conn->write_state() == Connection::STATE_WRITABLE) {
238 conn->set_use_candidate_attr(true);
239 nominated_ = true;
240 }
241 }
242 void AcceptConnection() {
243 ASSERT_TRUE(remote_request_.get() != NULL);
244 Candidate c = GetCandidate(dst_);
245 c.set_address(remote_address_);
246 conn_ = src_->CreateConnection(c, Port::ORIGIN_MESSAGE);
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700247 conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000248 src_->SendBindingResponse(remote_request_.get(), remote_address_);
249 remote_request_.reset();
250 }
251 void Ping() {
252 Ping(0);
253 }
254 void Ping(uint32 now) {
255 conn_->Ping(now);
256 }
257 void Stop() {
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700258 if (conn_) {
259 conn_->Destroy();
260 }
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000261 }
262
263 void OnPortComplete(Port* port) {
264 complete_count_++;
265 }
266 void SetIceMode(IceMode ice_mode) {
267 ice_mode_ = ice_mode;
268 }
269
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700270 int SendData(const char* data, size_t len) {
271 rtc::PacketOptions options;
272 return conn_->Send(data, len, options);
273 }
274
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000275 void OnUnknownAddress(PortInterface* port, const SocketAddress& addr,
276 ProtocolType proto,
277 IceMessage* msg, const std::string& rf,
278 bool /*port_muxed*/) {
279 ASSERT_EQ(src_.get(), port);
280 if (!remote_address_.IsNil()) {
281 ASSERT_EQ(remote_address_, addr);
282 }
283 // MI and PRIORITY attribute should be present in ping requests when port
284 // is in ICEPROTO_RFC5245 mode.
285 const cricket::StunUInt32Attribute* priority_attr =
286 msg->GetUInt32(STUN_ATTR_PRIORITY);
287 const cricket::StunByteStringAttribute* mi_attr =
288 msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY);
289 const cricket::StunUInt32Attribute* fingerprint_attr =
290 msg->GetUInt32(STUN_ATTR_FINGERPRINT);
291 if (src_->IceProtocol() == cricket::ICEPROTO_RFC5245) {
292 EXPECT_TRUE(priority_attr != NULL);
293 EXPECT_TRUE(mi_attr != NULL);
294 EXPECT_TRUE(fingerprint_attr != NULL);
295 } else {
296 EXPECT_TRUE(priority_attr == NULL);
297 EXPECT_TRUE(mi_attr == NULL);
298 EXPECT_TRUE(fingerprint_attr == NULL);
299 }
300 remote_address_ = addr;
301 remote_request_.reset(CopyStunMessage(msg));
302 remote_frag_ = rf;
303 }
304
305 void OnDestroyed(Connection* conn) {
306 ASSERT_EQ(conn_, conn);
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700307 LOG(INFO) << "OnDestroy connection " << conn << " deleted";
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000308 conn_ = NULL;
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700309 // When the connection is destroyed, also clear these fields so future
310 // connections are possible.
311 remote_request_.reset();
312 remote_address_.Clear();
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000313 }
314
315 void OnSrcPortDestroyed(PortInterface* port) {
316 Port* destroyed_src = src_.release();
317 ASSERT_EQ(destroyed_src, port);
318 }
319
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700320 Port* src_port() { return src_.get(); }
321
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000322 bool nominated() const { return nominated_; }
323
324 private:
325 IceMode ice_mode_;
326 rtc::scoped_ptr<Port> src_;
327 Port* dst_;
328
329 int complete_count_;
330 Connection* conn_;
331 SocketAddress remote_address_;
332 rtc::scoped_ptr<StunMessage> remote_request_;
333 std::string remote_frag_;
334 bool nominated_;
335};
336
337class PortTest : public testing::Test, public sigslot::has_slots<> {
338 public:
339 PortTest()
340 : main_(rtc::Thread::Current()),
341 pss_(new rtc::PhysicalSocketServer),
342 ss_(new rtc::VirtualSocketServer(pss_.get())),
343 ss_scope_(ss_.get()),
344 network_("unittest", "unittest", rtc::IPAddress(INADDR_ANY), 32),
345 socket_factory_(rtc::Thread::Current()),
346 nat_factory1_(ss_.get(), kNatAddr1),
347 nat_factory2_(ss_.get(), kNatAddr2),
348 nat_socket_factory1_(&nat_factory1_),
349 nat_socket_factory2_(&nat_factory2_),
350 stun_server_(TestStunServer::Create(main_, kStunAddr)),
351 turn_server_(main_, kTurnUdpIntAddr, kTurnUdpExtAddr),
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700352 relay_server_(main_,
353 kRelayUdpIntAddr,
354 kRelayUdpExtAddr,
355 kRelayTcpIntAddr,
356 kRelayTcpExtAddr,
357 kRelaySslTcpIntAddr,
358 kRelaySslTcpExtAddr),
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000359 username_(rtc::CreateRandomString(ICE_UFRAG_LENGTH)),
360 password_(rtc::CreateRandomString(ICE_PWD_LENGTH)),
361 ice_protocol_(cricket::ICEPROTO_GOOGLE),
362 role_conflict_(false),
363 destroyed_(false) {
364 network_.AddIP(rtc::IPAddress(INADDR_ANY));
365 }
366
367 protected:
368 void TestLocalToLocal() {
369 Port* port1 = CreateUdpPort(kLocalAddr1);
370 Port* port2 = CreateUdpPort(kLocalAddr2);
371 TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
372 }
373 void TestLocalToStun(NATType ntype) {
374 Port* port1 = CreateUdpPort(kLocalAddr1);
375 nat_server2_.reset(CreateNatServer(kNatAddr2, ntype));
376 Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
377 TestConnectivity("udp", port1, StunName(ntype), port2,
378 ntype == NAT_OPEN_CONE, true,
379 ntype != NAT_SYMMETRIC, true);
380 }
381 void TestLocalToRelay(RelayType rtype, ProtocolType proto) {
382 Port* port1 = CreateUdpPort(kLocalAddr1);
383 Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
384 TestConnectivity("udp", port1, RelayName(rtype, proto), port2,
385 rtype == RELAY_GTURN, true, true, true);
386 }
387 void TestStunToLocal(NATType ntype) {
388 nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
389 Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
390 Port* port2 = CreateUdpPort(kLocalAddr2);
391 TestConnectivity(StunName(ntype), port1, "udp", port2,
392 true, ntype != NAT_SYMMETRIC, true, true);
393 }
394 void TestStunToStun(NATType ntype1, NATType ntype2) {
395 nat_server1_.reset(CreateNatServer(kNatAddr1, ntype1));
396 Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
397 nat_server2_.reset(CreateNatServer(kNatAddr2, ntype2));
398 Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
399 TestConnectivity(StunName(ntype1), port1, StunName(ntype2), port2,
400 ntype2 == NAT_OPEN_CONE,
401 ntype1 != NAT_SYMMETRIC, ntype2 != NAT_SYMMETRIC,
402 ntype1 + ntype2 < (NAT_PORT_RESTRICTED + NAT_SYMMETRIC));
403 }
404 void TestStunToRelay(NATType ntype, RelayType rtype, ProtocolType proto) {
405 nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
406 Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
407 Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
408 TestConnectivity(StunName(ntype), port1, RelayName(rtype, proto), port2,
409 rtype == RELAY_GTURN, ntype != NAT_SYMMETRIC, true, true);
410 }
411 void TestTcpToTcp() {
412 Port* port1 = CreateTcpPort(kLocalAddr1);
413 Port* port2 = CreateTcpPort(kLocalAddr2);
414 TestConnectivity("tcp", port1, "tcp", port2, true, false, true, true);
415 }
416 void TestTcpToRelay(RelayType rtype, ProtocolType proto) {
417 Port* port1 = CreateTcpPort(kLocalAddr1);
418 Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_TCP);
419 TestConnectivity("tcp", port1, RelayName(rtype, proto), port2,
420 rtype == RELAY_GTURN, false, true, true);
421 }
422 void TestSslTcpToRelay(RelayType rtype, ProtocolType proto) {
423 Port* port1 = CreateTcpPort(kLocalAddr1);
424 Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_SSLTCP);
425 TestConnectivity("ssltcp", port1, RelayName(rtype, proto), port2,
426 rtype == RELAY_GTURN, false, true, true);
427 }
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000428 // helpers for above functions
429 UDPPort* CreateUdpPort(const SocketAddress& addr) {
430 return CreateUdpPort(addr, &socket_factory_);
431 }
432 UDPPort* CreateUdpPort(const SocketAddress& addr,
433 PacketSocketFactory* socket_factory) {
434 UDPPort* port = UDPPort::Create(main_, socket_factory, &network_,
pthatcher@webrtc.org0ba15332015-01-10 00:47:02 +0000435 addr.ipaddr(), 0, 0, username_, password_,
436 std::string());
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000437 port->SetIceProtocolType(ice_protocol_);
438 return port;
439 }
440 TCPPort* CreateTcpPort(const SocketAddress& addr) {
441 TCPPort* port = CreateTcpPort(addr, &socket_factory_);
442 port->SetIceProtocolType(ice_protocol_);
443 return port;
444 }
445 TCPPort* CreateTcpPort(const SocketAddress& addr,
446 PacketSocketFactory* socket_factory) {
447 TCPPort* port = TCPPort::Create(main_, socket_factory, &network_,
448 addr.ipaddr(), 0, 0, username_, password_,
449 true);
450 port->SetIceProtocolType(ice_protocol_);
451 return port;
452 }
453 StunPort* CreateStunPort(const SocketAddress& addr,
454 rtc::PacketSocketFactory* factory) {
455 ServerAddresses stun_servers;
456 stun_servers.insert(kStunAddr);
457 StunPort* port = StunPort::Create(main_, factory, &network_,
458 addr.ipaddr(), 0, 0,
pthatcher@webrtc.org0ba15332015-01-10 00:47:02 +0000459 username_, password_, stun_servers,
460 std::string());
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000461 port->SetIceProtocolType(ice_protocol_);
462 return port;
463 }
464 Port* CreateRelayPort(const SocketAddress& addr, RelayType rtype,
465 ProtocolType int_proto, ProtocolType ext_proto) {
466 if (rtype == RELAY_TURN) {
467 return CreateTurnPort(addr, &socket_factory_, int_proto, ext_proto);
468 } else {
469 return CreateGturnPort(addr, int_proto, ext_proto);
470 }
471 }
472 TurnPort* CreateTurnPort(const SocketAddress& addr,
473 PacketSocketFactory* socket_factory,
474 ProtocolType int_proto, ProtocolType ext_proto) {
475 return CreateTurnPort(addr, socket_factory,
476 int_proto, ext_proto, kTurnUdpIntAddr);
477 }
478 TurnPort* CreateTurnPort(const SocketAddress& addr,
479 PacketSocketFactory* socket_factory,
480 ProtocolType int_proto, ProtocolType ext_proto,
481 const rtc::SocketAddress& server_addr) {
482 TurnPort* port = TurnPort::Create(main_, socket_factory, &network_,
483 addr.ipaddr(), 0, 0,
484 username_, password_, ProtocolAddress(
pthatcher@webrtc.org0ba15332015-01-10 00:47:02 +0000485 server_addr, PROTO_UDP),
486 kRelayCredentials, 0,
487 std::string());
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000488 port->SetIceProtocolType(ice_protocol_);
489 return port;
490 }
491 RelayPort* CreateGturnPort(const SocketAddress& addr,
492 ProtocolType int_proto, ProtocolType ext_proto) {
493 RelayPort* port = CreateGturnPort(addr);
494 SocketAddress addrs[] =
495 { kRelayUdpIntAddr, kRelayTcpIntAddr, kRelaySslTcpIntAddr };
496 port->AddServerAddress(ProtocolAddress(addrs[int_proto], int_proto));
497 return port;
498 }
499 RelayPort* CreateGturnPort(const SocketAddress& addr) {
500 RelayPort* port = RelayPort::Create(main_, &socket_factory_, &network_,
501 addr.ipaddr(), 0, 0,
502 username_, password_);
503 // TODO: Add an external address for ext_proto, so that the
504 // other side can connect to this port using a non-UDP protocol.
505 port->SetIceProtocolType(ice_protocol_);
506 return port;
507 }
508 rtc::NATServer* CreateNatServer(const SocketAddress& addr,
509 rtc::NATType type) {
510 return new rtc::NATServer(type, ss_.get(), addr, ss_.get(), addr);
511 }
512 static const char* StunName(NATType type) {
513 switch (type) {
514 case NAT_OPEN_CONE: return "stun(open cone)";
515 case NAT_ADDR_RESTRICTED: return "stun(addr restricted)";
516 case NAT_PORT_RESTRICTED: return "stun(port restricted)";
517 case NAT_SYMMETRIC: return "stun(symmetric)";
518 default: return "stun(?)";
519 }
520 }
521 static const char* RelayName(RelayType type, ProtocolType proto) {
522 if (type == RELAY_TURN) {
523 switch (proto) {
524 case PROTO_UDP: return "turn(udp)";
525 case PROTO_TCP: return "turn(tcp)";
526 case PROTO_SSLTCP: return "turn(ssltcp)";
527 default: return "turn(?)";
528 }
529 } else {
530 switch (proto) {
531 case PROTO_UDP: return "gturn(udp)";
532 case PROTO_TCP: return "gturn(tcp)";
533 case PROTO_SSLTCP: return "gturn(ssltcp)";
534 default: return "gturn(?)";
535 }
536 }
537 }
538
539 void TestCrossFamilyPorts(int type);
540
541 // This does all the work and then deletes |port1| and |port2|.
542 void TestConnectivity(const char* name1, Port* port1,
543 const char* name2, Port* port2,
544 bool accept, bool same_addr1,
545 bool same_addr2, bool possible);
546
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700547 // This connects the provided channels which have already started. |ch1|
548 // should have its Connection created (either through CreateConnection() or
549 // TCP reconnecting mechanism before entering this function.
550 void ConnectStartedChannels(TestChannel* ch1, TestChannel* ch2) {
551 ASSERT_TRUE(ch1->conn());
552 EXPECT_TRUE_WAIT(ch1->conn()->connected(), kTimeout); // for TCP connect
553 ch1->Ping();
554 WAIT(!ch2->remote_address().IsNil(), kTimeout);
555
556 // Send a ping from dst to src.
557 ch2->AcceptConnection();
558 ch2->Ping();
559 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2->conn()->write_state(),
560 kTimeout);
561 }
562
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000563 // This connects and disconnects the provided channels in the same sequence as
564 // TestConnectivity with all options set to |true|. It does not delete either
565 // channel.
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700566 void StartConnectAndStopChannels(TestChannel* ch1, TestChannel* ch2) {
567 // Acquire addresses.
568 ch1->Start();
569 ch2->Start();
570
571 ch1->CreateConnection();
572 ConnectStartedChannels(ch1, ch2);
573
574 // Destroy the connections.
575 ch1->Stop();
576 ch2->Stop();
577 }
578
579 // This disconnects both end's Connection and make sure ch2 ready for new
580 // connection.
581 void DisconnectTcpTestChannels(TestChannel* ch1, TestChannel* ch2) {
582 ASSERT_TRUE(ss_->CloseTcpConnections(
583 static_cast<TCPConnection*>(ch1->conn())->socket()->GetLocalAddress(),
584 static_cast<TCPConnection*>(ch2->conn())->socket()->GetLocalAddress()));
585
586 // Wait for both OnClose are delivered.
587 EXPECT_TRUE_WAIT(!ch1->conn()->connected(), kTimeout);
588 EXPECT_TRUE_WAIT(!ch2->conn()->connected(), kTimeout);
589
590 // Destroy channel2 connection to get ready for new incoming TCPConnection.
591 ch2->conn()->Destroy();
592 EXPECT_TRUE_WAIT(ch2->conn() == NULL, kTimeout);
593 }
594
595 void TestTcpReconnect(bool ping_after_disconnected,
596 bool send_after_disconnected) {
597 Port* port1 = CreateTcpPort(kLocalAddr1);
598 Port* port2 = CreateTcpPort(kLocalAddr2);
599
600 port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
601 port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
602
603 // Set up channels and ensure both ports will be deleted.
604 TestChannel ch1(port1, port2);
605 TestChannel ch2(port2, port1);
606 EXPECT_EQ(0, ch1.complete_count());
607 EXPECT_EQ(0, ch2.complete_count());
608
609 ch1.Start();
610 ch2.Start();
611 ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
612 ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
613
614 // Initial connecting the channel, create connection on channel1.
615 ch1.CreateConnection();
616 ConnectStartedChannels(&ch1, &ch2);
617
618 // Shorten the timeout period.
619 const int kTcpReconnectTimeout = kTimeout;
620 static_cast<TCPConnection*>(ch1.conn())
621 ->set_reconnection_timeout(kTcpReconnectTimeout);
622 static_cast<TCPConnection*>(ch2.conn())
623 ->set_reconnection_timeout(kTcpReconnectTimeout);
624
625 // Once connected, disconnect them.
626 DisconnectTcpTestChannels(&ch1, &ch2);
627
628 if (send_after_disconnected || ping_after_disconnected) {
629 if (send_after_disconnected) {
630 // First SendData after disconnect should fail but will trigger
631 // reconnect.
632 EXPECT_EQ(-1, ch1.SendData(data, static_cast<int>(strlen(data))));
633 }
634
635 if (ping_after_disconnected) {
636 // Ping should trigger reconnect.
637 ch1.Ping();
638 }
639
640 // Wait for channel's outgoing TCPConnection connected.
641 EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout);
642
643 // Verify that we could still connect channels.
644 ConnectStartedChannels(&ch1, &ch2);
645 } else {
646 EXPECT_EQ(ch1.conn()->write_state(), Connection::STATE_WRITABLE);
647 EXPECT_TRUE_WAIT(
648 ch1.conn()->write_state() == Connection::STATE_WRITE_TIMEOUT,
649 kTcpReconnectTimeout + kTimeout);
650 }
651
652 // Tear down and ensure that goes smoothly.
653 ch1.Stop();
654 ch2.Stop();
655 EXPECT_TRUE_WAIT(ch1.conn() == NULL, kTimeout);
656 EXPECT_TRUE_WAIT(ch2.conn() == NULL, kTimeout);
657 }
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000658
659 void SetIceProtocolType(cricket::IceProtocolType protocol) {
660 ice_protocol_ = protocol;
661 }
662
663 IceMessage* CreateStunMessage(int type) {
664 IceMessage* msg = new IceMessage();
665 msg->SetType(type);
666 msg->SetTransactionID("TESTTESTTEST");
667 return msg;
668 }
669 IceMessage* CreateStunMessageWithUsername(int type,
670 const std::string& username) {
671 IceMessage* msg = CreateStunMessage(type);
672 msg->AddAttribute(
673 new StunByteStringAttribute(STUN_ATTR_USERNAME, username));
674 return msg;
675 }
676 TestPort* CreateTestPort(const rtc::SocketAddress& addr,
677 const std::string& username,
678 const std::string& password) {
679 TestPort* port = new TestPort(main_, "test", &socket_factory_, &network_,
680 addr.ipaddr(), 0, 0, username, password);
681 port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict);
682 return port;
683 }
684 TestPort* CreateTestPort(const rtc::SocketAddress& addr,
685 const std::string& username,
686 const std::string& password,
687 cricket::IceProtocolType type,
688 cricket::IceRole role,
689 int tiebreaker) {
690 TestPort* port = CreateTestPort(addr, username, password);
691 port->SetIceProtocolType(type);
692 port->SetIceRole(role);
693 port->SetIceTiebreaker(tiebreaker);
694 return port;
695 }
696
697 void OnRoleConflict(PortInterface* port) {
698 role_conflict_ = true;
699 }
700 bool role_conflict() const { return role_conflict_; }
701
702 void ConnectToSignalDestroyed(PortInterface* port) {
703 port->SignalDestroyed.connect(this, &PortTest::OnDestroyed);
704 }
705
706 void OnDestroyed(PortInterface* port) {
707 destroyed_ = true;
708 }
709 bool destroyed() const { return destroyed_; }
710
711 rtc::BasicPacketSocketFactory* nat_socket_factory1() {
712 return &nat_socket_factory1_;
713 }
714
715 private:
716 rtc::Thread* main_;
717 rtc::scoped_ptr<rtc::PhysicalSocketServer> pss_;
718 rtc::scoped_ptr<rtc::VirtualSocketServer> ss_;
719 rtc::SocketServerScope ss_scope_;
720 rtc::Network network_;
721 rtc::BasicPacketSocketFactory socket_factory_;
722 rtc::scoped_ptr<rtc::NATServer> nat_server1_;
723 rtc::scoped_ptr<rtc::NATServer> nat_server2_;
724 rtc::NATSocketFactory nat_factory1_;
725 rtc::NATSocketFactory nat_factory2_;
726 rtc::BasicPacketSocketFactory nat_socket_factory1_;
727 rtc::BasicPacketSocketFactory nat_socket_factory2_;
728 scoped_ptr<TestStunServer> stun_server_;
729 TestTurnServer turn_server_;
730 TestRelayServer relay_server_;
731 std::string username_;
732 std::string password_;
733 cricket::IceProtocolType ice_protocol_;
734 bool role_conflict_;
735 bool destroyed_;
736};
737
738void PortTest::TestConnectivity(const char* name1, Port* port1,
739 const char* name2, Port* port2,
740 bool accept, bool same_addr1,
741 bool same_addr2, bool possible) {
742 LOG(LS_INFO) << "Test: " << name1 << " to " << name2 << ": ";
743 port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
744 port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
745
746 // Set up channels and ensure both ports will be deleted.
747 TestChannel ch1(port1, port2);
748 TestChannel ch2(port2, port1);
749 EXPECT_EQ(0, ch1.complete_count());
750 EXPECT_EQ(0, ch2.complete_count());
751
752 // Acquire addresses.
753 ch1.Start();
754 ch2.Start();
755 ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
756 ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
757
758 // Send a ping from src to dst. This may or may not make it.
759 ch1.CreateConnection();
760 ASSERT_TRUE(ch1.conn() != NULL);
761 EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout); // for TCP connect
762 ch1.Ping();
763 WAIT(!ch2.remote_address().IsNil(), kTimeout);
764
765 if (accept) {
766 // We are able to send a ping from src to dst. This is the case when
767 // sending to UDP ports and cone NATs.
768 EXPECT_TRUE(ch1.remote_address().IsNil());
769 EXPECT_EQ(ch2.remote_fragment(), port1->username_fragment());
770
771 // Ensure the ping came from the same address used for src.
772 // This is the case unless the source NAT was symmetric.
773 if (same_addr1) EXPECT_EQ(ch2.remote_address(), GetAddress(port1));
774 EXPECT_TRUE(same_addr2);
775
776 // Send a ping from dst to src.
777 ch2.AcceptConnection();
778 ASSERT_TRUE(ch2.conn() != NULL);
779 ch2.Ping();
780 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(),
781 kTimeout);
782 } else {
783 // We can't send a ping from src to dst, so flip it around. This will happen
784 // when the destination NAT is addr/port restricted or symmetric.
785 EXPECT_TRUE(ch1.remote_address().IsNil());
786 EXPECT_TRUE(ch2.remote_address().IsNil());
787
788 // Send a ping from dst to src. Again, this may or may not make it.
789 ch2.CreateConnection();
790 ASSERT_TRUE(ch2.conn() != NULL);
791 ch2.Ping();
792 WAIT(ch2.conn()->write_state() == Connection::STATE_WRITABLE, kTimeout);
793
794 if (same_addr1 && same_addr2) {
795 // The new ping got back to the source.
796 EXPECT_EQ(Connection::STATE_READABLE, ch1.conn()->read_state());
797 EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
798
799 // First connection may not be writable if the first ping did not get
800 // through. So we will have to do another.
801 if (ch1.conn()->write_state() == Connection::STATE_WRITE_INIT) {
802 ch1.Ping();
803 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
804 kTimeout);
805 }
806 } else if (!same_addr1 && possible) {
807 // The new ping went to the candidate address, but that address was bad.
808 // This will happen when the source NAT is symmetric.
809 EXPECT_TRUE(ch1.remote_address().IsNil());
810 EXPECT_TRUE(ch2.remote_address().IsNil());
811
812 // However, since we have now sent a ping to the source IP, we should be
813 // able to get a ping from it. This gives us the real source address.
814 ch1.Ping();
815 EXPECT_TRUE_WAIT(!ch2.remote_address().IsNil(), kTimeout);
816 EXPECT_EQ(Connection::STATE_READ_INIT, ch2.conn()->read_state());
817 EXPECT_TRUE(ch1.remote_address().IsNil());
818
819 // Pick up the actual address and establish the connection.
820 ch2.AcceptConnection();
821 ASSERT_TRUE(ch2.conn() != NULL);
822 ch2.Ping();
823 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(),
824 kTimeout);
825 } else if (!same_addr2 && possible) {
826 // The new ping came in, but from an unexpected address. This will happen
827 // when the destination NAT is symmetric.
828 EXPECT_FALSE(ch1.remote_address().IsNil());
829 EXPECT_EQ(Connection::STATE_READ_INIT, ch1.conn()->read_state());
830
831 // Update our address and complete the connection.
832 ch1.AcceptConnection();
833 ch1.Ping();
834 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
835 kTimeout);
836 } else { // (!possible)
837 // There should be s no way for the pings to reach each other. Check it.
838 EXPECT_TRUE(ch1.remote_address().IsNil());
839 EXPECT_TRUE(ch2.remote_address().IsNil());
840 ch1.Ping();
841 WAIT(!ch2.remote_address().IsNil(), kTimeout);
842 EXPECT_TRUE(ch1.remote_address().IsNil());
843 EXPECT_TRUE(ch2.remote_address().IsNil());
844 }
845 }
846
847 // Everything should be good, unless we know the situation is impossible.
848 ASSERT_TRUE(ch1.conn() != NULL);
849 ASSERT_TRUE(ch2.conn() != NULL);
850 if (possible) {
851 EXPECT_EQ(Connection::STATE_READABLE, ch1.conn()->read_state());
852 EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
853 EXPECT_EQ(Connection::STATE_READABLE, ch2.conn()->read_state());
854 EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
855 } else {
856 EXPECT_NE(Connection::STATE_READABLE, ch1.conn()->read_state());
857 EXPECT_NE(Connection::STATE_WRITABLE, ch1.conn()->write_state());
858 EXPECT_NE(Connection::STATE_READABLE, ch2.conn()->read_state());
859 EXPECT_NE(Connection::STATE_WRITABLE, ch2.conn()->write_state());
860 }
861
862 // Tear down and ensure that goes smoothly.
863 ch1.Stop();
864 ch2.Stop();
865 EXPECT_TRUE_WAIT(ch1.conn() == NULL, kTimeout);
866 EXPECT_TRUE_WAIT(ch2.conn() == NULL, kTimeout);
867}
868
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000869class FakePacketSocketFactory : public rtc::PacketSocketFactory {
870 public:
871 FakePacketSocketFactory()
872 : next_udp_socket_(NULL),
873 next_server_tcp_socket_(NULL),
874 next_client_tcp_socket_(NULL) {
875 }
pkasting@chromium.org332331f2014-11-06 20:19:22 +0000876 ~FakePacketSocketFactory() override { }
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000877
pkasting@chromium.org332331f2014-11-06 20:19:22 +0000878 AsyncPacketSocket* CreateUdpSocket(const SocketAddress& address,
879 uint16 min_port,
880 uint16 max_port) override {
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000881 EXPECT_TRUE(next_udp_socket_ != NULL);
882 AsyncPacketSocket* result = next_udp_socket_;
883 next_udp_socket_ = NULL;
884 return result;
885 }
886
pkasting@chromium.org332331f2014-11-06 20:19:22 +0000887 AsyncPacketSocket* CreateServerTcpSocket(const SocketAddress& local_address,
888 uint16 min_port,
889 uint16 max_port,
890 int opts) override {
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000891 EXPECT_TRUE(next_server_tcp_socket_ != NULL);
892 AsyncPacketSocket* result = next_server_tcp_socket_;
893 next_server_tcp_socket_ = NULL;
894 return result;
895 }
896
897 // TODO: |proxy_info| and |user_agent| should be set
898 // per-factory and not when socket is created.
pkasting@chromium.org332331f2014-11-06 20:19:22 +0000899 AsyncPacketSocket* CreateClientTcpSocket(const SocketAddress& local_address,
900 const SocketAddress& remote_address,
901 const rtc::ProxyInfo& proxy_info,
902 const std::string& user_agent,
903 int opts) override {
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000904 EXPECT_TRUE(next_client_tcp_socket_ != NULL);
905 AsyncPacketSocket* result = next_client_tcp_socket_;
906 next_client_tcp_socket_ = NULL;
907 return result;
908 }
909
910 void set_next_udp_socket(AsyncPacketSocket* next_udp_socket) {
911 next_udp_socket_ = next_udp_socket;
912 }
913 void set_next_server_tcp_socket(AsyncPacketSocket* next_server_tcp_socket) {
914 next_server_tcp_socket_ = next_server_tcp_socket;
915 }
916 void set_next_client_tcp_socket(AsyncPacketSocket* next_client_tcp_socket) {
917 next_client_tcp_socket_ = next_client_tcp_socket;
918 }
919 rtc::AsyncResolverInterface* CreateAsyncResolver() {
920 return NULL;
921 }
922
923 private:
924 AsyncPacketSocket* next_udp_socket_;
925 AsyncPacketSocket* next_server_tcp_socket_;
926 AsyncPacketSocket* next_client_tcp_socket_;
927};
928
929class FakeAsyncPacketSocket : public AsyncPacketSocket {
930 public:
931 // Returns current local address. Address may be set to NULL if the
932 // socket is not bound yet (GetState() returns STATE_BINDING).
933 virtual SocketAddress GetLocalAddress() const {
934 return SocketAddress();
935 }
936
937 // Returns remote address. Returns zeroes if this is not a client TCP socket.
938 virtual SocketAddress GetRemoteAddress() const {
939 return SocketAddress();
940 }
941
942 // Send a packet.
943 virtual int Send(const void *pv, size_t cb,
944 const rtc::PacketOptions& options) {
945 return static_cast<int>(cb);
946 }
947 virtual int SendTo(const void *pv, size_t cb, const SocketAddress& addr,
948 const rtc::PacketOptions& options) {
949 return static_cast<int>(cb);
950 }
951 virtual int Close() {
952 return 0;
953 }
954
955 virtual State GetState() const { return state_; }
956 virtual int GetOption(Socket::Option opt, int* value) { return 0; }
957 virtual int SetOption(Socket::Option opt, int value) { return 0; }
958 virtual int GetError() const { return 0; }
959 virtual void SetError(int error) { }
960
961 void set_state(State state) { state_ = state; }
962
963 private:
964 State state_;
965};
966
967// Local -> XXXX
968TEST_F(PortTest, TestLocalToLocal) {
969 TestLocalToLocal();
970}
971
972TEST_F(PortTest, TestLocalToConeNat) {
973 TestLocalToStun(NAT_OPEN_CONE);
974}
975
976TEST_F(PortTest, TestLocalToARNat) {
977 TestLocalToStun(NAT_ADDR_RESTRICTED);
978}
979
980TEST_F(PortTest, TestLocalToPRNat) {
981 TestLocalToStun(NAT_PORT_RESTRICTED);
982}
983
984TEST_F(PortTest, TestLocalToSymNat) {
985 TestLocalToStun(NAT_SYMMETRIC);
986}
987
988// Flaky: https://code.google.com/p/webrtc/issues/detail?id=3316.
989TEST_F(PortTest, DISABLED_TestLocalToTurn) {
990 TestLocalToRelay(RELAY_TURN, PROTO_UDP);
991}
992
993TEST_F(PortTest, TestLocalToGturn) {
994 TestLocalToRelay(RELAY_GTURN, PROTO_UDP);
995}
996
997TEST_F(PortTest, TestLocalToTcpGturn) {
998 TestLocalToRelay(RELAY_GTURN, PROTO_TCP);
999}
1000
1001TEST_F(PortTest, TestLocalToSslTcpGturn) {
1002 TestLocalToRelay(RELAY_GTURN, PROTO_SSLTCP);
1003}
1004
1005// Cone NAT -> XXXX
1006TEST_F(PortTest, TestConeNatToLocal) {
1007 TestStunToLocal(NAT_OPEN_CONE);
1008}
1009
1010TEST_F(PortTest, TestConeNatToConeNat) {
1011 TestStunToStun(NAT_OPEN_CONE, NAT_OPEN_CONE);
1012}
1013
1014TEST_F(PortTest, TestConeNatToARNat) {
1015 TestStunToStun(NAT_OPEN_CONE, NAT_ADDR_RESTRICTED);
1016}
1017
1018TEST_F(PortTest, TestConeNatToPRNat) {
1019 TestStunToStun(NAT_OPEN_CONE, NAT_PORT_RESTRICTED);
1020}
1021
1022TEST_F(PortTest, TestConeNatToSymNat) {
1023 TestStunToStun(NAT_OPEN_CONE, NAT_SYMMETRIC);
1024}
1025
1026TEST_F(PortTest, TestConeNatToTurn) {
1027 TestStunToRelay(NAT_OPEN_CONE, RELAY_TURN, PROTO_UDP);
1028}
1029
1030TEST_F(PortTest, TestConeNatToGturn) {
1031 TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_UDP);
1032}
1033
1034TEST_F(PortTest, TestConeNatToTcpGturn) {
1035 TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_TCP);
1036}
1037
1038// Address-restricted NAT -> XXXX
1039TEST_F(PortTest, TestARNatToLocal) {
1040 TestStunToLocal(NAT_ADDR_RESTRICTED);
1041}
1042
1043TEST_F(PortTest, TestARNatToConeNat) {
1044 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_OPEN_CONE);
1045}
1046
1047TEST_F(PortTest, TestARNatToARNat) {
1048 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_ADDR_RESTRICTED);
1049}
1050
1051TEST_F(PortTest, TestARNatToPRNat) {
1052 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_PORT_RESTRICTED);
1053}
1054
1055TEST_F(PortTest, TestARNatToSymNat) {
1056 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_SYMMETRIC);
1057}
1058
1059TEST_F(PortTest, TestARNatToTurn) {
1060 TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_TURN, PROTO_UDP);
1061}
1062
1063TEST_F(PortTest, TestARNatToGturn) {
1064 TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_UDP);
1065}
1066
1067TEST_F(PortTest, TestARNATNatToTcpGturn) {
1068 TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_TCP);
1069}
1070
1071// Port-restricted NAT -> XXXX
1072TEST_F(PortTest, TestPRNatToLocal) {
1073 TestStunToLocal(NAT_PORT_RESTRICTED);
1074}
1075
1076TEST_F(PortTest, TestPRNatToConeNat) {
1077 TestStunToStun(NAT_PORT_RESTRICTED, NAT_OPEN_CONE);
1078}
1079
1080TEST_F(PortTest, TestPRNatToARNat) {
1081 TestStunToStun(NAT_PORT_RESTRICTED, NAT_ADDR_RESTRICTED);
1082}
1083
1084TEST_F(PortTest, TestPRNatToPRNat) {
1085 TestStunToStun(NAT_PORT_RESTRICTED, NAT_PORT_RESTRICTED);
1086}
1087
1088TEST_F(PortTest, TestPRNatToSymNat) {
1089 // Will "fail"
1090 TestStunToStun(NAT_PORT_RESTRICTED, NAT_SYMMETRIC);
1091}
1092
1093TEST_F(PortTest, TestPRNatToTurn) {
1094 TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_TURN, PROTO_UDP);
1095}
1096
1097TEST_F(PortTest, TestPRNatToGturn) {
1098 TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_UDP);
1099}
1100
1101TEST_F(PortTest, TestPRNatToTcpGturn) {
1102 TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_TCP);
1103}
1104
1105// Symmetric NAT -> XXXX
1106TEST_F(PortTest, TestSymNatToLocal) {
1107 TestStunToLocal(NAT_SYMMETRIC);
1108}
1109
1110TEST_F(PortTest, TestSymNatToConeNat) {
1111 TestStunToStun(NAT_SYMMETRIC, NAT_OPEN_CONE);
1112}
1113
1114TEST_F(PortTest, TestSymNatToARNat) {
1115 TestStunToStun(NAT_SYMMETRIC, NAT_ADDR_RESTRICTED);
1116}
1117
1118TEST_F(PortTest, TestSymNatToPRNat) {
1119 // Will "fail"
1120 TestStunToStun(NAT_SYMMETRIC, NAT_PORT_RESTRICTED);
1121}
1122
1123TEST_F(PortTest, TestSymNatToSymNat) {
1124 // Will "fail"
1125 TestStunToStun(NAT_SYMMETRIC, NAT_SYMMETRIC);
1126}
1127
1128TEST_F(PortTest, TestSymNatToTurn) {
1129 TestStunToRelay(NAT_SYMMETRIC, RELAY_TURN, PROTO_UDP);
1130}
1131
1132TEST_F(PortTest, TestSymNatToGturn) {
1133 TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_UDP);
1134}
1135
1136TEST_F(PortTest, TestSymNatToTcpGturn) {
1137 TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_TCP);
1138}
1139
1140// Outbound TCP -> XXXX
1141TEST_F(PortTest, TestTcpToTcp) {
1142 TestTcpToTcp();
1143}
1144
Guo-wei Shiehbe508a12015-04-06 12:48:47 -07001145TEST_F(PortTest, TestTcpReconnectOnSendPacket) {
1146 TestTcpReconnect(false /* ping */, true /* send */);
1147}
1148
1149TEST_F(PortTest, TestTcpReconnectOnPing) {
1150 TestTcpReconnect(true /* ping */, false /* send */);
1151}
1152
1153TEST_F(PortTest, TestTcpReconnectTimeout) {
1154 TestTcpReconnect(false /* ping */, false /* send */);
1155}
1156
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001157/* TODO: Enable these once testrelayserver can accept external TCP.
1158TEST_F(PortTest, TestTcpToTcpRelay) {
1159 TestTcpToRelay(PROTO_TCP);
1160}
1161
1162TEST_F(PortTest, TestTcpToSslTcpRelay) {
1163 TestTcpToRelay(PROTO_SSLTCP);
1164}
1165*/
1166
1167// Outbound SSLTCP -> XXXX
1168/* TODO: Enable these once testrelayserver can accept external SSL.
1169TEST_F(PortTest, TestSslTcpToTcpRelay) {
1170 TestSslTcpToRelay(PROTO_TCP);
1171}
1172
1173TEST_F(PortTest, TestSslTcpToSslTcpRelay) {
1174 TestSslTcpToRelay(PROTO_SSLTCP);
1175}
1176*/
1177
1178// This test case verifies standard ICE features in STUN messages. Currently it
1179// verifies Message Integrity attribute in STUN messages and username in STUN
1180// binding request will have colon (":") between remote and local username.
1181TEST_F(PortTest, TestLocalToLocalAsIce) {
1182 SetIceProtocolType(cricket::ICEPROTO_RFC5245);
1183 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
1184 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
1185 port1->SetIceTiebreaker(kTiebreaker1);
1186 ASSERT_EQ(cricket::ICEPROTO_RFC5245, port1->IceProtocol());
1187 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
1188 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
1189 port2->SetIceTiebreaker(kTiebreaker2);
1190 ASSERT_EQ(cricket::ICEPROTO_RFC5245, port2->IceProtocol());
1191 // Same parameters as TestLocalToLocal above.
1192 TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
1193}
1194
1195// This test is trying to validate a successful and failure scenario in a
1196// loopback test when protocol is RFC5245. For success IceTiebreaker, username
1197// should remain equal to the request generated by the port and role of port
1198// must be in controlling.
1199TEST_F(PortTest, TestLoopbackCallAsIce) {
1200 rtc::scoped_ptr<TestPort> lport(
1201 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1202 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1203 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1204 lport->SetIceTiebreaker(kTiebreaker1);
1205 lport->PrepareAddress();
1206 ASSERT_FALSE(lport->Candidates().empty());
1207 Connection* conn = lport->CreateConnection(lport->Candidates()[0],
1208 Port::ORIGIN_MESSAGE);
1209 conn->Ping(0);
1210
1211 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1212 IceMessage* msg = lport->last_stun_msg();
1213 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1214 conn->OnReadPacket(lport->last_stun_buf()->Data(),
1215 lport->last_stun_buf()->Length(),
1216 rtc::PacketTime());
1217 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1218 msg = lport->last_stun_msg();
1219 EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
1220
1221 // If the tiebreaker value is different from port, we expect a error
1222 // response.
1223 lport->Reset();
1224 lport->AddCandidateAddress(kLocalAddr2);
1225 // Creating a different connection as |conn| is in STATE_READABLE.
1226 Connection* conn1 = lport->CreateConnection(lport->Candidates()[1],
1227 Port::ORIGIN_MESSAGE);
1228 conn1->Ping(0);
1229
1230 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1231 msg = lport->last_stun_msg();
1232 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1233 rtc::scoped_ptr<IceMessage> modified_req(
1234 CreateStunMessage(STUN_BINDING_REQUEST));
1235 const StunByteStringAttribute* username_attr = msg->GetByteString(
1236 STUN_ATTR_USERNAME);
1237 modified_req->AddAttribute(new StunByteStringAttribute(
1238 STUN_ATTR_USERNAME, username_attr->GetString()));
1239 // To make sure we receive error response, adding tiebreaker less than
1240 // what's present in request.
1241 modified_req->AddAttribute(new StunUInt64Attribute(
1242 STUN_ATTR_ICE_CONTROLLING, kTiebreaker1 - 1));
1243 modified_req->AddMessageIntegrity("lpass");
1244 modified_req->AddFingerprint();
1245
1246 lport->Reset();
1247 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1248 WriteStunMessage(modified_req.get(), buf.get());
1249 conn1->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime());
1250 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1251 msg = lport->last_stun_msg();
1252 EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
1253}
1254
1255// This test verifies role conflict signal is received when there is
1256// conflict in the role. In this case both ports are in controlling and
1257// |rport| has higher tiebreaker value than |lport|. Since |lport| has lower
1258// value of tiebreaker, when it receives ping request from |rport| it will
1259// send role conflict signal.
1260TEST_F(PortTest, TestIceRoleConflict) {
1261 rtc::scoped_ptr<TestPort> lport(
1262 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1263 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1264 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1265 lport->SetIceTiebreaker(kTiebreaker1);
1266 rtc::scoped_ptr<TestPort> rport(
1267 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1268 rport->SetIceProtocolType(ICEPROTO_RFC5245);
1269 rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1270 rport->SetIceTiebreaker(kTiebreaker2);
1271
1272 lport->PrepareAddress();
1273 rport->PrepareAddress();
1274 ASSERT_FALSE(lport->Candidates().empty());
1275 ASSERT_FALSE(rport->Candidates().empty());
1276 Connection* lconn = lport->CreateConnection(rport->Candidates()[0],
1277 Port::ORIGIN_MESSAGE);
1278 Connection* rconn = rport->CreateConnection(lport->Candidates()[0],
1279 Port::ORIGIN_MESSAGE);
1280 rconn->Ping(0);
1281
1282 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
1283 IceMessage* msg = rport->last_stun_msg();
1284 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1285 // Send rport binding request to lport.
1286 lconn->OnReadPacket(rport->last_stun_buf()->Data(),
1287 rport->last_stun_buf()->Length(),
1288 rtc::PacketTime());
1289
1290 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1291 EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
1292 EXPECT_TRUE(role_conflict());
1293}
1294
1295TEST_F(PortTest, TestTcpNoDelay) {
1296 TCPPort* port1 = CreateTcpPort(kLocalAddr1);
1297 int option_value = -1;
1298 int success = port1->GetOption(rtc::Socket::OPT_NODELAY,
1299 &option_value);
1300 ASSERT_EQ(0, success); // GetOption() should complete successfully w/ 0
1301 ASSERT_EQ(1, option_value);
1302 delete port1;
1303}
1304
1305TEST_F(PortTest, TestDelayedBindingUdp) {
1306 FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
1307 FakePacketSocketFactory socket_factory;
1308
1309 socket_factory.set_next_udp_socket(socket);
1310 scoped_ptr<UDPPort> port(
1311 CreateUdpPort(kLocalAddr1, &socket_factory));
1312
1313 socket->set_state(AsyncPacketSocket::STATE_BINDING);
1314 port->PrepareAddress();
1315
1316 EXPECT_EQ(0U, port->Candidates().size());
1317 socket->SignalAddressReady(socket, kLocalAddr2);
1318
1319 EXPECT_EQ(1U, port->Candidates().size());
1320}
1321
1322TEST_F(PortTest, TestDelayedBindingTcp) {
1323 FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
1324 FakePacketSocketFactory socket_factory;
1325
1326 socket_factory.set_next_server_tcp_socket(socket);
1327 scoped_ptr<TCPPort> port(
1328 CreateTcpPort(kLocalAddr1, &socket_factory));
1329
1330 socket->set_state(AsyncPacketSocket::STATE_BINDING);
1331 port->PrepareAddress();
1332
1333 EXPECT_EQ(0U, port->Candidates().size());
1334 socket->SignalAddressReady(socket, kLocalAddr2);
1335
1336 EXPECT_EQ(1U, port->Candidates().size());
1337}
1338
1339void PortTest::TestCrossFamilyPorts(int type) {
1340 FakePacketSocketFactory factory;
1341 scoped_ptr<Port> ports[4];
1342 SocketAddress addresses[4] = {SocketAddress("192.168.1.3", 0),
1343 SocketAddress("192.168.1.4", 0),
1344 SocketAddress("2001:db8::1", 0),
1345 SocketAddress("2001:db8::2", 0)};
1346 for (int i = 0; i < 4; i++) {
1347 FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
1348 if (type == SOCK_DGRAM) {
1349 factory.set_next_udp_socket(socket);
1350 ports[i].reset(CreateUdpPort(addresses[i], &factory));
1351 } else if (type == SOCK_STREAM) {
1352 factory.set_next_server_tcp_socket(socket);
1353 ports[i].reset(CreateTcpPort(addresses[i], &factory));
1354 }
1355 socket->set_state(AsyncPacketSocket::STATE_BINDING);
1356 socket->SignalAddressReady(socket, addresses[i]);
1357 ports[i]->PrepareAddress();
1358 }
1359
1360 // IPv4 Port, connects to IPv6 candidate and then to IPv4 candidate.
1361 if (type == SOCK_STREAM) {
1362 FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
1363 factory.set_next_client_tcp_socket(clientsocket);
1364 }
1365 Connection* c = ports[0]->CreateConnection(GetCandidate(ports[2].get()),
1366 Port::ORIGIN_MESSAGE);
1367 EXPECT_TRUE(NULL == c);
1368 EXPECT_EQ(0U, ports[0]->connections().size());
1369 c = ports[0]->CreateConnection(GetCandidate(ports[1].get()),
1370 Port::ORIGIN_MESSAGE);
1371 EXPECT_FALSE(NULL == c);
1372 EXPECT_EQ(1U, ports[0]->connections().size());
1373
1374 // IPv6 Port, connects to IPv4 candidate and to IPv6 candidate.
1375 if (type == SOCK_STREAM) {
1376 FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
1377 factory.set_next_client_tcp_socket(clientsocket);
1378 }
1379 c = ports[2]->CreateConnection(GetCandidate(ports[0].get()),
1380 Port::ORIGIN_MESSAGE);
1381 EXPECT_TRUE(NULL == c);
1382 EXPECT_EQ(0U, ports[2]->connections().size());
1383 c = ports[2]->CreateConnection(GetCandidate(ports[3].get()),
1384 Port::ORIGIN_MESSAGE);
1385 EXPECT_FALSE(NULL == c);
1386 EXPECT_EQ(1U, ports[2]->connections().size());
1387}
1388
1389TEST_F(PortTest, TestSkipCrossFamilyTcp) {
1390 TestCrossFamilyPorts(SOCK_STREAM);
1391}
1392
1393TEST_F(PortTest, TestSkipCrossFamilyUdp) {
1394 TestCrossFamilyPorts(SOCK_DGRAM);
1395}
1396
1397// This test verifies DSCP value set through SetOption interface can be
1398// get through DefaultDscpValue.
1399TEST_F(PortTest, TestDefaultDscpValue) {
1400 int dscp;
1401 rtc::scoped_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1));
1402 EXPECT_EQ(0, udpport->SetOption(rtc::Socket::OPT_DSCP,
1403 rtc::DSCP_CS6));
1404 EXPECT_EQ(0, udpport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1405 rtc::scoped_ptr<TCPPort> tcpport(CreateTcpPort(kLocalAddr1));
1406 EXPECT_EQ(0, tcpport->SetOption(rtc::Socket::OPT_DSCP,
1407 rtc::DSCP_AF31));
1408 EXPECT_EQ(0, tcpport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1409 EXPECT_EQ(rtc::DSCP_AF31, dscp);
1410 rtc::scoped_ptr<StunPort> stunport(
1411 CreateStunPort(kLocalAddr1, nat_socket_factory1()));
1412 EXPECT_EQ(0, stunport->SetOption(rtc::Socket::OPT_DSCP,
1413 rtc::DSCP_AF41));
1414 EXPECT_EQ(0, stunport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1415 EXPECT_EQ(rtc::DSCP_AF41, dscp);
1416 rtc::scoped_ptr<TurnPort> turnport1(CreateTurnPort(
1417 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
1418 // Socket is created in PrepareAddress.
1419 turnport1->PrepareAddress();
1420 EXPECT_EQ(0, turnport1->SetOption(rtc::Socket::OPT_DSCP,
1421 rtc::DSCP_CS7));
1422 EXPECT_EQ(0, turnport1->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1423 EXPECT_EQ(rtc::DSCP_CS7, dscp);
1424 // This will verify correct value returned without the socket.
1425 rtc::scoped_ptr<TurnPort> turnport2(CreateTurnPort(
1426 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
1427 EXPECT_EQ(0, turnport2->SetOption(rtc::Socket::OPT_DSCP,
1428 rtc::DSCP_CS6));
1429 EXPECT_EQ(0, turnport2->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1430 EXPECT_EQ(rtc::DSCP_CS6, dscp);
1431}
1432
1433// Test sending STUN messages in GICE format.
1434TEST_F(PortTest, TestSendStunMessageAsGice) {
1435 rtc::scoped_ptr<TestPort> lport(
1436 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1437 rtc::scoped_ptr<TestPort> rport(
1438 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1439 lport->SetIceProtocolType(ICEPROTO_GOOGLE);
1440 rport->SetIceProtocolType(ICEPROTO_GOOGLE);
1441
1442 // Send a fake ping from lport to rport.
1443 lport->PrepareAddress();
1444 rport->PrepareAddress();
1445 ASSERT_FALSE(rport->Candidates().empty());
1446 Connection* conn = lport->CreateConnection(rport->Candidates()[0],
1447 Port::ORIGIN_MESSAGE);
1448 rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
1449 conn->Ping(0);
1450
1451 // Check that it's a proper BINDING-REQUEST.
1452 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1453 IceMessage* msg = lport->last_stun_msg();
1454 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1455 EXPECT_FALSE(msg->IsLegacy());
1456 const StunByteStringAttribute* username_attr = msg->GetByteString(
1457 STUN_ATTR_USERNAME);
1458 ASSERT_TRUE(username_attr != NULL);
1459 EXPECT_EQ("rfraglfrag", username_attr->GetString());
1460 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
1461 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1462 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
1463
1464 // Save a copy of the BINDING-REQUEST for use below.
1465 rtc::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
1466
1467 // Respond with a BINDING-RESPONSE.
1468 rport->SendBindingResponse(request.get(), lport->Candidates()[0].address());
1469 msg = rport->last_stun_msg();
1470 ASSERT_TRUE(msg != NULL);
1471 EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
1472 EXPECT_FALSE(msg->IsLegacy());
1473 username_attr = msg->GetByteString(STUN_ATTR_USERNAME);
1474 ASSERT_TRUE(username_attr != NULL); // GICE has a username in the response.
1475 EXPECT_EQ("rfraglfrag", username_attr->GetString());
1476 const StunAddressAttribute* addr_attr = msg->GetAddress(
1477 STUN_ATTR_MAPPED_ADDRESS);
1478 ASSERT_TRUE(addr_attr != NULL);
1479 EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
1480 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_XOR_MAPPED_ADDRESS) == NULL);
1481 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
1482 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1483 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
1484
1485 // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
1486 // but we can do it here.
1487 rport->SendBindingErrorResponse(request.get(),
1488 rport->Candidates()[0].address(),
1489 STUN_ERROR_SERVER_ERROR,
1490 STUN_ERROR_REASON_SERVER_ERROR);
1491 msg = rport->last_stun_msg();
1492 ASSERT_TRUE(msg != NULL);
1493 EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
1494 EXPECT_FALSE(msg->IsLegacy());
1495 username_attr = msg->GetByteString(STUN_ATTR_USERNAME);
1496 ASSERT_TRUE(username_attr != NULL); // GICE has a username in the response.
1497 EXPECT_EQ("rfraglfrag", username_attr->GetString());
1498 const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
1499 ASSERT_TRUE(error_attr != NULL);
1500 // The GICE wire format for error codes is incorrect.
1501 EXPECT_EQ(STUN_ERROR_SERVER_ERROR_AS_GICE, error_attr->code());
1502 EXPECT_EQ(STUN_ERROR_SERVER_ERROR / 256, error_attr->eclass());
1503 EXPECT_EQ(STUN_ERROR_SERVER_ERROR % 256, error_attr->number());
1504 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
1505 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1506 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
1507 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
1508}
1509
1510// Test sending STUN messages in ICE format.
1511TEST_F(PortTest, TestSendStunMessageAsIce) {
1512 rtc::scoped_ptr<TestPort> lport(
1513 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1514 rtc::scoped_ptr<TestPort> rport(
1515 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1516 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1517 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1518 lport->SetIceTiebreaker(kTiebreaker1);
1519 rport->SetIceProtocolType(ICEPROTO_RFC5245);
1520 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
1521 rport->SetIceTiebreaker(kTiebreaker2);
1522
1523 // Send a fake ping from lport to rport.
1524 lport->PrepareAddress();
1525 rport->PrepareAddress();
1526 ASSERT_FALSE(rport->Candidates().empty());
1527 Connection* lconn = lport->CreateConnection(
1528 rport->Candidates()[0], Port::ORIGIN_MESSAGE);
1529 Connection* rconn = rport->CreateConnection(
1530 lport->Candidates()[0], Port::ORIGIN_MESSAGE);
1531 lconn->Ping(0);
1532
1533 // Check that it's a proper BINDING-REQUEST.
1534 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1535 IceMessage* msg = lport->last_stun_msg();
1536 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1537 EXPECT_FALSE(msg->IsLegacy());
1538 const StunByteStringAttribute* username_attr =
1539 msg->GetByteString(STUN_ATTR_USERNAME);
1540 ASSERT_TRUE(username_attr != NULL);
1541 const StunUInt32Attribute* priority_attr = msg->GetUInt32(STUN_ATTR_PRIORITY);
1542 ASSERT_TRUE(priority_attr != NULL);
1543 EXPECT_EQ(kDefaultPrflxPriority, priority_attr->value());
1544 EXPECT_EQ("rfrag:lfrag", username_attr->GetString());
1545 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1546 EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1547 lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length(),
1548 "rpass"));
1549 const StunUInt64Attribute* ice_controlling_attr =
1550 msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
1551 ASSERT_TRUE(ice_controlling_attr != NULL);
1552 EXPECT_EQ(lport->IceTiebreaker(), ice_controlling_attr->value());
1553 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
1554 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
1555 EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1556 EXPECT_TRUE(StunMessage::ValidateFingerprint(
1557 lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
1558
1559 // Request should not include ping count.
1560 ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
1561
1562 // Save a copy of the BINDING-REQUEST for use below.
1563 rtc::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
1564
1565 // Respond with a BINDING-RESPONSE.
1566 rport->SendBindingResponse(request.get(), lport->Candidates()[0].address());
1567 msg = rport->last_stun_msg();
1568 ASSERT_TRUE(msg != NULL);
1569 EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
1570
1571
1572 EXPECT_FALSE(msg->IsLegacy());
1573 const StunAddressAttribute* addr_attr = msg->GetAddress(
1574 STUN_ATTR_XOR_MAPPED_ADDRESS);
1575 ASSERT_TRUE(addr_attr != NULL);
1576 EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
1577 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1578 EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1579 rport->last_stun_buf()->Data(), rport->last_stun_buf()->Length(),
1580 "rpass"));
1581 EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1582 EXPECT_TRUE(StunMessage::ValidateFingerprint(
1583 lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
1584 // No USERNAME or PRIORITY in ICE responses.
1585 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
1586 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1587 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MAPPED_ADDRESS) == NULL);
1588 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLING) == NULL);
1589 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
1590 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
1591
1592 // Response should not include ping count.
1593 ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
1594
1595 // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
1596 // but we can do it here.
1597 rport->SendBindingErrorResponse(request.get(),
1598 lport->Candidates()[0].address(),
1599 STUN_ERROR_SERVER_ERROR,
1600 STUN_ERROR_REASON_SERVER_ERROR);
1601 msg = rport->last_stun_msg();
1602 ASSERT_TRUE(msg != NULL);
1603 EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
1604 EXPECT_FALSE(msg->IsLegacy());
1605 const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
1606 ASSERT_TRUE(error_attr != NULL);
1607 EXPECT_EQ(STUN_ERROR_SERVER_ERROR, error_attr->code());
1608 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
1609 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1610 EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1611 rport->last_stun_buf()->Data(), rport->last_stun_buf()->Length(),
1612 "rpass"));
1613 EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1614 EXPECT_TRUE(StunMessage::ValidateFingerprint(
1615 lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
1616 // No USERNAME with ICE.
1617 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
1618 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1619
1620 // Testing STUN binding requests from rport --> lport, having ICE_CONTROLLED
1621 // and (incremented) RETRANSMIT_COUNT attributes.
1622 rport->Reset();
1623 rport->set_send_retransmit_count_attribute(true);
1624 rconn->Ping(0);
1625 rconn->Ping(0);
1626 rconn->Ping(0);
1627 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
1628 msg = rport->last_stun_msg();
1629 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1630 const StunUInt64Attribute* ice_controlled_attr =
1631 msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED);
1632 ASSERT_TRUE(ice_controlled_attr != NULL);
1633 EXPECT_EQ(rport->IceTiebreaker(), ice_controlled_attr->value());
1634 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
1635
1636 // Request should include ping count.
1637 const StunUInt32Attribute* retransmit_attr =
1638 msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
1639 ASSERT_TRUE(retransmit_attr != NULL);
1640 EXPECT_EQ(2U, retransmit_attr->value());
1641
1642 // Respond with a BINDING-RESPONSE.
1643 request.reset(CopyStunMessage(msg));
1644 lport->SendBindingResponse(request.get(), rport->Candidates()[0].address());
1645 msg = lport->last_stun_msg();
1646
1647 // Response should include same ping count.
1648 retransmit_attr = msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
1649 ASSERT_TRUE(retransmit_attr != NULL);
1650 EXPECT_EQ(2U, retransmit_attr->value());
1651}
1652
1653TEST_F(PortTest, TestUseCandidateAttribute) {
1654 rtc::scoped_ptr<TestPort> lport(
1655 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1656 rtc::scoped_ptr<TestPort> rport(
1657 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1658 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1659 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1660 lport->SetIceTiebreaker(kTiebreaker1);
1661 rport->SetIceProtocolType(ICEPROTO_RFC5245);
1662 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
1663 rport->SetIceTiebreaker(kTiebreaker2);
1664
1665 // Send a fake ping from lport to rport.
1666 lport->PrepareAddress();
1667 rport->PrepareAddress();
1668 ASSERT_FALSE(rport->Candidates().empty());
1669 Connection* lconn = lport->CreateConnection(
1670 rport->Candidates()[0], Port::ORIGIN_MESSAGE);
1671 lconn->Ping(0);
1672 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1673 IceMessage* msg = lport->last_stun_msg();
1674 const StunUInt64Attribute* ice_controlling_attr =
1675 msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
1676 ASSERT_TRUE(ice_controlling_attr != NULL);
1677 const StunByteStringAttribute* use_candidate_attr = msg->GetByteString(
1678 STUN_ATTR_USE_CANDIDATE);
1679 ASSERT_TRUE(use_candidate_attr != NULL);
1680}
1681
1682// Test handling STUN messages in GICE format.
1683TEST_F(PortTest, TestHandleStunMessageAsGice) {
1684 // Our port will act as the "remote" port.
1685 rtc::scoped_ptr<TestPort> port(
1686 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1687 port->SetIceProtocolType(ICEPROTO_GOOGLE);
1688
1689 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1690 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1691 rtc::SocketAddress addr(kLocalAddr1);
1692 std::string username;
1693
1694 // BINDING-REQUEST from local to remote with valid GICE username and no M-I.
1695 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1696 "rfraglfrag"));
1697 WriteStunMessage(in_msg.get(), buf.get());
1698 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1699 out_msg.accept(), &username));
1700 EXPECT_TRUE(out_msg.get() != NULL); // Succeeds, since this is GICE.
1701 EXPECT_EQ("lfrag", username);
1702
1703 // Add M-I; should be ignored and rest of message parsed normally.
1704 in_msg->AddMessageIntegrity("password");
1705 WriteStunMessage(in_msg.get(), buf.get());
1706 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1707 out_msg.accept(), &username));
1708 EXPECT_TRUE(out_msg.get() != NULL);
1709 EXPECT_EQ("lfrag", username);
1710
1711 // BINDING-RESPONSE with username, as done in GICE. Should succeed.
1712 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_RESPONSE,
1713 "rfraglfrag"));
1714 in_msg->AddAttribute(
1715 new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, kLocalAddr2));
1716 WriteStunMessage(in_msg.get(), buf.get());
1717 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1718 out_msg.accept(), &username));
1719 EXPECT_TRUE(out_msg.get() != NULL);
1720 EXPECT_EQ("", username);
1721
1722 // BINDING-RESPONSE without username. Should be tolerated as well.
1723 in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
1724 in_msg->AddAttribute(
1725 new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, kLocalAddr2));
1726 WriteStunMessage(in_msg.get(), buf.get());
1727 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1728 out_msg.accept(), &username));
1729 EXPECT_TRUE(out_msg.get() != NULL);
1730 EXPECT_EQ("", username);
1731
1732 // BINDING-ERROR-RESPONSE with username and error code.
1733 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_ERROR_RESPONSE,
1734 "rfraglfrag"));
1735 in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
1736 STUN_ERROR_SERVER_ERROR_AS_GICE, STUN_ERROR_REASON_SERVER_ERROR));
1737 WriteStunMessage(in_msg.get(), buf.get());
1738 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1739 out_msg.accept(), &username));
1740 ASSERT_TRUE(out_msg.get() != NULL);
1741 EXPECT_EQ("", username);
1742 ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
1743 // GetStunMessage doesn't unmunge the GICE error code (happens downstream).
1744 EXPECT_EQ(STUN_ERROR_SERVER_ERROR_AS_GICE, out_msg->GetErrorCode()->code());
1745 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
1746 out_msg->GetErrorCode()->reason());
1747}
1748
1749// Test handling STUN messages in ICE format.
1750TEST_F(PortTest, TestHandleStunMessageAsIce) {
1751 // Our port will act as the "remote" port.
1752 rtc::scoped_ptr<TestPort> port(
1753 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1754 port->SetIceProtocolType(ICEPROTO_RFC5245);
1755
1756 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1757 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1758 rtc::SocketAddress addr(kLocalAddr1);
1759 std::string username;
1760
1761 // BINDING-REQUEST from local to remote with valid ICE username,
1762 // MESSAGE-INTEGRITY, and FINGERPRINT.
1763 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1764 "rfrag:lfrag"));
1765 in_msg->AddMessageIntegrity("rpass");
1766 in_msg->AddFingerprint();
1767 WriteStunMessage(in_msg.get(), buf.get());
1768 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1769 out_msg.accept(), &username));
1770 EXPECT_TRUE(out_msg.get() != NULL);
1771 EXPECT_EQ("lfrag", username);
1772
1773 // BINDING-RESPONSE without username, with MESSAGE-INTEGRITY and FINGERPRINT.
1774 in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
1775 in_msg->AddAttribute(
1776 new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
1777 in_msg->AddMessageIntegrity("rpass");
1778 in_msg->AddFingerprint();
1779 WriteStunMessage(in_msg.get(), buf.get());
1780 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1781 out_msg.accept(), &username));
1782 EXPECT_TRUE(out_msg.get() != NULL);
1783 EXPECT_EQ("", username);
1784
1785 // BINDING-ERROR-RESPONSE without username, with error, M-I, and FINGERPRINT.
1786 in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
1787 in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
1788 STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR));
1789 in_msg->AddFingerprint();
1790 WriteStunMessage(in_msg.get(), buf.get());
1791 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1792 out_msg.accept(), &username));
1793 EXPECT_TRUE(out_msg.get() != NULL);
1794 EXPECT_EQ("", username);
1795 ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
1796 EXPECT_EQ(STUN_ERROR_SERVER_ERROR, out_msg->GetErrorCode()->code());
1797 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
1798 out_msg->GetErrorCode()->reason());
1799}
1800
1801// This test verifies port can handle ICE messages in Hybrid mode and switches
1802// ICEPROTO_RFC5245 mode after successfully handling the message.
1803TEST_F(PortTest, TestHandleStunMessageAsIceInHybridMode) {
1804 // Our port will act as the "remote" port.
1805 rtc::scoped_ptr<TestPort> port(
1806 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1807 port->SetIceProtocolType(ICEPROTO_HYBRID);
1808
1809 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1810 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1811 rtc::SocketAddress addr(kLocalAddr1);
1812 std::string username;
1813
1814 // BINDING-REQUEST from local to remote with valid ICE username,
1815 // MESSAGE-INTEGRITY, and FINGERPRINT.
1816 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1817 "rfrag:lfrag"));
1818 in_msg->AddMessageIntegrity("rpass");
1819 in_msg->AddFingerprint();
1820 WriteStunMessage(in_msg.get(), buf.get());
1821 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1822 out_msg.accept(), &username));
1823 EXPECT_TRUE(out_msg.get() != NULL);
1824 EXPECT_EQ("lfrag", username);
1825 EXPECT_EQ(ICEPROTO_RFC5245, port->IceProtocol());
1826}
1827
1828// This test verifies port can handle GICE messages in Hybrid mode and switches
1829// ICEPROTO_GOOGLE mode after successfully handling the message.
1830TEST_F(PortTest, TestHandleStunMessageAsGiceInHybridMode) {
1831 // Our port will act as the "remote" port.
1832 rtc::scoped_ptr<TestPort> port(
1833 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1834 port->SetIceProtocolType(ICEPROTO_HYBRID);
1835
1836 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1837 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1838 rtc::SocketAddress addr(kLocalAddr1);
1839 std::string username;
1840
1841 // BINDING-REQUEST from local to remote with valid GICE username and no M-I.
1842 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1843 "rfraglfrag"));
1844 WriteStunMessage(in_msg.get(), buf.get());
1845 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1846 out_msg.accept(), &username));
1847 EXPECT_TRUE(out_msg.get() != NULL); // Succeeds, since this is GICE.
1848 EXPECT_EQ("lfrag", username);
1849 EXPECT_EQ(ICEPROTO_GOOGLE, port->IceProtocol());
1850}
1851
1852// Verify port is not switched out of RFC5245 mode if GICE message is received
1853// in that mode.
1854TEST_F(PortTest, TestHandleStunMessageAsGiceInIceMode) {
1855 // Our port will act as the "remote" port.
1856 rtc::scoped_ptr<TestPort> port(
1857 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1858 port->SetIceProtocolType(ICEPROTO_RFC5245);
1859
1860 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1861 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1862 rtc::SocketAddress addr(kLocalAddr1);
1863 std::string username;
1864
1865 // BINDING-REQUEST from local to remote with valid GICE username and no M-I.
1866 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1867 "rfraglfrag"));
1868 WriteStunMessage(in_msg.get(), buf.get());
1869 // Should fail as there is no MI and fingerprint.
1870 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1871 out_msg.accept(), &username));
1872 EXPECT_EQ(ICEPROTO_RFC5245, port->IceProtocol());
1873}
1874
1875
1876// Tests handling of GICE binding requests with missing or incorrect usernames.
1877TEST_F(PortTest, TestHandleStunMessageAsGiceBadUsername) {
1878 rtc::scoped_ptr<TestPort> port(
1879 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1880 port->SetIceProtocolType(ICEPROTO_GOOGLE);
1881
1882 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1883 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1884 rtc::SocketAddress addr(kLocalAddr1);
1885 std::string username;
1886
1887 // BINDING-REQUEST with no username.
1888 in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST));
1889 WriteStunMessage(in_msg.get(), buf.get());
1890 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1891 out_msg.accept(), &username));
1892 EXPECT_TRUE(out_msg.get() == NULL);
1893 EXPECT_EQ("", username);
1894 EXPECT_EQ(STUN_ERROR_BAD_REQUEST_AS_GICE, port->last_stun_error_code());
1895
1896 // BINDING-REQUEST with empty username.
1897 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""));
1898 WriteStunMessage(in_msg.get(), buf.get());
1899 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1900 out_msg.accept(), &username));
1901 EXPECT_TRUE(out_msg.get() == NULL);
1902 EXPECT_EQ("", username);
1903 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
1904
1905 // BINDING-REQUEST with too-short username.
1906 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "lfra"));
1907 WriteStunMessage(in_msg.get(), buf.get());
1908 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1909 out_msg.accept(), &username));
1910 EXPECT_TRUE(out_msg.get() == NULL);
1911 EXPECT_EQ("", username);
1912 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
1913
1914 // BINDING-REQUEST with reversed username.
1915 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1916 "lfragrfrag"));
1917 WriteStunMessage(in_msg.get(), buf.get());
1918 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1919 out_msg.accept(), &username));
1920 EXPECT_TRUE(out_msg.get() == NULL);
1921 EXPECT_EQ("", username);
1922 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
1923
1924 // BINDING-REQUEST with garbage username.
1925 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1926 "abcdefgh"));
1927 WriteStunMessage(in_msg.get(), buf.get());
1928 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1929 out_msg.accept(), &username));
1930 EXPECT_TRUE(out_msg.get() == NULL);
1931 EXPECT_EQ("", username);
1932 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
1933}
1934
1935// Tests handling of ICE binding requests with missing or incorrect usernames.
1936TEST_F(PortTest, TestHandleStunMessageAsIceBadUsername) {
1937 rtc::scoped_ptr<TestPort> port(
1938 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1939 port->SetIceProtocolType(ICEPROTO_RFC5245);
1940
1941 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1942 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1943 rtc::SocketAddress addr(kLocalAddr1);
1944 std::string username;
1945
1946 // BINDING-REQUEST with no username.
1947 in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST));
1948 in_msg->AddMessageIntegrity("rpass");
1949 in_msg->AddFingerprint();
1950 WriteStunMessage(in_msg.get(), buf.get());
1951 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1952 out_msg.accept(), &username));
1953 EXPECT_TRUE(out_msg.get() == NULL);
1954 EXPECT_EQ("", username);
1955 EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
1956
1957 // BINDING-REQUEST with empty username.
1958 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""));
1959 in_msg->AddMessageIntegrity("rpass");
1960 in_msg->AddFingerprint();
1961 WriteStunMessage(in_msg.get(), buf.get());
1962 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1963 out_msg.accept(), &username));
1964 EXPECT_TRUE(out_msg.get() == NULL);
1965 EXPECT_EQ("", username);
1966 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1967
1968 // BINDING-REQUEST with too-short username.
1969 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfra"));
1970 in_msg->AddMessageIntegrity("rpass");
1971 in_msg->AddFingerprint();
1972 WriteStunMessage(in_msg.get(), buf.get());
1973 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1974 out_msg.accept(), &username));
1975 EXPECT_TRUE(out_msg.get() == NULL);
1976 EXPECT_EQ("", username);
1977 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1978
1979 // BINDING-REQUEST with reversed username.
1980 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1981 "lfrag:rfrag"));
1982 in_msg->AddMessageIntegrity("rpass");
1983 in_msg->AddFingerprint();
1984 WriteStunMessage(in_msg.get(), buf.get());
1985 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1986 out_msg.accept(), &username));
1987 EXPECT_TRUE(out_msg.get() == NULL);
1988 EXPECT_EQ("", username);
1989 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1990
1991 // BINDING-REQUEST with garbage username.
1992 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1993 "abcd:efgh"));
1994 in_msg->AddMessageIntegrity("rpass");
1995 in_msg->AddFingerprint();
1996 WriteStunMessage(in_msg.get(), buf.get());
1997 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1998 out_msg.accept(), &username));
1999 EXPECT_TRUE(out_msg.get() == NULL);
2000 EXPECT_EQ("", username);
2001 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
2002}
2003
2004// Test handling STUN messages (as ICE) with missing or malformed M-I.
2005TEST_F(PortTest, TestHandleStunMessageAsIceBadMessageIntegrity) {
2006 // Our port will act as the "remote" port.
2007 rtc::scoped_ptr<TestPort> port(
2008 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
2009 port->SetIceProtocolType(ICEPROTO_RFC5245);
2010
2011 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
2012 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
2013 rtc::SocketAddress addr(kLocalAddr1);
2014 std::string username;
2015
2016 // BINDING-REQUEST from local to remote with valid ICE username and
2017 // FINGERPRINT, but no MESSAGE-INTEGRITY.
2018 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
2019 "rfrag:lfrag"));
2020 in_msg->AddFingerprint();
2021 WriteStunMessage(in_msg.get(), buf.get());
2022 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
2023 out_msg.accept(), &username));
2024 EXPECT_TRUE(out_msg.get() == NULL);
2025 EXPECT_EQ("", username);
2026 EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
2027
2028 // BINDING-REQUEST from local to remote with valid ICE username and
2029 // FINGERPRINT, but invalid MESSAGE-INTEGRITY.
2030 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
2031 "rfrag:lfrag"));
2032 in_msg->AddMessageIntegrity("invalid");
2033 in_msg->AddFingerprint();
2034 WriteStunMessage(in_msg.get(), buf.get());
2035 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
2036 out_msg.accept(), &username));
2037 EXPECT_TRUE(out_msg.get() == NULL);
2038 EXPECT_EQ("", username);
2039 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
2040
2041 // TODO: BINDING-RESPONSES and BINDING-ERROR-RESPONSES are checked
2042 // by the Connection, not the Port, since they require the remote username.
2043 // Change this test to pass in data via Connection::OnReadPacket instead.
2044}
2045
2046// Test handling STUN messages (as ICE) with missing or malformed FINGERPRINT.
2047TEST_F(PortTest, TestHandleStunMessageAsIceBadFingerprint) {
2048 // Our port will act as the "remote" port.
2049 rtc::scoped_ptr<TestPort> port(
2050 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
2051 port->SetIceProtocolType(ICEPROTO_RFC5245);
2052
2053 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
2054 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
2055 rtc::SocketAddress addr(kLocalAddr1);
2056 std::string username;
2057
2058 // BINDING-REQUEST from local to remote with valid ICE username and
2059 // MESSAGE-INTEGRITY, but no FINGERPRINT; GetStunMessage should fail.
2060 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
2061 "rfrag:lfrag"));
2062 in_msg->AddMessageIntegrity("rpass");
2063 WriteStunMessage(in_msg.get(), buf.get());
2064 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
2065 out_msg.accept(), &username));
2066 EXPECT_EQ(0, port->last_stun_error_code());
2067
2068 // Now, add a fingerprint, but munge the message so it's not valid.
2069 in_msg->AddFingerprint();
2070 in_msg->SetTransactionID("TESTTESTBADD");
2071 WriteStunMessage(in_msg.get(), buf.get());
2072 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
2073 out_msg.accept(), &username));
2074 EXPECT_EQ(0, port->last_stun_error_code());
2075
2076 // Valid BINDING-RESPONSE, except no FINGERPRINT.
2077 in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
2078 in_msg->AddAttribute(
2079 new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
2080 in_msg->AddMessageIntegrity("rpass");
2081 WriteStunMessage(in_msg.get(), buf.get());
2082 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
2083 out_msg.accept(), &username));
2084 EXPECT_EQ(0, port->last_stun_error_code());
2085
2086 // Now, add a fingerprint, but munge the message so it's not valid.
2087 in_msg->AddFingerprint();
2088 in_msg->SetTransactionID("TESTTESTBADD");
2089 WriteStunMessage(in_msg.get(), buf.get());
2090 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
2091 out_msg.accept(), &username));
2092 EXPECT_EQ(0, port->last_stun_error_code());
2093
2094 // Valid BINDING-ERROR-RESPONSE, except no FINGERPRINT.
2095 in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
2096 in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
2097 STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR));
2098 in_msg->AddMessageIntegrity("rpass");
2099 WriteStunMessage(in_msg.get(), buf.get());
2100 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
2101 out_msg.accept(), &username));
2102 EXPECT_EQ(0, port->last_stun_error_code());
2103
2104 // Now, add a fingerprint, but munge the message so it's not valid.
2105 in_msg->AddFingerprint();
2106 in_msg->SetTransactionID("TESTTESTBADD");
2107 WriteStunMessage(in_msg.get(), buf.get());
2108 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
2109 out_msg.accept(), &username));
2110 EXPECT_EQ(0, port->last_stun_error_code());
2111}
2112
2113// Test handling of STUN binding indication messages (as ICE). STUN binding
2114// indications are allowed only to the connection which is in read mode.
2115TEST_F(PortTest, TestHandleStunBindingIndication) {
2116 rtc::scoped_ptr<TestPort> lport(
2117 CreateTestPort(kLocalAddr2, "lfrag", "lpass"));
2118 lport->SetIceProtocolType(ICEPROTO_RFC5245);
2119 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2120 lport->SetIceTiebreaker(kTiebreaker1);
2121
2122 // Verifying encoding and decoding STUN indication message.
2123 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
2124 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
2125 rtc::SocketAddress addr(kLocalAddr1);
2126 std::string username;
2127
2128 in_msg.reset(CreateStunMessage(STUN_BINDING_INDICATION));
2129 in_msg->AddFingerprint();
2130 WriteStunMessage(in_msg.get(), buf.get());
2131 EXPECT_TRUE(lport->GetStunMessage(buf->Data(), buf->Length(), addr,
2132 out_msg.accept(), &username));
2133 EXPECT_TRUE(out_msg.get() != NULL);
2134 EXPECT_EQ(out_msg->type(), STUN_BINDING_INDICATION);
2135 EXPECT_EQ("", username);
2136
2137 // Verify connection can handle STUN indication and updates
2138 // last_ping_received.
2139 rtc::scoped_ptr<TestPort> rport(
2140 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
2141 rport->SetIceProtocolType(ICEPROTO_RFC5245);
2142 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2143 rport->SetIceTiebreaker(kTiebreaker2);
2144
2145 lport->PrepareAddress();
2146 rport->PrepareAddress();
2147 ASSERT_FALSE(lport->Candidates().empty());
2148 ASSERT_FALSE(rport->Candidates().empty());
2149
2150 Connection* lconn = lport->CreateConnection(rport->Candidates()[0],
2151 Port::ORIGIN_MESSAGE);
2152 Connection* rconn = rport->CreateConnection(lport->Candidates()[0],
2153 Port::ORIGIN_MESSAGE);
2154 rconn->Ping(0);
2155
2156 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
2157 IceMessage* msg = rport->last_stun_msg();
2158 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
2159 // Send rport binding request to lport.
2160 lconn->OnReadPacket(rport->last_stun_buf()->Data(),
2161 rport->last_stun_buf()->Length(),
2162 rtc::PacketTime());
2163 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
2164 EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
2165 uint32 last_ping_received1 = lconn->last_ping_received();
2166
2167 // Adding a delay of 100ms.
2168 rtc::Thread::Current()->ProcessMessages(100);
2169 // Pinging lconn using stun indication message.
2170 lconn->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime());
2171 uint32 last_ping_received2 = lconn->last_ping_received();
2172 EXPECT_GT(last_ping_received2, last_ping_received1);
2173}
2174
2175TEST_F(PortTest, TestComputeCandidatePriority) {
2176 rtc::scoped_ptr<TestPort> port(
2177 CreateTestPort(kLocalAddr1, "name", "pass"));
2178 port->set_type_preference(90);
2179 port->set_component(177);
2180 port->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
2181 port->AddCandidateAddress(SocketAddress("2001:db8::1234", 1234));
2182 port->AddCandidateAddress(SocketAddress("fc12:3456::1234", 1234));
2183 port->AddCandidateAddress(SocketAddress("::ffff:192.168.1.4", 1234));
2184 port->AddCandidateAddress(SocketAddress("::192.168.1.4", 1234));
2185 port->AddCandidateAddress(SocketAddress("2002::1234:5678", 1234));
2186 port->AddCandidateAddress(SocketAddress("2001::1234:5678", 1234));
2187 port->AddCandidateAddress(SocketAddress("fecf::1234:5678", 1234));
2188 port->AddCandidateAddress(SocketAddress("3ffe::1234:5678", 1234));
2189 // These should all be:
2190 // (90 << 24) | ([rfc3484 pref value] << 8) | (256 - 177)
2191 uint32 expected_priority_v4 = 1509957199U;
2192 uint32 expected_priority_v6 = 1509959759U;
2193 uint32 expected_priority_ula = 1509962319U;
2194 uint32 expected_priority_v4mapped = expected_priority_v4;
2195 uint32 expected_priority_v4compat = 1509949775U;
2196 uint32 expected_priority_6to4 = 1509954639U;
2197 uint32 expected_priority_teredo = 1509952079U;
2198 uint32 expected_priority_sitelocal = 1509949775U;
2199 uint32 expected_priority_6bone = 1509949775U;
2200 ASSERT_EQ(expected_priority_v4, port->Candidates()[0].priority());
2201 ASSERT_EQ(expected_priority_v6, port->Candidates()[1].priority());
2202 ASSERT_EQ(expected_priority_ula, port->Candidates()[2].priority());
2203 ASSERT_EQ(expected_priority_v4mapped, port->Candidates()[3].priority());
2204 ASSERT_EQ(expected_priority_v4compat, port->Candidates()[4].priority());
2205 ASSERT_EQ(expected_priority_6to4, port->Candidates()[5].priority());
2206 ASSERT_EQ(expected_priority_teredo, port->Candidates()[6].priority());
2207 ASSERT_EQ(expected_priority_sitelocal, port->Candidates()[7].priority());
2208 ASSERT_EQ(expected_priority_6bone, port->Candidates()[8].priority());
2209}
2210
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00002211// In the case of shared socket, one port may be shared by local and stun.
2212// Test that candidates with different types will have different foundation.
2213TEST_F(PortTest, TestFoundation) {
2214 rtc::scoped_ptr<TestPort> testport(
2215 CreateTestPort(kLocalAddr1, "name", "pass"));
2216 testport->AddCandidateAddress(kLocalAddr1, kLocalAddr1,
2217 LOCAL_PORT_TYPE,
2218 cricket::ICE_TYPE_PREFERENCE_HOST, false);
2219 testport->AddCandidateAddress(kLocalAddr2, kLocalAddr1,
2220 STUN_PORT_TYPE,
2221 cricket::ICE_TYPE_PREFERENCE_SRFLX, true);
2222 EXPECT_NE(testport->Candidates()[0].foundation(),
2223 testport->Candidates()[1].foundation());
2224}
2225
2226// This test verifies the foundation of different types of ICE candidates.
2227TEST_F(PortTest, TestCandidateFoundation) {
2228 rtc::scoped_ptr<rtc::NATServer> nat_server(
2229 CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
2230 rtc::scoped_ptr<UDPPort> udpport1(CreateUdpPort(kLocalAddr1));
2231 udpport1->PrepareAddress();
2232 rtc::scoped_ptr<UDPPort> udpport2(CreateUdpPort(kLocalAddr1));
2233 udpport2->PrepareAddress();
2234 EXPECT_EQ(udpport1->Candidates()[0].foundation(),
2235 udpport2->Candidates()[0].foundation());
2236 rtc::scoped_ptr<TCPPort> tcpport1(CreateTcpPort(kLocalAddr1));
2237 tcpport1->PrepareAddress();
2238 rtc::scoped_ptr<TCPPort> tcpport2(CreateTcpPort(kLocalAddr1));
2239 tcpport2->PrepareAddress();
2240 EXPECT_EQ(tcpport1->Candidates()[0].foundation(),
2241 tcpport2->Candidates()[0].foundation());
2242 rtc::scoped_ptr<Port> stunport(
2243 CreateStunPort(kLocalAddr1, nat_socket_factory1()));
2244 stunport->PrepareAddress();
2245 ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout);
2246 EXPECT_NE(tcpport1->Candidates()[0].foundation(),
2247 stunport->Candidates()[0].foundation());
2248 EXPECT_NE(tcpport2->Candidates()[0].foundation(),
2249 stunport->Candidates()[0].foundation());
2250 EXPECT_NE(udpport1->Candidates()[0].foundation(),
2251 stunport->Candidates()[0].foundation());
2252 EXPECT_NE(udpport2->Candidates()[0].foundation(),
2253 stunport->Candidates()[0].foundation());
2254 // Verify GTURN candidate foundation.
2255 rtc::scoped_ptr<RelayPort> relayport(
2256 CreateGturnPort(kLocalAddr1));
2257 relayport->AddServerAddress(
2258 cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
2259 relayport->PrepareAddress();
2260 ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout);
2261 EXPECT_NE(udpport1->Candidates()[0].foundation(),
2262 relayport->Candidates()[0].foundation());
2263 EXPECT_NE(udpport2->Candidates()[0].foundation(),
2264 relayport->Candidates()[0].foundation());
2265 // Verifying TURN candidate foundation.
2266 rtc::scoped_ptr<Port> turnport1(CreateTurnPort(
2267 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
2268 turnport1->PrepareAddress();
2269 ASSERT_EQ_WAIT(1U, turnport1->Candidates().size(), kTimeout);
2270 EXPECT_NE(udpport1->Candidates()[0].foundation(),
2271 turnport1->Candidates()[0].foundation());
2272 EXPECT_NE(udpport2->Candidates()[0].foundation(),
2273 turnport1->Candidates()[0].foundation());
2274 EXPECT_NE(stunport->Candidates()[0].foundation(),
2275 turnport1->Candidates()[0].foundation());
2276 rtc::scoped_ptr<Port> turnport2(CreateTurnPort(
2277 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
2278 turnport2->PrepareAddress();
2279 ASSERT_EQ_WAIT(1U, turnport2->Candidates().size(), kTimeout);
2280 EXPECT_EQ(turnport1->Candidates()[0].foundation(),
2281 turnport2->Candidates()[0].foundation());
2282
2283 // Running a second turn server, to get different base IP address.
2284 SocketAddress kTurnUdpIntAddr2("99.99.98.4", STUN_SERVER_PORT);
2285 SocketAddress kTurnUdpExtAddr2("99.99.98.5", 0);
2286 TestTurnServer turn_server2(
2287 rtc::Thread::Current(), kTurnUdpIntAddr2, kTurnUdpExtAddr2);
2288 rtc::scoped_ptr<Port> turnport3(CreateTurnPort(
2289 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP,
2290 kTurnUdpIntAddr2));
2291 turnport3->PrepareAddress();
2292 ASSERT_EQ_WAIT(1U, turnport3->Candidates().size(), kTimeout);
2293 EXPECT_NE(turnport3->Candidates()[0].foundation(),
2294 turnport2->Candidates()[0].foundation());
2295}
2296
2297// This test verifies the related addresses of different types of
2298// ICE candiates.
2299TEST_F(PortTest, TestCandidateRelatedAddress) {
2300 rtc::scoped_ptr<rtc::NATServer> nat_server(
2301 CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
2302 rtc::scoped_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1));
2303 udpport->PrepareAddress();
2304 // For UDPPort, related address will be empty.
2305 EXPECT_TRUE(udpport->Candidates()[0].related_address().IsNil());
2306 // Testing related address for stun candidates.
2307 // For stun candidate related address must be equal to the base
2308 // socket address.
2309 rtc::scoped_ptr<StunPort> stunport(
2310 CreateStunPort(kLocalAddr1, nat_socket_factory1()));
2311 stunport->PrepareAddress();
2312 ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout);
2313 // Check STUN candidate address.
2314 EXPECT_EQ(stunport->Candidates()[0].address().ipaddr(),
2315 kNatAddr1.ipaddr());
2316 // Check STUN candidate related address.
2317 EXPECT_EQ(stunport->Candidates()[0].related_address(),
2318 stunport->GetLocalAddress());
2319 // Verifying the related address for the GTURN candidates.
2320 // NOTE: In case of GTURN related address will be equal to the mapped
2321 // address, but address(mapped) will not be XOR.
2322 rtc::scoped_ptr<RelayPort> relayport(
2323 CreateGturnPort(kLocalAddr1));
2324 relayport->AddServerAddress(
2325 cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
2326 relayport->PrepareAddress();
2327 ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout);
2328 // For Gturn related address is set to "0.0.0.0:0"
2329 EXPECT_EQ(rtc::SocketAddress(),
2330 relayport->Candidates()[0].related_address());
2331 // Verifying the related address for TURN candidate.
2332 // For TURN related address must be equal to the mapped address.
2333 rtc::scoped_ptr<Port> turnport(CreateTurnPort(
2334 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
2335 turnport->PrepareAddress();
2336 ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kTimeout);
2337 EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
2338 turnport->Candidates()[0].address().ipaddr());
2339 EXPECT_EQ(kNatAddr1.ipaddr(),
2340 turnport->Candidates()[0].related_address().ipaddr());
2341}
2342
2343// Test priority value overflow handling when preference is set to 3.
2344TEST_F(PortTest, TestCandidatePreference) {
2345 cricket::Candidate cand1;
2346 cand1.set_preference(3);
2347 cricket::Candidate cand2;
2348 cand2.set_preference(1);
2349 EXPECT_TRUE(cand1.preference() > cand2.preference());
2350}
2351
2352// Test the Connection priority is calculated correctly.
2353TEST_F(PortTest, TestConnectionPriority) {
2354 rtc::scoped_ptr<TestPort> lport(
2355 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
2356 lport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_HOST);
2357 rtc::scoped_ptr<TestPort> rport(
2358 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
2359 rport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_RELAY);
2360 lport->set_component(123);
2361 lport->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
2362 rport->set_component(23);
2363 rport->AddCandidateAddress(SocketAddress("10.1.1.100", 1234));
2364
2365 EXPECT_EQ(0x7E001E85U, lport->Candidates()[0].priority());
2366 EXPECT_EQ(0x2001EE9U, rport->Candidates()[0].priority());
2367
2368 // RFC 5245
2369 // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
2370 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2371 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2372 Connection* lconn = lport->CreateConnection(
2373 rport->Candidates()[0], Port::ORIGIN_MESSAGE);
2374#if defined(WEBRTC_WIN)
2375 EXPECT_EQ(0x2001EE9FC003D0BU, lconn->priority());
2376#else
2377 EXPECT_EQ(0x2001EE9FC003D0BLLU, lconn->priority());
2378#endif
2379
2380 lport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2381 rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2382 Connection* rconn = rport->CreateConnection(
2383 lport->Candidates()[0], Port::ORIGIN_MESSAGE);
2384#if defined(WEBRTC_WIN)
2385 EXPECT_EQ(0x2001EE9FC003D0AU, rconn->priority());
2386#else
2387 EXPECT_EQ(0x2001EE9FC003D0ALLU, rconn->priority());
2388#endif
2389}
2390
2391TEST_F(PortTest, TestWritableState) {
2392 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2393 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2394
2395 // Set up channels.
2396 TestChannel ch1(port1, port2);
2397 TestChannel ch2(port2, port1);
2398
2399 // Acquire addresses.
2400 ch1.Start();
2401 ch2.Start();
2402 ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
2403 ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
2404
2405 // Send a ping from src to dst.
2406 ch1.CreateConnection();
2407 ASSERT_TRUE(ch1.conn() != NULL);
2408 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2409 EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout); // for TCP connect
2410 ch1.Ping();
2411 WAIT(!ch2.remote_address().IsNil(), kTimeout);
2412
2413 // Data should be unsendable until the connection is accepted.
2414 char data[] = "abcd";
2415 int data_size = ARRAY_SIZE(data);
2416 rtc::PacketOptions options;
2417 EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size, options));
2418
2419 // Accept the connection to return the binding response, transition to
2420 // writable, and allow data to be sent.
2421 ch2.AcceptConnection();
2422 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
2423 kTimeout);
2424 EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
2425
2426 // Ask the connection to update state as if enough time has passed to lose
2427 // full writability and 5 pings went unresponded to. We'll accomplish the
2428 // latter by sending pings but not pumping messages.
2429 for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2430 ch1.Ping(i);
2431 }
2432 uint32 unreliable_timeout_delay = CONNECTION_WRITE_CONNECT_TIMEOUT + 500u;
2433 ch1.conn()->UpdateState(unreliable_timeout_delay);
2434 EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state());
2435
2436 // Data should be able to be sent in this state.
2437 EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
2438
2439 // And now allow the other side to process the pings and send binding
2440 // responses.
2441 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
2442 kTimeout);
2443
2444 // Wait long enough for a full timeout (past however long we've already
2445 // waited).
2446 for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2447 ch1.Ping(unreliable_timeout_delay + i);
2448 }
2449 ch1.conn()->UpdateState(unreliable_timeout_delay + CONNECTION_WRITE_TIMEOUT +
2450 500u);
2451 EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
2452
2453 // Now that the connection has completely timed out, data send should fail.
2454 EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size, options));
2455
2456 ch1.Stop();
2457 ch2.Stop();
2458}
2459
2460TEST_F(PortTest, TestTimeoutForNeverWritable) {
2461 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2462 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2463
2464 // Set up channels.
2465 TestChannel ch1(port1, port2);
2466 TestChannel ch2(port2, port1);
2467
2468 // Acquire addresses.
2469 ch1.Start();
2470 ch2.Start();
2471
2472 ch1.CreateConnection();
2473 ASSERT_TRUE(ch1.conn() != NULL);
2474 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2475
2476 // Attempt to go directly to write timeout.
2477 for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2478 ch1.Ping(i);
2479 }
2480 ch1.conn()->UpdateState(CONNECTION_WRITE_TIMEOUT + 500u);
2481 EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
2482}
2483
2484// This test verifies the connection setup between ICEMODE_FULL
2485// and ICEMODE_LITE.
2486// In this test |ch1| behaves like FULL mode client and we have created
2487// port which responds to the ping message just like LITE client.
2488TEST_F(PortTest, TestIceLiteConnectivity) {
2489 TestPort* ice_full_port = CreateTestPort(
2490 kLocalAddr1, "lfrag", "lpass", cricket::ICEPROTO_RFC5245,
2491 cricket::ICEROLE_CONTROLLING, kTiebreaker1);
2492
2493 rtc::scoped_ptr<TestPort> ice_lite_port(CreateTestPort(
2494 kLocalAddr2, "rfrag", "rpass", cricket::ICEPROTO_RFC5245,
2495 cricket::ICEROLE_CONTROLLED, kTiebreaker2));
2496 // Setup TestChannel. This behaves like FULL mode client.
2497 TestChannel ch1(ice_full_port, ice_lite_port.get());
2498 ch1.SetIceMode(ICEMODE_FULL);
2499
2500 // Start gathering candidates.
2501 ch1.Start();
2502 ice_lite_port->PrepareAddress();
2503
2504 ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
2505 ASSERT_FALSE(ice_lite_port->Candidates().empty());
2506
2507 ch1.CreateConnection();
2508 ASSERT_TRUE(ch1.conn() != NULL);
2509 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2510
2511 // Send ping from full mode client.
2512 // This ping must not have USE_CANDIDATE_ATTR.
2513 ch1.Ping();
2514
2515 // Verify stun ping is without USE_CANDIDATE_ATTR. Getting message directly
2516 // from port.
2517 ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000);
2518 IceMessage* msg = ice_full_port->last_stun_msg();
2519 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
2520
2521 // Respond with a BINDING-RESPONSE from litemode client.
2522 // NOTE: Ideally we should't create connection at this stage from lite
2523 // port, as it should be done only after receiving ping with USE_CANDIDATE.
2524 // But we need a connection to send a response message.
2525 ice_lite_port->CreateConnection(
2526 ice_full_port->Candidates()[0], cricket::Port::ORIGIN_MESSAGE);
2527 rtc::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
2528 ice_lite_port->SendBindingResponse(
2529 request.get(), ice_full_port->Candidates()[0].address());
2530
2531 // Feeding the respone message from litemode to the full mode connection.
2532 ch1.conn()->OnReadPacket(ice_lite_port->last_stun_buf()->Data(),
2533 ice_lite_port->last_stun_buf()->Length(),
2534 rtc::PacketTime());
2535 // Verifying full mode connection becomes writable from the response.
2536 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
2537 kTimeout);
2538 EXPECT_TRUE_WAIT(ch1.nominated(), kTimeout);
2539
2540 // Clear existing stun messsages. Otherwise we will process old stun
2541 // message right after we send ping.
2542 ice_full_port->Reset();
2543 // Send ping. This must have USE_CANDIDATE_ATTR.
2544 ch1.Ping();
2545 ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000);
2546 msg = ice_full_port->last_stun_msg();
2547 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
2548 ch1.Stop();
2549}
2550
2551// This test case verifies that the CONTROLLING port does not time out.
2552TEST_F(PortTest, TestControllingNoTimeout) {
2553 SetIceProtocolType(cricket::ICEPROTO_RFC5245);
2554 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2555 ConnectToSignalDestroyed(port1);
2556 port1->set_timeout_delay(10); // milliseconds
2557 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
2558 port1->SetIceTiebreaker(kTiebreaker1);
2559
2560 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2561 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
2562 port2->SetIceTiebreaker(kTiebreaker2);
2563
2564 // Set up channels and ensure both ports will be deleted.
2565 TestChannel ch1(port1, port2);
2566 TestChannel ch2(port2, port1);
2567
2568 // Simulate a connection that succeeds, and then is destroyed.
Guo-wei Shiehbe508a12015-04-06 12:48:47 -07002569 StartConnectAndStopChannels(&ch1, &ch2);
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00002570
2571 // After the connection is destroyed, the port should not be destroyed.
2572 rtc::Thread::Current()->ProcessMessages(kTimeout);
2573 EXPECT_FALSE(destroyed());
2574}
2575
2576// This test case verifies that the CONTROLLED port does time out, but only
2577// after connectivity is lost.
2578TEST_F(PortTest, TestControlledTimeout) {
2579 SetIceProtocolType(cricket::ICEPROTO_RFC5245);
2580 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2581 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
2582 port1->SetIceTiebreaker(kTiebreaker1);
2583
2584 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2585 ConnectToSignalDestroyed(port2);
2586 port2->set_timeout_delay(10); // milliseconds
2587 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
2588 port2->SetIceTiebreaker(kTiebreaker2);
2589
2590 // The connection must not be destroyed before a connection is attempted.
2591 EXPECT_FALSE(destroyed());
2592
2593 port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
2594 port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
2595
2596 // Set up channels and ensure both ports will be deleted.
2597 TestChannel ch1(port1, port2);
2598 TestChannel ch2(port2, port1);
2599
2600 // Simulate a connection that succeeds, and then is destroyed.
Guo-wei Shiehbe508a12015-04-06 12:48:47 -07002601 StartConnectAndStopChannels(&ch1, &ch2);
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00002602
2603 // The controlled port should be destroyed after 10 milliseconds.
2604 EXPECT_TRUE_WAIT(destroyed(), kTimeout);
2605}