blob: b4a024f4a4b85a1467346ce9da7f4e0f628b3c9b [file] [log] [blame]
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001/*
2 * Copyright 2004 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include "webrtc/p2p/base/basicpacketsocketfactory.h"
12#include "webrtc/p2p/base/portproxy.h"
13#include "webrtc/p2p/base/relayport.h"
14#include "webrtc/p2p/base/stunport.h"
15#include "webrtc/p2p/base/tcpport.h"
16#include "webrtc/p2p/base/testrelayserver.h"
17#include "webrtc/p2p/base/teststunserver.h"
18#include "webrtc/p2p/base/testturnserver.h"
19#include "webrtc/p2p/base/transport.h"
20#include "webrtc/p2p/base/turnport.h"
21#include "webrtc/base/crc32.h"
22#include "webrtc/base/gunit.h"
23#include "webrtc/base/helpers.h"
24#include "webrtc/base/logging.h"
25#include "webrtc/base/natserver.h"
26#include "webrtc/base/natsocketfactory.h"
27#include "webrtc/base/physicalsocketserver.h"
28#include "webrtc/base/scoped_ptr.h"
29#include "webrtc/base/socketaddress.h"
30#include "webrtc/base/ssladapter.h"
31#include "webrtc/base/stringutils.h"
32#include "webrtc/base/thread.h"
33#include "webrtc/base/virtualsocketserver.h"
34
35using rtc::AsyncPacketSocket;
36using rtc::ByteBuffer;
37using rtc::NATType;
38using rtc::NAT_OPEN_CONE;
39using rtc::NAT_ADDR_RESTRICTED;
40using rtc::NAT_PORT_RESTRICTED;
41using rtc::NAT_SYMMETRIC;
42using rtc::PacketSocketFactory;
43using rtc::scoped_ptr;
44using rtc::Socket;
45using rtc::SocketAddress;
46using namespace cricket;
47
48static const int kTimeout = 1000;
49static const SocketAddress kLocalAddr1("192.168.1.2", 0);
50static const SocketAddress kLocalAddr2("192.168.1.3", 0);
51static const SocketAddress kNatAddr1("77.77.77.77", rtc::NAT_SERVER_PORT);
52static const SocketAddress kNatAddr2("88.88.88.88", rtc::NAT_SERVER_PORT);
53static const SocketAddress kStunAddr("99.99.99.1", STUN_SERVER_PORT);
54static const SocketAddress kRelayUdpIntAddr("99.99.99.2", 5000);
55static const SocketAddress kRelayUdpExtAddr("99.99.99.3", 5001);
56static const SocketAddress kRelayTcpIntAddr("99.99.99.2", 5002);
57static const SocketAddress kRelayTcpExtAddr("99.99.99.3", 5003);
58static const SocketAddress kRelaySslTcpIntAddr("99.99.99.2", 5004);
59static const SocketAddress kRelaySslTcpExtAddr("99.99.99.3", 5005);
60static const SocketAddress kTurnUdpIntAddr("99.99.99.4", STUN_SERVER_PORT);
61static const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0);
62static const RelayCredentials kRelayCredentials("test", "test");
63
64// TODO: Update these when RFC5245 is completely supported.
65// Magic value of 30 is from RFC3484, for IPv4 addresses.
66static const uint32 kDefaultPrflxPriority = ICE_TYPE_PREFERENCE_PRFLX << 24 |
67 30 << 8 | (256 - ICE_CANDIDATE_COMPONENT_DEFAULT);
68static const int STUN_ERROR_BAD_REQUEST_AS_GICE =
69 STUN_ERROR_BAD_REQUEST / 256 * 100 + STUN_ERROR_BAD_REQUEST % 256;
70static const int STUN_ERROR_UNAUTHORIZED_AS_GICE =
71 STUN_ERROR_UNAUTHORIZED / 256 * 100 + STUN_ERROR_UNAUTHORIZED % 256;
72static const int STUN_ERROR_SERVER_ERROR_AS_GICE =
73 STUN_ERROR_SERVER_ERROR / 256 * 100 + STUN_ERROR_SERVER_ERROR % 256;
74
75static const int kTiebreaker1 = 11111;
76static const int kTiebreaker2 = 22222;
77
Guo-wei Shiehbe508a12015-04-06 12:48:47 -070078static const char* data = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";
79
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +000080static Candidate GetCandidate(Port* port) {
81 assert(port->Candidates().size() == 1);
82 return port->Candidates()[0];
83}
84
85static SocketAddress GetAddress(Port* port) {
86 return GetCandidate(port).address();
87}
88
89static IceMessage* CopyStunMessage(const IceMessage* src) {
90 IceMessage* dst = new IceMessage();
91 ByteBuffer buf;
92 src->Write(&buf);
93 dst->Read(&buf);
94 return dst;
95}
96
97static bool WriteStunMessage(const StunMessage* msg, ByteBuffer* buf) {
98 buf->Resize(0); // clear out any existing buffer contents
99 return msg->Write(buf);
100}
101
102// Stub port class for testing STUN generation and processing.
103class TestPort : public Port {
104 public:
pkasting@chromium.org332331f2014-11-06 20:19:22 +0000105 TestPort(rtc::Thread* thread,
106 const std::string& type,
107 rtc::PacketSocketFactory* factory,
108 rtc::Network* network,
109 const rtc::IPAddress& ip,
110 uint16 min_port,
111 uint16 max_port,
112 const std::string& username_fragment,
113 const std::string& password)
114 : Port(thread, type, factory, network, ip, min_port, max_port,
115 username_fragment, password) {
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000116 }
117 ~TestPort() {}
118
119 // Expose GetStunMessage so that we can test it.
120 using cricket::Port::GetStunMessage;
121
122 // The last StunMessage that was sent on this Port.
123 // TODO: Make these const; requires changes to SendXXXXResponse.
124 ByteBuffer* last_stun_buf() { return last_stun_buf_.get(); }
125 IceMessage* last_stun_msg() { return last_stun_msg_.get(); }
126 int last_stun_error_code() {
127 int code = 0;
128 if (last_stun_msg_) {
129 const StunErrorCodeAttribute* error_attr = last_stun_msg_->GetErrorCode();
130 if (error_attr) {
131 code = error_attr->code();
132 }
133 }
134 return code;
135 }
136
137 virtual void PrepareAddress() {
138 rtc::SocketAddress addr(ip(), min_port());
139 AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", Type(),
140 ICE_TYPE_PREFERENCE_HOST, 0, true);
141 }
142
143 // Exposed for testing candidate building.
144 void AddCandidateAddress(const rtc::SocketAddress& addr) {
145 AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", Type(),
146 type_preference_, 0, false);
147 }
148 void AddCandidateAddress(const rtc::SocketAddress& addr,
149 const rtc::SocketAddress& base_address,
150 const std::string& type,
151 int type_preference,
152 bool final) {
153 AddAddress(addr, base_address, rtc::SocketAddress(), "udp", "", type,
154 type_preference, 0, final);
155 }
156
157 virtual Connection* CreateConnection(const Candidate& remote_candidate,
158 CandidateOrigin origin) {
159 Connection* conn = new ProxyConnection(this, 0, remote_candidate);
160 AddConnection(conn);
161 // Set use-candidate attribute flag as this will add USE-CANDIDATE attribute
162 // in STUN binding requests.
163 conn->set_use_candidate_attr(true);
164 return conn;
165 }
166 virtual int SendTo(
167 const void* data, size_t size, const rtc::SocketAddress& addr,
168 const rtc::PacketOptions& options, bool payload) {
169 if (!payload) {
170 IceMessage* msg = new IceMessage;
171 ByteBuffer* buf = new ByteBuffer(static_cast<const char*>(data), size);
172 ByteBuffer::ReadPosition pos(buf->GetReadPosition());
173 if (!msg->Read(buf)) {
174 delete msg;
175 delete buf;
176 return -1;
177 }
178 buf->SetReadPosition(pos);
179 last_stun_buf_.reset(buf);
180 last_stun_msg_.reset(msg);
181 }
182 return static_cast<int>(size);
183 }
184 virtual int SetOption(rtc::Socket::Option opt, int value) {
185 return 0;
186 }
187 virtual int GetOption(rtc::Socket::Option opt, int* value) {
188 return -1;
189 }
190 virtual int GetError() {
191 return 0;
192 }
193 void Reset() {
194 last_stun_buf_.reset();
195 last_stun_msg_.reset();
196 }
197 void set_type_preference(int type_preference) {
198 type_preference_ = type_preference;
199 }
200
201 private:
202 rtc::scoped_ptr<ByteBuffer> last_stun_buf_;
203 rtc::scoped_ptr<IceMessage> last_stun_msg_;
204 int type_preference_;
205};
206
207class TestChannel : public sigslot::has_slots<> {
208 public:
209 // Takes ownership of |p1| (but not |p2|).
210 TestChannel(Port* p1, Port* p2)
211 : ice_mode_(ICEMODE_FULL), src_(p1), dst_(p2), complete_count_(0),
pthatcher@webrtc.org0ba15332015-01-10 00:47:02 +0000212 conn_(NULL), remote_request_(), nominated_(false) {
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000213 src_->SignalPortComplete.connect(
214 this, &TestChannel::OnPortComplete);
215 src_->SignalUnknownAddress.connect(this, &TestChannel::OnUnknownAddress);
216 src_->SignalDestroyed.connect(this, &TestChannel::OnSrcPortDestroyed);
217 }
218
219 int complete_count() { return complete_count_; }
220 Connection* conn() { return conn_; }
221 const SocketAddress& remote_address() { return remote_address_; }
222 const std::string remote_fragment() { return remote_frag_; }
223
224 void Start() {
225 src_->PrepareAddress();
226 }
227 void CreateConnection() {
228 conn_ = src_->CreateConnection(GetCandidate(dst_), Port::ORIGIN_MESSAGE);
229 IceMode remote_ice_mode =
230 (ice_mode_ == ICEMODE_FULL) ? ICEMODE_LITE : ICEMODE_FULL;
231 conn_->set_remote_ice_mode(remote_ice_mode);
232 conn_->set_use_candidate_attr(remote_ice_mode == ICEMODE_FULL);
233 conn_->SignalStateChange.connect(
234 this, &TestChannel::OnConnectionStateChange);
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700235 conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000236 }
237 void OnConnectionStateChange(Connection* conn) {
238 if (conn->write_state() == Connection::STATE_WRITABLE) {
239 conn->set_use_candidate_attr(true);
240 nominated_ = true;
241 }
242 }
243 void AcceptConnection() {
244 ASSERT_TRUE(remote_request_.get() != NULL);
245 Candidate c = GetCandidate(dst_);
246 c.set_address(remote_address_);
247 conn_ = src_->CreateConnection(c, Port::ORIGIN_MESSAGE);
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700248 conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000249 src_->SendBindingResponse(remote_request_.get(), remote_address_);
250 remote_request_.reset();
251 }
252 void Ping() {
253 Ping(0);
254 }
255 void Ping(uint32 now) {
256 conn_->Ping(now);
257 }
258 void Stop() {
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700259 if (conn_) {
260 conn_->Destroy();
261 }
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000262 }
263
264 void OnPortComplete(Port* port) {
265 complete_count_++;
266 }
267 void SetIceMode(IceMode ice_mode) {
268 ice_mode_ = ice_mode;
269 }
270
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700271 int SendData(const char* data, size_t len) {
272 rtc::PacketOptions options;
273 return conn_->Send(data, len, options);
274 }
275
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000276 void OnUnknownAddress(PortInterface* port, const SocketAddress& addr,
277 ProtocolType proto,
278 IceMessage* msg, const std::string& rf,
279 bool /*port_muxed*/) {
280 ASSERT_EQ(src_.get(), port);
281 if (!remote_address_.IsNil()) {
282 ASSERT_EQ(remote_address_, addr);
283 }
284 // MI and PRIORITY attribute should be present in ping requests when port
285 // is in ICEPROTO_RFC5245 mode.
286 const cricket::StunUInt32Attribute* priority_attr =
287 msg->GetUInt32(STUN_ATTR_PRIORITY);
288 const cricket::StunByteStringAttribute* mi_attr =
289 msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY);
290 const cricket::StunUInt32Attribute* fingerprint_attr =
291 msg->GetUInt32(STUN_ATTR_FINGERPRINT);
292 if (src_->IceProtocol() == cricket::ICEPROTO_RFC5245) {
293 EXPECT_TRUE(priority_attr != NULL);
294 EXPECT_TRUE(mi_attr != NULL);
295 EXPECT_TRUE(fingerprint_attr != NULL);
296 } else {
297 EXPECT_TRUE(priority_attr == NULL);
298 EXPECT_TRUE(mi_attr == NULL);
299 EXPECT_TRUE(fingerprint_attr == NULL);
300 }
301 remote_address_ = addr;
302 remote_request_.reset(CopyStunMessage(msg));
303 remote_frag_ = rf;
304 }
305
306 void OnDestroyed(Connection* conn) {
307 ASSERT_EQ(conn_, conn);
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700308 LOG(INFO) << "OnDestroy connection " << conn << " deleted";
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000309 conn_ = NULL;
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700310 // When the connection is destroyed, also clear these fields so future
311 // connections are possible.
312 remote_request_.reset();
313 remote_address_.Clear();
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000314 }
315
316 void OnSrcPortDestroyed(PortInterface* port) {
317 Port* destroyed_src = src_.release();
318 ASSERT_EQ(destroyed_src, port);
319 }
320
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700321 Port* src_port() { return src_.get(); }
322
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000323 bool nominated() const { return nominated_; }
324
325 private:
326 IceMode ice_mode_;
327 rtc::scoped_ptr<Port> src_;
328 Port* dst_;
329
330 int complete_count_;
331 Connection* conn_;
332 SocketAddress remote_address_;
333 rtc::scoped_ptr<StunMessage> remote_request_;
334 std::string remote_frag_;
335 bool nominated_;
336};
337
338class PortTest : public testing::Test, public sigslot::has_slots<> {
339 public:
340 PortTest()
341 : main_(rtc::Thread::Current()),
342 pss_(new rtc::PhysicalSocketServer),
343 ss_(new rtc::VirtualSocketServer(pss_.get())),
344 ss_scope_(ss_.get()),
345 network_("unittest", "unittest", rtc::IPAddress(INADDR_ANY), 32),
346 socket_factory_(rtc::Thread::Current()),
347 nat_factory1_(ss_.get(), kNatAddr1),
348 nat_factory2_(ss_.get(), kNatAddr2),
349 nat_socket_factory1_(&nat_factory1_),
350 nat_socket_factory2_(&nat_factory2_),
351 stun_server_(TestStunServer::Create(main_, kStunAddr)),
352 turn_server_(main_, kTurnUdpIntAddr, kTurnUdpExtAddr),
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700353 relay_server_(main_,
354 kRelayUdpIntAddr,
355 kRelayUdpExtAddr,
356 kRelayTcpIntAddr,
357 kRelayTcpExtAddr,
358 kRelaySslTcpIntAddr,
359 kRelaySslTcpExtAddr),
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000360 username_(rtc::CreateRandomString(ICE_UFRAG_LENGTH)),
361 password_(rtc::CreateRandomString(ICE_PWD_LENGTH)),
362 ice_protocol_(cricket::ICEPROTO_GOOGLE),
363 role_conflict_(false),
364 destroyed_(false) {
365 network_.AddIP(rtc::IPAddress(INADDR_ANY));
366 }
367
368 protected:
369 void TestLocalToLocal() {
370 Port* port1 = CreateUdpPort(kLocalAddr1);
371 Port* port2 = CreateUdpPort(kLocalAddr2);
372 TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
373 }
374 void TestLocalToStun(NATType ntype) {
375 Port* port1 = CreateUdpPort(kLocalAddr1);
376 nat_server2_.reset(CreateNatServer(kNatAddr2, ntype));
377 Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
378 TestConnectivity("udp", port1, StunName(ntype), port2,
379 ntype == NAT_OPEN_CONE, true,
380 ntype != NAT_SYMMETRIC, true);
381 }
382 void TestLocalToRelay(RelayType rtype, ProtocolType proto) {
383 Port* port1 = CreateUdpPort(kLocalAddr1);
384 Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
385 TestConnectivity("udp", port1, RelayName(rtype, proto), port2,
386 rtype == RELAY_GTURN, true, true, true);
387 }
388 void TestStunToLocal(NATType ntype) {
389 nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
390 Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
391 Port* port2 = CreateUdpPort(kLocalAddr2);
392 TestConnectivity(StunName(ntype), port1, "udp", port2,
393 true, ntype != NAT_SYMMETRIC, true, true);
394 }
395 void TestStunToStun(NATType ntype1, NATType ntype2) {
396 nat_server1_.reset(CreateNatServer(kNatAddr1, ntype1));
397 Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
398 nat_server2_.reset(CreateNatServer(kNatAddr2, ntype2));
399 Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
400 TestConnectivity(StunName(ntype1), port1, StunName(ntype2), port2,
401 ntype2 == NAT_OPEN_CONE,
402 ntype1 != NAT_SYMMETRIC, ntype2 != NAT_SYMMETRIC,
403 ntype1 + ntype2 < (NAT_PORT_RESTRICTED + NAT_SYMMETRIC));
404 }
405 void TestStunToRelay(NATType ntype, RelayType rtype, ProtocolType proto) {
406 nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
407 Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
408 Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
409 TestConnectivity(StunName(ntype), port1, RelayName(rtype, proto), port2,
410 rtype == RELAY_GTURN, ntype != NAT_SYMMETRIC, true, true);
411 }
412 void TestTcpToTcp() {
413 Port* port1 = CreateTcpPort(kLocalAddr1);
414 Port* port2 = CreateTcpPort(kLocalAddr2);
415 TestConnectivity("tcp", port1, "tcp", port2, true, false, true, true);
416 }
417 void TestTcpToRelay(RelayType rtype, ProtocolType proto) {
418 Port* port1 = CreateTcpPort(kLocalAddr1);
419 Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_TCP);
420 TestConnectivity("tcp", port1, RelayName(rtype, proto), port2,
421 rtype == RELAY_GTURN, false, true, true);
422 }
423 void TestSslTcpToRelay(RelayType rtype, ProtocolType proto) {
424 Port* port1 = CreateTcpPort(kLocalAddr1);
425 Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_SSLTCP);
426 TestConnectivity("ssltcp", port1, RelayName(rtype, proto), port2,
427 rtype == RELAY_GTURN, false, true, true);
428 }
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000429 // helpers for above functions
430 UDPPort* CreateUdpPort(const SocketAddress& addr) {
431 return CreateUdpPort(addr, &socket_factory_);
432 }
433 UDPPort* CreateUdpPort(const SocketAddress& addr,
434 PacketSocketFactory* socket_factory) {
435 UDPPort* port = UDPPort::Create(main_, socket_factory, &network_,
pthatcher@webrtc.org0ba15332015-01-10 00:47:02 +0000436 addr.ipaddr(), 0, 0, username_, password_,
437 std::string());
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000438 port->SetIceProtocolType(ice_protocol_);
439 return port;
440 }
441 TCPPort* CreateTcpPort(const SocketAddress& addr) {
442 TCPPort* port = CreateTcpPort(addr, &socket_factory_);
443 port->SetIceProtocolType(ice_protocol_);
444 return port;
445 }
446 TCPPort* CreateTcpPort(const SocketAddress& addr,
447 PacketSocketFactory* socket_factory) {
448 TCPPort* port = TCPPort::Create(main_, socket_factory, &network_,
449 addr.ipaddr(), 0, 0, username_, password_,
450 true);
451 port->SetIceProtocolType(ice_protocol_);
452 return port;
453 }
454 StunPort* CreateStunPort(const SocketAddress& addr,
455 rtc::PacketSocketFactory* factory) {
456 ServerAddresses stun_servers;
457 stun_servers.insert(kStunAddr);
458 StunPort* port = StunPort::Create(main_, factory, &network_,
459 addr.ipaddr(), 0, 0,
pthatcher@webrtc.org0ba15332015-01-10 00:47:02 +0000460 username_, password_, stun_servers,
461 std::string());
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000462 port->SetIceProtocolType(ice_protocol_);
463 return port;
464 }
465 Port* CreateRelayPort(const SocketAddress& addr, RelayType rtype,
466 ProtocolType int_proto, ProtocolType ext_proto) {
467 if (rtype == RELAY_TURN) {
468 return CreateTurnPort(addr, &socket_factory_, int_proto, ext_proto);
469 } else {
470 return CreateGturnPort(addr, int_proto, ext_proto);
471 }
472 }
473 TurnPort* CreateTurnPort(const SocketAddress& addr,
474 PacketSocketFactory* socket_factory,
475 ProtocolType int_proto, ProtocolType ext_proto) {
476 return CreateTurnPort(addr, socket_factory,
477 int_proto, ext_proto, kTurnUdpIntAddr);
478 }
479 TurnPort* CreateTurnPort(const SocketAddress& addr,
480 PacketSocketFactory* socket_factory,
481 ProtocolType int_proto, ProtocolType ext_proto,
482 const rtc::SocketAddress& server_addr) {
483 TurnPort* port = TurnPort::Create(main_, socket_factory, &network_,
484 addr.ipaddr(), 0, 0,
485 username_, password_, ProtocolAddress(
pthatcher@webrtc.org0ba15332015-01-10 00:47:02 +0000486 server_addr, PROTO_UDP),
487 kRelayCredentials, 0,
488 std::string());
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000489 port->SetIceProtocolType(ice_protocol_);
490 return port;
491 }
492 RelayPort* CreateGturnPort(const SocketAddress& addr,
493 ProtocolType int_proto, ProtocolType ext_proto) {
494 RelayPort* port = CreateGturnPort(addr);
495 SocketAddress addrs[] =
496 { kRelayUdpIntAddr, kRelayTcpIntAddr, kRelaySslTcpIntAddr };
497 port->AddServerAddress(ProtocolAddress(addrs[int_proto], int_proto));
498 return port;
499 }
500 RelayPort* CreateGturnPort(const SocketAddress& addr) {
501 RelayPort* port = RelayPort::Create(main_, &socket_factory_, &network_,
502 addr.ipaddr(), 0, 0,
503 username_, password_);
504 // TODO: Add an external address for ext_proto, so that the
505 // other side can connect to this port using a non-UDP protocol.
506 port->SetIceProtocolType(ice_protocol_);
507 return port;
508 }
509 rtc::NATServer* CreateNatServer(const SocketAddress& addr,
510 rtc::NATType type) {
511 return new rtc::NATServer(type, ss_.get(), addr, ss_.get(), addr);
512 }
513 static const char* StunName(NATType type) {
514 switch (type) {
515 case NAT_OPEN_CONE: return "stun(open cone)";
516 case NAT_ADDR_RESTRICTED: return "stun(addr restricted)";
517 case NAT_PORT_RESTRICTED: return "stun(port restricted)";
518 case NAT_SYMMETRIC: return "stun(symmetric)";
519 default: return "stun(?)";
520 }
521 }
522 static const char* RelayName(RelayType type, ProtocolType proto) {
523 if (type == RELAY_TURN) {
524 switch (proto) {
525 case PROTO_UDP: return "turn(udp)";
526 case PROTO_TCP: return "turn(tcp)";
527 case PROTO_SSLTCP: return "turn(ssltcp)";
528 default: return "turn(?)";
529 }
530 } else {
531 switch (proto) {
532 case PROTO_UDP: return "gturn(udp)";
533 case PROTO_TCP: return "gturn(tcp)";
534 case PROTO_SSLTCP: return "gturn(ssltcp)";
535 default: return "gturn(?)";
536 }
537 }
538 }
539
540 void TestCrossFamilyPorts(int type);
541
542 // This does all the work and then deletes |port1| and |port2|.
543 void TestConnectivity(const char* name1, Port* port1,
544 const char* name2, Port* port2,
545 bool accept, bool same_addr1,
546 bool same_addr2, bool possible);
547
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700548 // This connects the provided channels which have already started. |ch1|
549 // should have its Connection created (either through CreateConnection() or
550 // TCP reconnecting mechanism before entering this function.
551 void ConnectStartedChannels(TestChannel* ch1, TestChannel* ch2) {
552 ASSERT_TRUE(ch1->conn());
553 EXPECT_TRUE_WAIT(ch1->conn()->connected(), kTimeout); // for TCP connect
554 ch1->Ping();
555 WAIT(!ch2->remote_address().IsNil(), kTimeout);
556
557 // Send a ping from dst to src.
558 ch2->AcceptConnection();
559 ch2->Ping();
560 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2->conn()->write_state(),
561 kTimeout);
562 }
563
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000564 // This connects and disconnects the provided channels in the same sequence as
565 // TestConnectivity with all options set to |true|. It does not delete either
566 // channel.
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700567 void StartConnectAndStopChannels(TestChannel* ch1, TestChannel* ch2) {
568 // Acquire addresses.
569 ch1->Start();
570 ch2->Start();
571
572 ch1->CreateConnection();
573 ConnectStartedChannels(ch1, ch2);
574
575 // Destroy the connections.
576 ch1->Stop();
577 ch2->Stop();
578 }
579
580 // This disconnects both end's Connection and make sure ch2 ready for new
581 // connection.
582 void DisconnectTcpTestChannels(TestChannel* ch1, TestChannel* ch2) {
583 ASSERT_TRUE(ss_->CloseTcpConnections(
584 static_cast<TCPConnection*>(ch1->conn())->socket()->GetLocalAddress(),
585 static_cast<TCPConnection*>(ch2->conn())->socket()->GetLocalAddress()));
586
587 // Wait for both OnClose are delivered.
588 EXPECT_TRUE_WAIT(!ch1->conn()->connected(), kTimeout);
589 EXPECT_TRUE_WAIT(!ch2->conn()->connected(), kTimeout);
590
591 // Destroy channel2 connection to get ready for new incoming TCPConnection.
592 ch2->conn()->Destroy();
593 EXPECT_TRUE_WAIT(ch2->conn() == NULL, kTimeout);
594 }
595
596 void TestTcpReconnect(bool ping_after_disconnected,
597 bool send_after_disconnected) {
598 Port* port1 = CreateTcpPort(kLocalAddr1);
599 Port* port2 = CreateTcpPort(kLocalAddr2);
600
601 port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
602 port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
603
604 // Set up channels and ensure both ports will be deleted.
605 TestChannel ch1(port1, port2);
606 TestChannel ch2(port2, port1);
607 EXPECT_EQ(0, ch1.complete_count());
608 EXPECT_EQ(0, ch2.complete_count());
609
610 ch1.Start();
611 ch2.Start();
612 ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
613 ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
614
615 // Initial connecting the channel, create connection on channel1.
616 ch1.CreateConnection();
617 ConnectStartedChannels(&ch1, &ch2);
618
619 // Shorten the timeout period.
620 const int kTcpReconnectTimeout = kTimeout;
621 static_cast<TCPConnection*>(ch1.conn())
622 ->set_reconnection_timeout(kTcpReconnectTimeout);
623 static_cast<TCPConnection*>(ch2.conn())
624 ->set_reconnection_timeout(kTcpReconnectTimeout);
625
626 // Once connected, disconnect them.
627 DisconnectTcpTestChannels(&ch1, &ch2);
628
629 if (send_after_disconnected || ping_after_disconnected) {
630 if (send_after_disconnected) {
631 // First SendData after disconnect should fail but will trigger
632 // reconnect.
633 EXPECT_EQ(-1, ch1.SendData(data, static_cast<int>(strlen(data))));
634 }
635
636 if (ping_after_disconnected) {
637 // Ping should trigger reconnect.
638 ch1.Ping();
639 }
640
641 // Wait for channel's outgoing TCPConnection connected.
642 EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout);
643
644 // Verify that we could still connect channels.
645 ConnectStartedChannels(&ch1, &ch2);
646 } else {
647 EXPECT_EQ(ch1.conn()->write_state(), Connection::STATE_WRITABLE);
648 EXPECT_TRUE_WAIT(
649 ch1.conn()->write_state() == Connection::STATE_WRITE_TIMEOUT,
650 kTcpReconnectTimeout + kTimeout);
651 }
652
653 // Tear down and ensure that goes smoothly.
654 ch1.Stop();
655 ch2.Stop();
656 EXPECT_TRUE_WAIT(ch1.conn() == NULL, kTimeout);
657 EXPECT_TRUE_WAIT(ch2.conn() == NULL, kTimeout);
658 }
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000659
660 void SetIceProtocolType(cricket::IceProtocolType protocol) {
661 ice_protocol_ = protocol;
662 }
663
664 IceMessage* CreateStunMessage(int type) {
665 IceMessage* msg = new IceMessage();
666 msg->SetType(type);
667 msg->SetTransactionID("TESTTESTTEST");
668 return msg;
669 }
670 IceMessage* CreateStunMessageWithUsername(int type,
671 const std::string& username) {
672 IceMessage* msg = CreateStunMessage(type);
673 msg->AddAttribute(
674 new StunByteStringAttribute(STUN_ATTR_USERNAME, username));
675 return msg;
676 }
677 TestPort* CreateTestPort(const rtc::SocketAddress& addr,
678 const std::string& username,
679 const std::string& password) {
680 TestPort* port = new TestPort(main_, "test", &socket_factory_, &network_,
681 addr.ipaddr(), 0, 0, username, password);
682 port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict);
683 return port;
684 }
685 TestPort* CreateTestPort(const rtc::SocketAddress& addr,
686 const std::string& username,
687 const std::string& password,
688 cricket::IceProtocolType type,
689 cricket::IceRole role,
690 int tiebreaker) {
691 TestPort* port = CreateTestPort(addr, username, password);
692 port->SetIceProtocolType(type);
693 port->SetIceRole(role);
694 port->SetIceTiebreaker(tiebreaker);
695 return port;
696 }
697
698 void OnRoleConflict(PortInterface* port) {
699 role_conflict_ = true;
700 }
701 bool role_conflict() const { return role_conflict_; }
702
703 void ConnectToSignalDestroyed(PortInterface* port) {
704 port->SignalDestroyed.connect(this, &PortTest::OnDestroyed);
705 }
706
707 void OnDestroyed(PortInterface* port) {
708 destroyed_ = true;
709 }
710 bool destroyed() const { return destroyed_; }
711
712 rtc::BasicPacketSocketFactory* nat_socket_factory1() {
713 return &nat_socket_factory1_;
714 }
715
716 private:
717 rtc::Thread* main_;
718 rtc::scoped_ptr<rtc::PhysicalSocketServer> pss_;
719 rtc::scoped_ptr<rtc::VirtualSocketServer> ss_;
720 rtc::SocketServerScope ss_scope_;
721 rtc::Network network_;
722 rtc::BasicPacketSocketFactory socket_factory_;
723 rtc::scoped_ptr<rtc::NATServer> nat_server1_;
724 rtc::scoped_ptr<rtc::NATServer> nat_server2_;
725 rtc::NATSocketFactory nat_factory1_;
726 rtc::NATSocketFactory nat_factory2_;
727 rtc::BasicPacketSocketFactory nat_socket_factory1_;
728 rtc::BasicPacketSocketFactory nat_socket_factory2_;
729 scoped_ptr<TestStunServer> stun_server_;
730 TestTurnServer turn_server_;
731 TestRelayServer relay_server_;
732 std::string username_;
733 std::string password_;
734 cricket::IceProtocolType ice_protocol_;
735 bool role_conflict_;
736 bool destroyed_;
737};
738
739void PortTest::TestConnectivity(const char* name1, Port* port1,
740 const char* name2, Port* port2,
741 bool accept, bool same_addr1,
742 bool same_addr2, bool possible) {
743 LOG(LS_INFO) << "Test: " << name1 << " to " << name2 << ": ";
744 port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
745 port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
746
747 // Set up channels and ensure both ports will be deleted.
748 TestChannel ch1(port1, port2);
749 TestChannel ch2(port2, port1);
750 EXPECT_EQ(0, ch1.complete_count());
751 EXPECT_EQ(0, ch2.complete_count());
752
753 // Acquire addresses.
754 ch1.Start();
755 ch2.Start();
756 ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
757 ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
758
759 // Send a ping from src to dst. This may or may not make it.
760 ch1.CreateConnection();
761 ASSERT_TRUE(ch1.conn() != NULL);
762 EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout); // for TCP connect
763 ch1.Ping();
764 WAIT(!ch2.remote_address().IsNil(), kTimeout);
765
766 if (accept) {
767 // We are able to send a ping from src to dst. This is the case when
768 // sending to UDP ports and cone NATs.
769 EXPECT_TRUE(ch1.remote_address().IsNil());
770 EXPECT_EQ(ch2.remote_fragment(), port1->username_fragment());
771
772 // Ensure the ping came from the same address used for src.
773 // This is the case unless the source NAT was symmetric.
774 if (same_addr1) EXPECT_EQ(ch2.remote_address(), GetAddress(port1));
775 EXPECT_TRUE(same_addr2);
776
777 // Send a ping from dst to src.
778 ch2.AcceptConnection();
779 ASSERT_TRUE(ch2.conn() != NULL);
780 ch2.Ping();
781 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(),
782 kTimeout);
783 } else {
784 // We can't send a ping from src to dst, so flip it around. This will happen
785 // when the destination NAT is addr/port restricted or symmetric.
786 EXPECT_TRUE(ch1.remote_address().IsNil());
787 EXPECT_TRUE(ch2.remote_address().IsNil());
788
789 // Send a ping from dst to src. Again, this may or may not make it.
790 ch2.CreateConnection();
791 ASSERT_TRUE(ch2.conn() != NULL);
792 ch2.Ping();
793 WAIT(ch2.conn()->write_state() == Connection::STATE_WRITABLE, kTimeout);
794
795 if (same_addr1 && same_addr2) {
796 // The new ping got back to the source.
797 EXPECT_EQ(Connection::STATE_READABLE, ch1.conn()->read_state());
798 EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
799
800 // First connection may not be writable if the first ping did not get
801 // through. So we will have to do another.
802 if (ch1.conn()->write_state() == Connection::STATE_WRITE_INIT) {
803 ch1.Ping();
804 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
805 kTimeout);
806 }
807 } else if (!same_addr1 && possible) {
808 // The new ping went to the candidate address, but that address was bad.
809 // This will happen when the source NAT is symmetric.
810 EXPECT_TRUE(ch1.remote_address().IsNil());
811 EXPECT_TRUE(ch2.remote_address().IsNil());
812
813 // However, since we have now sent a ping to the source IP, we should be
814 // able to get a ping from it. This gives us the real source address.
815 ch1.Ping();
816 EXPECT_TRUE_WAIT(!ch2.remote_address().IsNil(), kTimeout);
817 EXPECT_EQ(Connection::STATE_READ_INIT, ch2.conn()->read_state());
818 EXPECT_TRUE(ch1.remote_address().IsNil());
819
820 // Pick up the actual address and establish the connection.
821 ch2.AcceptConnection();
822 ASSERT_TRUE(ch2.conn() != NULL);
823 ch2.Ping();
824 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(),
825 kTimeout);
826 } else if (!same_addr2 && possible) {
827 // The new ping came in, but from an unexpected address. This will happen
828 // when the destination NAT is symmetric.
829 EXPECT_FALSE(ch1.remote_address().IsNil());
830 EXPECT_EQ(Connection::STATE_READ_INIT, ch1.conn()->read_state());
831
832 // Update our address and complete the connection.
833 ch1.AcceptConnection();
834 ch1.Ping();
835 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
836 kTimeout);
837 } else { // (!possible)
838 // There should be s no way for the pings to reach each other. Check it.
839 EXPECT_TRUE(ch1.remote_address().IsNil());
840 EXPECT_TRUE(ch2.remote_address().IsNil());
841 ch1.Ping();
842 WAIT(!ch2.remote_address().IsNil(), kTimeout);
843 EXPECT_TRUE(ch1.remote_address().IsNil());
844 EXPECT_TRUE(ch2.remote_address().IsNil());
845 }
846 }
847
848 // Everything should be good, unless we know the situation is impossible.
849 ASSERT_TRUE(ch1.conn() != NULL);
850 ASSERT_TRUE(ch2.conn() != NULL);
851 if (possible) {
852 EXPECT_EQ(Connection::STATE_READABLE, ch1.conn()->read_state());
853 EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
854 EXPECT_EQ(Connection::STATE_READABLE, ch2.conn()->read_state());
855 EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
856 } else {
857 EXPECT_NE(Connection::STATE_READABLE, ch1.conn()->read_state());
858 EXPECT_NE(Connection::STATE_WRITABLE, ch1.conn()->write_state());
859 EXPECT_NE(Connection::STATE_READABLE, ch2.conn()->read_state());
860 EXPECT_NE(Connection::STATE_WRITABLE, ch2.conn()->write_state());
861 }
862
863 // Tear down and ensure that goes smoothly.
864 ch1.Stop();
865 ch2.Stop();
866 EXPECT_TRUE_WAIT(ch1.conn() == NULL, kTimeout);
867 EXPECT_TRUE_WAIT(ch2.conn() == NULL, kTimeout);
868}
869
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000870class FakePacketSocketFactory : public rtc::PacketSocketFactory {
871 public:
872 FakePacketSocketFactory()
873 : next_udp_socket_(NULL),
874 next_server_tcp_socket_(NULL),
875 next_client_tcp_socket_(NULL) {
876 }
pkasting@chromium.org332331f2014-11-06 20:19:22 +0000877 ~FakePacketSocketFactory() override { }
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000878
pkasting@chromium.org332331f2014-11-06 20:19:22 +0000879 AsyncPacketSocket* CreateUdpSocket(const SocketAddress& address,
880 uint16 min_port,
881 uint16 max_port) override {
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000882 EXPECT_TRUE(next_udp_socket_ != NULL);
883 AsyncPacketSocket* result = next_udp_socket_;
884 next_udp_socket_ = NULL;
885 return result;
886 }
887
pkasting@chromium.org332331f2014-11-06 20:19:22 +0000888 AsyncPacketSocket* CreateServerTcpSocket(const SocketAddress& local_address,
889 uint16 min_port,
890 uint16 max_port,
891 int opts) override {
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000892 EXPECT_TRUE(next_server_tcp_socket_ != NULL);
893 AsyncPacketSocket* result = next_server_tcp_socket_;
894 next_server_tcp_socket_ = NULL;
895 return result;
896 }
897
898 // TODO: |proxy_info| and |user_agent| should be set
899 // per-factory and not when socket is created.
pkasting@chromium.org332331f2014-11-06 20:19:22 +0000900 AsyncPacketSocket* CreateClientTcpSocket(const SocketAddress& local_address,
901 const SocketAddress& remote_address,
902 const rtc::ProxyInfo& proxy_info,
903 const std::string& user_agent,
904 int opts) override {
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000905 EXPECT_TRUE(next_client_tcp_socket_ != NULL);
906 AsyncPacketSocket* result = next_client_tcp_socket_;
907 next_client_tcp_socket_ = NULL;
908 return result;
909 }
910
911 void set_next_udp_socket(AsyncPacketSocket* next_udp_socket) {
912 next_udp_socket_ = next_udp_socket;
913 }
914 void set_next_server_tcp_socket(AsyncPacketSocket* next_server_tcp_socket) {
915 next_server_tcp_socket_ = next_server_tcp_socket;
916 }
917 void set_next_client_tcp_socket(AsyncPacketSocket* next_client_tcp_socket) {
918 next_client_tcp_socket_ = next_client_tcp_socket;
919 }
920 rtc::AsyncResolverInterface* CreateAsyncResolver() {
921 return NULL;
922 }
923
924 private:
925 AsyncPacketSocket* next_udp_socket_;
926 AsyncPacketSocket* next_server_tcp_socket_;
927 AsyncPacketSocket* next_client_tcp_socket_;
928};
929
930class FakeAsyncPacketSocket : public AsyncPacketSocket {
931 public:
932 // Returns current local address. Address may be set to NULL if the
933 // socket is not bound yet (GetState() returns STATE_BINDING).
934 virtual SocketAddress GetLocalAddress() const {
935 return SocketAddress();
936 }
937
938 // Returns remote address. Returns zeroes if this is not a client TCP socket.
939 virtual SocketAddress GetRemoteAddress() const {
940 return SocketAddress();
941 }
942
943 // Send a packet.
944 virtual int Send(const void *pv, size_t cb,
945 const rtc::PacketOptions& options) {
946 return static_cast<int>(cb);
947 }
948 virtual int SendTo(const void *pv, size_t cb, const SocketAddress& addr,
949 const rtc::PacketOptions& options) {
950 return static_cast<int>(cb);
951 }
952 virtual int Close() {
953 return 0;
954 }
955
956 virtual State GetState() const { return state_; }
957 virtual int GetOption(Socket::Option opt, int* value) { return 0; }
958 virtual int SetOption(Socket::Option opt, int value) { return 0; }
959 virtual int GetError() const { return 0; }
960 virtual void SetError(int error) { }
961
962 void set_state(State state) { state_ = state; }
963
964 private:
965 State state_;
966};
967
968// Local -> XXXX
969TEST_F(PortTest, TestLocalToLocal) {
970 TestLocalToLocal();
971}
972
973TEST_F(PortTest, TestLocalToConeNat) {
974 TestLocalToStun(NAT_OPEN_CONE);
975}
976
977TEST_F(PortTest, TestLocalToARNat) {
978 TestLocalToStun(NAT_ADDR_RESTRICTED);
979}
980
981TEST_F(PortTest, TestLocalToPRNat) {
982 TestLocalToStun(NAT_PORT_RESTRICTED);
983}
984
985TEST_F(PortTest, TestLocalToSymNat) {
986 TestLocalToStun(NAT_SYMMETRIC);
987}
988
989// Flaky: https://code.google.com/p/webrtc/issues/detail?id=3316.
990TEST_F(PortTest, DISABLED_TestLocalToTurn) {
991 TestLocalToRelay(RELAY_TURN, PROTO_UDP);
992}
993
994TEST_F(PortTest, TestLocalToGturn) {
995 TestLocalToRelay(RELAY_GTURN, PROTO_UDP);
996}
997
998TEST_F(PortTest, TestLocalToTcpGturn) {
999 TestLocalToRelay(RELAY_GTURN, PROTO_TCP);
1000}
1001
1002TEST_F(PortTest, TestLocalToSslTcpGturn) {
1003 TestLocalToRelay(RELAY_GTURN, PROTO_SSLTCP);
1004}
1005
1006// Cone NAT -> XXXX
1007TEST_F(PortTest, TestConeNatToLocal) {
1008 TestStunToLocal(NAT_OPEN_CONE);
1009}
1010
1011TEST_F(PortTest, TestConeNatToConeNat) {
1012 TestStunToStun(NAT_OPEN_CONE, NAT_OPEN_CONE);
1013}
1014
1015TEST_F(PortTest, TestConeNatToARNat) {
1016 TestStunToStun(NAT_OPEN_CONE, NAT_ADDR_RESTRICTED);
1017}
1018
1019TEST_F(PortTest, TestConeNatToPRNat) {
1020 TestStunToStun(NAT_OPEN_CONE, NAT_PORT_RESTRICTED);
1021}
1022
1023TEST_F(PortTest, TestConeNatToSymNat) {
1024 TestStunToStun(NAT_OPEN_CONE, NAT_SYMMETRIC);
1025}
1026
1027TEST_F(PortTest, TestConeNatToTurn) {
1028 TestStunToRelay(NAT_OPEN_CONE, RELAY_TURN, PROTO_UDP);
1029}
1030
1031TEST_F(PortTest, TestConeNatToGturn) {
1032 TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_UDP);
1033}
1034
1035TEST_F(PortTest, TestConeNatToTcpGturn) {
1036 TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_TCP);
1037}
1038
1039// Address-restricted NAT -> XXXX
1040TEST_F(PortTest, TestARNatToLocal) {
1041 TestStunToLocal(NAT_ADDR_RESTRICTED);
1042}
1043
1044TEST_F(PortTest, TestARNatToConeNat) {
1045 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_OPEN_CONE);
1046}
1047
1048TEST_F(PortTest, TestARNatToARNat) {
1049 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_ADDR_RESTRICTED);
1050}
1051
1052TEST_F(PortTest, TestARNatToPRNat) {
1053 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_PORT_RESTRICTED);
1054}
1055
1056TEST_F(PortTest, TestARNatToSymNat) {
1057 TestStunToStun(NAT_ADDR_RESTRICTED, NAT_SYMMETRIC);
1058}
1059
1060TEST_F(PortTest, TestARNatToTurn) {
1061 TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_TURN, PROTO_UDP);
1062}
1063
1064TEST_F(PortTest, TestARNatToGturn) {
1065 TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_UDP);
1066}
1067
1068TEST_F(PortTest, TestARNATNatToTcpGturn) {
1069 TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_TCP);
1070}
1071
1072// Port-restricted NAT -> XXXX
1073TEST_F(PortTest, TestPRNatToLocal) {
1074 TestStunToLocal(NAT_PORT_RESTRICTED);
1075}
1076
1077TEST_F(PortTest, TestPRNatToConeNat) {
1078 TestStunToStun(NAT_PORT_RESTRICTED, NAT_OPEN_CONE);
1079}
1080
1081TEST_F(PortTest, TestPRNatToARNat) {
1082 TestStunToStun(NAT_PORT_RESTRICTED, NAT_ADDR_RESTRICTED);
1083}
1084
1085TEST_F(PortTest, TestPRNatToPRNat) {
1086 TestStunToStun(NAT_PORT_RESTRICTED, NAT_PORT_RESTRICTED);
1087}
1088
1089TEST_F(PortTest, TestPRNatToSymNat) {
1090 // Will "fail"
1091 TestStunToStun(NAT_PORT_RESTRICTED, NAT_SYMMETRIC);
1092}
1093
1094TEST_F(PortTest, TestPRNatToTurn) {
1095 TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_TURN, PROTO_UDP);
1096}
1097
1098TEST_F(PortTest, TestPRNatToGturn) {
1099 TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_UDP);
1100}
1101
1102TEST_F(PortTest, TestPRNatToTcpGturn) {
1103 TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_TCP);
1104}
1105
1106// Symmetric NAT -> XXXX
1107TEST_F(PortTest, TestSymNatToLocal) {
1108 TestStunToLocal(NAT_SYMMETRIC);
1109}
1110
1111TEST_F(PortTest, TestSymNatToConeNat) {
1112 TestStunToStun(NAT_SYMMETRIC, NAT_OPEN_CONE);
1113}
1114
1115TEST_F(PortTest, TestSymNatToARNat) {
1116 TestStunToStun(NAT_SYMMETRIC, NAT_ADDR_RESTRICTED);
1117}
1118
1119TEST_F(PortTest, TestSymNatToPRNat) {
1120 // Will "fail"
1121 TestStunToStun(NAT_SYMMETRIC, NAT_PORT_RESTRICTED);
1122}
1123
1124TEST_F(PortTest, TestSymNatToSymNat) {
1125 // Will "fail"
1126 TestStunToStun(NAT_SYMMETRIC, NAT_SYMMETRIC);
1127}
1128
1129TEST_F(PortTest, TestSymNatToTurn) {
1130 TestStunToRelay(NAT_SYMMETRIC, RELAY_TURN, PROTO_UDP);
1131}
1132
1133TEST_F(PortTest, TestSymNatToGturn) {
1134 TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_UDP);
1135}
1136
1137TEST_F(PortTest, TestSymNatToTcpGturn) {
1138 TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_TCP);
1139}
1140
1141// Outbound TCP -> XXXX
1142TEST_F(PortTest, TestTcpToTcp) {
1143 TestTcpToTcp();
1144}
1145
Guo-wei Shiehbe508a12015-04-06 12:48:47 -07001146TEST_F(PortTest, TestTcpReconnectOnSendPacket) {
1147 TestTcpReconnect(false /* ping */, true /* send */);
1148}
1149
1150TEST_F(PortTest, TestTcpReconnectOnPing) {
1151 TestTcpReconnect(true /* ping */, false /* send */);
1152}
1153
1154TEST_F(PortTest, TestTcpReconnectTimeout) {
1155 TestTcpReconnect(false /* ping */, false /* send */);
1156}
1157
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001158/* TODO: Enable these once testrelayserver can accept external TCP.
1159TEST_F(PortTest, TestTcpToTcpRelay) {
1160 TestTcpToRelay(PROTO_TCP);
1161}
1162
1163TEST_F(PortTest, TestTcpToSslTcpRelay) {
1164 TestTcpToRelay(PROTO_SSLTCP);
1165}
1166*/
1167
1168// Outbound SSLTCP -> XXXX
1169/* TODO: Enable these once testrelayserver can accept external SSL.
1170TEST_F(PortTest, TestSslTcpToTcpRelay) {
1171 TestSslTcpToRelay(PROTO_TCP);
1172}
1173
1174TEST_F(PortTest, TestSslTcpToSslTcpRelay) {
1175 TestSslTcpToRelay(PROTO_SSLTCP);
1176}
1177*/
1178
1179// This test case verifies standard ICE features in STUN messages. Currently it
1180// verifies Message Integrity attribute in STUN messages and username in STUN
1181// binding request will have colon (":") between remote and local username.
1182TEST_F(PortTest, TestLocalToLocalAsIce) {
1183 SetIceProtocolType(cricket::ICEPROTO_RFC5245);
1184 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
1185 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
1186 port1->SetIceTiebreaker(kTiebreaker1);
1187 ASSERT_EQ(cricket::ICEPROTO_RFC5245, port1->IceProtocol());
1188 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
1189 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
1190 port2->SetIceTiebreaker(kTiebreaker2);
1191 ASSERT_EQ(cricket::ICEPROTO_RFC5245, port2->IceProtocol());
1192 // Same parameters as TestLocalToLocal above.
1193 TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
1194}
1195
1196// This test is trying to validate a successful and failure scenario in a
1197// loopback test when protocol is RFC5245. For success IceTiebreaker, username
1198// should remain equal to the request generated by the port and role of port
1199// must be in controlling.
1200TEST_F(PortTest, TestLoopbackCallAsIce) {
1201 rtc::scoped_ptr<TestPort> lport(
1202 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1203 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1204 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1205 lport->SetIceTiebreaker(kTiebreaker1);
1206 lport->PrepareAddress();
1207 ASSERT_FALSE(lport->Candidates().empty());
1208 Connection* conn = lport->CreateConnection(lport->Candidates()[0],
1209 Port::ORIGIN_MESSAGE);
1210 conn->Ping(0);
1211
1212 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1213 IceMessage* msg = lport->last_stun_msg();
1214 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1215 conn->OnReadPacket(lport->last_stun_buf()->Data(),
1216 lport->last_stun_buf()->Length(),
1217 rtc::PacketTime());
1218 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1219 msg = lport->last_stun_msg();
1220 EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
1221
1222 // If the tiebreaker value is different from port, we expect a error
1223 // response.
1224 lport->Reset();
1225 lport->AddCandidateAddress(kLocalAddr2);
1226 // Creating a different connection as |conn| is in STATE_READABLE.
1227 Connection* conn1 = lport->CreateConnection(lport->Candidates()[1],
1228 Port::ORIGIN_MESSAGE);
1229 conn1->Ping(0);
1230
1231 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1232 msg = lport->last_stun_msg();
1233 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1234 rtc::scoped_ptr<IceMessage> modified_req(
1235 CreateStunMessage(STUN_BINDING_REQUEST));
1236 const StunByteStringAttribute* username_attr = msg->GetByteString(
1237 STUN_ATTR_USERNAME);
1238 modified_req->AddAttribute(new StunByteStringAttribute(
1239 STUN_ATTR_USERNAME, username_attr->GetString()));
1240 // To make sure we receive error response, adding tiebreaker less than
1241 // what's present in request.
1242 modified_req->AddAttribute(new StunUInt64Attribute(
1243 STUN_ATTR_ICE_CONTROLLING, kTiebreaker1 - 1));
1244 modified_req->AddMessageIntegrity("lpass");
1245 modified_req->AddFingerprint();
1246
1247 lport->Reset();
1248 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1249 WriteStunMessage(modified_req.get(), buf.get());
1250 conn1->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime());
1251 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1252 msg = lport->last_stun_msg();
1253 EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
1254}
1255
1256// This test verifies role conflict signal is received when there is
1257// conflict in the role. In this case both ports are in controlling and
1258// |rport| has higher tiebreaker value than |lport|. Since |lport| has lower
1259// value of tiebreaker, when it receives ping request from |rport| it will
1260// send role conflict signal.
1261TEST_F(PortTest, TestIceRoleConflict) {
1262 rtc::scoped_ptr<TestPort> lport(
1263 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1264 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1265 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1266 lport->SetIceTiebreaker(kTiebreaker1);
1267 rtc::scoped_ptr<TestPort> rport(
1268 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1269 rport->SetIceProtocolType(ICEPROTO_RFC5245);
1270 rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1271 rport->SetIceTiebreaker(kTiebreaker2);
1272
1273 lport->PrepareAddress();
1274 rport->PrepareAddress();
1275 ASSERT_FALSE(lport->Candidates().empty());
1276 ASSERT_FALSE(rport->Candidates().empty());
1277 Connection* lconn = lport->CreateConnection(rport->Candidates()[0],
1278 Port::ORIGIN_MESSAGE);
1279 Connection* rconn = rport->CreateConnection(lport->Candidates()[0],
1280 Port::ORIGIN_MESSAGE);
1281 rconn->Ping(0);
1282
1283 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
1284 IceMessage* msg = rport->last_stun_msg();
1285 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1286 // Send rport binding request to lport.
1287 lconn->OnReadPacket(rport->last_stun_buf()->Data(),
1288 rport->last_stun_buf()->Length(),
1289 rtc::PacketTime());
1290
1291 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1292 EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
1293 EXPECT_TRUE(role_conflict());
1294}
1295
1296TEST_F(PortTest, TestTcpNoDelay) {
1297 TCPPort* port1 = CreateTcpPort(kLocalAddr1);
1298 int option_value = -1;
1299 int success = port1->GetOption(rtc::Socket::OPT_NODELAY,
1300 &option_value);
1301 ASSERT_EQ(0, success); // GetOption() should complete successfully w/ 0
1302 ASSERT_EQ(1, option_value);
1303 delete port1;
1304}
1305
1306TEST_F(PortTest, TestDelayedBindingUdp) {
1307 FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
1308 FakePacketSocketFactory socket_factory;
1309
1310 socket_factory.set_next_udp_socket(socket);
1311 scoped_ptr<UDPPort> port(
1312 CreateUdpPort(kLocalAddr1, &socket_factory));
1313
1314 socket->set_state(AsyncPacketSocket::STATE_BINDING);
1315 port->PrepareAddress();
1316
1317 EXPECT_EQ(0U, port->Candidates().size());
1318 socket->SignalAddressReady(socket, kLocalAddr2);
1319
1320 EXPECT_EQ(1U, port->Candidates().size());
1321}
1322
1323TEST_F(PortTest, TestDelayedBindingTcp) {
1324 FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
1325 FakePacketSocketFactory socket_factory;
1326
1327 socket_factory.set_next_server_tcp_socket(socket);
1328 scoped_ptr<TCPPort> port(
1329 CreateTcpPort(kLocalAddr1, &socket_factory));
1330
1331 socket->set_state(AsyncPacketSocket::STATE_BINDING);
1332 port->PrepareAddress();
1333
1334 EXPECT_EQ(0U, port->Candidates().size());
1335 socket->SignalAddressReady(socket, kLocalAddr2);
1336
1337 EXPECT_EQ(1U, port->Candidates().size());
1338}
1339
1340void PortTest::TestCrossFamilyPorts(int type) {
1341 FakePacketSocketFactory factory;
1342 scoped_ptr<Port> ports[4];
1343 SocketAddress addresses[4] = {SocketAddress("192.168.1.3", 0),
1344 SocketAddress("192.168.1.4", 0),
1345 SocketAddress("2001:db8::1", 0),
1346 SocketAddress("2001:db8::2", 0)};
1347 for (int i = 0; i < 4; i++) {
1348 FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
1349 if (type == SOCK_DGRAM) {
1350 factory.set_next_udp_socket(socket);
1351 ports[i].reset(CreateUdpPort(addresses[i], &factory));
1352 } else if (type == SOCK_STREAM) {
1353 factory.set_next_server_tcp_socket(socket);
1354 ports[i].reset(CreateTcpPort(addresses[i], &factory));
1355 }
1356 socket->set_state(AsyncPacketSocket::STATE_BINDING);
1357 socket->SignalAddressReady(socket, addresses[i]);
1358 ports[i]->PrepareAddress();
1359 }
1360
1361 // IPv4 Port, connects to IPv6 candidate and then to IPv4 candidate.
1362 if (type == SOCK_STREAM) {
1363 FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
1364 factory.set_next_client_tcp_socket(clientsocket);
1365 }
1366 Connection* c = ports[0]->CreateConnection(GetCandidate(ports[2].get()),
1367 Port::ORIGIN_MESSAGE);
1368 EXPECT_TRUE(NULL == c);
1369 EXPECT_EQ(0U, ports[0]->connections().size());
1370 c = ports[0]->CreateConnection(GetCandidate(ports[1].get()),
1371 Port::ORIGIN_MESSAGE);
1372 EXPECT_FALSE(NULL == c);
1373 EXPECT_EQ(1U, ports[0]->connections().size());
1374
1375 // IPv6 Port, connects to IPv4 candidate and to IPv6 candidate.
1376 if (type == SOCK_STREAM) {
1377 FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
1378 factory.set_next_client_tcp_socket(clientsocket);
1379 }
1380 c = ports[2]->CreateConnection(GetCandidate(ports[0].get()),
1381 Port::ORIGIN_MESSAGE);
1382 EXPECT_TRUE(NULL == c);
1383 EXPECT_EQ(0U, ports[2]->connections().size());
1384 c = ports[2]->CreateConnection(GetCandidate(ports[3].get()),
1385 Port::ORIGIN_MESSAGE);
1386 EXPECT_FALSE(NULL == c);
1387 EXPECT_EQ(1U, ports[2]->connections().size());
1388}
1389
1390TEST_F(PortTest, TestSkipCrossFamilyTcp) {
1391 TestCrossFamilyPorts(SOCK_STREAM);
1392}
1393
1394TEST_F(PortTest, TestSkipCrossFamilyUdp) {
1395 TestCrossFamilyPorts(SOCK_DGRAM);
1396}
1397
1398// This test verifies DSCP value set through SetOption interface can be
1399// get through DefaultDscpValue.
1400TEST_F(PortTest, TestDefaultDscpValue) {
1401 int dscp;
1402 rtc::scoped_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1));
1403 EXPECT_EQ(0, udpport->SetOption(rtc::Socket::OPT_DSCP,
1404 rtc::DSCP_CS6));
1405 EXPECT_EQ(0, udpport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1406 rtc::scoped_ptr<TCPPort> tcpport(CreateTcpPort(kLocalAddr1));
1407 EXPECT_EQ(0, tcpport->SetOption(rtc::Socket::OPT_DSCP,
1408 rtc::DSCP_AF31));
1409 EXPECT_EQ(0, tcpport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1410 EXPECT_EQ(rtc::DSCP_AF31, dscp);
1411 rtc::scoped_ptr<StunPort> stunport(
1412 CreateStunPort(kLocalAddr1, nat_socket_factory1()));
1413 EXPECT_EQ(0, stunport->SetOption(rtc::Socket::OPT_DSCP,
1414 rtc::DSCP_AF41));
1415 EXPECT_EQ(0, stunport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1416 EXPECT_EQ(rtc::DSCP_AF41, dscp);
1417 rtc::scoped_ptr<TurnPort> turnport1(CreateTurnPort(
1418 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
1419 // Socket is created in PrepareAddress.
1420 turnport1->PrepareAddress();
1421 EXPECT_EQ(0, turnport1->SetOption(rtc::Socket::OPT_DSCP,
1422 rtc::DSCP_CS7));
1423 EXPECT_EQ(0, turnport1->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1424 EXPECT_EQ(rtc::DSCP_CS7, dscp);
1425 // This will verify correct value returned without the socket.
1426 rtc::scoped_ptr<TurnPort> turnport2(CreateTurnPort(
1427 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
1428 EXPECT_EQ(0, turnport2->SetOption(rtc::Socket::OPT_DSCP,
1429 rtc::DSCP_CS6));
1430 EXPECT_EQ(0, turnport2->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1431 EXPECT_EQ(rtc::DSCP_CS6, dscp);
1432}
1433
1434// Test sending STUN messages in GICE format.
1435TEST_F(PortTest, TestSendStunMessageAsGice) {
1436 rtc::scoped_ptr<TestPort> lport(
1437 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1438 rtc::scoped_ptr<TestPort> rport(
1439 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1440 lport->SetIceProtocolType(ICEPROTO_GOOGLE);
1441 rport->SetIceProtocolType(ICEPROTO_GOOGLE);
1442
1443 // Send a fake ping from lport to rport.
1444 lport->PrepareAddress();
1445 rport->PrepareAddress();
1446 ASSERT_FALSE(rport->Candidates().empty());
1447 Connection* conn = lport->CreateConnection(rport->Candidates()[0],
1448 Port::ORIGIN_MESSAGE);
1449 rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
1450 conn->Ping(0);
1451
1452 // Check that it's a proper BINDING-REQUEST.
1453 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1454 IceMessage* msg = lport->last_stun_msg();
1455 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1456 EXPECT_FALSE(msg->IsLegacy());
1457 const StunByteStringAttribute* username_attr = msg->GetByteString(
1458 STUN_ATTR_USERNAME);
1459 ASSERT_TRUE(username_attr != NULL);
1460 EXPECT_EQ("rfraglfrag", username_attr->GetString());
1461 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
1462 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1463 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
1464
1465 // Save a copy of the BINDING-REQUEST for use below.
1466 rtc::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
1467
1468 // Respond with a BINDING-RESPONSE.
1469 rport->SendBindingResponse(request.get(), lport->Candidates()[0].address());
1470 msg = rport->last_stun_msg();
1471 ASSERT_TRUE(msg != NULL);
1472 EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
1473 EXPECT_FALSE(msg->IsLegacy());
1474 username_attr = msg->GetByteString(STUN_ATTR_USERNAME);
1475 ASSERT_TRUE(username_attr != NULL); // GICE has a username in the response.
1476 EXPECT_EQ("rfraglfrag", username_attr->GetString());
1477 const StunAddressAttribute* addr_attr = msg->GetAddress(
1478 STUN_ATTR_MAPPED_ADDRESS);
1479 ASSERT_TRUE(addr_attr != NULL);
1480 EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
1481 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_XOR_MAPPED_ADDRESS) == NULL);
1482 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
1483 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1484 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
1485
1486 // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
1487 // but we can do it here.
1488 rport->SendBindingErrorResponse(request.get(),
1489 rport->Candidates()[0].address(),
1490 STUN_ERROR_SERVER_ERROR,
1491 STUN_ERROR_REASON_SERVER_ERROR);
1492 msg = rport->last_stun_msg();
1493 ASSERT_TRUE(msg != NULL);
1494 EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
1495 EXPECT_FALSE(msg->IsLegacy());
1496 username_attr = msg->GetByteString(STUN_ATTR_USERNAME);
1497 ASSERT_TRUE(username_attr != NULL); // GICE has a username in the response.
1498 EXPECT_EQ("rfraglfrag", username_attr->GetString());
1499 const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
1500 ASSERT_TRUE(error_attr != NULL);
1501 // The GICE wire format for error codes is incorrect.
1502 EXPECT_EQ(STUN_ERROR_SERVER_ERROR_AS_GICE, error_attr->code());
1503 EXPECT_EQ(STUN_ERROR_SERVER_ERROR / 256, error_attr->eclass());
1504 EXPECT_EQ(STUN_ERROR_SERVER_ERROR % 256, error_attr->number());
1505 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
1506 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1507 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) == NULL);
1508 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_FINGERPRINT) == NULL);
1509}
1510
1511// Test sending STUN messages in ICE format.
1512TEST_F(PortTest, TestSendStunMessageAsIce) {
1513 rtc::scoped_ptr<TestPort> lport(
1514 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1515 rtc::scoped_ptr<TestPort> rport(
1516 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1517 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1518 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1519 lport->SetIceTiebreaker(kTiebreaker1);
1520 rport->SetIceProtocolType(ICEPROTO_RFC5245);
1521 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
1522 rport->SetIceTiebreaker(kTiebreaker2);
1523
1524 // Send a fake ping from lport to rport.
1525 lport->PrepareAddress();
1526 rport->PrepareAddress();
1527 ASSERT_FALSE(rport->Candidates().empty());
1528 Connection* lconn = lport->CreateConnection(
1529 rport->Candidates()[0], Port::ORIGIN_MESSAGE);
1530 Connection* rconn = rport->CreateConnection(
1531 lport->Candidates()[0], Port::ORIGIN_MESSAGE);
1532 lconn->Ping(0);
1533
1534 // Check that it's a proper BINDING-REQUEST.
1535 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1536 IceMessage* msg = lport->last_stun_msg();
1537 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1538 EXPECT_FALSE(msg->IsLegacy());
1539 const StunByteStringAttribute* username_attr =
1540 msg->GetByteString(STUN_ATTR_USERNAME);
1541 ASSERT_TRUE(username_attr != NULL);
1542 const StunUInt32Attribute* priority_attr = msg->GetUInt32(STUN_ATTR_PRIORITY);
1543 ASSERT_TRUE(priority_attr != NULL);
1544 EXPECT_EQ(kDefaultPrflxPriority, priority_attr->value());
1545 EXPECT_EQ("rfrag:lfrag", username_attr->GetString());
1546 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1547 EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1548 lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length(),
1549 "rpass"));
1550 const StunUInt64Attribute* ice_controlling_attr =
1551 msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
1552 ASSERT_TRUE(ice_controlling_attr != NULL);
1553 EXPECT_EQ(lport->IceTiebreaker(), ice_controlling_attr->value());
1554 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
1555 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
1556 EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1557 EXPECT_TRUE(StunMessage::ValidateFingerprint(
1558 lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
1559
1560 // Request should not include ping count.
1561 ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
1562
1563 // Save a copy of the BINDING-REQUEST for use below.
1564 rtc::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
1565
1566 // Respond with a BINDING-RESPONSE.
1567 rport->SendBindingResponse(request.get(), lport->Candidates()[0].address());
1568 msg = rport->last_stun_msg();
1569 ASSERT_TRUE(msg != NULL);
1570 EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
1571
1572
1573 EXPECT_FALSE(msg->IsLegacy());
1574 const StunAddressAttribute* addr_attr = msg->GetAddress(
1575 STUN_ATTR_XOR_MAPPED_ADDRESS);
1576 ASSERT_TRUE(addr_attr != NULL);
1577 EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
1578 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1579 EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1580 rport->last_stun_buf()->Data(), rport->last_stun_buf()->Length(),
1581 "rpass"));
1582 EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1583 EXPECT_TRUE(StunMessage::ValidateFingerprint(
1584 lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
1585 // No USERNAME or PRIORITY in ICE responses.
1586 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
1587 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1588 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MAPPED_ADDRESS) == NULL);
1589 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLING) == NULL);
1590 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
1591 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
1592
1593 // Response should not include ping count.
1594 ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
1595
1596 // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
1597 // but we can do it here.
1598 rport->SendBindingErrorResponse(request.get(),
1599 lport->Candidates()[0].address(),
1600 STUN_ERROR_SERVER_ERROR,
1601 STUN_ERROR_REASON_SERVER_ERROR);
1602 msg = rport->last_stun_msg();
1603 ASSERT_TRUE(msg != NULL);
1604 EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
1605 EXPECT_FALSE(msg->IsLegacy());
1606 const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
1607 ASSERT_TRUE(error_attr != NULL);
1608 EXPECT_EQ(STUN_ERROR_SERVER_ERROR, error_attr->code());
1609 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
1610 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1611 EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1612 rport->last_stun_buf()->Data(), rport->last_stun_buf()->Length(),
1613 "rpass"));
1614 EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1615 EXPECT_TRUE(StunMessage::ValidateFingerprint(
1616 lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
1617 // No USERNAME with ICE.
1618 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
1619 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1620
1621 // Testing STUN binding requests from rport --> lport, having ICE_CONTROLLED
1622 // and (incremented) RETRANSMIT_COUNT attributes.
1623 rport->Reset();
1624 rport->set_send_retransmit_count_attribute(true);
1625 rconn->Ping(0);
1626 rconn->Ping(0);
1627 rconn->Ping(0);
1628 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
1629 msg = rport->last_stun_msg();
1630 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1631 const StunUInt64Attribute* ice_controlled_attr =
1632 msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED);
1633 ASSERT_TRUE(ice_controlled_attr != NULL);
1634 EXPECT_EQ(rport->IceTiebreaker(), ice_controlled_attr->value());
1635 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
1636
1637 // Request should include ping count.
1638 const StunUInt32Attribute* retransmit_attr =
1639 msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
1640 ASSERT_TRUE(retransmit_attr != NULL);
1641 EXPECT_EQ(2U, retransmit_attr->value());
1642
1643 // Respond with a BINDING-RESPONSE.
1644 request.reset(CopyStunMessage(msg));
1645 lport->SendBindingResponse(request.get(), rport->Candidates()[0].address());
1646 msg = lport->last_stun_msg();
1647
1648 // Response should include same ping count.
1649 retransmit_attr = msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
1650 ASSERT_TRUE(retransmit_attr != NULL);
1651 EXPECT_EQ(2U, retransmit_attr->value());
1652}
1653
1654TEST_F(PortTest, TestUseCandidateAttribute) {
1655 rtc::scoped_ptr<TestPort> lport(
1656 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1657 rtc::scoped_ptr<TestPort> rport(
1658 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1659 lport->SetIceProtocolType(ICEPROTO_RFC5245);
1660 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1661 lport->SetIceTiebreaker(kTiebreaker1);
1662 rport->SetIceProtocolType(ICEPROTO_RFC5245);
1663 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
1664 rport->SetIceTiebreaker(kTiebreaker2);
1665
1666 // Send a fake ping from lport to rport.
1667 lport->PrepareAddress();
1668 rport->PrepareAddress();
1669 ASSERT_FALSE(rport->Candidates().empty());
1670 Connection* lconn = lport->CreateConnection(
1671 rport->Candidates()[0], Port::ORIGIN_MESSAGE);
1672 lconn->Ping(0);
1673 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1674 IceMessage* msg = lport->last_stun_msg();
1675 const StunUInt64Attribute* ice_controlling_attr =
1676 msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
1677 ASSERT_TRUE(ice_controlling_attr != NULL);
1678 const StunByteStringAttribute* use_candidate_attr = msg->GetByteString(
1679 STUN_ATTR_USE_CANDIDATE);
1680 ASSERT_TRUE(use_candidate_attr != NULL);
1681}
1682
1683// Test handling STUN messages in GICE format.
1684TEST_F(PortTest, TestHandleStunMessageAsGice) {
1685 // Our port will act as the "remote" port.
1686 rtc::scoped_ptr<TestPort> port(
1687 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1688 port->SetIceProtocolType(ICEPROTO_GOOGLE);
1689
1690 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1691 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1692 rtc::SocketAddress addr(kLocalAddr1);
1693 std::string username;
1694
1695 // BINDING-REQUEST from local to remote with valid GICE username and no M-I.
1696 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1697 "rfraglfrag"));
1698 WriteStunMessage(in_msg.get(), buf.get());
1699 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1700 out_msg.accept(), &username));
1701 EXPECT_TRUE(out_msg.get() != NULL); // Succeeds, since this is GICE.
1702 EXPECT_EQ("lfrag", username);
1703
1704 // Add M-I; should be ignored and rest of message parsed normally.
1705 in_msg->AddMessageIntegrity("password");
1706 WriteStunMessage(in_msg.get(), buf.get());
1707 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1708 out_msg.accept(), &username));
1709 EXPECT_TRUE(out_msg.get() != NULL);
1710 EXPECT_EQ("lfrag", username);
1711
1712 // BINDING-RESPONSE with username, as done in GICE. Should succeed.
1713 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_RESPONSE,
1714 "rfraglfrag"));
1715 in_msg->AddAttribute(
1716 new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, kLocalAddr2));
1717 WriteStunMessage(in_msg.get(), buf.get());
1718 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1719 out_msg.accept(), &username));
1720 EXPECT_TRUE(out_msg.get() != NULL);
1721 EXPECT_EQ("", username);
1722
1723 // BINDING-RESPONSE without username. Should be tolerated as well.
1724 in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
1725 in_msg->AddAttribute(
1726 new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, kLocalAddr2));
1727 WriteStunMessage(in_msg.get(), buf.get());
1728 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1729 out_msg.accept(), &username));
1730 EXPECT_TRUE(out_msg.get() != NULL);
1731 EXPECT_EQ("", username);
1732
1733 // BINDING-ERROR-RESPONSE with username and error code.
1734 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_ERROR_RESPONSE,
1735 "rfraglfrag"));
1736 in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
1737 STUN_ERROR_SERVER_ERROR_AS_GICE, STUN_ERROR_REASON_SERVER_ERROR));
1738 WriteStunMessage(in_msg.get(), buf.get());
1739 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1740 out_msg.accept(), &username));
1741 ASSERT_TRUE(out_msg.get() != NULL);
1742 EXPECT_EQ("", username);
1743 ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
1744 // GetStunMessage doesn't unmunge the GICE error code (happens downstream).
1745 EXPECT_EQ(STUN_ERROR_SERVER_ERROR_AS_GICE, out_msg->GetErrorCode()->code());
1746 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
1747 out_msg->GetErrorCode()->reason());
1748}
1749
1750// Test handling STUN messages in ICE format.
1751TEST_F(PortTest, TestHandleStunMessageAsIce) {
1752 // Our port will act as the "remote" port.
1753 rtc::scoped_ptr<TestPort> port(
1754 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1755 port->SetIceProtocolType(ICEPROTO_RFC5245);
1756
1757 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1758 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1759 rtc::SocketAddress addr(kLocalAddr1);
1760 std::string username;
1761
1762 // BINDING-REQUEST from local to remote with valid ICE username,
1763 // MESSAGE-INTEGRITY, and FINGERPRINT.
1764 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1765 "rfrag:lfrag"));
1766 in_msg->AddMessageIntegrity("rpass");
1767 in_msg->AddFingerprint();
1768 WriteStunMessage(in_msg.get(), buf.get());
1769 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1770 out_msg.accept(), &username));
1771 EXPECT_TRUE(out_msg.get() != NULL);
1772 EXPECT_EQ("lfrag", username);
1773
1774 // BINDING-RESPONSE without username, with MESSAGE-INTEGRITY and FINGERPRINT.
1775 in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
1776 in_msg->AddAttribute(
1777 new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
1778 in_msg->AddMessageIntegrity("rpass");
1779 in_msg->AddFingerprint();
1780 WriteStunMessage(in_msg.get(), buf.get());
1781 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1782 out_msg.accept(), &username));
1783 EXPECT_TRUE(out_msg.get() != NULL);
1784 EXPECT_EQ("", username);
1785
1786 // BINDING-ERROR-RESPONSE without username, with error, M-I, and FINGERPRINT.
1787 in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
1788 in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
1789 STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR));
1790 in_msg->AddFingerprint();
1791 WriteStunMessage(in_msg.get(), buf.get());
1792 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1793 out_msg.accept(), &username));
1794 EXPECT_TRUE(out_msg.get() != NULL);
1795 EXPECT_EQ("", username);
1796 ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
1797 EXPECT_EQ(STUN_ERROR_SERVER_ERROR, out_msg->GetErrorCode()->code());
1798 EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
1799 out_msg->GetErrorCode()->reason());
1800}
1801
1802// This test verifies port can handle ICE messages in Hybrid mode and switches
1803// ICEPROTO_RFC5245 mode after successfully handling the message.
1804TEST_F(PortTest, TestHandleStunMessageAsIceInHybridMode) {
1805 // Our port will act as the "remote" port.
1806 rtc::scoped_ptr<TestPort> port(
1807 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1808 port->SetIceProtocolType(ICEPROTO_HYBRID);
1809
1810 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1811 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1812 rtc::SocketAddress addr(kLocalAddr1);
1813 std::string username;
1814
1815 // BINDING-REQUEST from local to remote with valid ICE username,
1816 // MESSAGE-INTEGRITY, and FINGERPRINT.
1817 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1818 "rfrag:lfrag"));
1819 in_msg->AddMessageIntegrity("rpass");
1820 in_msg->AddFingerprint();
1821 WriteStunMessage(in_msg.get(), buf.get());
1822 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1823 out_msg.accept(), &username));
1824 EXPECT_TRUE(out_msg.get() != NULL);
1825 EXPECT_EQ("lfrag", username);
1826 EXPECT_EQ(ICEPROTO_RFC5245, port->IceProtocol());
1827}
1828
1829// This test verifies port can handle GICE messages in Hybrid mode and switches
1830// ICEPROTO_GOOGLE mode after successfully handling the message.
1831TEST_F(PortTest, TestHandleStunMessageAsGiceInHybridMode) {
1832 // Our port will act as the "remote" port.
1833 rtc::scoped_ptr<TestPort> port(
1834 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1835 port->SetIceProtocolType(ICEPROTO_HYBRID);
1836
1837 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1838 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1839 rtc::SocketAddress addr(kLocalAddr1);
1840 std::string username;
1841
1842 // BINDING-REQUEST from local to remote with valid GICE username and no M-I.
1843 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1844 "rfraglfrag"));
1845 WriteStunMessage(in_msg.get(), buf.get());
1846 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1847 out_msg.accept(), &username));
1848 EXPECT_TRUE(out_msg.get() != NULL); // Succeeds, since this is GICE.
1849 EXPECT_EQ("lfrag", username);
1850 EXPECT_EQ(ICEPROTO_GOOGLE, port->IceProtocol());
1851}
1852
1853// Verify port is not switched out of RFC5245 mode if GICE message is received
1854// in that mode.
1855TEST_F(PortTest, TestHandleStunMessageAsGiceInIceMode) {
1856 // Our port will act as the "remote" port.
1857 rtc::scoped_ptr<TestPort> port(
1858 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1859 port->SetIceProtocolType(ICEPROTO_RFC5245);
1860
1861 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1862 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1863 rtc::SocketAddress addr(kLocalAddr1);
1864 std::string username;
1865
1866 // BINDING-REQUEST from local to remote with valid GICE username and no M-I.
1867 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1868 "rfraglfrag"));
1869 WriteStunMessage(in_msg.get(), buf.get());
1870 // Should fail as there is no MI and fingerprint.
1871 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1872 out_msg.accept(), &username));
1873 EXPECT_EQ(ICEPROTO_RFC5245, port->IceProtocol());
1874}
1875
1876
1877// Tests handling of GICE binding requests with missing or incorrect usernames.
1878TEST_F(PortTest, TestHandleStunMessageAsGiceBadUsername) {
1879 rtc::scoped_ptr<TestPort> port(
1880 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1881 port->SetIceProtocolType(ICEPROTO_GOOGLE);
1882
1883 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1884 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1885 rtc::SocketAddress addr(kLocalAddr1);
1886 std::string username;
1887
1888 // BINDING-REQUEST with no username.
1889 in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST));
1890 WriteStunMessage(in_msg.get(), buf.get());
1891 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1892 out_msg.accept(), &username));
1893 EXPECT_TRUE(out_msg.get() == NULL);
1894 EXPECT_EQ("", username);
1895 EXPECT_EQ(STUN_ERROR_BAD_REQUEST_AS_GICE, port->last_stun_error_code());
1896
1897 // BINDING-REQUEST with empty username.
1898 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""));
1899 WriteStunMessage(in_msg.get(), buf.get());
1900 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1901 out_msg.accept(), &username));
1902 EXPECT_TRUE(out_msg.get() == NULL);
1903 EXPECT_EQ("", username);
1904 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
1905
1906 // BINDING-REQUEST with too-short username.
1907 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "lfra"));
1908 WriteStunMessage(in_msg.get(), buf.get());
1909 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1910 out_msg.accept(), &username));
1911 EXPECT_TRUE(out_msg.get() == NULL);
1912 EXPECT_EQ("", username);
1913 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
1914
1915 // BINDING-REQUEST with reversed username.
1916 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1917 "lfragrfrag"));
1918 WriteStunMessage(in_msg.get(), buf.get());
1919 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1920 out_msg.accept(), &username));
1921 EXPECT_TRUE(out_msg.get() == NULL);
1922 EXPECT_EQ("", username);
1923 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
1924
1925 // BINDING-REQUEST with garbage username.
1926 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1927 "abcdefgh"));
1928 WriteStunMessage(in_msg.get(), buf.get());
1929 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1930 out_msg.accept(), &username));
1931 EXPECT_TRUE(out_msg.get() == NULL);
1932 EXPECT_EQ("", username);
1933 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED_AS_GICE, port->last_stun_error_code());
1934}
1935
1936// Tests handling of ICE binding requests with missing or incorrect usernames.
1937TEST_F(PortTest, TestHandleStunMessageAsIceBadUsername) {
1938 rtc::scoped_ptr<TestPort> port(
1939 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1940 port->SetIceProtocolType(ICEPROTO_RFC5245);
1941
1942 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1943 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1944 rtc::SocketAddress addr(kLocalAddr1);
1945 std::string username;
1946
1947 // BINDING-REQUEST with no username.
1948 in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST));
1949 in_msg->AddMessageIntegrity("rpass");
1950 in_msg->AddFingerprint();
1951 WriteStunMessage(in_msg.get(), buf.get());
1952 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1953 out_msg.accept(), &username));
1954 EXPECT_TRUE(out_msg.get() == NULL);
1955 EXPECT_EQ("", username);
1956 EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
1957
1958 // BINDING-REQUEST with empty username.
1959 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""));
1960 in_msg->AddMessageIntegrity("rpass");
1961 in_msg->AddFingerprint();
1962 WriteStunMessage(in_msg.get(), buf.get());
1963 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1964 out_msg.accept(), &username));
1965 EXPECT_TRUE(out_msg.get() == NULL);
1966 EXPECT_EQ("", username);
1967 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1968
1969 // BINDING-REQUEST with too-short username.
1970 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfra"));
1971 in_msg->AddMessageIntegrity("rpass");
1972 in_msg->AddFingerprint();
1973 WriteStunMessage(in_msg.get(), buf.get());
1974 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1975 out_msg.accept(), &username));
1976 EXPECT_TRUE(out_msg.get() == NULL);
1977 EXPECT_EQ("", username);
1978 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1979
1980 // BINDING-REQUEST with reversed username.
1981 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1982 "lfrag:rfrag"));
1983 in_msg->AddMessageIntegrity("rpass");
1984 in_msg->AddFingerprint();
1985 WriteStunMessage(in_msg.get(), buf.get());
1986 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1987 out_msg.accept(), &username));
1988 EXPECT_TRUE(out_msg.get() == NULL);
1989 EXPECT_EQ("", username);
1990 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1991
1992 // BINDING-REQUEST with garbage username.
1993 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1994 "abcd:efgh"));
1995 in_msg->AddMessageIntegrity("rpass");
1996 in_msg->AddFingerprint();
1997 WriteStunMessage(in_msg.get(), buf.get());
1998 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1999 out_msg.accept(), &username));
2000 EXPECT_TRUE(out_msg.get() == NULL);
2001 EXPECT_EQ("", username);
2002 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
2003}
2004
2005// Test handling STUN messages (as ICE) with missing or malformed M-I.
2006TEST_F(PortTest, TestHandleStunMessageAsIceBadMessageIntegrity) {
2007 // Our port will act as the "remote" port.
2008 rtc::scoped_ptr<TestPort> port(
2009 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
2010 port->SetIceProtocolType(ICEPROTO_RFC5245);
2011
2012 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
2013 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
2014 rtc::SocketAddress addr(kLocalAddr1);
2015 std::string username;
2016
2017 // BINDING-REQUEST from local to remote with valid ICE username and
2018 // FINGERPRINT, but no MESSAGE-INTEGRITY.
2019 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
2020 "rfrag:lfrag"));
2021 in_msg->AddFingerprint();
2022 WriteStunMessage(in_msg.get(), buf.get());
2023 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
2024 out_msg.accept(), &username));
2025 EXPECT_TRUE(out_msg.get() == NULL);
2026 EXPECT_EQ("", username);
2027 EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
2028
2029 // BINDING-REQUEST from local to remote with valid ICE username and
2030 // FINGERPRINT, but invalid MESSAGE-INTEGRITY.
2031 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
2032 "rfrag:lfrag"));
2033 in_msg->AddMessageIntegrity("invalid");
2034 in_msg->AddFingerprint();
2035 WriteStunMessage(in_msg.get(), buf.get());
2036 EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
2037 out_msg.accept(), &username));
2038 EXPECT_TRUE(out_msg.get() == NULL);
2039 EXPECT_EQ("", username);
2040 EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
2041
2042 // TODO: BINDING-RESPONSES and BINDING-ERROR-RESPONSES are checked
2043 // by the Connection, not the Port, since they require the remote username.
2044 // Change this test to pass in data via Connection::OnReadPacket instead.
2045}
2046
2047// Test handling STUN messages (as ICE) with missing or malformed FINGERPRINT.
2048TEST_F(PortTest, TestHandleStunMessageAsIceBadFingerprint) {
2049 // Our port will act as the "remote" port.
2050 rtc::scoped_ptr<TestPort> port(
2051 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
2052 port->SetIceProtocolType(ICEPROTO_RFC5245);
2053
2054 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
2055 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
2056 rtc::SocketAddress addr(kLocalAddr1);
2057 std::string username;
2058
2059 // BINDING-REQUEST from local to remote with valid ICE username and
2060 // MESSAGE-INTEGRITY, but no FINGERPRINT; GetStunMessage should fail.
2061 in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
2062 "rfrag:lfrag"));
2063 in_msg->AddMessageIntegrity("rpass");
2064 WriteStunMessage(in_msg.get(), buf.get());
2065 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
2066 out_msg.accept(), &username));
2067 EXPECT_EQ(0, port->last_stun_error_code());
2068
2069 // Now, add a fingerprint, but munge the message so it's not valid.
2070 in_msg->AddFingerprint();
2071 in_msg->SetTransactionID("TESTTESTBADD");
2072 WriteStunMessage(in_msg.get(), buf.get());
2073 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
2074 out_msg.accept(), &username));
2075 EXPECT_EQ(0, port->last_stun_error_code());
2076
2077 // Valid BINDING-RESPONSE, except no FINGERPRINT.
2078 in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
2079 in_msg->AddAttribute(
2080 new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
2081 in_msg->AddMessageIntegrity("rpass");
2082 WriteStunMessage(in_msg.get(), buf.get());
2083 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
2084 out_msg.accept(), &username));
2085 EXPECT_EQ(0, port->last_stun_error_code());
2086
2087 // Now, add a fingerprint, but munge the message so it's not valid.
2088 in_msg->AddFingerprint();
2089 in_msg->SetTransactionID("TESTTESTBADD");
2090 WriteStunMessage(in_msg.get(), buf.get());
2091 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
2092 out_msg.accept(), &username));
2093 EXPECT_EQ(0, port->last_stun_error_code());
2094
2095 // Valid BINDING-ERROR-RESPONSE, except no FINGERPRINT.
2096 in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
2097 in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
2098 STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR));
2099 in_msg->AddMessageIntegrity("rpass");
2100 WriteStunMessage(in_msg.get(), buf.get());
2101 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
2102 out_msg.accept(), &username));
2103 EXPECT_EQ(0, port->last_stun_error_code());
2104
2105 // Now, add a fingerprint, but munge the message so it's not valid.
2106 in_msg->AddFingerprint();
2107 in_msg->SetTransactionID("TESTTESTBADD");
2108 WriteStunMessage(in_msg.get(), buf.get());
2109 EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
2110 out_msg.accept(), &username));
2111 EXPECT_EQ(0, port->last_stun_error_code());
2112}
2113
2114// Test handling of STUN binding indication messages (as ICE). STUN binding
2115// indications are allowed only to the connection which is in read mode.
2116TEST_F(PortTest, TestHandleStunBindingIndication) {
2117 rtc::scoped_ptr<TestPort> lport(
2118 CreateTestPort(kLocalAddr2, "lfrag", "lpass"));
2119 lport->SetIceProtocolType(ICEPROTO_RFC5245);
2120 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2121 lport->SetIceTiebreaker(kTiebreaker1);
2122
2123 // Verifying encoding and decoding STUN indication message.
2124 rtc::scoped_ptr<IceMessage> in_msg, out_msg;
2125 rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
2126 rtc::SocketAddress addr(kLocalAddr1);
2127 std::string username;
2128
2129 in_msg.reset(CreateStunMessage(STUN_BINDING_INDICATION));
2130 in_msg->AddFingerprint();
2131 WriteStunMessage(in_msg.get(), buf.get());
2132 EXPECT_TRUE(lport->GetStunMessage(buf->Data(), buf->Length(), addr,
2133 out_msg.accept(), &username));
2134 EXPECT_TRUE(out_msg.get() != NULL);
2135 EXPECT_EQ(out_msg->type(), STUN_BINDING_INDICATION);
2136 EXPECT_EQ("", username);
2137
2138 // Verify connection can handle STUN indication and updates
2139 // last_ping_received.
2140 rtc::scoped_ptr<TestPort> rport(
2141 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
2142 rport->SetIceProtocolType(ICEPROTO_RFC5245);
2143 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2144 rport->SetIceTiebreaker(kTiebreaker2);
2145
2146 lport->PrepareAddress();
2147 rport->PrepareAddress();
2148 ASSERT_FALSE(lport->Candidates().empty());
2149 ASSERT_FALSE(rport->Candidates().empty());
2150
2151 Connection* lconn = lport->CreateConnection(rport->Candidates()[0],
2152 Port::ORIGIN_MESSAGE);
2153 Connection* rconn = rport->CreateConnection(lport->Candidates()[0],
2154 Port::ORIGIN_MESSAGE);
2155 rconn->Ping(0);
2156
2157 ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
2158 IceMessage* msg = rport->last_stun_msg();
2159 EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
2160 // Send rport binding request to lport.
2161 lconn->OnReadPacket(rport->last_stun_buf()->Data(),
2162 rport->last_stun_buf()->Length(),
2163 rtc::PacketTime());
2164 ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
2165 EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
2166 uint32 last_ping_received1 = lconn->last_ping_received();
2167
2168 // Adding a delay of 100ms.
2169 rtc::Thread::Current()->ProcessMessages(100);
2170 // Pinging lconn using stun indication message.
2171 lconn->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime());
2172 uint32 last_ping_received2 = lconn->last_ping_received();
2173 EXPECT_GT(last_ping_received2, last_ping_received1);
2174}
2175
2176TEST_F(PortTest, TestComputeCandidatePriority) {
2177 rtc::scoped_ptr<TestPort> port(
2178 CreateTestPort(kLocalAddr1, "name", "pass"));
2179 port->set_type_preference(90);
2180 port->set_component(177);
2181 port->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
2182 port->AddCandidateAddress(SocketAddress("2001:db8::1234", 1234));
2183 port->AddCandidateAddress(SocketAddress("fc12:3456::1234", 1234));
2184 port->AddCandidateAddress(SocketAddress("::ffff:192.168.1.4", 1234));
2185 port->AddCandidateAddress(SocketAddress("::192.168.1.4", 1234));
2186 port->AddCandidateAddress(SocketAddress("2002::1234:5678", 1234));
2187 port->AddCandidateAddress(SocketAddress("2001::1234:5678", 1234));
2188 port->AddCandidateAddress(SocketAddress("fecf::1234:5678", 1234));
2189 port->AddCandidateAddress(SocketAddress("3ffe::1234:5678", 1234));
2190 // These should all be:
2191 // (90 << 24) | ([rfc3484 pref value] << 8) | (256 - 177)
2192 uint32 expected_priority_v4 = 1509957199U;
2193 uint32 expected_priority_v6 = 1509959759U;
2194 uint32 expected_priority_ula = 1509962319U;
2195 uint32 expected_priority_v4mapped = expected_priority_v4;
2196 uint32 expected_priority_v4compat = 1509949775U;
2197 uint32 expected_priority_6to4 = 1509954639U;
2198 uint32 expected_priority_teredo = 1509952079U;
2199 uint32 expected_priority_sitelocal = 1509949775U;
2200 uint32 expected_priority_6bone = 1509949775U;
2201 ASSERT_EQ(expected_priority_v4, port->Candidates()[0].priority());
2202 ASSERT_EQ(expected_priority_v6, port->Candidates()[1].priority());
2203 ASSERT_EQ(expected_priority_ula, port->Candidates()[2].priority());
2204 ASSERT_EQ(expected_priority_v4mapped, port->Candidates()[3].priority());
2205 ASSERT_EQ(expected_priority_v4compat, port->Candidates()[4].priority());
2206 ASSERT_EQ(expected_priority_6to4, port->Candidates()[5].priority());
2207 ASSERT_EQ(expected_priority_teredo, port->Candidates()[6].priority());
2208 ASSERT_EQ(expected_priority_sitelocal, port->Candidates()[7].priority());
2209 ASSERT_EQ(expected_priority_6bone, port->Candidates()[8].priority());
2210}
2211
2212TEST_F(PortTest, TestPortProxyProperties) {
2213 rtc::scoped_ptr<TestPort> port(
2214 CreateTestPort(kLocalAddr1, "name", "pass"));
2215 port->SetIceRole(cricket::ICEROLE_CONTROLLING);
2216 port->SetIceTiebreaker(kTiebreaker1);
2217
2218 // Create a proxy port.
2219 rtc::scoped_ptr<PortProxy> proxy(new PortProxy());
2220 proxy->set_impl(port.get());
2221 EXPECT_EQ(port->Type(), proxy->Type());
2222 EXPECT_EQ(port->Network(), proxy->Network());
2223 EXPECT_EQ(port->GetIceRole(), proxy->GetIceRole());
2224 EXPECT_EQ(port->IceTiebreaker(), proxy->IceTiebreaker());
2225}
2226
2227// In the case of shared socket, one port may be shared by local and stun.
2228// Test that candidates with different types will have different foundation.
2229TEST_F(PortTest, TestFoundation) {
2230 rtc::scoped_ptr<TestPort> testport(
2231 CreateTestPort(kLocalAddr1, "name", "pass"));
2232 testport->AddCandidateAddress(kLocalAddr1, kLocalAddr1,
2233 LOCAL_PORT_TYPE,
2234 cricket::ICE_TYPE_PREFERENCE_HOST, false);
2235 testport->AddCandidateAddress(kLocalAddr2, kLocalAddr1,
2236 STUN_PORT_TYPE,
2237 cricket::ICE_TYPE_PREFERENCE_SRFLX, true);
2238 EXPECT_NE(testport->Candidates()[0].foundation(),
2239 testport->Candidates()[1].foundation());
2240}
2241
2242// This test verifies the foundation of different types of ICE candidates.
2243TEST_F(PortTest, TestCandidateFoundation) {
2244 rtc::scoped_ptr<rtc::NATServer> nat_server(
2245 CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
2246 rtc::scoped_ptr<UDPPort> udpport1(CreateUdpPort(kLocalAddr1));
2247 udpport1->PrepareAddress();
2248 rtc::scoped_ptr<UDPPort> udpport2(CreateUdpPort(kLocalAddr1));
2249 udpport2->PrepareAddress();
2250 EXPECT_EQ(udpport1->Candidates()[0].foundation(),
2251 udpport2->Candidates()[0].foundation());
2252 rtc::scoped_ptr<TCPPort> tcpport1(CreateTcpPort(kLocalAddr1));
2253 tcpport1->PrepareAddress();
2254 rtc::scoped_ptr<TCPPort> tcpport2(CreateTcpPort(kLocalAddr1));
2255 tcpport2->PrepareAddress();
2256 EXPECT_EQ(tcpport1->Candidates()[0].foundation(),
2257 tcpport2->Candidates()[0].foundation());
2258 rtc::scoped_ptr<Port> stunport(
2259 CreateStunPort(kLocalAddr1, nat_socket_factory1()));
2260 stunport->PrepareAddress();
2261 ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout);
2262 EXPECT_NE(tcpport1->Candidates()[0].foundation(),
2263 stunport->Candidates()[0].foundation());
2264 EXPECT_NE(tcpport2->Candidates()[0].foundation(),
2265 stunport->Candidates()[0].foundation());
2266 EXPECT_NE(udpport1->Candidates()[0].foundation(),
2267 stunport->Candidates()[0].foundation());
2268 EXPECT_NE(udpport2->Candidates()[0].foundation(),
2269 stunport->Candidates()[0].foundation());
2270 // Verify GTURN candidate foundation.
2271 rtc::scoped_ptr<RelayPort> relayport(
2272 CreateGturnPort(kLocalAddr1));
2273 relayport->AddServerAddress(
2274 cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
2275 relayport->PrepareAddress();
2276 ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout);
2277 EXPECT_NE(udpport1->Candidates()[0].foundation(),
2278 relayport->Candidates()[0].foundation());
2279 EXPECT_NE(udpport2->Candidates()[0].foundation(),
2280 relayport->Candidates()[0].foundation());
2281 // Verifying TURN candidate foundation.
2282 rtc::scoped_ptr<Port> turnport1(CreateTurnPort(
2283 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
2284 turnport1->PrepareAddress();
2285 ASSERT_EQ_WAIT(1U, turnport1->Candidates().size(), kTimeout);
2286 EXPECT_NE(udpport1->Candidates()[0].foundation(),
2287 turnport1->Candidates()[0].foundation());
2288 EXPECT_NE(udpport2->Candidates()[0].foundation(),
2289 turnport1->Candidates()[0].foundation());
2290 EXPECT_NE(stunport->Candidates()[0].foundation(),
2291 turnport1->Candidates()[0].foundation());
2292 rtc::scoped_ptr<Port> turnport2(CreateTurnPort(
2293 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
2294 turnport2->PrepareAddress();
2295 ASSERT_EQ_WAIT(1U, turnport2->Candidates().size(), kTimeout);
2296 EXPECT_EQ(turnport1->Candidates()[0].foundation(),
2297 turnport2->Candidates()[0].foundation());
2298
2299 // Running a second turn server, to get different base IP address.
2300 SocketAddress kTurnUdpIntAddr2("99.99.98.4", STUN_SERVER_PORT);
2301 SocketAddress kTurnUdpExtAddr2("99.99.98.5", 0);
2302 TestTurnServer turn_server2(
2303 rtc::Thread::Current(), kTurnUdpIntAddr2, kTurnUdpExtAddr2);
2304 rtc::scoped_ptr<Port> turnport3(CreateTurnPort(
2305 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP,
2306 kTurnUdpIntAddr2));
2307 turnport3->PrepareAddress();
2308 ASSERT_EQ_WAIT(1U, turnport3->Candidates().size(), kTimeout);
2309 EXPECT_NE(turnport3->Candidates()[0].foundation(),
2310 turnport2->Candidates()[0].foundation());
2311}
2312
2313// This test verifies the related addresses of different types of
2314// ICE candiates.
2315TEST_F(PortTest, TestCandidateRelatedAddress) {
2316 rtc::scoped_ptr<rtc::NATServer> nat_server(
2317 CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
2318 rtc::scoped_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1));
2319 udpport->PrepareAddress();
2320 // For UDPPort, related address will be empty.
2321 EXPECT_TRUE(udpport->Candidates()[0].related_address().IsNil());
2322 // Testing related address for stun candidates.
2323 // For stun candidate related address must be equal to the base
2324 // socket address.
2325 rtc::scoped_ptr<StunPort> stunport(
2326 CreateStunPort(kLocalAddr1, nat_socket_factory1()));
2327 stunport->PrepareAddress();
2328 ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout);
2329 // Check STUN candidate address.
2330 EXPECT_EQ(stunport->Candidates()[0].address().ipaddr(),
2331 kNatAddr1.ipaddr());
2332 // Check STUN candidate related address.
2333 EXPECT_EQ(stunport->Candidates()[0].related_address(),
2334 stunport->GetLocalAddress());
2335 // Verifying the related address for the GTURN candidates.
2336 // NOTE: In case of GTURN related address will be equal to the mapped
2337 // address, but address(mapped) will not be XOR.
2338 rtc::scoped_ptr<RelayPort> relayport(
2339 CreateGturnPort(kLocalAddr1));
2340 relayport->AddServerAddress(
2341 cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
2342 relayport->PrepareAddress();
2343 ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout);
2344 // For Gturn related address is set to "0.0.0.0:0"
2345 EXPECT_EQ(rtc::SocketAddress(),
2346 relayport->Candidates()[0].related_address());
2347 // Verifying the related address for TURN candidate.
2348 // For TURN related address must be equal to the mapped address.
2349 rtc::scoped_ptr<Port> turnport(CreateTurnPort(
2350 kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
2351 turnport->PrepareAddress();
2352 ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kTimeout);
2353 EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
2354 turnport->Candidates()[0].address().ipaddr());
2355 EXPECT_EQ(kNatAddr1.ipaddr(),
2356 turnport->Candidates()[0].related_address().ipaddr());
2357}
2358
2359// Test priority value overflow handling when preference is set to 3.
2360TEST_F(PortTest, TestCandidatePreference) {
2361 cricket::Candidate cand1;
2362 cand1.set_preference(3);
2363 cricket::Candidate cand2;
2364 cand2.set_preference(1);
2365 EXPECT_TRUE(cand1.preference() > cand2.preference());
2366}
2367
2368// Test the Connection priority is calculated correctly.
2369TEST_F(PortTest, TestConnectionPriority) {
2370 rtc::scoped_ptr<TestPort> lport(
2371 CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
2372 lport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_HOST);
2373 rtc::scoped_ptr<TestPort> rport(
2374 CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
2375 rport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_RELAY);
2376 lport->set_component(123);
2377 lport->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
2378 rport->set_component(23);
2379 rport->AddCandidateAddress(SocketAddress("10.1.1.100", 1234));
2380
2381 EXPECT_EQ(0x7E001E85U, lport->Candidates()[0].priority());
2382 EXPECT_EQ(0x2001EE9U, rport->Candidates()[0].priority());
2383
2384 // RFC 5245
2385 // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
2386 lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2387 rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2388 Connection* lconn = lport->CreateConnection(
2389 rport->Candidates()[0], Port::ORIGIN_MESSAGE);
2390#if defined(WEBRTC_WIN)
2391 EXPECT_EQ(0x2001EE9FC003D0BU, lconn->priority());
2392#else
2393 EXPECT_EQ(0x2001EE9FC003D0BLLU, lconn->priority());
2394#endif
2395
2396 lport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2397 rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2398 Connection* rconn = rport->CreateConnection(
2399 lport->Candidates()[0], Port::ORIGIN_MESSAGE);
2400#if defined(WEBRTC_WIN)
2401 EXPECT_EQ(0x2001EE9FC003D0AU, rconn->priority());
2402#else
2403 EXPECT_EQ(0x2001EE9FC003D0ALLU, rconn->priority());
2404#endif
2405}
2406
2407TEST_F(PortTest, TestWritableState) {
2408 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2409 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2410
2411 // Set up channels.
2412 TestChannel ch1(port1, port2);
2413 TestChannel ch2(port2, port1);
2414
2415 // Acquire addresses.
2416 ch1.Start();
2417 ch2.Start();
2418 ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
2419 ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
2420
2421 // Send a ping from src to dst.
2422 ch1.CreateConnection();
2423 ASSERT_TRUE(ch1.conn() != NULL);
2424 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2425 EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout); // for TCP connect
2426 ch1.Ping();
2427 WAIT(!ch2.remote_address().IsNil(), kTimeout);
2428
2429 // Data should be unsendable until the connection is accepted.
2430 char data[] = "abcd";
2431 int data_size = ARRAY_SIZE(data);
2432 rtc::PacketOptions options;
2433 EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size, options));
2434
2435 // Accept the connection to return the binding response, transition to
2436 // writable, and allow data to be sent.
2437 ch2.AcceptConnection();
2438 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
2439 kTimeout);
2440 EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
2441
2442 // Ask the connection to update state as if enough time has passed to lose
2443 // full writability and 5 pings went unresponded to. We'll accomplish the
2444 // latter by sending pings but not pumping messages.
2445 for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2446 ch1.Ping(i);
2447 }
2448 uint32 unreliable_timeout_delay = CONNECTION_WRITE_CONNECT_TIMEOUT + 500u;
2449 ch1.conn()->UpdateState(unreliable_timeout_delay);
2450 EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state());
2451
2452 // Data should be able to be sent in this state.
2453 EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
2454
2455 // And now allow the other side to process the pings and send binding
2456 // responses.
2457 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
2458 kTimeout);
2459
2460 // Wait long enough for a full timeout (past however long we've already
2461 // waited).
2462 for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2463 ch1.Ping(unreliable_timeout_delay + i);
2464 }
2465 ch1.conn()->UpdateState(unreliable_timeout_delay + CONNECTION_WRITE_TIMEOUT +
2466 500u);
2467 EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
2468
2469 // Now that the connection has completely timed out, data send should fail.
2470 EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size, options));
2471
2472 ch1.Stop();
2473 ch2.Stop();
2474}
2475
2476TEST_F(PortTest, TestTimeoutForNeverWritable) {
2477 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2478 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2479
2480 // Set up channels.
2481 TestChannel ch1(port1, port2);
2482 TestChannel ch2(port2, port1);
2483
2484 // Acquire addresses.
2485 ch1.Start();
2486 ch2.Start();
2487
2488 ch1.CreateConnection();
2489 ASSERT_TRUE(ch1.conn() != NULL);
2490 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2491
2492 // Attempt to go directly to write timeout.
2493 for (uint32 i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2494 ch1.Ping(i);
2495 }
2496 ch1.conn()->UpdateState(CONNECTION_WRITE_TIMEOUT + 500u);
2497 EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
2498}
2499
2500// This test verifies the connection setup between ICEMODE_FULL
2501// and ICEMODE_LITE.
2502// In this test |ch1| behaves like FULL mode client and we have created
2503// port which responds to the ping message just like LITE client.
2504TEST_F(PortTest, TestIceLiteConnectivity) {
2505 TestPort* ice_full_port = CreateTestPort(
2506 kLocalAddr1, "lfrag", "lpass", cricket::ICEPROTO_RFC5245,
2507 cricket::ICEROLE_CONTROLLING, kTiebreaker1);
2508
2509 rtc::scoped_ptr<TestPort> ice_lite_port(CreateTestPort(
2510 kLocalAddr2, "rfrag", "rpass", cricket::ICEPROTO_RFC5245,
2511 cricket::ICEROLE_CONTROLLED, kTiebreaker2));
2512 // Setup TestChannel. This behaves like FULL mode client.
2513 TestChannel ch1(ice_full_port, ice_lite_port.get());
2514 ch1.SetIceMode(ICEMODE_FULL);
2515
2516 // Start gathering candidates.
2517 ch1.Start();
2518 ice_lite_port->PrepareAddress();
2519
2520 ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
2521 ASSERT_FALSE(ice_lite_port->Candidates().empty());
2522
2523 ch1.CreateConnection();
2524 ASSERT_TRUE(ch1.conn() != NULL);
2525 EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2526
2527 // Send ping from full mode client.
2528 // This ping must not have USE_CANDIDATE_ATTR.
2529 ch1.Ping();
2530
2531 // Verify stun ping is without USE_CANDIDATE_ATTR. Getting message directly
2532 // from port.
2533 ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000);
2534 IceMessage* msg = ice_full_port->last_stun_msg();
2535 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
2536
2537 // Respond with a BINDING-RESPONSE from litemode client.
2538 // NOTE: Ideally we should't create connection at this stage from lite
2539 // port, as it should be done only after receiving ping with USE_CANDIDATE.
2540 // But we need a connection to send a response message.
2541 ice_lite_port->CreateConnection(
2542 ice_full_port->Candidates()[0], cricket::Port::ORIGIN_MESSAGE);
2543 rtc::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
2544 ice_lite_port->SendBindingResponse(
2545 request.get(), ice_full_port->Candidates()[0].address());
2546
2547 // Feeding the respone message from litemode to the full mode connection.
2548 ch1.conn()->OnReadPacket(ice_lite_port->last_stun_buf()->Data(),
2549 ice_lite_port->last_stun_buf()->Length(),
2550 rtc::PacketTime());
2551 // Verifying full mode connection becomes writable from the response.
2552 EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
2553 kTimeout);
2554 EXPECT_TRUE_WAIT(ch1.nominated(), kTimeout);
2555
2556 // Clear existing stun messsages. Otherwise we will process old stun
2557 // message right after we send ping.
2558 ice_full_port->Reset();
2559 // Send ping. This must have USE_CANDIDATE_ATTR.
2560 ch1.Ping();
2561 ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000);
2562 msg = ice_full_port->last_stun_msg();
2563 EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
2564 ch1.Stop();
2565}
2566
2567// This test case verifies that the CONTROLLING port does not time out.
2568TEST_F(PortTest, TestControllingNoTimeout) {
2569 SetIceProtocolType(cricket::ICEPROTO_RFC5245);
2570 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2571 ConnectToSignalDestroyed(port1);
2572 port1->set_timeout_delay(10); // milliseconds
2573 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
2574 port1->SetIceTiebreaker(kTiebreaker1);
2575
2576 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2577 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
2578 port2->SetIceTiebreaker(kTiebreaker2);
2579
2580 // Set up channels and ensure both ports will be deleted.
2581 TestChannel ch1(port1, port2);
2582 TestChannel ch2(port2, port1);
2583
2584 // Simulate a connection that succeeds, and then is destroyed.
Guo-wei Shiehbe508a12015-04-06 12:48:47 -07002585 StartConnectAndStopChannels(&ch1, &ch2);
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00002586
2587 // After the connection is destroyed, the port should not be destroyed.
2588 rtc::Thread::Current()->ProcessMessages(kTimeout);
2589 EXPECT_FALSE(destroyed());
2590}
2591
2592// This test case verifies that the CONTROLLED port does time out, but only
2593// after connectivity is lost.
2594TEST_F(PortTest, TestControlledTimeout) {
2595 SetIceProtocolType(cricket::ICEPROTO_RFC5245);
2596 UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2597 port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
2598 port1->SetIceTiebreaker(kTiebreaker1);
2599
2600 UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2601 ConnectToSignalDestroyed(port2);
2602 port2->set_timeout_delay(10); // milliseconds
2603 port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
2604 port2->SetIceTiebreaker(kTiebreaker2);
2605
2606 // The connection must not be destroyed before a connection is attempted.
2607 EXPECT_FALSE(destroyed());
2608
2609 port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
2610 port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
2611
2612 // Set up channels and ensure both ports will be deleted.
2613 TestChannel ch1(port1, port2);
2614 TestChannel ch2(port2, port1);
2615
2616 // Simulate a connection that succeeds, and then is destroyed.
Guo-wei Shiehbe508a12015-04-06 12:48:47 -07002617 StartConnectAndStopChannels(&ch1, &ch2);
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00002618
2619 // The controlled port should be destroyed after 10 milliseconds.
2620 EXPECT_TRUE_WAIT(destroyed(), kTimeout);
2621}