blob: 2a3117b2b39dd984cd60dff3736749d6c1312e44 [file] [log] [blame]
Gael Guennebaud86ccd992008-11-05 13:47:55 +00001// This file is part of Eigen, a lightweight C++ template library
Benoit Jacob6347b1d2009-05-22 20:25:33 +02002// for linear algebra.
Gael Guennebaud86ccd992008-11-05 13:47:55 +00003//
Gael Guennebaud22c76092011-03-22 11:58:22 +01004// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
Gael Guennebaud86ccd992008-11-05 13:47:55 +00005// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
Desire NUENTSA4cd82452013-06-11 14:42:29 +02006// Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
Gael Guennebaud86ccd992008-11-05 13:47:55 +00007//
Benoit Jacob69124cf2012-07-13 14:42:47 -04008// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
Gael Guennebaud86ccd992008-11-05 13:47:55 +000011
Gael Guennebaudc43154b2015-03-04 10:16:46 +010012static long g_realloc_count = 0;
13#define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++;
14
Gael Guennebaud86ccd992008-11-05 13:47:55 +000015#include "sparse.h"
16
Gael Guennebaud178858f2009-01-19 15:20:45 +000017template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
18{
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +010019 typedef typename SparseMatrixType::StorageIndex StorageIndex;
20 typedef Matrix<StorageIndex,2,1> Vector2;
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020021
Gael Guennebaudfc202ba2015-02-13 18:57:41 +010022 const Index rows = ref.rows();
23 const Index cols = ref.cols();
Gael Guennebaud0a537cb2016-02-12 15:58:31 +010024 //const Index inner = ref.innerSize();
25 //const Index outer = ref.outerSize();
Christoph Hertzberg0833b822014-10-31 17:12:13 +010026
Gael Guennebaud178858f2009-01-19 15:20:45 +000027 typedef typename SparseMatrixType::Scalar Scalar;
28 enum { Flags = SparseMatrixType::Flags };
Gael Guennebaud9f795582009-12-16 19:18:40 +010029
Gael Guennebaud42e25782011-08-19 14:18:05 +020030 double density = (std::max)(8./(rows*cols), 0.01);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000031 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
32 typedef Matrix<Scalar,Dynamic,1> DenseVector;
33 Scalar eps = 1e-6;
34
Benoit Jacob47160402010-10-25 10:15:22 -040035 Scalar s1 = internal::random<Scalar>();
Gael Guennebaud86ccd992008-11-05 13:47:55 +000036 {
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020037 SparseMatrixType m(rows, cols);
38 DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
39 DenseVector vec1 = DenseVector::Random(rows);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000040
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020041 std::vector<Vector2> zeroCoords;
42 std::vector<Vector2> nonzeroCoords;
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020043 initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000044
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020045 // test coeff and coeffRef
Christoph Hertzberg0833b822014-10-31 17:12:13 +010046 for (std::size_t i=0; i<zeroCoords.size(); ++i)
Gael Guennebaud86ccd992008-11-05 13:47:55 +000047 {
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020048 VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
49 if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
Christoph Hertzberg0833b822014-10-31 17:12:13 +010050 VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 );
Gael Guennebaud86ccd992008-11-05 13:47:55 +000051 }
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020052 VERIFY_IS_APPROX(m, refMat);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000053
Christoph Hertzberg0833b822014-10-31 17:12:13 +010054 if(!nonzeroCoords.empty()) {
55 m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
56 refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
57 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +000058
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020059 VERIFY_IS_APPROX(m, refMat);
Christoph Hertzberg0833b822014-10-31 17:12:13 +010060
Gael Guennebauda915f022013-06-28 16:16:02 +020061 // test assertion
62 VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 );
63 VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 );
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020064 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +000065
Gael Guennebaud28293142009-05-04 14:25:12 +000066 // test insert (inner random)
Gael Guennebaud5015e482008-12-11 18:26:24 +000067 {
68 DenseMatrix m1(rows,cols);
69 m1.setZero();
Gael Guennebaud178858f2009-01-19 15:20:45 +000070 SparseMatrixType m2(rows,cols);
Gael Guennebaudc43154b2015-03-04 10:16:46 +010071 bool call_reserve = internal::random<int>()%2;
72 Index nnz = internal::random<int>(1,int(rows)/2);
73 if(call_reserve)
74 {
75 if(internal::random<int>()%2)
76 m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz)));
77 else
78 m2.reserve(m2.outerSize() * nnz);
79 }
80 g_realloc_count = 0;
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020081 for (Index j=0; j<cols; ++j)
Gael Guennebaud5015e482008-12-11 18:26:24 +000082 {
Gael Guennebaudc43154b2015-03-04 10:16:46 +010083 for (Index k=0; k<nnz; ++k)
Gael Guennebaud5015e482008-12-11 18:26:24 +000084 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020085 Index i = internal::random<Index>(0,rows-1);
Gael Guennebaud5015e482008-12-11 18:26:24 +000086 if (m1.coeff(i,j)==Scalar(0))
Benoit Jacob47160402010-10-25 10:15:22 -040087 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
Gael Guennebaud5015e482008-12-11 18:26:24 +000088 }
89 }
Gael Guennebaudc43154b2015-03-04 10:16:46 +010090
91 if(call_reserve && !SparseMatrixType::IsRowMajor)
92 {
93 VERIFY(g_realloc_count==0);
94 }
95
Gael Guennebaud28293142009-05-04 14:25:12 +000096 m2.finalize();
97 VERIFY_IS_APPROX(m2,m1);
98 }
Gael Guennebaud9f795582009-12-16 19:18:40 +010099
Gael Guennebaud28293142009-05-04 14:25:12 +0000100 // test insert (fully random)
101 {
102 DenseMatrix m1(rows,cols);
103 m1.setZero();
104 SparseMatrixType m2(rows,cols);
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100105 if(internal::random<int>()%2)
106 m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
Gael Guennebaud28293142009-05-04 14:25:12 +0000107 for (int k=0; k<rows*cols; ++k)
108 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +0200109 Index i = internal::random<Index>(0,rows-1);
110 Index j = internal::random<Index>(0,cols-1);
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100111 if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
Benoit Jacob47160402010-10-25 10:15:22 -0400112 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100113 else
114 {
115 Scalar v = internal::random<Scalar>();
116 m2.coeffRef(i,j) += v;
117 m1(i,j) += v;
118 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000119 }
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000120 VERIFY_IS_APPROX(m2,m1);
Gael Guennebaud5015e482008-12-11 18:26:24 +0000121 }
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200122
123 // test insert (un-compressed)
124 for(int mode=0;mode<4;++mode)
125 {
126 DenseMatrix m1(rows,cols);
127 m1.setZero();
128 SparseMatrixType m2(rows,cols);
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200129 VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8)));
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200130 m2.reserve(r);
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100131 for (Index k=0; k<rows*cols; ++k)
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200132 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +0200133 Index i = internal::random<Index>(0,rows-1);
134 Index j = internal::random<Index>(0,cols-1);
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200135 if (m1.coeff(i,j)==Scalar(0))
136 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
137 if(mode==3)
138 m2.reserve(r);
139 }
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100140 if(internal::random<int>()%2)
141 m2.makeCompressed();
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200142 VERIFY_IS_APPROX(m2,m1);
143 }
Gael Guennebaud9f795582009-12-16 19:18:40 +0100144
Gael Guennebaud4e602832012-11-16 09:02:50 +0100145 // test basic computations
146 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100147 DenseMatrix refM1 = DenseMatrix::Zero(rows, cols);
148 DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
149 DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
150 DenseMatrix refM4 = DenseMatrix::Zero(rows, cols);
151 SparseMatrixType m1(rows, cols);
152 SparseMatrixType m2(rows, cols);
153 SparseMatrixType m3(rows, cols);
154 SparseMatrixType m4(rows, cols);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100155 initSparse<Scalar>(density, refM1, m1);
156 initSparse<Scalar>(density, refM2, m2);
157 initSparse<Scalar>(density, refM3, m3);
158 initSparse<Scalar>(density, refM4, m4);
159
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200160 if(internal::random<bool>())
161 m1.makeCompressed();
162
Gael Guennebaud4aac8722014-07-22 12:54:03 +0200163 VERIFY_IS_APPROX(m1*s1, refM1*s1);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100164 VERIFY_IS_APPROX(m1+m2, refM1+refM2);
165 VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
166 VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
167 VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
168
Gael Guennebaud4e602832012-11-16 09:02:50 +0100169 if(SparseMatrixType::IsRowMajor)
170 VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
171 else
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100172 VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0)));
Gael Guennebaud3573a102014-02-17 13:46:17 +0100173
174 DenseVector rv = DenseVector::Random(m1.cols());
175 DenseVector cv = DenseVector::Random(m1.rows());
176 Index r = internal::random<Index>(0,m1.rows()-2);
177 Index c = internal::random<Index>(0,m1.cols()-1);
178 VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv));
179 VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv));
180 VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100181
182 VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
183 VERIFY_IS_APPROX(m1.real(), refM1.real());
184
185 refM4.setRandom();
186 // sparse cwise* dense
187 VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
Gael Guennebaud90275082015-11-04 17:42:07 +0100188 // dense cwise* sparse
189 VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100190// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
191
Gael Guennebaud15084cf2016-01-29 22:09:45 +0100192 VERIFY_IS_APPROX(refM4 + m3, refM4 + refM3);
193 VERIFY_IS_APPROX(m3 + refM4, refM3 + refM4);
194 VERIFY_IS_APPROX(refM4 - m3, refM4 - refM3);
195 VERIFY_IS_APPROX(m3 - refM4, refM3 - refM4);
196
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200197 VERIFY_IS_APPROX(m1.sum(), refM1.sum());
198
199 VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
200 VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
201
202 VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
203 VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
204
Gael Guennebaud4e602832012-11-16 09:02:50 +0100205 // test aliasing
206 VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1));
207 VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval()));
208 VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval()));
209 VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1));
Gael Guennebaud7e029d12016-08-29 12:06:37 +0200210
211 if(m1.isCompressed())
212 {
213 VERIFY_IS_APPROX(m1.coeffs().sum(), m1.sum());
214 m1.coeffs() += s1;
215 for(Index j = 0; j<m1.outerSize(); ++j)
216 for(typename SparseMatrixType::InnerIterator it(m1,j); it; ++it)
217 refM1(it.row(), it.col()) += s1;
218 VERIFY_IS_APPROX(m1, refM1);
219 }
Gael Guennebaud2e334f52016-11-14 18:47:02 +0100220
221 // and/or
222 {
223 typedef SparseMatrix<bool, SparseMatrixType::Options, typename SparseMatrixType::StorageIndex> SpBool;
224 SpBool mb1 = m1.real().template cast<bool>();
225 SpBool mb2 = m2.real().template cast<bool>();
226 VERIFY_IS_EQUAL(mb1.template cast<int>().sum(), refM1.real().template cast<bool>().count());
227 VERIFY_IS_EQUAL((mb1 && mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
228 VERIFY_IS_EQUAL((mb1 || mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() || refM2.real().template cast<bool>()).count());
229 SpBool mb3 = mb1 && mb2;
230 if(mb1.coeffs().all() && mb2.coeffs().all())
231 {
232 VERIFY_IS_EQUAL(mb3.nonZeros(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
233 }
234 }
Gael Guennebaud4e602832012-11-16 09:02:50 +0100235 }
236
Gael Guennebaudeedb87f2016-11-14 14:05:53 +0100237 // test reverse iterators
238 {
239 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
240 SparseMatrixType m2(rows, cols);
241 initSparse<Scalar>(density, refMat2, m2);
242 std::vector<Scalar> ref_value(m2.innerSize());
243 std::vector<Index> ref_index(m2.innerSize());
244 if(internal::random<bool>())
245 m2.makeCompressed();
246 for(Index j = 0; j<m2.outerSize(); ++j)
247 {
248 Index count_forward = 0;
249
250 for(typename SparseMatrixType::InnerIterator it(m2,j); it; ++it)
251 {
252 ref_value[ref_value.size()-1-count_forward] = it.value();
253 ref_index[ref_index.size()-1-count_forward] = it.index();
254 count_forward++;
255 }
256 Index count_reverse = 0;
257 for(typename SparseMatrixType::ReverseInnerIterator it(m2,j); it; --it)
258 {
259 VERIFY_IS_APPROX( std::abs(ref_value[ref_value.size()-count_forward+count_reverse])+1, std::abs(it.value())+1);
260 VERIFY_IS_EQUAL( ref_index[ref_index.size()-count_forward+count_reverse] , it.index());
261 count_reverse++;
262 }
263 VERIFY_IS_EQUAL(count_forward, count_reverse);
264 }
265 }
266
Gael Guennebaud4e602832012-11-16 09:02:50 +0100267 // test transpose
268 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100269 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
270 SparseMatrixType m2(rows, cols);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100271 initSparse<Scalar>(density, refMat2, m2);
272 VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
273 VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
274
275 VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
Gael Guennebaudff46ec02014-09-22 23:33:28 +0200276
277 // check isApprox handles opposite storage order
278 typename Transpose<SparseMatrixType>::PlainObject m3(m2);
279 VERIFY(m2.isApprox(m3));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100280 }
281
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000282 // test prune
283 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100284 SparseMatrixType m2(rows, cols);
285 DenseMatrix refM2(rows, cols);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000286 refM2.setZero();
287 int countFalseNonZero = 0;
288 int countTrueNonZero = 0;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200289 m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize())));
290 for (Index j=0; j<m2.cols(); ++j)
Gael Guennebaud28293142009-05-04 14:25:12 +0000291 {
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200292 for (Index i=0; i<m2.rows(); ++i)
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000293 {
Benoit Jacob47160402010-10-25 10:15:22 -0400294 float x = internal::random<float>(0,1);
Christoph Hertzbergdacb4692016-05-05 13:35:45 +0200295 if (x<0.1f)
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000296 {
297 // do nothing
298 }
Christoph Hertzbergdacb4692016-05-05 13:35:45 +0200299 else if (x<0.5f)
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000300 {
301 countFalseNonZero++;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200302 m2.insert(i,j) = Scalar(0);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000303 }
304 else
305 {
306 countTrueNonZero++;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200307 m2.insert(i,j) = Scalar(1);
308 refM2(i,j) = Scalar(1);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000309 }
310 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000311 }
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200312 if(internal::random<bool>())
313 m2.makeCompressed();
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000314 VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200315 if(countTrueNonZero>0)
316 VERIFY_IS_APPROX(m2, refM2);
Hauke Heibeld204ec42010-11-02 14:33:33 +0100317 m2.prune(Scalar(1));
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000318 VERIFY(countTrueNonZero==m2.nonZeros());
319 VERIFY_IS_APPROX(m2, refM2);
320 }
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100321
Gael Guennebaud87138072012-01-28 11:13:59 +0100322 // test setFromTriplets
323 {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100324 typedef Triplet<Scalar,StorageIndex> TripletType;
Gael Guennebaud87138072012-01-28 11:13:59 +0100325 std::vector<TripletType> triplets;
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200326 Index ntriplets = rows*cols;
Gael Guennebaud87138072012-01-28 11:13:59 +0100327 triplets.reserve(ntriplets);
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200328 DenseMatrix refMat_sum = DenseMatrix::Zero(rows,cols);
329 DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols);
330 DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols);
331
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200332 for(Index i=0;i<ntriplets;++i)
Gael Guennebaud87138072012-01-28 11:13:59 +0100333 {
Gael Guennebaudaa6c5162015-02-16 13:19:05 +0100334 StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1));
335 StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1));
Gael Guennebaud87138072012-01-28 11:13:59 +0100336 Scalar v = internal::random<Scalar>();
Gael Guennebaud18e3ac02012-01-31 09:14:01 +0100337 triplets.push_back(TripletType(r,c,v));
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200338 refMat_sum(r,c) += v;
339 if(std::abs(refMat_prod(r,c))==0)
340 refMat_prod(r,c) = v;
341 else
342 refMat_prod(r,c) *= v;
343 refMat_last(r,c) = v;
Gael Guennebaud87138072012-01-28 11:13:59 +0100344 }
345 SparseMatrixType m(rows,cols);
346 m.setFromTriplets(triplets.begin(), triplets.end());
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200347 VERIFY_IS_APPROX(m, refMat_sum);
348
349 m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>());
350 VERIFY_IS_APPROX(m, refMat_prod);
351#if (defined(__cplusplus) && __cplusplus >= 201103L)
352 m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; });
353 VERIFY_IS_APPROX(m, refMat_last);
354#endif
Gael Guennebaud87138072012-01-28 11:13:59 +0100355 }
Gael Guennebaud3af29ca2015-02-09 10:23:45 +0100356
357 // test Map
358 {
359 DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
360 SparseMatrixType m2(rows, cols), m3(rows, cols);
361 initSparse<Scalar>(density, refMat2, m2);
362 initSparse<Scalar>(density, refMat3, m3);
363 {
364 Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
365 Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
366 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
367 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
368 }
369 {
Gael Guennebaudfe513192015-02-13 10:03:53 +0100370 MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
371 MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
Gael Guennebaud3af29ca2015-02-09 10:23:45 +0100372 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
373 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
374 }
Gael Guennebaud757971e2016-07-26 09:40:19 +0200375
376 Index i = internal::random<Index>(0,rows-1);
377 Index j = internal::random<Index>(0,cols-1);
378 m2.coeffRef(i,j) = 123;
379 if(internal::random<bool>())
380 m2.makeCompressed();
381 Map<SparseMatrixType> mapMat2(rows, cols, m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
382 VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(123));
383 VERIFY_IS_EQUAL(mapMat2.coeff(i,j),Scalar(123));
384 mapMat2.coeffRef(i,j) = -123;
385 VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(-123));
Gael Guennebaud3af29ca2015-02-09 10:23:45 +0100386 }
Gael Guennebaud87138072012-01-28 11:13:59 +0100387
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100388 // test triangularView
389 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100390 DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
391 SparseMatrixType m2(rows, cols), m3(rows, cols);
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100392 initSparse<Scalar>(density, refMat2, m2);
393 refMat3 = refMat2.template triangularView<Lower>();
394 m3 = m2.template triangularView<Lower>();
395 VERIFY_IS_APPROX(m3, refMat3);
396
397 refMat3 = refMat2.template triangularView<Upper>();
398 m3 = m2.template triangularView<Upper>();
399 VERIFY_IS_APPROX(m3, refMat3);
400
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100401 {
402 refMat3 = refMat2.template triangularView<UnitUpper>();
403 m3 = m2.template triangularView<UnitUpper>();
404 VERIFY_IS_APPROX(m3, refMat3);
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100405
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100406 refMat3 = refMat2.template triangularView<UnitLower>();
407 m3 = m2.template triangularView<UnitLower>();
408 VERIFY_IS_APPROX(m3, refMat3);
409 }
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200410
411 refMat3 = refMat2.template triangularView<StrictlyUpper>();
412 m3 = m2.template triangularView<StrictlyUpper>();
413 VERIFY_IS_APPROX(m3, refMat3);
414
415 refMat3 = refMat2.template triangularView<StrictlyLower>();
416 m3 = m2.template triangularView<StrictlyLower>();
417 VERIFY_IS_APPROX(m3, refMat3);
Gael Guennebaudf6b1dee2015-11-04 17:02:32 +0100418
419 // check sparse-traingular to dense
420 refMat3 = m2.template triangularView<StrictlyUpper>();
421 VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>()));
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100422 }
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200423
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100424 // test selfadjointView
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100425 if(!SparseMatrixType::IsRowMajor)
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100426 {
427 DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
428 SparseMatrixType m2(rows, rows), m3(rows, rows);
429 initSparse<Scalar>(density, refMat2, m2);
430 refMat3 = refMat2.template selfadjointView<Lower>();
431 m3 = m2.template selfadjointView<Lower>();
432 VERIFY_IS_APPROX(m3, refMat3);
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100433
434 // selfadjointView only works for square matrices:
435 SparseMatrixType m4(rows, rows+1);
436 VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>());
437 VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>());
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100438 }
439
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200440 // test sparseView
441 {
442 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
443 SparseMatrixType m2(rows, rows);
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100444 initSparse<Scalar>(density, refMat2, m2);
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200445 VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
Gael Guennebaud8456bbb2016-05-18 16:53:28 +0200446
447 // sparse view on expressions:
448 VERIFY_IS_APPROX((s1*m2).eval(), (s1*refMat2).sparseView().eval());
449 VERIFY_IS_APPROX((m2+m2).eval(), (refMat2+refMat2).sparseView().eval());
450 VERIFY_IS_APPROX((m2*m2).eval(), (refMat2.lazyProduct(refMat2)).sparseView().eval());
451 VERIFY_IS_APPROX((m2*m2).eval(), (refMat2*refMat2).sparseView().eval());
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200452 }
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100453
454 // test diagonal
455 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100456 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
457 SparseMatrixType m2(rows, cols);
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100458 initSparse<Scalar>(density, refMat2, m2);
459 VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval());
Gael Guennebaudb26e6972014-12-01 14:41:39 +0100460 VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval());
461
462 initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag);
463 m2.diagonal() += refMat2.diagonal();
464 refMat2.diagonal() += refMat2.diagonal();
465 VERIFY_IS_APPROX(m2, refMat2);
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100466 }
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200467
Gael Guennebaud62f21e22015-06-24 17:55:00 +0200468 // test diagonal to sparse
469 {
470 DenseVector d = DenseVector::Random(rows);
471 DenseMatrix refMat2 = d.asDiagonal();
472 SparseMatrixType m2(rows, rows);
473 m2 = d.asDiagonal();
474 VERIFY_IS_APPROX(m2, refMat2);
Gael Guennebaud4c8cd132015-06-24 18:11:06 +0200475 SparseMatrixType m3(d.asDiagonal());
476 VERIFY_IS_APPROX(m3, refMat2);
Gael Guennebaud62f21e22015-06-24 17:55:00 +0200477 refMat2 += d.asDiagonal();
478 m2 += d.asDiagonal();
479 VERIFY_IS_APPROX(m2, refMat2);
480 }
481
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200482 // test conservative resize
483 {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100484 std::vector< std::pair<StorageIndex,StorageIndex> > inc;
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100485 if(rows > 3 && cols > 2)
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100486 inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2));
487 inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0));
488 inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2));
489 inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0));
490 inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3));
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200491
492 for(size_t i = 0; i< inc.size(); i++) {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100493 StorageIndex incRows = inc[i].first;
494 StorageIndex incCols = inc[i].second;
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200495 SparseMatrixType m1(rows, cols);
496 DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols);
497 initSparse<Scalar>(density, refMat1, m1);
498
499 m1.conservativeResize(rows+incRows, cols+incCols);
500 refMat1.conservativeResize(rows+incRows, cols+incCols);
501 if (incRows > 0) refMat1.bottomRows(incRows).setZero();
502 if (incCols > 0) refMat1.rightCols(incCols).setZero();
503
504 VERIFY_IS_APPROX(m1, refMat1);
505
506 // Insert new values
507 if (incRows > 0)
Gael Guennebaud7ee378d2013-07-12 16:40:02 +0200508 m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1;
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200509 if (incCols > 0)
Gael Guennebaud7ee378d2013-07-12 16:40:02 +0200510 m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1;
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200511
512 VERIFY_IS_APPROX(m1, refMat1);
513
514
515 }
516 }
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200517
518 // test Identity matrix
519 {
520 DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows);
521 SparseMatrixType m1(rows, rows);
522 m1.setIdentity();
523 VERIFY_IS_APPROX(m1, refMat1);
Gael Guennebaud8a211bb2015-10-25 22:01:58 +0100524 for(int k=0; k<rows*rows/4; ++k)
525 {
526 Index i = internal::random<Index>(0,rows-1);
527 Index j = internal::random<Index>(0,rows-1);
Gael Guennebaud73f692d2015-10-27 11:01:37 +0100528 Scalar v = internal::random<Scalar>();
Gael Guennebaud8a211bb2015-10-25 22:01:58 +0100529 m1.coeffRef(i,j) = v;
530 refMat1.coeffRef(i,j) = v;
531 VERIFY_IS_APPROX(m1, refMat1);
532 if(internal::random<Index>(0,10)<2)
533 m1.makeCompressed();
534 }
535 m1.setIdentity();
536 refMat1.setIdentity();
537 VERIFY_IS_APPROX(m1, refMat1);
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200538 }
Gael Guennebaudec469702016-02-01 15:04:33 +0100539
540 // test array/vector of InnerIterator
541 {
542 typedef typename SparseMatrixType::InnerIterator IteratorType;
543
544 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
545 SparseMatrixType m2(rows, cols);
546 initSparse<Scalar>(density, refMat2, m2);
547 IteratorType static_array[2];
548 static_array[0] = IteratorType(m2,0);
549 static_array[1] = IteratorType(m2,m2.outerSize()-1);
550 VERIFY( static_array[0] || m2.innerVector(static_array[0].outer()).nonZeros() == 0 );
551 VERIFY( static_array[1] || m2.innerVector(static_array[1].outer()).nonZeros() == 0 );
552 if(static_array[0] && static_array[1])
553 {
554 ++(static_array[1]);
555 static_array[1] = IteratorType(m2,0);
556 VERIFY( static_array[1] );
557 VERIFY( static_array[1].index() == static_array[0].index() );
558 VERIFY( static_array[1].outer() == static_array[0].outer() );
559 VERIFY( static_array[1].value() == static_array[0].value() );
560 }
561
562 std::vector<IteratorType> iters(2);
563 iters[0] = IteratorType(m2,0);
564 iters[1] = IteratorType(m2,m2.outerSize()-1);
565 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000566}
567
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100568
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100569template<typename SparseMatrixType>
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100570void big_sparse_triplet(Index rows, Index cols, double density) {
571 typedef typename SparseMatrixType::StorageIndex StorageIndex;
572 typedef typename SparseMatrixType::Scalar Scalar;
573 typedef Triplet<Scalar,Index> TripletType;
574 std::vector<TripletType> triplets;
575 double nelements = density * rows*cols;
576 VERIFY(nelements>=0 && nelements < NumTraits<StorageIndex>::highest());
577 Index ntriplets = Index(nelements);
578 triplets.reserve(ntriplets);
579 Scalar sum = Scalar(0);
580 for(Index i=0;i<ntriplets;++i)
581 {
582 Index r = internal::random<Index>(0,rows-1);
583 Index c = internal::random<Index>(0,cols-1);
584 Scalar v = internal::random<Scalar>();
585 triplets.push_back(TripletType(r,c,v));
586 sum += v;
587 }
588 SparseMatrixType m(rows,cols);
589 m.setFromTriplets(triplets.begin(), triplets.end());
590 VERIFY(m.nonZeros() <= ntriplets);
591 VERIFY_IS_APPROX(sum, m.sum());
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100592}
593
594
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000595void test_sparse_basic()
596{
597 for(int i = 0; i < g_repeat; i++) {
Gael Guennebaudc43154b2015-03-04 10:16:46 +0100598 int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100599 if(Eigen::internal::random<int>(0,4) == 0) {
600 r = c; // check square matrices in 25% of tries
601 }
602 EIGEN_UNUSED_VARIABLE(r+c);
603 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) ));
Gael Guennebaud91fe1502011-06-07 11:28:16 +0200604 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100605 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
606 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
607 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) ));
Gael Guennebaudd7698c12015-03-19 15:11:05 +0100608 CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) ));
609 CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) ));
Gael Guennebaud47e89022013-06-10 10:34:03 +0200610
Gael Guennebaudc43154b2015-03-04 10:16:46 +0100611 r = Eigen::internal::random<int>(1,100);
612 c = Eigen::internal::random<int>(1,100);
613 if(Eigen::internal::random<int>(0,4) == 0) {
614 r = c; // check square matrices in 25% of tries
615 }
616
Gael Guennebaudd7698c12015-03-19 15:11:05 +0100617 CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
618 CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000619 }
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100620
621 // Regression test for bug 900: (manually insert higher values here, if you have enough RAM):
622 CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125)));
623 CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125)));
Gael Guennebaudbfd6ee62015-11-06 15:05:37 +0100624
625 // Regression test for bug 1105
Christoph Hertzberg7268b102016-05-11 19:41:53 +0200626#ifdef EIGEN_TEST_PART_7
Gael Guennebaudbfd6ee62015-11-06 15:05:37 +0100627 {
628 int n = Eigen::internal::random<int>(200,600);
629 SparseMatrix<std::complex<double>,0, long> mat(n, n);
630 std::complex<double> val;
631
632 for(int i=0; i<n; ++i)
633 {
634 mat.coeffRef(i, i%(n/10)) = val;
635 VERIFY(mat.data().allocatedSize()<20*n);
636 }
637 }
638#endif
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000639}