blob: f65b25d67f2869de09447ff1085a0f783555ea5b [file] [log] [blame]
David Neto22f144c2017-06-12 14:26:21 -04001// Copyright 2017 The Clspv Authors. All rights reserved.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#ifdef _MSC_VER
16#pragma warning(push, 0)
17#endif
18
David Neto156783e2017-07-05 15:39:41 -040019#include <cassert>
David Neto257c3892018-04-11 13:19:45 -040020#include <cstring>
David Neto118188e2018-08-24 11:27:54 -040021#include <iomanip>
22#include <list>
David Neto862b7d82018-06-14 18:48:37 -040023#include <memory>
David Neto118188e2018-08-24 11:27:54 -040024#include <set>
25#include <sstream>
26#include <string>
27#include <tuple>
28#include <unordered_set>
29#include <utility>
David Neto862b7d82018-06-14 18:48:37 -040030
David Neto22f144c2017-06-12 14:26:21 -040031
David Neto118188e2018-08-24 11:27:54 -040032#include "llvm/ADT/StringSwitch.h"
33#include "llvm/ADT/UniqueVector.h"
34#include "llvm/Analysis/LoopInfo.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/Dominators.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/Metadata.h"
39#include "llvm/IR/Module.h"
40#include "llvm/Pass.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Transforms/Utils/Cloning.h"
David Neto22f144c2017-06-12 14:26:21 -040044
David Neto85082642018-03-24 06:55:20 -070045#include "spirv/1.0/spirv.hpp"
David Neto118188e2018-08-24 11:27:54 -040046
David Neto85082642018-03-24 06:55:20 -070047#include "clspv/AddressSpace.h"
David Neto118188e2018-08-24 11:27:54 -040048#include "clspv/Option.h"
49#include "clspv/Passes.h"
David Neto85082642018-03-24 06:55:20 -070050#include "clspv/spirv_c_strings.hpp"
51#include "clspv/spirv_glsl.hpp"
David Neto22f144c2017-06-12 14:26:21 -040052
David Neto4feb7a42017-10-06 17:29:42 -040053#include "ArgKind.h"
David Neto85082642018-03-24 06:55:20 -070054#include "ConstantEmitter.h"
Alan Baker202c8c72018-08-13 13:47:44 -040055#include "Constants.h"
David Neto78383442018-06-15 20:31:56 -040056#include "DescriptorCounter.h"
David Neto48f56a42017-10-06 16:44:25 -040057
David Neto22f144c2017-06-12 14:26:21 -040058#if defined(_MSC_VER)
59#pragma warning(pop)
60#endif
61
62using namespace llvm;
63using namespace clspv;
David Neto156783e2017-07-05 15:39:41 -040064using namespace mdconst;
David Neto22f144c2017-06-12 14:26:21 -040065
66namespace {
David Netocd8ca5f2017-10-02 23:34:11 -040067
David Neto862b7d82018-06-14 18:48:37 -040068cl::opt<bool> ShowResourceVars("show-rv", cl::init(false), cl::Hidden,
69 cl::desc("Show resource variable creation"));
70
71// These hacks exist to help transition code generation algorithms
72// without making huge noise in detailed test output.
73const bool Hack_generate_runtime_array_stride_early = true;
74
David Neto3fbb4072017-10-16 11:28:14 -040075// The value of 1/pi. This value is from MSDN
76// https://msdn.microsoft.com/en-us/library/4hwaceh6.aspx
77const double kOneOverPi = 0.318309886183790671538;
78const glsl::ExtInst kGlslExtInstBad = static_cast<glsl::ExtInst>(0);
79
David Netoab03f432017-11-03 17:00:44 -040080const char* kCompositeConstructFunctionPrefix = "clspv.composite_construct.";
81
David Neto22f144c2017-06-12 14:26:21 -040082enum SPIRVOperandType {
83 NUMBERID,
84 LITERAL_INTEGER,
85 LITERAL_STRING,
86 LITERAL_FLOAT
87};
88
89struct SPIRVOperand {
90 explicit SPIRVOperand(SPIRVOperandType Ty, uint32_t Num)
91 : Type(Ty), LiteralNum(1, Num) {}
92 explicit SPIRVOperand(SPIRVOperandType Ty, const char *Str)
93 : Type(Ty), LiteralStr(Str) {}
94 explicit SPIRVOperand(SPIRVOperandType Ty, StringRef Str)
95 : Type(Ty), LiteralStr(Str) {}
96 explicit SPIRVOperand(SPIRVOperandType Ty, ArrayRef<uint32_t> NumVec)
97 : Type(Ty), LiteralNum(NumVec.begin(), NumVec.end()) {}
98
99 SPIRVOperandType getType() { return Type; };
100 uint32_t getNumID() { return LiteralNum[0]; };
101 std::string getLiteralStr() { return LiteralStr; };
102 ArrayRef<uint32_t> getLiteralNum() { return LiteralNum; };
103
David Neto87846742018-04-11 17:36:22 -0400104 uint32_t GetNumWords() const {
105 switch (Type) {
106 case NUMBERID:
107 return 1;
108 case LITERAL_INTEGER:
109 case LITERAL_FLOAT:
David Netoee2660d2018-06-28 16:31:29 -0400110 return uint32_t(LiteralNum.size());
David Neto87846742018-04-11 17:36:22 -0400111 case LITERAL_STRING:
112 // Account for the terminating null character.
David Netoee2660d2018-06-28 16:31:29 -0400113 return uint32_t((LiteralStr.size() + 4) / 4);
David Neto87846742018-04-11 17:36:22 -0400114 }
115 llvm_unreachable("Unhandled case in SPIRVOperand::GetNumWords()");
116 }
117
David Neto22f144c2017-06-12 14:26:21 -0400118private:
119 SPIRVOperandType Type;
120 std::string LiteralStr;
121 SmallVector<uint32_t, 4> LiteralNum;
122};
123
David Netoc6f3ab22018-04-06 18:02:31 -0400124class SPIRVOperandList {
125public:
126 SPIRVOperandList() {}
127 SPIRVOperandList(const SPIRVOperandList& other) = delete;
128 SPIRVOperandList(SPIRVOperandList&& other) {
129 contents_ = std::move(other.contents_);
130 other.contents_.clear();
131 }
132 SPIRVOperandList(ArrayRef<SPIRVOperand *> init)
133 : contents_(init.begin(), init.end()) {}
134 operator ArrayRef<SPIRVOperand *>() { return contents_; }
135 void push_back(SPIRVOperand *op) { contents_.push_back(op); }
136 void clear() { contents_.clear();}
137 size_t size() const { return contents_.size(); }
138 SPIRVOperand *&operator[](size_t i) { return contents_[i]; }
139
David Neto87846742018-04-11 17:36:22 -0400140 const SmallVector<SPIRVOperand *, 8> &getOperands() const {
141 return contents_;
142 }
143
David Netoc6f3ab22018-04-06 18:02:31 -0400144private:
145 SmallVector<SPIRVOperand *,8> contents_;
146};
147
148SPIRVOperandList &operator<<(SPIRVOperandList &list, SPIRVOperand *elem) {
149 list.push_back(elem);
150 return list;
151}
152
153SPIRVOperand* MkNum(uint32_t num) {
154 return new SPIRVOperand(LITERAL_INTEGER, num);
155}
David Neto257c3892018-04-11 13:19:45 -0400156SPIRVOperand* MkInteger(ArrayRef<uint32_t> num_vec) {
157 return new SPIRVOperand(LITERAL_INTEGER, num_vec);
158}
159SPIRVOperand* MkFloat(ArrayRef<uint32_t> num_vec) {
160 return new SPIRVOperand(LITERAL_FLOAT, num_vec);
161}
David Netoc6f3ab22018-04-06 18:02:31 -0400162SPIRVOperand* MkId(uint32_t id) {
163 return new SPIRVOperand(NUMBERID, id);
164}
David Neto257c3892018-04-11 13:19:45 -0400165SPIRVOperand* MkString(StringRef str) {
166 return new SPIRVOperand(LITERAL_STRING, str);
167}
David Netoc6f3ab22018-04-06 18:02:31 -0400168
David Neto22f144c2017-06-12 14:26:21 -0400169struct SPIRVInstruction {
David Neto87846742018-04-11 17:36:22 -0400170 // Create an instruction with an opcode and no result ID, and with the given
171 // operands. This computes its own word count.
172 explicit SPIRVInstruction(spv::Op Opc, ArrayRef<SPIRVOperand *> Ops)
173 : WordCount(1), Opcode(static_cast<uint16_t>(Opc)), ResultID(0),
174 Operands(Ops.begin(), Ops.end()) {
175 for (auto *operand : Ops) {
David Netoee2660d2018-06-28 16:31:29 -0400176 WordCount += uint16_t(operand->GetNumWords());
David Neto87846742018-04-11 17:36:22 -0400177 }
178 }
179 // Create an instruction with an opcode and a no-zero result ID, and
180 // with the given operands. This computes its own word count.
181 explicit SPIRVInstruction(spv::Op Opc, uint32_t ResID,
David Neto22f144c2017-06-12 14:26:21 -0400182 ArrayRef<SPIRVOperand *> Ops)
David Neto87846742018-04-11 17:36:22 -0400183 : WordCount(2), Opcode(static_cast<uint16_t>(Opc)), ResultID(ResID),
184 Operands(Ops.begin(), Ops.end()) {
185 if (ResID == 0) {
186 llvm_unreachable("Result ID of 0 was provided");
187 }
188 for (auto *operand : Ops) {
189 WordCount += operand->GetNumWords();
190 }
191 }
David Neto22f144c2017-06-12 14:26:21 -0400192
David Netoee2660d2018-06-28 16:31:29 -0400193 uint32_t getWordCount() const { return WordCount; }
David Neto22f144c2017-06-12 14:26:21 -0400194 uint16_t getOpcode() const { return Opcode; }
195 uint32_t getResultID() const { return ResultID; }
196 ArrayRef<SPIRVOperand *> getOperands() const { return Operands; }
197
198private:
David Netoee2660d2018-06-28 16:31:29 -0400199 uint32_t WordCount; // Check the 16-bit bound at code generation time.
David Neto22f144c2017-06-12 14:26:21 -0400200 uint16_t Opcode;
201 uint32_t ResultID;
202 SmallVector<SPIRVOperand *, 4> Operands;
203};
204
205struct SPIRVProducerPass final : public ModulePass {
David Neto22f144c2017-06-12 14:26:21 -0400206 typedef DenseMap<Type *, uint32_t> TypeMapType;
207 typedef UniqueVector<Type *> TypeList;
208 typedef DenseMap<Value *, uint32_t> ValueMapType;
David Netofb9a7972017-08-25 17:08:24 -0400209 typedef UniqueVector<Value *> ValueList;
David Neto22f144c2017-06-12 14:26:21 -0400210 typedef std::vector<std::pair<Value *, uint32_t>> EntryPointVecType;
211 typedef std::list<SPIRVInstruction *> SPIRVInstructionList;
David Neto87846742018-04-11 17:36:22 -0400212 // A vector of tuples, each of which is:
213 // - the LLVM instruction that we will later generate SPIR-V code for
214 // - where the SPIR-V instruction should be inserted
215 // - the result ID of the SPIR-V instruction
David Neto22f144c2017-06-12 14:26:21 -0400216 typedef std::vector<
217 std::tuple<Value *, SPIRVInstructionList::iterator, uint32_t>>
218 DeferredInstVecType;
219 typedef DenseMap<FunctionType *, std::pair<FunctionType *, uint32_t>>
220 GlobalConstFuncMapType;
221
David Neto44795152017-07-13 15:45:28 -0400222 explicit SPIRVProducerPass(
223 raw_pwrite_stream &out, raw_ostream &descriptor_map_out,
224 ArrayRef<std::pair<unsigned, std::string>> samplerMap, bool outputAsm,
225 bool outputCInitList)
David Netoc2c368d2017-06-30 16:50:17 -0400226 : ModulePass(ID), samplerMap(samplerMap), out(out),
David Neto0676e6f2017-07-11 18:47:44 -0400227 binaryTempOut(binaryTempUnderlyingVector), binaryOut(&out),
David Netoc2c368d2017-06-30 16:50:17 -0400228 descriptorMapOut(descriptor_map_out), outputAsm(outputAsm),
David Neto0676e6f2017-07-11 18:47:44 -0400229 outputCInitList(outputCInitList), patchBoundOffset(0), nextID(1),
David Netoa60b00b2017-09-15 16:34:09 -0400230 OpExtInstImportID(0), HasVariablePointers(false), SamplerTy(nullptr),
David Neto85082642018-03-24 06:55:20 -0700231 WorkgroupSizeValueID(0), WorkgroupSizeVarID(0),
Alan Baker202c8c72018-08-13 13:47:44 -0400232 max_local_spec_id_(0), constant_i32_zero_id_(0) {}
David Neto22f144c2017-06-12 14:26:21 -0400233
234 void getAnalysisUsage(AnalysisUsage &AU) const override {
235 AU.addRequired<DominatorTreeWrapperPass>();
236 AU.addRequired<LoopInfoWrapperPass>();
237 }
238
239 virtual bool runOnModule(Module &module) override;
240
241 // output the SPIR-V header block
242 void outputHeader();
243
244 // patch the SPIR-V header block
245 void patchHeader();
246
247 uint32_t lookupType(Type *Ty) {
248 if (Ty->isPointerTy() &&
249 (Ty->getPointerAddressSpace() != AddressSpace::UniformConstant)) {
250 auto PointeeTy = Ty->getPointerElementType();
251 if (PointeeTy->isStructTy() &&
252 dyn_cast<StructType>(PointeeTy)->isOpaque()) {
253 Ty = PointeeTy;
254 }
255 }
256
David Neto862b7d82018-06-14 18:48:37 -0400257 auto where = TypeMap.find(Ty);
258 if (where == TypeMap.end()) {
259 if (Ty) {
260 errs() << "Unhandled type " << *Ty << "\n";
261 } else {
262 errs() << "Unhandled type (null)\n";
263 }
David Netoe439d702018-03-23 13:14:08 -0700264 llvm_unreachable("\nUnhandled type!");
David Neto22f144c2017-06-12 14:26:21 -0400265 }
266
David Neto862b7d82018-06-14 18:48:37 -0400267 return where->second;
David Neto22f144c2017-06-12 14:26:21 -0400268 }
269 TypeMapType &getImageTypeMap() { return ImageTypeMap; }
270 TypeList &getTypeList() { return Types; };
271 ValueList &getConstantList() { return Constants; };
272 ValueMapType &getValueMap() { return ValueMap; }
273 ValueMapType &getAllocatedValueMap() { return AllocatedValueMap; }
274 SPIRVInstructionList &getSPIRVInstList() { return SPIRVInsts; };
David Neto22f144c2017-06-12 14:26:21 -0400275 EntryPointVecType &getEntryPointVec() { return EntryPointVec; };
276 DeferredInstVecType &getDeferredInstVec() { return DeferredInstVec; };
277 ValueList &getEntryPointInterfacesVec() { return EntryPointInterfacesVec; };
278 uint32_t &getOpExtInstImportID() { return OpExtInstImportID; };
279 std::vector<uint32_t> &getBuiltinDimVec() { return BuiltinDimensionVec; };
280 bool hasVariablePointers() { return true; /* We use StorageBuffer everywhere */ };
281 void setVariablePointers(bool Val) { HasVariablePointers = Val; };
David Neto44795152017-07-13 15:45:28 -0400282 ArrayRef<std::pair<unsigned, std::string>> &getSamplerMap() { return samplerMap; }
David Neto22f144c2017-06-12 14:26:21 -0400283 GlobalConstFuncMapType &getGlobalConstFuncTypeMap() {
284 return GlobalConstFuncTypeMap;
285 }
286 SmallPtrSet<Value *, 16> &getGlobalConstArgSet() {
287 return GlobalConstArgumentSet;
288 }
David Neto85082642018-03-24 06:55:20 -0700289 TypeList &getTypesNeedingArrayStride() {
290 return TypesNeedingArrayStride;
David Neto1a1a0582017-07-07 12:01:44 -0400291 }
David Neto22f144c2017-06-12 14:26:21 -0400292
David Netoc6f3ab22018-04-06 18:02:31 -0400293 void GenerateLLVMIRInfo(Module &M, const DataLayout &DL);
David Neto862b7d82018-06-14 18:48:37 -0400294 // Populate GlobalConstFuncTypeMap. Also, if module-scope __constant will *not*
295 // be converted to a storage buffer, replace each such global variable with
296 // one in the storage class expecgted by SPIR-V.
297 void FindGlobalConstVars(Module &M, const DataLayout &DL);
298 // Populate ResourceVarInfoList, FunctionToResourceVarsMap, and
299 // ModuleOrderedResourceVars.
300 void FindResourceVars(Module &M, const DataLayout &DL);
Alan Baker202c8c72018-08-13 13:47:44 -0400301 void FindWorkgroupVars(Module &M);
David Neto22f144c2017-06-12 14:26:21 -0400302 bool FindExtInst(Module &M);
303 void FindTypePerGlobalVar(GlobalVariable &GV);
304 void FindTypePerFunc(Function &F);
David Neto862b7d82018-06-14 18:48:37 -0400305 void FindTypesForSamplerMap(Module &M);
306 void FindTypesForResourceVars(Module &M);
David Neto19a1bad2017-08-25 15:01:41 -0400307 // Inserts |Ty| and relevant sub-types into the |Types| member, indicating that
308 // |Ty| and its subtypes will need a corresponding SPIR-V type.
David Neto22f144c2017-06-12 14:26:21 -0400309 void FindType(Type *Ty);
310 void FindConstantPerGlobalVar(GlobalVariable &GV);
311 void FindConstantPerFunc(Function &F);
312 void FindConstant(Value *V);
313 void GenerateExtInstImport();
David Neto19a1bad2017-08-25 15:01:41 -0400314 // Generates instructions for SPIR-V types corresponding to the LLVM types
315 // saved in the |Types| member. A type follows its subtypes. IDs are
316 // allocated sequentially starting with the current value of nextID, and
317 // with a type following its subtypes. Also updates nextID to just beyond
318 // the last generated ID.
Alan Bakerfcda9482018-10-02 17:09:59 -0400319 void GenerateSPIRVTypes(LLVMContext& context, Module &module);
David Neto22f144c2017-06-12 14:26:21 -0400320 void GenerateSPIRVConstants();
David Neto5c22a252018-03-15 16:07:41 -0400321 void GenerateModuleInfo(Module &M);
David Neto22f144c2017-06-12 14:26:21 -0400322 void GenerateGlobalVar(GlobalVariable &GV);
David Netoc6f3ab22018-04-06 18:02:31 -0400323 void GenerateWorkgroupVars();
David Neto862b7d82018-06-14 18:48:37 -0400324 // Generate descriptor map entries for resource variables associated with
325 // arguments to F.
326 void GenerateDescriptorMapInfo(const DataLayout& DL, Function& F);
David Neto22f144c2017-06-12 14:26:21 -0400327 void GenerateSamplers(Module &M);
David Neto862b7d82018-06-14 18:48:37 -0400328 // Generate OpVariables for %clspv.resource.var.* calls.
329 void GenerateResourceVars(Module &M);
David Neto22f144c2017-06-12 14:26:21 -0400330 void GenerateFuncPrologue(Function &F);
331 void GenerateFuncBody(Function &F);
David Netob6e2e062018-04-25 10:32:06 -0400332 void GenerateEntryPointInitialStores();
David Neto22f144c2017-06-12 14:26:21 -0400333 spv::Op GetSPIRVCmpOpcode(CmpInst *CmpI);
334 spv::Op GetSPIRVCastOpcode(Instruction &I);
335 spv::Op GetSPIRVBinaryOpcode(Instruction &I);
336 void GenerateInstruction(Instruction &I);
337 void GenerateFuncEpilogue();
338 void HandleDeferredInstruction();
David Neto1a1a0582017-07-07 12:01:44 -0400339 void HandleDeferredDecorations(const DataLayout& DL);
David Neto22f144c2017-06-12 14:26:21 -0400340 bool is4xi8vec(Type *Ty) const;
David Neto257c3892018-04-11 13:19:45 -0400341 // Return the SPIR-V Id for 32-bit constant zero. The constant must already
342 // have been created.
343 uint32_t GetI32Zero();
David Neto22f144c2017-06-12 14:26:21 -0400344 spv::StorageClass GetStorageClass(unsigned AddrSpace) const;
David Neto862b7d82018-06-14 18:48:37 -0400345 spv::StorageClass GetStorageClassForArgKind(clspv::ArgKind arg_kind) const;
David Neto22f144c2017-06-12 14:26:21 -0400346 spv::BuiltIn GetBuiltin(StringRef globalVarName) const;
David Neto3fbb4072017-10-16 11:28:14 -0400347 // Returns the GLSL extended instruction enum that the given function
348 // call maps to. If none, then returns the 0 value, i.e. GLSLstd4580Bad.
David Neto22f144c2017-06-12 14:26:21 -0400349 glsl::ExtInst getExtInstEnum(StringRef Name);
David Neto3fbb4072017-10-16 11:28:14 -0400350 // Returns the GLSL extended instruction enum indirectly used by the given
351 // function. That is, to implement the given function, we use an extended
352 // instruction plus one more instruction. If none, then returns the 0 value,
353 // i.e. GLSLstd4580Bad.
354 glsl::ExtInst getIndirectExtInstEnum(StringRef Name);
355 // Returns the single GLSL extended instruction used directly or
356 // indirectly by the given function call.
357 glsl::ExtInst getDirectOrIndirectExtInstEnum(StringRef Name);
David Neto22f144c2017-06-12 14:26:21 -0400358 void PrintResID(SPIRVInstruction *Inst);
359 void PrintOpcode(SPIRVInstruction *Inst);
360 void PrintOperand(SPIRVOperand *Op);
361 void PrintCapability(SPIRVOperand *Op);
362 void PrintExtInst(SPIRVOperand *Op);
363 void PrintAddrModel(SPIRVOperand *Op);
364 void PrintMemModel(SPIRVOperand *Op);
365 void PrintExecModel(SPIRVOperand *Op);
366 void PrintExecMode(SPIRVOperand *Op);
367 void PrintSourceLanguage(SPIRVOperand *Op);
368 void PrintFuncCtrl(SPIRVOperand *Op);
369 void PrintStorageClass(SPIRVOperand *Op);
370 void PrintDecoration(SPIRVOperand *Op);
371 void PrintBuiltIn(SPIRVOperand *Op);
372 void PrintSelectionControl(SPIRVOperand *Op);
373 void PrintLoopControl(SPIRVOperand *Op);
374 void PrintDimensionality(SPIRVOperand *Op);
375 void PrintImageFormat(SPIRVOperand *Op);
376 void PrintMemoryAccess(SPIRVOperand *Op);
377 void PrintImageOperandsType(SPIRVOperand *Op);
378 void WriteSPIRVAssembly();
379 void WriteOneWord(uint32_t Word);
380 void WriteResultID(SPIRVInstruction *Inst);
381 void WriteWordCountAndOpcode(SPIRVInstruction *Inst);
382 void WriteOperand(SPIRVOperand *Op);
383 void WriteSPIRVBinary();
384
Alan Baker9bf93fb2018-08-28 16:59:26 -0400385 // Returns true if |type| is compatible with OpConstantNull.
386 bool IsTypeNullable(const Type* type) const;
387
Alan Bakerfcda9482018-10-02 17:09:59 -0400388 // Populate UBO remapped type maps.
389 void PopulateUBOTypeMaps(Module &module);
390
391 // Wrapped methods of DataLayout accessors. If |type| was remapped for UBOs,
392 // uses the internal map, otherwise it falls back on the data layout.
393 uint64_t GetTypeSizeInBits(Type *type, const DataLayout &DL);
394 uint64_t GetTypeStoreSize(Type *type, const DataLayout &DL);
395 uint64_t GetTypeAllocSize(Type *type, const DataLayout &DL);
396
David Neto22f144c2017-06-12 14:26:21 -0400397private:
398 static char ID;
David Neto44795152017-07-13 15:45:28 -0400399 ArrayRef<std::pair<unsigned, std::string>> samplerMap;
David Neto22f144c2017-06-12 14:26:21 -0400400 raw_pwrite_stream &out;
David Neto0676e6f2017-07-11 18:47:44 -0400401
402 // TODO(dneto): Wouldn't it be better to always just emit a binary, and then
403 // convert to other formats on demand?
404
405 // When emitting a C initialization list, the WriteSPIRVBinary method
406 // will actually write its words to this vector via binaryTempOut.
407 SmallVector<char, 100> binaryTempUnderlyingVector;
408 raw_svector_ostream binaryTempOut;
409
410 // Binary output writes to this stream, which might be |out| or
411 // |binaryTempOut|. It's the latter when we really want to write a C
412 // initializer list.
413 raw_pwrite_stream* binaryOut;
David Netoc2c368d2017-06-30 16:50:17 -0400414 raw_ostream &descriptorMapOut;
David Neto22f144c2017-06-12 14:26:21 -0400415 const bool outputAsm;
David Neto0676e6f2017-07-11 18:47:44 -0400416 const bool outputCInitList; // If true, output look like {0x7023, ... , 5}
David Neto22f144c2017-06-12 14:26:21 -0400417 uint64_t patchBoundOffset;
418 uint32_t nextID;
419
David Neto19a1bad2017-08-25 15:01:41 -0400420 // Maps an LLVM Value pointer to the corresponding SPIR-V Id.
David Neto22f144c2017-06-12 14:26:21 -0400421 TypeMapType TypeMap;
David Neto19a1bad2017-08-25 15:01:41 -0400422 // Maps an LLVM image type to its SPIR-V ID.
David Neto22f144c2017-06-12 14:26:21 -0400423 TypeMapType ImageTypeMap;
David Neto19a1bad2017-08-25 15:01:41 -0400424 // A unique-vector of LLVM types that map to a SPIR-V type.
David Neto22f144c2017-06-12 14:26:21 -0400425 TypeList Types;
426 ValueList Constants;
David Neto19a1bad2017-08-25 15:01:41 -0400427 // Maps an LLVM Value pointer to the corresponding SPIR-V Id.
David Neto22f144c2017-06-12 14:26:21 -0400428 ValueMapType ValueMap;
429 ValueMapType AllocatedValueMap;
430 SPIRVInstructionList SPIRVInsts;
David Neto862b7d82018-06-14 18:48:37 -0400431
David Neto22f144c2017-06-12 14:26:21 -0400432 EntryPointVecType EntryPointVec;
433 DeferredInstVecType DeferredInstVec;
434 ValueList EntryPointInterfacesVec;
435 uint32_t OpExtInstImportID;
436 std::vector<uint32_t> BuiltinDimensionVec;
437 bool HasVariablePointers;
438 Type *SamplerTy;
David Neto862b7d82018-06-14 18:48:37 -0400439 DenseMap<unsigned,uint32_t> SamplerMapIndexToIDMap;
David Netoc77d9e22018-03-24 06:30:28 -0700440
441 // If a function F has a pointer-to-__constant parameter, then this variable
David Neto9ed8e2f2018-03-24 06:47:24 -0700442 // will map F's type to (G, index of the parameter), where in a first phase
443 // G is F's type. During FindTypePerFunc, G will be changed to F's type
444 // but replacing the pointer-to-constant parameter with
445 // pointer-to-ModuleScopePrivate.
David Netoc77d9e22018-03-24 06:30:28 -0700446 // TODO(dneto): This doesn't seem general enough? A function might have
447 // more than one such parameter.
David Neto22f144c2017-06-12 14:26:21 -0400448 GlobalConstFuncMapType GlobalConstFuncTypeMap;
449 SmallPtrSet<Value *, 16> GlobalConstArgumentSet;
David Neto1a1a0582017-07-07 12:01:44 -0400450 // An ordered set of pointer types of Base arguments to OpPtrAccessChain,
David Neto85082642018-03-24 06:55:20 -0700451 // or array types, and which point into transparent memory (StorageBuffer
452 // storage class). These will require an ArrayStride decoration.
David Neto1a1a0582017-07-07 12:01:44 -0400453 // See SPV_KHR_variable_pointers rev 13.
David Neto85082642018-03-24 06:55:20 -0700454 TypeList TypesNeedingArrayStride;
David Netoa60b00b2017-09-15 16:34:09 -0400455
456 // This is truly ugly, but works around what look like driver bugs.
457 // For get_local_size, an earlier part of the flow has created a module-scope
458 // variable in Private address space to hold the value for the workgroup
459 // size. Its intializer is a uint3 value marked as builtin WorkgroupSize.
460 // When this is present, save the IDs of the initializer value and variable
461 // in these two variables. We only ever do a vector load from it, and
462 // when we see one of those, substitute just the value of the intializer.
463 // This mimics what Glslang does, and that's what drivers are used to.
David Neto66cfe642018-03-24 06:13:56 -0700464 // TODO(dneto): Remove this once drivers are fixed.
David Netoa60b00b2017-09-15 16:34:09 -0400465 uint32_t WorkgroupSizeValueID;
466 uint32_t WorkgroupSizeVarID;
David Neto26aaf622017-10-23 18:11:53 -0400467
David Neto862b7d82018-06-14 18:48:37 -0400468 // Bookkeeping for mapping kernel arguments to resource variables.
469 struct ResourceVarInfo {
470 ResourceVarInfo(int index_arg, unsigned set_arg, unsigned binding_arg,
471 Function *fn, clspv::ArgKind arg_kind_arg)
472 : index(index_arg), descriptor_set(set_arg), binding(binding_arg),
473 var_fn(fn), arg_kind(arg_kind_arg),
474 addr_space(fn->getReturnType()->getPointerAddressSpace()) {}
475 const int index; // Index into ResourceVarInfoList
476 const unsigned descriptor_set;
477 const unsigned binding;
478 Function *const var_fn; // The @clspv.resource.var.* function.
479 const clspv::ArgKind arg_kind;
480 const unsigned addr_space; // The LLVM address space
481 // The SPIR-V ID of the OpVariable. Not populated at construction time.
482 uint32_t var_id = 0;
483 };
484 // A list of resource var info. Each one correponds to a module-scope
485 // resource variable we will have to create. Resource var indices are
486 // indices into this vector.
487 SmallVector<std::unique_ptr<ResourceVarInfo>, 8> ResourceVarInfoList;
488 // This is a vector of pointers of all the resource vars, but ordered by
489 // kernel function, and then by argument.
490 UniqueVector<ResourceVarInfo*> ModuleOrderedResourceVars;
491 // Map a function to the ordered list of resource variables it uses, one for
492 // each argument. If an argument does not use a resource variable, it
493 // will have a null pointer entry.
494 using FunctionToResourceVarsMapType =
495 DenseMap<Function *, SmallVector<ResourceVarInfo *, 8>>;
496 FunctionToResourceVarsMapType FunctionToResourceVarsMap;
497
498 // What LLVM types map to SPIR-V types needing layout? These are the
499 // arrays and structures supporting storage buffers and uniform buffers.
500 TypeList TypesNeedingLayout;
501 // What LLVM struct types map to a SPIR-V struct type with Block decoration?
502 UniqueVector<StructType *> StructTypesNeedingBlock;
503 // For a call that represents a load from an opaque type (samplers, images),
504 // map it to the variable id it should load from.
505 DenseMap<CallInst *, uint32_t> ResourceVarDeferredLoadCalls;
David Neto85082642018-03-24 06:55:20 -0700506
Alan Baker202c8c72018-08-13 13:47:44 -0400507 // One larger than the maximum used SpecId for pointer-to-local arguments.
508 int max_local_spec_id_;
David Netoc6f3ab22018-04-06 18:02:31 -0400509 // An ordered list of the kernel arguments of type pointer-to-local.
Alan Baker202c8c72018-08-13 13:47:44 -0400510 using LocalArgList = SmallVector<Argument*, 8>;
David Netoc6f3ab22018-04-06 18:02:31 -0400511 LocalArgList LocalArgs;
512 // Information about a pointer-to-local argument.
513 struct LocalArgInfo {
514 // The SPIR-V ID of the array variable.
515 uint32_t variable_id;
516 // The element type of the
517 Type* elem_type;
518 // The ID of the array type.
519 uint32_t array_size_id;
520 // The ID of the array type.
521 uint32_t array_type_id;
522 // The ID of the pointer to the array type.
523 uint32_t ptr_array_type_id;
David Netoc6f3ab22018-04-06 18:02:31 -0400524 // The specialization constant ID of the array size.
525 int spec_id;
526 };
Alan Baker202c8c72018-08-13 13:47:44 -0400527 // A mapping from Argument to its assigned SpecId.
528 DenseMap<const Argument*, int> LocalArgSpecIds;
529 // A mapping from SpecId to its LocalArgInfo.
530 DenseMap<int, LocalArgInfo> LocalSpecIdInfoMap;
Alan Bakerfcda9482018-10-02 17:09:59 -0400531 // A mapping from a remapped type to its real offsets.
532 DenseMap<Type*, std::vector<uint32_t>> RemappedUBOTypeOffsets;
533 // A mapping from a remapped type to its real sizes.
534 DenseMap<Type*, std::tuple<uint64_t, uint64_t, uint64_t>> RemappedUBOTypeSizes;
David Neto257c3892018-04-11 13:19:45 -0400535
536 // The ID of 32-bit integer zero constant. This is only valid after
537 // GenerateSPIRVConstants has run.
538 uint32_t constant_i32_zero_id_;
David Neto22f144c2017-06-12 14:26:21 -0400539};
540
541char SPIRVProducerPass::ID;
David Netoc6f3ab22018-04-06 18:02:31 -0400542
David Neto22f144c2017-06-12 14:26:21 -0400543}
544
545namespace clspv {
David Neto44795152017-07-13 15:45:28 -0400546ModulePass *
547createSPIRVProducerPass(raw_pwrite_stream &out, raw_ostream &descriptor_map_out,
548 ArrayRef<std::pair<unsigned, std::string>> samplerMap,
549 bool outputAsm, bool outputCInitList) {
550 return new SPIRVProducerPass(out, descriptor_map_out, samplerMap, outputAsm,
551 outputCInitList);
David Neto22f144c2017-06-12 14:26:21 -0400552}
David Netoc2c368d2017-06-30 16:50:17 -0400553} // namespace clspv
David Neto22f144c2017-06-12 14:26:21 -0400554
555bool SPIRVProducerPass::runOnModule(Module &module) {
David Neto0676e6f2017-07-11 18:47:44 -0400556 binaryOut = outputCInitList ? &binaryTempOut : &out;
557
David Neto257c3892018-04-11 13:19:45 -0400558 constant_i32_zero_id_ = 0; // Reset, for the benefit of validity checks.
559
Alan Bakerfcda9482018-10-02 17:09:59 -0400560 PopulateUBOTypeMaps(module);
561
David Neto22f144c2017-06-12 14:26:21 -0400562 // SPIR-V always begins with its header information
563 outputHeader();
564
David Netoc6f3ab22018-04-06 18:02:31 -0400565 const DataLayout &DL = module.getDataLayout();
566
David Neto22f144c2017-06-12 14:26:21 -0400567 // Gather information from the LLVM IR that we require.
David Netoc6f3ab22018-04-06 18:02:31 -0400568 GenerateLLVMIRInfo(module, DL);
David Neto22f144c2017-06-12 14:26:21 -0400569
David Neto22f144c2017-06-12 14:26:21 -0400570 // Collect information on global variables too.
571 for (GlobalVariable &GV : module.globals()) {
572 // If the GV is one of our special __spirv_* variables, remove the
573 // initializer as it was only placed there to force LLVM to not throw the
574 // value away.
575 if (GV.getName().startswith("__spirv_")) {
576 GV.setInitializer(nullptr);
577 }
578
579 // Collect types' information from global variable.
580 FindTypePerGlobalVar(GV);
581
582 // Collect constant information from global variable.
583 FindConstantPerGlobalVar(GV);
584
585 // If the variable is an input, entry points need to know about it.
586 if (AddressSpace::Input == GV.getType()->getPointerAddressSpace()) {
David Netofb9a7972017-08-25 17:08:24 -0400587 getEntryPointInterfacesVec().insert(&GV);
David Neto22f144c2017-06-12 14:26:21 -0400588 }
589 }
590
591 // If there are extended instructions, generate OpExtInstImport.
592 if (FindExtInst(module)) {
593 GenerateExtInstImport();
594 }
595
596 // Generate SPIRV instructions for types.
Alan Bakerfcda9482018-10-02 17:09:59 -0400597 GenerateSPIRVTypes(module.getContext(), module);
David Neto22f144c2017-06-12 14:26:21 -0400598
599 // Generate SPIRV constants.
600 GenerateSPIRVConstants();
601
602 // If we have a sampler map, we might have literal samplers to generate.
603 if (0 < getSamplerMap().size()) {
604 GenerateSamplers(module);
605 }
606
607 // Generate SPIRV variables.
608 for (GlobalVariable &GV : module.globals()) {
609 GenerateGlobalVar(GV);
610 }
David Neto862b7d82018-06-14 18:48:37 -0400611 GenerateResourceVars(module);
David Netoc6f3ab22018-04-06 18:02:31 -0400612 GenerateWorkgroupVars();
David Neto22f144c2017-06-12 14:26:21 -0400613
614 // Generate SPIRV instructions for each function.
615 for (Function &F : module) {
616 if (F.isDeclaration()) {
617 continue;
618 }
619
David Neto862b7d82018-06-14 18:48:37 -0400620 GenerateDescriptorMapInfo(DL, F);
621
David Neto22f144c2017-06-12 14:26:21 -0400622 // Generate Function Prologue.
623 GenerateFuncPrologue(F);
624
625 // Generate SPIRV instructions for function body.
626 GenerateFuncBody(F);
627
628 // Generate Function Epilogue.
629 GenerateFuncEpilogue();
630 }
631
632 HandleDeferredInstruction();
David Neto1a1a0582017-07-07 12:01:44 -0400633 HandleDeferredDecorations(DL);
David Neto22f144c2017-06-12 14:26:21 -0400634
635 // Generate SPIRV module information.
David Neto5c22a252018-03-15 16:07:41 -0400636 GenerateModuleInfo(module);
David Neto22f144c2017-06-12 14:26:21 -0400637
638 if (outputAsm) {
639 WriteSPIRVAssembly();
640 } else {
641 WriteSPIRVBinary();
642 }
643
644 // We need to patch the SPIR-V header to set bound correctly.
645 patchHeader();
David Neto0676e6f2017-07-11 18:47:44 -0400646
647 if (outputCInitList) {
648 bool first = true;
David Neto0676e6f2017-07-11 18:47:44 -0400649 std::ostringstream os;
650
David Neto57fb0b92017-08-04 15:35:09 -0400651 auto emit_word = [&os, &first](uint32_t word) {
David Neto0676e6f2017-07-11 18:47:44 -0400652 if (!first)
David Neto57fb0b92017-08-04 15:35:09 -0400653 os << ",\n";
654 os << word;
David Neto0676e6f2017-07-11 18:47:44 -0400655 first = false;
656 };
657
658 os << "{";
David Neto57fb0b92017-08-04 15:35:09 -0400659 const std::string str(binaryTempOut.str());
660 for (unsigned i = 0; i < str.size(); i += 4) {
661 const uint32_t a = static_cast<unsigned char>(str[i]);
662 const uint32_t b = static_cast<unsigned char>(str[i + 1]);
663 const uint32_t c = static_cast<unsigned char>(str[i + 2]);
664 const uint32_t d = static_cast<unsigned char>(str[i + 3]);
665 emit_word(a | (b << 8) | (c << 16) | (d << 24));
David Neto0676e6f2017-07-11 18:47:44 -0400666 }
667 os << "}\n";
668 out << os.str();
669 }
670
David Neto22f144c2017-06-12 14:26:21 -0400671 return false;
672}
673
674void SPIRVProducerPass::outputHeader() {
675 if (outputAsm) {
676 // for ASM output the header goes into 5 comments at the beginning of the
677 // file
678 out << "; SPIR-V\n";
679
680 // the major version number is in the 2nd highest byte
681 const uint32_t major = (spv::Version >> 16) & 0xFF;
682
683 // the minor version number is in the 2nd lowest byte
684 const uint32_t minor = (spv::Version >> 8) & 0xFF;
685 out << "; Version: " << major << "." << minor << "\n";
686
687 // use Codeplay's vendor ID
688 out << "; Generator: Codeplay; 0\n";
689
690 out << "; Bound: ";
691
692 // we record where we need to come back to and patch in the bound value
693 patchBoundOffset = out.tell();
694
695 // output one space per digit for the max size of a 32 bit unsigned integer
696 // (which is the maximum ID we could possibly be using)
697 for (uint32_t i = std::numeric_limits<uint32_t>::max(); 0 != i; i /= 10) {
698 out << " ";
699 }
700
701 out << "\n";
702
703 out << "; Schema: 0\n";
704 } else {
David Neto0676e6f2017-07-11 18:47:44 -0400705 binaryOut->write(reinterpret_cast<const char *>(&spv::MagicNumber),
David Neto22f144c2017-06-12 14:26:21 -0400706 sizeof(spv::MagicNumber));
David Neto0676e6f2017-07-11 18:47:44 -0400707 binaryOut->write(reinterpret_cast<const char *>(&spv::Version),
David Neto22f144c2017-06-12 14:26:21 -0400708 sizeof(spv::Version));
709
710 // use Codeplay's vendor ID
711 const uint32_t vendor = 3 << 16;
David Neto0676e6f2017-07-11 18:47:44 -0400712 binaryOut->write(reinterpret_cast<const char *>(&vendor), sizeof(vendor));
David Neto22f144c2017-06-12 14:26:21 -0400713
714 // we record where we need to come back to and patch in the bound value
David Neto0676e6f2017-07-11 18:47:44 -0400715 patchBoundOffset = binaryOut->tell();
David Neto22f144c2017-06-12 14:26:21 -0400716
717 // output a bad bound for now
David Neto0676e6f2017-07-11 18:47:44 -0400718 binaryOut->write(reinterpret_cast<const char *>(&nextID), sizeof(nextID));
David Neto22f144c2017-06-12 14:26:21 -0400719
720 // output the schema (reserved for use and must be 0)
721 const uint32_t schema = 0;
David Neto0676e6f2017-07-11 18:47:44 -0400722 binaryOut->write(reinterpret_cast<const char *>(&schema), sizeof(schema));
David Neto22f144c2017-06-12 14:26:21 -0400723 }
724}
725
726void SPIRVProducerPass::patchHeader() {
727 if (outputAsm) {
728 // get the string representation of the max bound used (nextID will be the
729 // max ID used)
730 auto asString = std::to_string(nextID);
731 out.pwrite(asString.c_str(), asString.size(), patchBoundOffset);
732 } else {
733 // for a binary we just write the value of nextID over bound
David Neto0676e6f2017-07-11 18:47:44 -0400734 binaryOut->pwrite(reinterpret_cast<char *>(&nextID), sizeof(nextID),
735 patchBoundOffset);
David Neto22f144c2017-06-12 14:26:21 -0400736 }
737}
738
David Netoc6f3ab22018-04-06 18:02:31 -0400739void SPIRVProducerPass::GenerateLLVMIRInfo(Module &M, const DataLayout &DL) {
David Neto22f144c2017-06-12 14:26:21 -0400740 // This function generates LLVM IR for function such as global variable for
741 // argument, constant and pointer type for argument access. These information
742 // is artificial one because we need Vulkan SPIR-V output. This function is
743 // executed ahead of FindType and FindConstant.
David Neto22f144c2017-06-12 14:26:21 -0400744 LLVMContext &Context = M.getContext();
745
David Neto862b7d82018-06-14 18:48:37 -0400746 FindGlobalConstVars(M, DL);
David Neto5c22a252018-03-15 16:07:41 -0400747
David Neto862b7d82018-06-14 18:48:37 -0400748 FindResourceVars(M, DL);
David Neto22f144c2017-06-12 14:26:21 -0400749
750 bool HasWorkGroupBuiltin = false;
751 for (GlobalVariable &GV : M.globals()) {
752 const spv::BuiltIn BuiltinType = GetBuiltin(GV.getName());
753 if (spv::BuiltInWorkgroupSize == BuiltinType) {
754 HasWorkGroupBuiltin = true;
755 }
756 }
757
David Neto862b7d82018-06-14 18:48:37 -0400758 FindTypesForSamplerMap(M);
759 FindTypesForResourceVars(M);
Alan Baker202c8c72018-08-13 13:47:44 -0400760 FindWorkgroupVars(M);
David Neto22f144c2017-06-12 14:26:21 -0400761
David Neto862b7d82018-06-14 18:48:37 -0400762 // TODO(dneto): Delete the next 3 vars.
763
764 //#error "remove arg handling from this code"
David Neto26aaf622017-10-23 18:11:53 -0400765 // Map kernel functions to their ordinal number in the compilation unit.
766 UniqueVector<Function*> KernelOrdinal;
767
768 // Map the global variables created for kernel args to their creation
769 // order.
770 UniqueVector<GlobalVariable*> KernelArgVarOrdinal;
771
David Neto862b7d82018-06-14 18:48:37 -0400772 // For each kernel argument type, record the kernel arg global resource
773 // variables generated for that type, the function in which that variable
774 // was most recently used, and the binding number it took. For
775 // reproducibility, we track things by ordinal number (rather than pointer),
776 // and we use a std::set rather than DenseSet since std::set maintains an
777 // ordering. Each tuple is the ordinals of the kernel function, the binding
778 // number, and the ordinal of the kernal-arg-var.
David Neto26aaf622017-10-23 18:11:53 -0400779 //
780 // This table lets us reuse module-scope StorageBuffer variables between
781 // different kernels.
782 DenseMap<Type *, std::set<std::tuple<unsigned, unsigned, unsigned>>>
783 GVarsForType;
784
David Neto862b7d82018-06-14 18:48:37 -0400785 // These function calls need a <2 x i32> as an intermediate result but not
786 // the final result.
787 std::unordered_set<std::string> NeedsIVec2{
788 "_Z15get_image_width14ocl_image2d_ro",
789 "_Z15get_image_width14ocl_image2d_wo",
790 "_Z16get_image_height14ocl_image2d_ro",
791 "_Z16get_image_height14ocl_image2d_wo",
792 };
793
David Neto22f144c2017-06-12 14:26:21 -0400794 for (Function &F : M) {
795 // Handle kernel function first.
796 if (F.isDeclaration() || F.getCallingConv() != CallingConv::SPIR_KERNEL) {
797 continue;
798 }
David Neto26aaf622017-10-23 18:11:53 -0400799 KernelOrdinal.insert(&F);
David Neto22f144c2017-06-12 14:26:21 -0400800
801 for (BasicBlock &BB : F) {
802 for (Instruction &I : BB) {
803 if (I.getOpcode() == Instruction::ZExt ||
804 I.getOpcode() == Instruction::SExt ||
805 I.getOpcode() == Instruction::UIToFP) {
806 // If there is zext with i1 type, it will be changed to OpSelect. The
807 // OpSelect needs constant 0 and 1 so the constants are added here.
808
809 auto OpTy = I.getOperand(0)->getType();
810
Kévin Petit24272b62018-10-18 19:16:12 +0000811 if (OpTy->isIntOrIntVectorTy(1)) {
David Neto22f144c2017-06-12 14:26:21 -0400812 if (I.getOpcode() == Instruction::ZExt) {
813 APInt One(32, 1);
814 FindConstant(Constant::getNullValue(I.getType()));
815 FindConstant(Constant::getIntegerValue(I.getType(), One));
816 } else if (I.getOpcode() == Instruction::SExt) {
817 APInt MinusOne(32, UINT64_MAX, true);
818 FindConstant(Constant::getNullValue(I.getType()));
819 FindConstant(Constant::getIntegerValue(I.getType(), MinusOne));
820 } else {
821 FindConstant(ConstantFP::get(Context, APFloat(0.0f)));
822 FindConstant(ConstantFP::get(Context, APFloat(1.0f)));
823 }
824 }
825 } else if (CallInst *Call = dyn_cast<CallInst>(&I)) {
David Neto862b7d82018-06-14 18:48:37 -0400826 StringRef callee_name = Call->getCalledFunction()->getName();
David Neto22f144c2017-06-12 14:26:21 -0400827
828 // Handle image type specially.
David Neto862b7d82018-06-14 18:48:37 -0400829 if (callee_name.equals(
David Neto22f144c2017-06-12 14:26:21 -0400830 "_Z11read_imagef14ocl_image2d_ro11ocl_samplerDv2_f") ||
David Neto862b7d82018-06-14 18:48:37 -0400831 callee_name.equals(
David Neto22f144c2017-06-12 14:26:21 -0400832 "_Z11read_imagef14ocl_image3d_ro11ocl_samplerDv4_f")) {
833 TypeMapType &OpImageTypeMap = getImageTypeMap();
834 Type *ImageTy =
835 Call->getArgOperand(0)->getType()->getPointerElementType();
836 OpImageTypeMap[ImageTy] = 0;
837
838 FindConstant(ConstantFP::get(Context, APFloat(0.0f)));
839 }
David Neto5c22a252018-03-15 16:07:41 -0400840
David Neto862b7d82018-06-14 18:48:37 -0400841 if (NeedsIVec2.find(callee_name) != NeedsIVec2.end()) {
David Neto5c22a252018-03-15 16:07:41 -0400842 FindType(VectorType::get(Type::getInt32Ty(Context), 2));
843 }
David Neto22f144c2017-06-12 14:26:21 -0400844 }
845 }
846 }
847
David Neto22f144c2017-06-12 14:26:21 -0400848 if (const MDNode *MD =
849 dyn_cast<Function>(&F)->getMetadata("reqd_work_group_size")) {
850 // We generate constants if the WorkgroupSize builtin is being used.
851 if (HasWorkGroupBuiltin) {
852 // Collect constant information for work group size.
853 FindConstant(mdconst::extract<ConstantInt>(MD->getOperand(0)));
854 FindConstant(mdconst::extract<ConstantInt>(MD->getOperand(1)));
855 FindConstant(mdconst::extract<ConstantInt>(MD->getOperand(2)));
856 }
857 }
858
David Neto22f144c2017-06-12 14:26:21 -0400859 // Collect types' information from function.
860 FindTypePerFunc(F);
861
862 // Collect constant information from function.
863 FindConstantPerFunc(F);
864 }
865
866 for (Function &F : M) {
867 // Handle non-kernel functions.
868 if (F.isDeclaration() || F.getCallingConv() == CallingConv::SPIR_KERNEL) {
869 continue;
870 }
871
872 for (BasicBlock &BB : F) {
873 for (Instruction &I : BB) {
874 if (I.getOpcode() == Instruction::ZExt ||
875 I.getOpcode() == Instruction::SExt ||
876 I.getOpcode() == Instruction::UIToFP) {
877 // If there is zext with i1 type, it will be changed to OpSelect. The
878 // OpSelect needs constant 0 and 1 so the constants are added here.
879
880 auto OpTy = I.getOperand(0)->getType();
881
Kévin Petit24272b62018-10-18 19:16:12 +0000882 if (OpTy->isIntOrIntVectorTy(1)) {
David Neto22f144c2017-06-12 14:26:21 -0400883 if (I.getOpcode() == Instruction::ZExt) {
884 APInt One(32, 1);
885 FindConstant(Constant::getNullValue(I.getType()));
886 FindConstant(Constant::getIntegerValue(I.getType(), One));
887 } else if (I.getOpcode() == Instruction::SExt) {
888 APInt MinusOne(32, UINT64_MAX, true);
889 FindConstant(Constant::getNullValue(I.getType()));
890 FindConstant(Constant::getIntegerValue(I.getType(), MinusOne));
891 } else {
892 FindConstant(ConstantFP::get(Context, APFloat(0.0f)));
893 FindConstant(ConstantFP::get(Context, APFloat(1.0f)));
894 }
895 }
896 } else if (CallInst *Call = dyn_cast<CallInst>(&I)) {
897 Function *Callee = Call->getCalledFunction();
898
899 // Handle image type specially.
900 if (Callee->getName().equals(
901 "_Z11read_imagef14ocl_image2d_ro11ocl_samplerDv2_f") ||
902 Callee->getName().equals(
903 "_Z11read_imagef14ocl_image3d_ro11ocl_samplerDv4_f")) {
904 TypeMapType &OpImageTypeMap = getImageTypeMap();
905 Type *ImageTy =
906 Call->getArgOperand(0)->getType()->getPointerElementType();
907 OpImageTypeMap[ImageTy] = 0;
908
909 FindConstant(ConstantFP::get(Context, APFloat(0.0f)));
910 }
911 }
912 }
913 }
914
915 if (M.getTypeByName("opencl.image2d_ro_t") ||
916 M.getTypeByName("opencl.image2d_wo_t") ||
917 M.getTypeByName("opencl.image3d_ro_t") ||
918 M.getTypeByName("opencl.image3d_wo_t")) {
919 // Assume Image type's sampled type is float type.
920 FindType(Type::getFloatTy(Context));
921 }
922
923 // Collect types' information from function.
924 FindTypePerFunc(F);
925
926 // Collect constant information from function.
927 FindConstantPerFunc(F);
928 }
929}
930
David Neto862b7d82018-06-14 18:48:37 -0400931void SPIRVProducerPass::FindGlobalConstVars(Module &M, const DataLayout &DL) {
932 SmallVector<GlobalVariable *, 8> GVList;
933 SmallVector<GlobalVariable *, 8> DeadGVList;
934 for (GlobalVariable &GV : M.globals()) {
935 if (GV.getType()->getAddressSpace() == AddressSpace::Constant) {
936 if (GV.use_empty()) {
937 DeadGVList.push_back(&GV);
938 } else {
939 GVList.push_back(&GV);
940 }
941 }
942 }
943
944 // Remove dead global __constant variables.
945 for (auto GV : DeadGVList) {
946 GV->eraseFromParent();
947 }
948 DeadGVList.clear();
949
950 if (clspv::Option::ModuleConstantsInStorageBuffer()) {
951 // For now, we only support a single storage buffer.
952 if (GVList.size() > 0) {
953 assert(GVList.size() == 1);
954 const auto *GV = GVList[0];
955 const auto constants_byte_size =
Alan Bakerfcda9482018-10-02 17:09:59 -0400956 (GetTypeSizeInBits(GV->getInitializer()->getType(), DL)) / 8;
David Neto862b7d82018-06-14 18:48:37 -0400957 const size_t kConstantMaxSize = 65536;
958 if (constants_byte_size > kConstantMaxSize) {
959 outs() << "Max __constant capacity of " << kConstantMaxSize
960 << " bytes exceeded: " << constants_byte_size << " bytes used\n";
961 llvm_unreachable("Max __constant capacity exceeded");
962 }
963 }
964 } else {
965 // Change global constant variable's address space to ModuleScopePrivate.
966 auto &GlobalConstFuncTyMap = getGlobalConstFuncTypeMap();
967 for (auto GV : GVList) {
968 // Create new gv with ModuleScopePrivate address space.
969 Type *NewGVTy = GV->getType()->getPointerElementType();
970 GlobalVariable *NewGV = new GlobalVariable(
971 M, NewGVTy, false, GV->getLinkage(), GV->getInitializer(), "",
972 nullptr, GV->getThreadLocalMode(), AddressSpace::ModuleScopePrivate);
973 NewGV->takeName(GV);
974
975 const SmallVector<User *, 8> GVUsers(GV->user_begin(), GV->user_end());
976 SmallVector<User *, 8> CandidateUsers;
977
978 auto record_called_function_type_as_user =
979 [&GlobalConstFuncTyMap](Value *gv, CallInst *call) {
980 // Find argument index.
981 unsigned index = 0;
982 for (unsigned i = 0; i < call->getNumArgOperands(); i++) {
983 if (gv == call->getOperand(i)) {
984 // TODO(dneto): Should we break here?
985 index = i;
986 }
987 }
988
989 // Record function type with global constant.
990 GlobalConstFuncTyMap[call->getFunctionType()] =
991 std::make_pair(call->getFunctionType(), index);
992 };
993
994 for (User *GVU : GVUsers) {
995 if (CallInst *Call = dyn_cast<CallInst>(GVU)) {
996 record_called_function_type_as_user(GV, Call);
997 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(GVU)) {
998 // Check GEP users.
999 for (User *GEPU : GEP->users()) {
1000 if (CallInst *GEPCall = dyn_cast<CallInst>(GEPU)) {
1001 record_called_function_type_as_user(GEP, GEPCall);
1002 }
1003 }
1004 }
1005
1006 CandidateUsers.push_back(GVU);
1007 }
1008
1009 for (User *U : CandidateUsers) {
1010 // Update users of gv with new gv.
1011 U->replaceUsesOfWith(GV, NewGV);
1012 }
1013
1014 // Delete original gv.
1015 GV->eraseFromParent();
1016 }
1017 }
1018}
1019
Radek Szymanskibe4b0c42018-10-04 22:20:53 +01001020void SPIRVProducerPass::FindResourceVars(Module &M, const DataLayout &) {
David Neto862b7d82018-06-14 18:48:37 -04001021 ResourceVarInfoList.clear();
1022 FunctionToResourceVarsMap.clear();
1023 ModuleOrderedResourceVars.reset();
1024 // Normally, there is one resource variable per clspv.resource.var.*
1025 // function, since that is unique'd by arg type and index. By design,
1026 // we can share these resource variables across kernels because all
1027 // kernels use the same descriptor set.
1028 //
1029 // But if the user requested distinct descriptor sets per kernel, then
1030 // the descriptor allocator has made different (set,binding) pairs for
1031 // the same (type,arg_index) pair. Since we can decorate a resource
1032 // variable with only exactly one DescriptorSet and Binding, we are
1033 // forced in this case to make distinct resource variables whenever
1034 // the same clspv.reource.var.X function is seen with disintct
1035 // (set,binding) values.
1036 const bool always_distinct_sets =
1037 clspv::Option::DistinctKernelDescriptorSets();
1038 for (Function &F : M) {
1039 // Rely on the fact the resource var functions have a stable ordering
1040 // in the module.
Alan Baker202c8c72018-08-13 13:47:44 -04001041 if (F.getName().startswith(clspv::ResourceAccessorFunction())) {
David Neto862b7d82018-06-14 18:48:37 -04001042 // Find all calls to this function with distinct set and binding pairs.
1043 // Save them in ResourceVarInfoList.
1044
1045 // Determine uniqueness of the (set,binding) pairs only withing this
1046 // one resource-var builtin function.
1047 using SetAndBinding = std::pair<unsigned, unsigned>;
1048 // Maps set and binding to the resource var info.
1049 DenseMap<SetAndBinding, ResourceVarInfo *> set_and_binding_map;
1050 bool first_use = true;
1051 for (auto &U : F.uses()) {
1052 if (auto *call = dyn_cast<CallInst>(U.getUser())) {
1053 const auto set = unsigned(
1054 dyn_cast<ConstantInt>(call->getArgOperand(0))->getZExtValue());
1055 const auto binding = unsigned(
1056 dyn_cast<ConstantInt>(call->getArgOperand(1))->getZExtValue());
1057 const auto arg_kind = clspv::ArgKind(
1058 dyn_cast<ConstantInt>(call->getArgOperand(2))->getZExtValue());
1059 const auto arg_index = unsigned(
1060 dyn_cast<ConstantInt>(call->getArgOperand(3))->getZExtValue());
1061
1062 // Find or make the resource var info for this combination.
1063 ResourceVarInfo *rv = nullptr;
1064 if (always_distinct_sets) {
1065 // Make a new resource var any time we see a different
1066 // (set,binding) pair.
1067 SetAndBinding key{set, binding};
1068 auto where = set_and_binding_map.find(key);
1069 if (where == set_and_binding_map.end()) {
1070 rv = new ResourceVarInfo(int(ResourceVarInfoList.size()), set,
1071 binding, &F, arg_kind);
1072 ResourceVarInfoList.emplace_back(rv);
1073 set_and_binding_map[key] = rv;
1074 } else {
1075 rv = where->second;
1076 }
1077 } else {
1078 // The default is to make exactly one resource for each
1079 // clspv.resource.var.* function.
1080 if (first_use) {
1081 first_use = false;
1082 rv = new ResourceVarInfo(int(ResourceVarInfoList.size()), set,
1083 binding, &F, arg_kind);
1084 ResourceVarInfoList.emplace_back(rv);
1085 } else {
1086 rv = ResourceVarInfoList.back().get();
1087 }
1088 }
1089
1090 // Now populate FunctionToResourceVarsMap.
1091 auto &mapping =
1092 FunctionToResourceVarsMap[call->getParent()->getParent()];
1093 while (mapping.size() <= arg_index) {
1094 mapping.push_back(nullptr);
1095 }
1096 mapping[arg_index] = rv;
1097 }
1098 }
1099 }
1100 }
1101
1102 // Populate ModuleOrderedResourceVars.
1103 for (Function &F : M) {
1104 auto where = FunctionToResourceVarsMap.find(&F);
1105 if (where != FunctionToResourceVarsMap.end()) {
1106 for (auto &rv : where->second) {
1107 if (rv != nullptr) {
1108 ModuleOrderedResourceVars.insert(rv);
1109 }
1110 }
1111 }
1112 }
1113 if (ShowResourceVars) {
1114 for (auto *info : ModuleOrderedResourceVars) {
1115 outs() << "MORV index " << info->index << " (" << info->descriptor_set
1116 << "," << info->binding << ") " << *(info->var_fn->getReturnType())
1117 << "\n";
1118 }
1119 }
1120}
1121
David Neto22f144c2017-06-12 14:26:21 -04001122bool SPIRVProducerPass::FindExtInst(Module &M) {
1123 LLVMContext &Context = M.getContext();
1124 bool HasExtInst = false;
1125
1126 for (Function &F : M) {
1127 for (BasicBlock &BB : F) {
1128 for (Instruction &I : BB) {
1129 if (CallInst *Call = dyn_cast<CallInst>(&I)) {
1130 Function *Callee = Call->getCalledFunction();
1131 // Check whether this call is for extend instructions.
David Neto3fbb4072017-10-16 11:28:14 -04001132 auto callee_name = Callee->getName();
1133 const glsl::ExtInst EInst = getExtInstEnum(callee_name);
1134 const glsl::ExtInst IndirectEInst =
1135 getIndirectExtInstEnum(callee_name);
David Neto22f144c2017-06-12 14:26:21 -04001136
David Neto3fbb4072017-10-16 11:28:14 -04001137 HasExtInst |=
1138 (EInst != kGlslExtInstBad) || (IndirectEInst != kGlslExtInstBad);
1139
1140 if (IndirectEInst) {
1141 // Register extra constants if needed.
1142
1143 // Registers a type and constant for computing the result of the
1144 // given instruction. If the result of the instruction is a vector,
1145 // then make a splat vector constant with the same number of
1146 // elements.
1147 auto register_constant = [this, &I](Constant *constant) {
1148 FindType(constant->getType());
1149 FindConstant(constant);
1150 if (auto *vectorTy = dyn_cast<VectorType>(I.getType())) {
1151 // Register the splat vector of the value with the same
1152 // width as the result of the instruction.
1153 auto *vec_constant = ConstantVector::getSplat(
1154 static_cast<unsigned>(vectorTy->getNumElements()),
1155 constant);
1156 FindConstant(vec_constant);
1157 FindType(vec_constant->getType());
1158 }
1159 };
1160 switch (IndirectEInst) {
1161 case glsl::ExtInstFindUMsb:
1162 // clz needs OpExtInst and OpISub with constant 31, or splat
1163 // vector of 31. Add it to the constant list here.
1164 register_constant(
1165 ConstantInt::get(Type::getInt32Ty(Context), 31));
1166 break;
1167 case glsl::ExtInstAcos:
1168 case glsl::ExtInstAsin:
Kévin Petiteb9f90a2018-09-29 12:29:34 +01001169 case glsl::ExtInstAtan:
David Neto3fbb4072017-10-16 11:28:14 -04001170 case glsl::ExtInstAtan2:
1171 // We need 1/pi for acospi, asinpi, atan2pi.
1172 register_constant(
1173 ConstantFP::get(Type::getFloatTy(Context), kOneOverPi));
1174 break;
1175 default:
1176 assert(false && "internally inconsistent");
1177 }
David Neto22f144c2017-06-12 14:26:21 -04001178 }
1179 }
1180 }
1181 }
1182 }
1183
1184 return HasExtInst;
1185}
1186
1187void SPIRVProducerPass::FindTypePerGlobalVar(GlobalVariable &GV) {
1188 // Investigate global variable's type.
1189 FindType(GV.getType());
1190}
1191
1192void SPIRVProducerPass::FindTypePerFunc(Function &F) {
1193 // Investigate function's type.
1194 FunctionType *FTy = F.getFunctionType();
1195
1196 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
1197 auto &GlobalConstFuncTyMap = getGlobalConstFuncTypeMap();
David Neto9ed8e2f2018-03-24 06:47:24 -07001198 // Handle a regular function with global constant parameters.
David Neto22f144c2017-06-12 14:26:21 -04001199 if (GlobalConstFuncTyMap.count(FTy)) {
1200 uint32_t GVCstArgIdx = GlobalConstFuncTypeMap[FTy].second;
1201 SmallVector<Type *, 4> NewFuncParamTys;
1202 for (unsigned i = 0; i < FTy->getNumParams(); i++) {
1203 Type *ParamTy = FTy->getParamType(i);
1204 if (i == GVCstArgIdx) {
1205 Type *EleTy = ParamTy->getPointerElementType();
1206 ParamTy = PointerType::get(EleTy, AddressSpace::ModuleScopePrivate);
1207 }
1208
1209 NewFuncParamTys.push_back(ParamTy);
1210 }
1211
1212 FunctionType *NewFTy =
1213 FunctionType::get(FTy->getReturnType(), NewFuncParamTys, false);
1214 GlobalConstFuncTyMap[FTy] = std::make_pair(NewFTy, GVCstArgIdx);
1215 FTy = NewFTy;
1216 }
1217
1218 FindType(FTy);
1219 } else {
1220 // As kernel functions do not have parameters, create new function type and
1221 // add it to type map.
1222 SmallVector<Type *, 4> NewFuncParamTys;
1223 FunctionType *NewFTy =
1224 FunctionType::get(FTy->getReturnType(), NewFuncParamTys, false);
1225 FindType(NewFTy);
1226 }
1227
1228 // Investigate instructions' type in function body.
1229 for (BasicBlock &BB : F) {
1230 for (Instruction &I : BB) {
1231 if (isa<ShuffleVectorInst>(I)) {
1232 for (unsigned i = 0; i < I.getNumOperands(); i++) {
1233 // Ignore type for mask of shuffle vector instruction.
1234 if (i == 2) {
1235 continue;
1236 }
1237
1238 Value *Op = I.getOperand(i);
1239 if (!isa<MetadataAsValue>(Op)) {
1240 FindType(Op->getType());
1241 }
1242 }
1243
1244 FindType(I.getType());
1245 continue;
1246 }
1247
David Neto862b7d82018-06-14 18:48:37 -04001248 CallInst *Call = dyn_cast<CallInst>(&I);
1249
1250 if (Call && Call->getCalledFunction()->getName().startswith(
Alan Baker202c8c72018-08-13 13:47:44 -04001251 clspv::ResourceAccessorFunction())) {
David Neto862b7d82018-06-14 18:48:37 -04001252 // This is a fake call representing access to a resource variable.
1253 // We handle that elsewhere.
1254 continue;
1255 }
1256
Alan Baker202c8c72018-08-13 13:47:44 -04001257 if (Call && Call->getCalledFunction()->getName().startswith(
1258 clspv::WorkgroupAccessorFunction())) {
1259 // This is a fake call representing access to a workgroup variable.
1260 // We handle that elsewhere.
1261 continue;
1262 }
1263
David Neto22f144c2017-06-12 14:26:21 -04001264 // Work through the operands of the instruction.
1265 for (unsigned i = 0; i < I.getNumOperands(); i++) {
1266 Value *const Op = I.getOperand(i);
1267 // If any of the operands is a constant, find the type!
1268 if (isa<Constant>(Op) && !isa<GlobalValue>(Op)) {
1269 FindType(Op->getType());
1270 }
1271 }
1272
1273 for (Use &Op : I.operands()) {
Radek Szymanskibe4b0c42018-10-04 22:20:53 +01001274 if (isa<CallInst>(&I)) {
David Neto22f144c2017-06-12 14:26:21 -04001275 // Avoid to check call instruction's type.
1276 break;
1277 }
Alan Baker202c8c72018-08-13 13:47:44 -04001278 if (CallInst *OpCall = dyn_cast<CallInst>(Op)) {
1279 if (OpCall && OpCall->getCalledFunction()->getName().startswith(
1280 clspv::WorkgroupAccessorFunction())) {
1281 // This is a fake call representing access to a workgroup variable.
1282 // We handle that elsewhere.
1283 continue;
1284 }
1285 }
David Neto22f144c2017-06-12 14:26:21 -04001286 if (!isa<MetadataAsValue>(&Op)) {
1287 FindType(Op->getType());
1288 continue;
1289 }
1290 }
1291
David Neto22f144c2017-06-12 14:26:21 -04001292 // We don't want to track the type of this call as we are going to replace
1293 // it.
David Neto862b7d82018-06-14 18:48:37 -04001294 if (Call && ("clspv.sampler.var.literal" ==
David Neto22f144c2017-06-12 14:26:21 -04001295 Call->getCalledFunction()->getName())) {
1296 continue;
1297 }
1298
1299 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1300 // If gep's base operand has ModuleScopePrivate address space, make gep
1301 // return ModuleScopePrivate address space.
1302 if (GEP->getPointerAddressSpace() == AddressSpace::ModuleScopePrivate) {
1303 // Add pointer type with private address space for global constant to
1304 // type list.
1305 Type *EleTy = I.getType()->getPointerElementType();
1306 Type *NewPTy =
1307 PointerType::get(EleTy, AddressSpace::ModuleScopePrivate);
1308
1309 FindType(NewPTy);
1310 continue;
1311 }
1312 }
1313
1314 FindType(I.getType());
1315 }
1316 }
1317}
1318
David Neto862b7d82018-06-14 18:48:37 -04001319void SPIRVProducerPass::FindTypesForSamplerMap(Module &M) {
1320 // If we are using a sampler map, find the type of the sampler.
1321 if (M.getFunction("clspv.sampler.var.literal") ||
1322 0 < getSamplerMap().size()) {
1323 auto SamplerStructTy = M.getTypeByName("opencl.sampler_t");
1324 if (!SamplerStructTy) {
1325 SamplerStructTy = StructType::create(M.getContext(), "opencl.sampler_t");
1326 }
1327
1328 SamplerTy = SamplerStructTy->getPointerTo(AddressSpace::UniformConstant);
1329
1330 FindType(SamplerTy);
1331 }
1332}
1333
1334void SPIRVProducerPass::FindTypesForResourceVars(Module &M) {
1335 // Record types so they are generated.
1336 TypesNeedingLayout.reset();
1337 StructTypesNeedingBlock.reset();
1338
1339 // To match older clspv codegen, generate the float type first if required
1340 // for images.
1341 for (const auto *info : ModuleOrderedResourceVars) {
1342 if (info->arg_kind == clspv::ArgKind::ReadOnlyImage ||
1343 info->arg_kind == clspv::ArgKind::WriteOnlyImage) {
1344 // We need "float" for the sampled component type.
1345 FindType(Type::getFloatTy(M.getContext()));
1346 // We only need to find it once.
1347 break;
1348 }
1349 }
1350
1351 for (const auto *info : ModuleOrderedResourceVars) {
1352 Type *type = info->var_fn->getReturnType();
1353
1354 switch (info->arg_kind) {
1355 case clspv::ArgKind::Buffer:
Alan Bakerfcda9482018-10-02 17:09:59 -04001356 case clspv::ArgKind::BufferUBO:
David Neto862b7d82018-06-14 18:48:37 -04001357 if (auto *sty = dyn_cast<StructType>(type->getPointerElementType())) {
1358 StructTypesNeedingBlock.insert(sty);
1359 } else {
1360 errs() << *type << "\n";
1361 llvm_unreachable("Buffer arguments must map to structures!");
1362 }
1363 break;
1364 case clspv::ArgKind::Pod:
1365 if (auto *sty = dyn_cast<StructType>(type->getPointerElementType())) {
1366 StructTypesNeedingBlock.insert(sty);
1367 } else {
1368 errs() << *type << "\n";
1369 llvm_unreachable("POD arguments must map to structures!");
1370 }
1371 break;
1372 case clspv::ArgKind::ReadOnlyImage:
1373 case clspv::ArgKind::WriteOnlyImage:
1374 case clspv::ArgKind::Sampler:
1375 // Sampler and image types map to the pointee type but
1376 // in the uniform constant address space.
1377 type = PointerType::get(type->getPointerElementType(),
1378 clspv::AddressSpace::UniformConstant);
1379 break;
1380 default:
1381 break;
1382 }
1383
1384 // The converted type is the type of the OpVariable we will generate.
1385 // If the pointee type is an array of size zero, FindType will convert it
1386 // to a runtime array.
1387 FindType(type);
1388 }
1389
1390 // Traverse the arrays and structures underneath each Block, and
1391 // mark them as needing layout.
1392 std::vector<Type *> work_list(StructTypesNeedingBlock.begin(),
1393 StructTypesNeedingBlock.end());
1394 while (!work_list.empty()) {
1395 Type *type = work_list.back();
1396 work_list.pop_back();
1397 TypesNeedingLayout.insert(type);
1398 switch (type->getTypeID()) {
1399 case Type::ArrayTyID:
1400 work_list.push_back(type->getArrayElementType());
1401 if (!Hack_generate_runtime_array_stride_early) {
1402 // Remember this array type for deferred decoration.
1403 TypesNeedingArrayStride.insert(type);
1404 }
1405 break;
1406 case Type::StructTyID:
1407 for (auto *elem_ty : cast<StructType>(type)->elements()) {
1408 work_list.push_back(elem_ty);
1409 }
1410 default:
1411 // This type and its contained types don't get layout.
1412 break;
1413 }
1414 }
1415}
1416
Alan Baker202c8c72018-08-13 13:47:44 -04001417void SPIRVProducerPass::FindWorkgroupVars(Module &M) {
1418 // The SpecId assignment for pointer-to-local arguments is recorded in
1419 // module-level metadata. Translate that information into local argument
1420 // information.
1421 NamedMDNode *nmd = M.getNamedMetadata(clspv::LocalSpecIdMetadataName());
1422 if (!nmd) return;
1423 for (auto operand : nmd->operands()) {
1424 MDTuple *tuple = cast<MDTuple>(operand);
1425 ValueAsMetadata *fn_md = cast<ValueAsMetadata>(tuple->getOperand(0));
1426 Function *func = cast<Function>(fn_md->getValue());
1427 ConstantAsMetadata *arg_index_md = cast<ConstantAsMetadata>(tuple->getOperand(1));
Radek Szymanskibe4b0c42018-10-04 22:20:53 +01001428 int arg_index = static_cast<int>(cast<ConstantInt>(arg_index_md->getValue())->getSExtValue());
Alan Baker202c8c72018-08-13 13:47:44 -04001429 Argument* arg = &*(func->arg_begin() + arg_index);
1430
1431 ConstantAsMetadata *spec_id_md =
1432 cast<ConstantAsMetadata>(tuple->getOperand(2));
Radek Szymanskibe4b0c42018-10-04 22:20:53 +01001433 int spec_id = static_cast<int>(cast<ConstantInt>(spec_id_md->getValue())->getSExtValue());
Alan Baker202c8c72018-08-13 13:47:44 -04001434
1435 max_local_spec_id_ = std::max(max_local_spec_id_, spec_id + 1);
1436 LocalArgSpecIds[arg] = spec_id;
1437 if (LocalSpecIdInfoMap.count(spec_id)) continue;
1438
1439 // We haven't seen this SpecId yet, so generate the LocalArgInfo for it.
1440 LocalArgInfo info{nextID, arg->getType()->getPointerElementType(),
1441 nextID + 1, nextID + 2,
1442 nextID + 3, spec_id};
1443 LocalSpecIdInfoMap[spec_id] = info;
1444 nextID += 4;
1445
1446 // Ensure the types necessary for this argument get generated.
1447 Type *IdxTy = Type::getInt32Ty(M.getContext());
1448 FindConstant(ConstantInt::get(IdxTy, 0));
1449 FindType(IdxTy);
1450 FindType(arg->getType());
1451 }
1452}
1453
David Neto22f144c2017-06-12 14:26:21 -04001454void SPIRVProducerPass::FindType(Type *Ty) {
1455 TypeList &TyList = getTypeList();
1456
1457 if (0 != TyList.idFor(Ty)) {
1458 return;
1459 }
1460
1461 if (Ty->isPointerTy()) {
1462 auto AddrSpace = Ty->getPointerAddressSpace();
1463 if ((AddressSpace::Constant == AddrSpace) ||
1464 (AddressSpace::Global == AddrSpace)) {
1465 auto PointeeTy = Ty->getPointerElementType();
1466
1467 if (PointeeTy->isStructTy() &&
1468 dyn_cast<StructType>(PointeeTy)->isOpaque()) {
1469 FindType(PointeeTy);
1470 auto ActualPointerTy =
1471 PointeeTy->getPointerTo(AddressSpace::UniformConstant);
1472 FindType(ActualPointerTy);
1473 return;
1474 }
1475 }
1476 }
1477
David Neto862b7d82018-06-14 18:48:37 -04001478 // By convention, LLVM array type with 0 elements will map to
1479 // OpTypeRuntimeArray. Otherwise, it will map to OpTypeArray, which
1480 // has a constant number of elements. We need to support type of the
1481 // constant.
1482 if (auto *arrayTy = dyn_cast<ArrayType>(Ty)) {
1483 if (arrayTy->getNumElements() > 0) {
1484 LLVMContext &Context = Ty->getContext();
1485 FindType(Type::getInt32Ty(Context));
1486 }
David Neto22f144c2017-06-12 14:26:21 -04001487 }
1488
1489 for (Type *SubTy : Ty->subtypes()) {
1490 FindType(SubTy);
1491 }
1492
1493 TyList.insert(Ty);
1494}
1495
1496void SPIRVProducerPass::FindConstantPerGlobalVar(GlobalVariable &GV) {
1497 // If the global variable has a (non undef) initializer.
1498 if (GV.hasInitializer() && !isa<UndefValue>(GV.getInitializer())) {
David Neto862b7d82018-06-14 18:48:37 -04001499 // Generate the constant if it's not the initializer to a module scope
1500 // constant that we will expect in a storage buffer.
1501 const bool module_scope_constant_external_init =
1502 (GV.getType()->getPointerAddressSpace() == AddressSpace::Constant) &&
1503 clspv::Option::ModuleConstantsInStorageBuffer();
1504 if (!module_scope_constant_external_init) {
1505 FindConstant(GV.getInitializer());
1506 }
David Neto22f144c2017-06-12 14:26:21 -04001507 }
1508}
1509
1510void SPIRVProducerPass::FindConstantPerFunc(Function &F) {
1511 // Investigate constants in function body.
1512 for (BasicBlock &BB : F) {
1513 for (Instruction &I : BB) {
David Neto862b7d82018-06-14 18:48:37 -04001514 if (auto *call = dyn_cast<CallInst>(&I)) {
1515 auto name = call->getCalledFunction()->getName();
1516 if (name == "clspv.sampler.var.literal") {
1517 // We've handled these constants elsewhere, so skip it.
1518 continue;
1519 }
Alan Baker202c8c72018-08-13 13:47:44 -04001520 if (name.startswith(clspv::ResourceAccessorFunction())) {
1521 continue;
1522 }
1523 if (name.startswith(clspv::WorkgroupAccessorFunction())) {
David Neto862b7d82018-06-14 18:48:37 -04001524 continue;
1525 }
David Neto22f144c2017-06-12 14:26:21 -04001526 }
1527
1528 if (isa<AllocaInst>(I)) {
1529 // Alloca instruction has constant for the number of element. Ignore it.
1530 continue;
1531 } else if (isa<ShuffleVectorInst>(I)) {
1532 for (unsigned i = 0; i < I.getNumOperands(); i++) {
1533 // Ignore constant for mask of shuffle vector instruction.
1534 if (i == 2) {
1535 continue;
1536 }
1537
1538 if (isa<Constant>(I.getOperand(i)) &&
1539 !isa<GlobalValue>(I.getOperand(i))) {
1540 FindConstant(I.getOperand(i));
1541 }
1542 }
1543
1544 continue;
1545 } else if (isa<InsertElementInst>(I)) {
1546 // Handle InsertElement with <4 x i8> specially.
1547 Type *CompositeTy = I.getOperand(0)->getType();
1548 if (is4xi8vec(CompositeTy)) {
1549 LLVMContext &Context = CompositeTy->getContext();
1550 if (isa<Constant>(I.getOperand(0))) {
1551 FindConstant(I.getOperand(0));
1552 }
1553
1554 if (isa<Constant>(I.getOperand(1))) {
1555 FindConstant(I.getOperand(1));
1556 }
1557
1558 // Add mask constant 0xFF.
1559 Constant *CstFF = ConstantInt::get(Type::getInt32Ty(Context), 0xFF);
1560 FindConstant(CstFF);
1561
1562 // Add shift amount constant.
1563 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2))) {
1564 uint64_t Idx = CI->getZExtValue();
1565 Constant *CstShiftAmount =
1566 ConstantInt::get(Type::getInt32Ty(Context), Idx * 8);
1567 FindConstant(CstShiftAmount);
1568 }
1569
1570 continue;
1571 }
1572
1573 for (unsigned i = 0; i < I.getNumOperands(); i++) {
1574 // Ignore constant for index of InsertElement instruction.
1575 if (i == 2) {
1576 continue;
1577 }
1578
1579 if (isa<Constant>(I.getOperand(i)) &&
1580 !isa<GlobalValue>(I.getOperand(i))) {
1581 FindConstant(I.getOperand(i));
1582 }
1583 }
1584
1585 continue;
1586 } else if (isa<ExtractElementInst>(I)) {
1587 // Handle ExtractElement with <4 x i8> specially.
1588 Type *CompositeTy = I.getOperand(0)->getType();
1589 if (is4xi8vec(CompositeTy)) {
1590 LLVMContext &Context = CompositeTy->getContext();
1591 if (isa<Constant>(I.getOperand(0))) {
1592 FindConstant(I.getOperand(0));
1593 }
1594
1595 // Add mask constant 0xFF.
1596 Constant *CstFF = ConstantInt::get(Type::getInt32Ty(Context), 0xFF);
1597 FindConstant(CstFF);
1598
1599 // Add shift amount constant.
1600 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
1601 uint64_t Idx = CI->getZExtValue();
1602 Constant *CstShiftAmount =
1603 ConstantInt::get(Type::getInt32Ty(Context), Idx * 8);
1604 FindConstant(CstShiftAmount);
1605 } else {
1606 ConstantInt *Cst8 = ConstantInt::get(Type::getInt32Ty(Context), 8);
1607 FindConstant(Cst8);
1608 }
1609
1610 continue;
1611 }
1612
1613 for (unsigned i = 0; i < I.getNumOperands(); i++) {
1614 // Ignore constant for index of ExtractElement instruction.
1615 if (i == 1) {
1616 continue;
1617 }
1618
1619 if (isa<Constant>(I.getOperand(i)) &&
1620 !isa<GlobalValue>(I.getOperand(i))) {
1621 FindConstant(I.getOperand(i));
1622 }
1623 }
1624
1625 continue;
1626 } else if ((Instruction::Xor == I.getOpcode()) && I.getType()->isIntegerTy(1)) {
1627 // We special case for Xor where the type is i1 and one of the arguments is a constant 1 (true), this is an OpLogicalNot in SPIR-V, and we don't need the constant
1628 bool foundConstantTrue = false;
1629 for (Use &Op : I.operands()) {
1630 if (isa<Constant>(Op) && !isa<GlobalValue>(Op)) {
1631 auto CI = cast<ConstantInt>(Op);
1632
1633 if (CI->isZero() || foundConstantTrue) {
1634 // If we already found the true constant, we might (probably only on -O0) have an OpLogicalNot which is taking a constant argument, so discover it anyway.
1635 FindConstant(Op);
1636 } else {
1637 foundConstantTrue = true;
1638 }
1639 }
1640 }
1641
1642 continue;
David Netod2de94a2017-08-28 17:27:47 -04001643 } else if (isa<TruncInst>(I)) {
1644 // For truncation to i8 we mask against 255.
1645 Type *ToTy = I.getType();
1646 if (8u == ToTy->getPrimitiveSizeInBits()) {
1647 LLVMContext &Context = ToTy->getContext();
1648 Constant *Cst255 = ConstantInt::get(Type::getInt32Ty(Context), 0xff);
1649 FindConstant(Cst255);
1650 }
1651 // Fall through.
Neil Henning39672102017-09-29 14:33:13 +01001652 } else if (isa<AtomicRMWInst>(I)) {
1653 LLVMContext &Context = I.getContext();
1654
1655 FindConstant(
1656 ConstantInt::get(Type::getInt32Ty(Context), spv::ScopeDevice));
1657 FindConstant(ConstantInt::get(
1658 Type::getInt32Ty(Context),
1659 spv::MemorySemanticsUniformMemoryMask |
1660 spv::MemorySemanticsSequentiallyConsistentMask));
David Neto22f144c2017-06-12 14:26:21 -04001661 }
1662
1663 for (Use &Op : I.operands()) {
1664 if (isa<Constant>(Op) && !isa<GlobalValue>(Op)) {
1665 FindConstant(Op);
1666 }
1667 }
1668 }
1669 }
1670}
1671
1672void SPIRVProducerPass::FindConstant(Value *V) {
David Neto22f144c2017-06-12 14:26:21 -04001673 ValueList &CstList = getConstantList();
1674
David Netofb9a7972017-08-25 17:08:24 -04001675 // If V is already tracked, ignore it.
1676 if (0 != CstList.idFor(V)) {
David Neto22f144c2017-06-12 14:26:21 -04001677 return;
1678 }
1679
David Neto862b7d82018-06-14 18:48:37 -04001680 if (isa<GlobalValue>(V) && clspv::Option::ModuleConstantsInStorageBuffer()) {
1681 return;
1682 }
1683
David Neto22f144c2017-06-12 14:26:21 -04001684 Constant *Cst = cast<Constant>(V);
David Neto862b7d82018-06-14 18:48:37 -04001685 Type *CstTy = Cst->getType();
David Neto22f144c2017-06-12 14:26:21 -04001686
1687 // Handle constant with <4 x i8> type specially.
David Neto22f144c2017-06-12 14:26:21 -04001688 if (is4xi8vec(CstTy)) {
1689 if (!isa<GlobalValue>(V)) {
David Netofb9a7972017-08-25 17:08:24 -04001690 CstList.insert(V);
David Neto22f144c2017-06-12 14:26:21 -04001691 }
1692 }
1693
1694 if (Cst->getNumOperands()) {
1695 for (User::const_op_iterator I = Cst->op_begin(), E = Cst->op_end(); I != E;
1696 ++I) {
1697 FindConstant(*I);
1698 }
1699
David Netofb9a7972017-08-25 17:08:24 -04001700 CstList.insert(Cst);
David Neto22f144c2017-06-12 14:26:21 -04001701 return;
1702 } else if (const ConstantDataSequential *CDS =
1703 dyn_cast<ConstantDataSequential>(Cst)) {
1704 // Add constants for each element to constant list.
1705 for (unsigned i = 0; i < CDS->getNumElements(); i++) {
1706 Constant *EleCst = CDS->getElementAsConstant(i);
1707 FindConstant(EleCst);
1708 }
1709 }
1710
1711 if (!isa<GlobalValue>(V)) {
David Netofb9a7972017-08-25 17:08:24 -04001712 CstList.insert(V);
David Neto22f144c2017-06-12 14:26:21 -04001713 }
1714}
1715
1716spv::StorageClass SPIRVProducerPass::GetStorageClass(unsigned AddrSpace) const {
1717 switch (AddrSpace) {
1718 default:
1719 llvm_unreachable("Unsupported OpenCL address space");
1720 case AddressSpace::Private:
1721 return spv::StorageClassFunction;
1722 case AddressSpace::Global:
David Neto22f144c2017-06-12 14:26:21 -04001723 return spv::StorageClassStorageBuffer;
Alan Bakerfcda9482018-10-02 17:09:59 -04001724 case AddressSpace::Constant:
1725 return clspv::Option::ConstantArgsInUniformBuffer()
1726 ? spv::StorageClassUniform
1727 : spv::StorageClassStorageBuffer;
David Neto22f144c2017-06-12 14:26:21 -04001728 case AddressSpace::Input:
1729 return spv::StorageClassInput;
1730 case AddressSpace::Local:
1731 return spv::StorageClassWorkgroup;
1732 case AddressSpace::UniformConstant:
1733 return spv::StorageClassUniformConstant;
David Neto9ed8e2f2018-03-24 06:47:24 -07001734 case AddressSpace::Uniform:
David Netoe439d702018-03-23 13:14:08 -07001735 return spv::StorageClassUniform;
David Neto22f144c2017-06-12 14:26:21 -04001736 case AddressSpace::ModuleScopePrivate:
1737 return spv::StorageClassPrivate;
1738 }
1739}
1740
David Neto862b7d82018-06-14 18:48:37 -04001741spv::StorageClass
1742SPIRVProducerPass::GetStorageClassForArgKind(clspv::ArgKind arg_kind) const {
1743 switch (arg_kind) {
1744 case clspv::ArgKind::Buffer:
1745 return spv::StorageClassStorageBuffer;
Alan Bakerfcda9482018-10-02 17:09:59 -04001746 case clspv::ArgKind::BufferUBO:
1747 return spv::StorageClassUniform;
David Neto862b7d82018-06-14 18:48:37 -04001748 case clspv::ArgKind::Pod:
1749 return clspv::Option::PodArgsInUniformBuffer()
1750 ? spv::StorageClassUniform
1751 : spv::StorageClassStorageBuffer;
1752 case clspv::ArgKind::Local:
1753 return spv::StorageClassWorkgroup;
1754 case clspv::ArgKind::ReadOnlyImage:
1755 case clspv::ArgKind::WriteOnlyImage:
1756 case clspv::ArgKind::Sampler:
1757 return spv::StorageClassUniformConstant;
Radek Szymanskibe4b0c42018-10-04 22:20:53 +01001758 default:
1759 llvm_unreachable("Unsupported storage class for argument kind");
David Neto862b7d82018-06-14 18:48:37 -04001760 }
1761}
1762
David Neto22f144c2017-06-12 14:26:21 -04001763spv::BuiltIn SPIRVProducerPass::GetBuiltin(StringRef Name) const {
1764 return StringSwitch<spv::BuiltIn>(Name)
1765 .Case("__spirv_GlobalInvocationId", spv::BuiltInGlobalInvocationId)
1766 .Case("__spirv_LocalInvocationId", spv::BuiltInLocalInvocationId)
1767 .Case("__spirv_WorkgroupSize", spv::BuiltInWorkgroupSize)
1768 .Case("__spirv_NumWorkgroups", spv::BuiltInNumWorkgroups)
1769 .Case("__spirv_WorkgroupId", spv::BuiltInWorkgroupId)
1770 .Default(spv::BuiltInMax);
1771}
1772
1773void SPIRVProducerPass::GenerateExtInstImport() {
1774 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
1775 uint32_t &ExtInstImportID = getOpExtInstImportID();
1776
1777 //
1778 // Generate OpExtInstImport.
1779 //
1780 // Ops[0] ... Ops[n] = Name (Literal String)
David Neto22f144c2017-06-12 14:26:21 -04001781 ExtInstImportID = nextID;
David Neto87846742018-04-11 17:36:22 -04001782 SPIRVInstList.push_back(new SPIRVInstruction(spv::OpExtInstImport, nextID++,
1783 MkString("GLSL.std.450")));
David Neto22f144c2017-06-12 14:26:21 -04001784}
1785
Alan Bakerfcda9482018-10-02 17:09:59 -04001786void SPIRVProducerPass::GenerateSPIRVTypes(LLVMContext& Context, Module &module) {
David Neto22f144c2017-06-12 14:26:21 -04001787 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
1788 ValueMapType &VMap = getValueMap();
1789 ValueMapType &AllocatedVMap = getAllocatedValueMap();
Alan Bakerfcda9482018-10-02 17:09:59 -04001790 const auto &DL = module.getDataLayout();
David Neto22f144c2017-06-12 14:26:21 -04001791
1792 // Map for OpTypeRuntimeArray. If argument has pointer type, 2 spirv type
1793 // instructions are generated. They are OpTypePointer and OpTypeRuntimeArray.
1794 DenseMap<Type *, uint32_t> OpRuntimeTyMap;
1795
1796 for (Type *Ty : getTypeList()) {
1797 // Update TypeMap with nextID for reference later.
1798 TypeMap[Ty] = nextID;
1799
1800 switch (Ty->getTypeID()) {
1801 default: {
1802 Ty->print(errs());
1803 llvm_unreachable("Unsupported type???");
1804 break;
1805 }
1806 case Type::MetadataTyID:
1807 case Type::LabelTyID: {
1808 // Ignore these types.
1809 break;
1810 }
1811 case Type::PointerTyID: {
1812 PointerType *PTy = cast<PointerType>(Ty);
1813 unsigned AddrSpace = PTy->getAddressSpace();
1814
1815 // For the purposes of our Vulkan SPIR-V type system, constant and global
1816 // are conflated.
1817 bool UseExistingOpTypePointer = false;
1818 if (AddressSpace::Constant == AddrSpace) {
Alan Bakerfcda9482018-10-02 17:09:59 -04001819 if (!clspv::Option::ConstantArgsInUniformBuffer()) {
1820 AddrSpace = AddressSpace::Global;
1821 // Check to see if we already created this type (for instance, if we had
1822 // a constant <type>* and a global <type>*, the type would be created by
1823 // one of these types, and shared by both).
1824 auto GlobalTy = PTy->getPointerElementType()->getPointerTo(AddrSpace);
1825 if (0 < TypeMap.count(GlobalTy)) {
1826 TypeMap[PTy] = TypeMap[GlobalTy];
1827 UseExistingOpTypePointer = true;
1828 break;
1829 }
David Neto22f144c2017-06-12 14:26:21 -04001830 }
1831 } else if (AddressSpace::Global == AddrSpace) {
Alan Bakerfcda9482018-10-02 17:09:59 -04001832 if (!clspv::Option::ConstantArgsInUniformBuffer()) {
1833 AddrSpace = AddressSpace::Constant;
David Neto22f144c2017-06-12 14:26:21 -04001834
Alan Bakerfcda9482018-10-02 17:09:59 -04001835 // Check to see if we already created this type (for instance, if we had
1836 // a constant <type>* and a global <type>*, the type would be created by
1837 // one of these types, and shared by both).
1838 auto ConstantTy = PTy->getPointerElementType()->getPointerTo(AddrSpace);
1839 if (0 < TypeMap.count(ConstantTy)) {
1840 TypeMap[PTy] = TypeMap[ConstantTy];
1841 UseExistingOpTypePointer = true;
1842 }
David Neto22f144c2017-06-12 14:26:21 -04001843 }
1844 }
1845
David Neto862b7d82018-06-14 18:48:37 -04001846 const bool HasArgUser = true;
David Neto22f144c2017-06-12 14:26:21 -04001847
David Neto862b7d82018-06-14 18:48:37 -04001848 if (HasArgUser && !UseExistingOpTypePointer) {
David Neto22f144c2017-06-12 14:26:21 -04001849 //
1850 // Generate OpTypePointer.
1851 //
1852
1853 // OpTypePointer
1854 // Ops[0] = Storage Class
1855 // Ops[1] = Element Type ID
1856 SPIRVOperandList Ops;
1857
David Neto257c3892018-04-11 13:19:45 -04001858 Ops << MkNum(GetStorageClass(AddrSpace))
1859 << MkId(lookupType(PTy->getElementType()));
David Neto22f144c2017-06-12 14:26:21 -04001860
David Neto87846742018-04-11 17:36:22 -04001861 auto *Inst = new SPIRVInstruction(spv::OpTypePointer, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04001862 SPIRVInstList.push_back(Inst);
1863 }
David Neto22f144c2017-06-12 14:26:21 -04001864 break;
1865 }
1866 case Type::StructTyID: {
David Neto22f144c2017-06-12 14:26:21 -04001867 StructType *STy = cast<StructType>(Ty);
1868
1869 // Handle sampler type.
1870 if (STy->isOpaque()) {
1871 if (STy->getName().equals("opencl.sampler_t")) {
1872 //
1873 // Generate OpTypeSampler
1874 //
1875 // Empty Ops.
1876 SPIRVOperandList Ops;
1877
David Neto87846742018-04-11 17:36:22 -04001878 auto *Inst = new SPIRVInstruction(spv::OpTypeSampler, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04001879 SPIRVInstList.push_back(Inst);
1880 break;
1881 } else if (STy->getName().equals("opencl.image2d_ro_t") ||
1882 STy->getName().equals("opencl.image2d_wo_t") ||
1883 STy->getName().equals("opencl.image3d_ro_t") ||
1884 STy->getName().equals("opencl.image3d_wo_t")) {
1885 //
1886 // Generate OpTypeImage
1887 //
1888 // Ops[0] = Sampled Type ID
1889 // Ops[1] = Dim ID
1890 // Ops[2] = Depth (Literal Number)
1891 // Ops[3] = Arrayed (Literal Number)
1892 // Ops[4] = MS (Literal Number)
1893 // Ops[5] = Sampled (Literal Number)
1894 // Ops[6] = Image Format ID
1895 //
1896 SPIRVOperandList Ops;
1897
1898 // TODO: Changed Sampled Type according to situations.
1899 uint32_t SampledTyID = lookupType(Type::getFloatTy(Context));
David Neto257c3892018-04-11 13:19:45 -04001900 Ops << MkId(SampledTyID);
David Neto22f144c2017-06-12 14:26:21 -04001901
1902 spv::Dim DimID = spv::Dim2D;
1903 if (STy->getName().equals("opencl.image3d_ro_t") ||
1904 STy->getName().equals("opencl.image3d_wo_t")) {
1905 DimID = spv::Dim3D;
1906 }
David Neto257c3892018-04-11 13:19:45 -04001907 Ops << MkNum(DimID);
David Neto22f144c2017-06-12 14:26:21 -04001908
1909 // TODO: Set up Depth.
David Neto257c3892018-04-11 13:19:45 -04001910 Ops << MkNum(0);
David Neto22f144c2017-06-12 14:26:21 -04001911
1912 // TODO: Set up Arrayed.
David Neto257c3892018-04-11 13:19:45 -04001913 Ops << MkNum(0);
David Neto22f144c2017-06-12 14:26:21 -04001914
1915 // TODO: Set up MS.
David Neto257c3892018-04-11 13:19:45 -04001916 Ops << MkNum(0);
David Neto22f144c2017-06-12 14:26:21 -04001917
1918 // TODO: Set up Sampled.
1919 //
1920 // From Spec
1921 //
1922 // 0 indicates this is only known at run time, not at compile time
1923 // 1 indicates will be used with sampler
1924 // 2 indicates will be used without a sampler (a storage image)
1925 uint32_t Sampled = 1;
1926 if (STy->getName().equals("opencl.image2d_wo_t") ||
1927 STy->getName().equals("opencl.image3d_wo_t")) {
1928 Sampled = 2;
1929 }
David Neto257c3892018-04-11 13:19:45 -04001930 Ops << MkNum(Sampled);
David Neto22f144c2017-06-12 14:26:21 -04001931
1932 // TODO: Set up Image Format.
David Neto257c3892018-04-11 13:19:45 -04001933 Ops << MkNum(spv::ImageFormatUnknown);
David Neto22f144c2017-06-12 14:26:21 -04001934
David Neto87846742018-04-11 17:36:22 -04001935 auto *Inst = new SPIRVInstruction(spv::OpTypeImage, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04001936 SPIRVInstList.push_back(Inst);
1937 break;
1938 }
1939 }
1940
1941 //
1942 // Generate OpTypeStruct
1943 //
1944 // Ops[0] ... Ops[n] = Member IDs
1945 SPIRVOperandList Ops;
1946
1947 for (auto *EleTy : STy->elements()) {
David Neto862b7d82018-06-14 18:48:37 -04001948 Ops << MkId(lookupType(EleTy));
David Neto22f144c2017-06-12 14:26:21 -04001949 }
1950
David Neto22f144c2017-06-12 14:26:21 -04001951 uint32_t STyID = nextID;
1952
David Neto87846742018-04-11 17:36:22 -04001953 auto *Inst =
1954 new SPIRVInstruction(spv::OpTypeStruct, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04001955 SPIRVInstList.push_back(Inst);
1956
1957 // Generate OpMemberDecorate.
1958 auto DecoInsertPoint =
1959 std::find_if(SPIRVInstList.begin(), SPIRVInstList.end(),
1960 [](SPIRVInstruction *Inst) -> bool {
1961 return Inst->getOpcode() != spv::OpDecorate &&
1962 Inst->getOpcode() != spv::OpMemberDecorate &&
1963 Inst->getOpcode() != spv::OpExtInstImport;
1964 });
1965
David Netoc463b372017-08-10 15:32:21 -04001966 const auto StructLayout = DL.getStructLayout(STy);
Alan Bakerfcda9482018-10-02 17:09:59 -04001967 // Search for the correct offsets if this type was remapped.
1968 std::vector<uint32_t> *offsets = nullptr;
1969 auto iter = RemappedUBOTypeOffsets.find(STy);
1970 if (iter != RemappedUBOTypeOffsets.end()) {
1971 offsets = &iter->second;
1972 }
David Netoc463b372017-08-10 15:32:21 -04001973
David Neto862b7d82018-06-14 18:48:37 -04001974 // #error TODO(dneto): Only do this if in TypesNeedingLayout.
David Neto22f144c2017-06-12 14:26:21 -04001975 for (unsigned MemberIdx = 0; MemberIdx < STy->getNumElements();
1976 MemberIdx++) {
1977 // Ops[0] = Structure Type ID
1978 // Ops[1] = Member Index(Literal Number)
1979 // Ops[2] = Decoration (Offset)
1980 // Ops[3] = Byte Offset (Literal Number)
1981 Ops.clear();
1982
David Neto257c3892018-04-11 13:19:45 -04001983 Ops << MkId(STyID) << MkNum(MemberIdx) << MkNum(spv::DecorationOffset);
David Neto22f144c2017-06-12 14:26:21 -04001984
Alan Bakerfcda9482018-10-02 17:09:59 -04001985 auto ByteOffset = StructLayout->getElementOffset(MemberIdx);
1986 if (offsets) {
1987 ByteOffset = (*offsets)[MemberIdx];
1988 }
1989 //const auto ByteOffset =
1990 // uint32_t(StructLayout->getElementOffset(MemberIdx));
David Neto257c3892018-04-11 13:19:45 -04001991 Ops << MkNum(ByteOffset);
David Neto22f144c2017-06-12 14:26:21 -04001992
David Neto87846742018-04-11 17:36:22 -04001993 auto *DecoInst = new SPIRVInstruction(spv::OpMemberDecorate, Ops);
David Neto22f144c2017-06-12 14:26:21 -04001994 SPIRVInstList.insert(DecoInsertPoint, DecoInst);
David Neto22f144c2017-06-12 14:26:21 -04001995 }
1996
1997 // Generate OpDecorate.
David Neto862b7d82018-06-14 18:48:37 -04001998 if (StructTypesNeedingBlock.idFor(STy)) {
1999 Ops.clear();
2000 // Use Block decorations with StorageBuffer storage class.
2001 Ops << MkId(STyID) << MkNum(spv::DecorationBlock);
David Neto22f144c2017-06-12 14:26:21 -04002002
David Neto862b7d82018-06-14 18:48:37 -04002003 auto *DecoInst = new SPIRVInstruction(spv::OpDecorate, Ops);
2004 SPIRVInstList.insert(DecoInsertPoint, DecoInst);
David Neto22f144c2017-06-12 14:26:21 -04002005 }
2006 break;
2007 }
2008 case Type::IntegerTyID: {
2009 unsigned BitWidth = Ty->getPrimitiveSizeInBits();
2010
2011 if (BitWidth == 1) {
David Neto87846742018-04-11 17:36:22 -04002012 auto *Inst = new SPIRVInstruction(spv::OpTypeBool, nextID++, {});
David Neto22f144c2017-06-12 14:26:21 -04002013 SPIRVInstList.push_back(Inst);
2014 } else {
2015 // i8 is added to TypeMap as i32.
David Neto391aeb12017-08-26 15:51:58 -04002016 // No matter what LLVM type is requested first, always alias the
2017 // second one's SPIR-V type to be the same as the one we generated
2018 // first.
Neil Henning39672102017-09-29 14:33:13 +01002019 unsigned aliasToWidth = 0;
David Neto22f144c2017-06-12 14:26:21 -04002020 if (BitWidth == 8) {
David Neto391aeb12017-08-26 15:51:58 -04002021 aliasToWidth = 32;
David Neto22f144c2017-06-12 14:26:21 -04002022 BitWidth = 32;
David Neto391aeb12017-08-26 15:51:58 -04002023 } else if (BitWidth == 32) {
2024 aliasToWidth = 8;
2025 }
2026 if (aliasToWidth) {
2027 Type* otherType = Type::getIntNTy(Ty->getContext(), aliasToWidth);
2028 auto where = TypeMap.find(otherType);
2029 if (where == TypeMap.end()) {
2030 // Go ahead and make it, but also map the other type to it.
2031 TypeMap[otherType] = nextID;
2032 } else {
2033 // Alias this SPIR-V type the existing type.
2034 TypeMap[Ty] = where->second;
2035 break;
2036 }
David Neto22f144c2017-06-12 14:26:21 -04002037 }
2038
David Neto257c3892018-04-11 13:19:45 -04002039 SPIRVOperandList Ops;
2040 Ops << MkNum(BitWidth) << MkNum(0 /* not signed */);
David Neto22f144c2017-06-12 14:26:21 -04002041
2042 SPIRVInstList.push_back(
David Neto87846742018-04-11 17:36:22 -04002043 new SPIRVInstruction(spv::OpTypeInt, nextID++, Ops));
David Neto22f144c2017-06-12 14:26:21 -04002044 }
2045 break;
2046 }
2047 case Type::HalfTyID:
2048 case Type::FloatTyID:
2049 case Type::DoubleTyID: {
2050 SPIRVOperand *WidthOp = new SPIRVOperand(
2051 SPIRVOperandType::LITERAL_INTEGER, Ty->getPrimitiveSizeInBits());
2052
2053 SPIRVInstList.push_back(
David Neto87846742018-04-11 17:36:22 -04002054 new SPIRVInstruction(spv::OpTypeFloat, nextID++, WidthOp));
David Neto22f144c2017-06-12 14:26:21 -04002055 break;
2056 }
2057 case Type::ArrayTyID: {
David Neto22f144c2017-06-12 14:26:21 -04002058 ArrayType *ArrTy = cast<ArrayType>(Ty);
David Neto862b7d82018-06-14 18:48:37 -04002059 const uint64_t Length = ArrTy->getArrayNumElements();
2060 if (Length == 0) {
2061 // By convention, map it to a RuntimeArray.
David Neto22f144c2017-06-12 14:26:21 -04002062
David Neto862b7d82018-06-14 18:48:37 -04002063 // Only generate the type once.
2064 // TODO(dneto): Can it ever be generated more than once?
2065 // Doesn't LLVM type uniqueness guarantee we'll only see this
2066 // once?
2067 Type *EleTy = ArrTy->getArrayElementType();
2068 if (OpRuntimeTyMap.count(EleTy) == 0) {
2069 uint32_t OpTypeRuntimeArrayID = nextID;
2070 OpRuntimeTyMap[Ty] = nextID;
David Neto22f144c2017-06-12 14:26:21 -04002071
David Neto862b7d82018-06-14 18:48:37 -04002072 //
2073 // Generate OpTypeRuntimeArray.
2074 //
David Neto22f144c2017-06-12 14:26:21 -04002075
David Neto862b7d82018-06-14 18:48:37 -04002076 // OpTypeRuntimeArray
2077 // Ops[0] = Element Type ID
2078 SPIRVOperandList Ops;
2079 Ops << MkId(lookupType(EleTy));
David Neto22f144c2017-06-12 14:26:21 -04002080
David Neto862b7d82018-06-14 18:48:37 -04002081 SPIRVInstList.push_back(
2082 new SPIRVInstruction(spv::OpTypeRuntimeArray, nextID++, Ops));
David Neto22f144c2017-06-12 14:26:21 -04002083
David Neto862b7d82018-06-14 18:48:37 -04002084 if (Hack_generate_runtime_array_stride_early) {
2085 // Generate OpDecorate.
2086 auto DecoInsertPoint = std::find_if(
2087 SPIRVInstList.begin(), SPIRVInstList.end(),
2088 [](SPIRVInstruction *Inst) -> bool {
2089 return Inst->getOpcode() != spv::OpDecorate &&
2090 Inst->getOpcode() != spv::OpMemberDecorate &&
2091 Inst->getOpcode() != spv::OpExtInstImport;
2092 });
David Neto22f144c2017-06-12 14:26:21 -04002093
David Neto862b7d82018-06-14 18:48:37 -04002094 // Ops[0] = Target ID
2095 // Ops[1] = Decoration (ArrayStride)
2096 // Ops[2] = Stride Number(Literal Number)
2097 Ops.clear();
David Neto85082642018-03-24 06:55:20 -07002098
David Neto862b7d82018-06-14 18:48:37 -04002099 Ops << MkId(OpTypeRuntimeArrayID)
2100 << MkNum(spv::DecorationArrayStride)
Alan Bakerfcda9482018-10-02 17:09:59 -04002101 << MkNum(static_cast<uint32_t>(GetTypeAllocSize(EleTy, DL)));
David Neto22f144c2017-06-12 14:26:21 -04002102
David Neto862b7d82018-06-14 18:48:37 -04002103 auto *DecoInst = new SPIRVInstruction(spv::OpDecorate, Ops);
2104 SPIRVInstList.insert(DecoInsertPoint, DecoInst);
2105 }
2106 }
David Neto22f144c2017-06-12 14:26:21 -04002107
David Neto862b7d82018-06-14 18:48:37 -04002108 } else {
David Neto22f144c2017-06-12 14:26:21 -04002109
David Neto862b7d82018-06-14 18:48:37 -04002110 //
2111 // Generate OpConstant and OpTypeArray.
2112 //
2113
2114 //
2115 // Generate OpConstant for array length.
2116 //
2117 // Ops[0] = Result Type ID
2118 // Ops[1] .. Ops[n] = Values LiteralNumber
2119 SPIRVOperandList Ops;
2120
2121 Type *LengthTy = Type::getInt32Ty(Context);
2122 uint32_t ResTyID = lookupType(LengthTy);
2123 Ops << MkId(ResTyID);
2124
2125 assert(Length < UINT32_MAX);
2126 Ops << MkNum(static_cast<uint32_t>(Length));
2127
2128 // Add constant for length to constant list.
2129 Constant *CstLength = ConstantInt::get(LengthTy, Length);
2130 AllocatedVMap[CstLength] = nextID;
2131 VMap[CstLength] = nextID;
2132 uint32_t LengthID = nextID;
2133
2134 auto *CstInst = new SPIRVInstruction(spv::OpConstant, nextID++, Ops);
2135 SPIRVInstList.push_back(CstInst);
2136
2137 // Remember to generate ArrayStride later
2138 getTypesNeedingArrayStride().insert(Ty);
2139
2140 //
2141 // Generate OpTypeArray.
2142 //
2143 // Ops[0] = Element Type ID
2144 // Ops[1] = Array Length Constant ID
2145 Ops.clear();
2146
2147 uint32_t EleTyID = lookupType(ArrTy->getElementType());
2148 Ops << MkId(EleTyID) << MkId(LengthID);
2149
2150 // Update TypeMap with nextID.
2151 TypeMap[Ty] = nextID;
2152
2153 auto *ArrayInst = new SPIRVInstruction(spv::OpTypeArray, nextID++, Ops);
2154 SPIRVInstList.push_back(ArrayInst);
2155 }
David Neto22f144c2017-06-12 14:26:21 -04002156 break;
2157 }
2158 case Type::VectorTyID: {
2159 // <4 x i8> is changed to i32.
David Neto22f144c2017-06-12 14:26:21 -04002160 if (Ty->getVectorElementType() == Type::getInt8Ty(Context)) {
2161 if (Ty->getVectorNumElements() == 4) {
2162 TypeMap[Ty] = lookupType(Ty->getVectorElementType());
2163 break;
2164 } else {
2165 Ty->print(errs());
2166 llvm_unreachable("Support above i8 vector type");
2167 }
2168 }
2169
2170 // Ops[0] = Component Type ID
2171 // Ops[1] = Component Count (Literal Number)
David Neto257c3892018-04-11 13:19:45 -04002172 SPIRVOperandList Ops;
2173 Ops << MkId(lookupType(Ty->getVectorElementType()))
2174 << MkNum(Ty->getVectorNumElements());
David Neto22f144c2017-06-12 14:26:21 -04002175
David Neto87846742018-04-11 17:36:22 -04002176 SPIRVInstruction* inst = new SPIRVInstruction(spv::OpTypeVector, nextID++, Ops);
David Netoc6f3ab22018-04-06 18:02:31 -04002177 SPIRVInstList.push_back(inst);
David Neto22f144c2017-06-12 14:26:21 -04002178 break;
2179 }
2180 case Type::VoidTyID: {
David Neto87846742018-04-11 17:36:22 -04002181 auto *Inst = new SPIRVInstruction(spv::OpTypeVoid, nextID++, {});
David Neto22f144c2017-06-12 14:26:21 -04002182 SPIRVInstList.push_back(Inst);
2183 break;
2184 }
2185 case Type::FunctionTyID: {
2186 // Generate SPIRV instruction for function type.
2187 FunctionType *FTy = cast<FunctionType>(Ty);
2188
2189 // Ops[0] = Return Type ID
2190 // Ops[1] ... Ops[n] = Parameter Type IDs
2191 SPIRVOperandList Ops;
2192
2193 // Find SPIRV instruction for return type
David Netoc6f3ab22018-04-06 18:02:31 -04002194 Ops << MkId(lookupType(FTy->getReturnType()));
David Neto22f144c2017-06-12 14:26:21 -04002195
2196 // Find SPIRV instructions for parameter types
2197 for (unsigned k = 0; k < FTy->getNumParams(); k++) {
2198 // Find SPIRV instruction for parameter type.
2199 auto ParamTy = FTy->getParamType(k);
2200 if (ParamTy->isPointerTy()) {
2201 auto PointeeTy = ParamTy->getPointerElementType();
2202 if (PointeeTy->isStructTy() &&
2203 dyn_cast<StructType>(PointeeTy)->isOpaque()) {
2204 ParamTy = PointeeTy;
2205 }
2206 }
2207
David Netoc6f3ab22018-04-06 18:02:31 -04002208 Ops << MkId(lookupType(ParamTy));
David Neto22f144c2017-06-12 14:26:21 -04002209 }
2210
David Neto87846742018-04-11 17:36:22 -04002211 auto *Inst = new SPIRVInstruction(spv::OpTypeFunction, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002212 SPIRVInstList.push_back(Inst);
2213 break;
2214 }
2215 }
2216 }
2217
2218 // Generate OpTypeSampledImage.
2219 TypeMapType &OpImageTypeMap = getImageTypeMap();
2220 for (auto &ImageType : OpImageTypeMap) {
2221 //
2222 // Generate OpTypeSampledImage.
2223 //
2224 // Ops[0] = Image Type ID
2225 //
2226 SPIRVOperandList Ops;
2227
2228 Type *ImgTy = ImageType.first;
David Netoc6f3ab22018-04-06 18:02:31 -04002229 Ops << MkId(TypeMap[ImgTy]);
David Neto22f144c2017-06-12 14:26:21 -04002230
2231 // Update OpImageTypeMap.
2232 ImageType.second = nextID;
2233
David Neto87846742018-04-11 17:36:22 -04002234 auto *Inst = new SPIRVInstruction(spv::OpTypeSampledImage, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002235 SPIRVInstList.push_back(Inst);
2236 }
David Netoc6f3ab22018-04-06 18:02:31 -04002237
2238 // Generate types for pointer-to-local arguments.
Alan Baker202c8c72018-08-13 13:47:44 -04002239 for (auto spec_id = clspv::FirstLocalSpecId(); spec_id < max_local_spec_id_;
2240 ++spec_id) {
2241 LocalArgInfo& arg_info = LocalSpecIdInfoMap[spec_id];
David Netoc6f3ab22018-04-06 18:02:31 -04002242
2243 // Generate the spec constant.
2244 SPIRVOperandList Ops;
2245 Ops << MkId(lookupType(Type::getInt32Ty(Context))) << MkNum(1);
David Neto87846742018-04-11 17:36:22 -04002246 SPIRVInstList.push_back(
2247 new SPIRVInstruction(spv::OpSpecConstant, arg_info.array_size_id, Ops));
David Netoc6f3ab22018-04-06 18:02:31 -04002248
2249 // Generate the array type.
2250 Ops.clear();
2251 // The element type must have been created.
2252 uint32_t elem_ty_id = lookupType(arg_info.elem_type);
2253 assert(elem_ty_id);
2254 Ops << MkId(elem_ty_id) << MkId(arg_info.array_size_id);
2255
2256 SPIRVInstList.push_back(
David Neto87846742018-04-11 17:36:22 -04002257 new SPIRVInstruction(spv::OpTypeArray, arg_info.array_type_id, Ops));
David Netoc6f3ab22018-04-06 18:02:31 -04002258
2259 Ops.clear();
2260 Ops << MkNum(spv::StorageClassWorkgroup) << MkId(arg_info.array_type_id);
David Neto87846742018-04-11 17:36:22 -04002261 SPIRVInstList.push_back(new SPIRVInstruction(
2262 spv::OpTypePointer, arg_info.ptr_array_type_id, Ops));
David Netoc6f3ab22018-04-06 18:02:31 -04002263 }
David Neto22f144c2017-06-12 14:26:21 -04002264}
2265
2266void SPIRVProducerPass::GenerateSPIRVConstants() {
2267 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
2268 ValueMapType &VMap = getValueMap();
2269 ValueMapType &AllocatedVMap = getAllocatedValueMap();
2270 ValueList &CstList = getConstantList();
David Neto482550a2018-03-24 05:21:07 -07002271 const bool hack_undef = clspv::Option::HackUndef();
David Neto22f144c2017-06-12 14:26:21 -04002272
2273 for (uint32_t i = 0; i < CstList.size(); i++) {
David Netofb9a7972017-08-25 17:08:24 -04002274 // UniqueVector ids are 1-based.
2275 Constant *Cst = cast<Constant>(CstList[i+1]);
David Neto22f144c2017-06-12 14:26:21 -04002276
2277 // OpTypeArray's constant was already generated.
David Netofb9a7972017-08-25 17:08:24 -04002278 if (AllocatedVMap.find_as(Cst) != AllocatedVMap.end()) {
David Neto22f144c2017-06-12 14:26:21 -04002279 continue;
2280 }
2281
David Netofb9a7972017-08-25 17:08:24 -04002282 // Set ValueMap with nextID for reference later.
David Neto22f144c2017-06-12 14:26:21 -04002283 VMap[Cst] = nextID;
2284
2285 //
2286 // Generate OpConstant.
2287 //
2288
2289 // Ops[0] = Result Type ID
2290 // Ops[1] .. Ops[n] = Values LiteralNumber
2291 SPIRVOperandList Ops;
2292
David Neto257c3892018-04-11 13:19:45 -04002293 Ops << MkId(lookupType(Cst->getType()));
David Neto22f144c2017-06-12 14:26:21 -04002294
2295 std::vector<uint32_t> LiteralNum;
David Neto22f144c2017-06-12 14:26:21 -04002296 spv::Op Opcode = spv::OpNop;
2297
2298 if (isa<UndefValue>(Cst)) {
2299 // Ops[0] = Result Type ID
David Netoc66b3352017-10-20 14:28:46 -04002300 Opcode = spv::OpUndef;
Alan Baker9bf93fb2018-08-28 16:59:26 -04002301 if (hack_undef && IsTypeNullable(Cst->getType())) {
2302 Opcode = spv::OpConstantNull;
David Netoc66b3352017-10-20 14:28:46 -04002303 }
David Neto22f144c2017-06-12 14:26:21 -04002304 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(Cst)) {
2305 unsigned BitWidth = CI->getBitWidth();
2306 if (BitWidth == 1) {
2307 // If the bitwidth of constant is 1, generate OpConstantTrue or
2308 // OpConstantFalse.
2309 if (CI->getZExtValue()) {
2310 // Ops[0] = Result Type ID
2311 Opcode = spv::OpConstantTrue;
2312 } else {
2313 // Ops[0] = Result Type ID
2314 Opcode = spv::OpConstantFalse;
2315 }
David Neto22f144c2017-06-12 14:26:21 -04002316 } else {
2317 auto V = CI->getZExtValue();
2318 LiteralNum.push_back(V & 0xFFFFFFFF);
2319
2320 if (BitWidth > 32) {
2321 LiteralNum.push_back(V >> 32);
2322 }
2323
2324 Opcode = spv::OpConstant;
David Neto22f144c2017-06-12 14:26:21 -04002325
David Neto257c3892018-04-11 13:19:45 -04002326 Ops << MkInteger(LiteralNum);
2327
2328 if (BitWidth == 32 && V == 0) {
2329 constant_i32_zero_id_ = nextID;
2330 }
David Neto22f144c2017-06-12 14:26:21 -04002331 }
2332 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Cst)) {
2333 uint64_t FPVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
2334 Type *CFPTy = CFP->getType();
2335 if (CFPTy->isFloatTy()) {
2336 LiteralNum.push_back(FPVal & 0xFFFFFFFF);
2337 } else {
2338 CFPTy->print(errs());
2339 llvm_unreachable("Implement this ConstantFP Type");
2340 }
2341
2342 Opcode = spv::OpConstant;
David Neto22f144c2017-06-12 14:26:21 -04002343
David Neto257c3892018-04-11 13:19:45 -04002344 Ops << MkFloat(LiteralNum);
David Neto22f144c2017-06-12 14:26:21 -04002345 } else if (isa<ConstantDataSequential>(Cst) &&
2346 cast<ConstantDataSequential>(Cst)->isString()) {
2347 Cst->print(errs());
2348 llvm_unreachable("Implement this Constant");
2349
2350 } else if (const ConstantDataSequential *CDS =
2351 dyn_cast<ConstantDataSequential>(Cst)) {
David Neto49351ac2017-08-26 17:32:20 -04002352 // Let's convert <4 x i8> constant to int constant specially.
2353 // This case occurs when all the values are specified as constant
2354 // ints.
2355 Type *CstTy = Cst->getType();
2356 if (is4xi8vec(CstTy)) {
2357 LLVMContext &Context = CstTy->getContext();
2358
2359 //
2360 // Generate OpConstant with OpTypeInt 32 0.
2361 //
Neil Henning39672102017-09-29 14:33:13 +01002362 uint32_t IntValue = 0;
2363 for (unsigned k = 0; k < 4; k++) {
2364 const uint64_t Val = CDS->getElementAsInteger(k);
David Neto49351ac2017-08-26 17:32:20 -04002365 IntValue = (IntValue << 8) | (Val & 0xffu);
2366 }
2367
2368 Type *i32 = Type::getInt32Ty(Context);
2369 Constant *CstInt = ConstantInt::get(i32, IntValue);
2370 // If this constant is already registered on VMap, use it.
2371 if (VMap.count(CstInt)) {
2372 uint32_t CstID = VMap[CstInt];
2373 VMap[Cst] = CstID;
2374 continue;
2375 }
2376
David Neto257c3892018-04-11 13:19:45 -04002377 Ops << MkNum(IntValue);
David Neto49351ac2017-08-26 17:32:20 -04002378
David Neto87846742018-04-11 17:36:22 -04002379 auto *CstInst = new SPIRVInstruction(spv::OpConstant, nextID++, Ops);
David Neto49351ac2017-08-26 17:32:20 -04002380 SPIRVInstList.push_back(CstInst);
2381
2382 continue;
2383 }
2384
2385 // A normal constant-data-sequential case.
David Neto22f144c2017-06-12 14:26:21 -04002386 for (unsigned k = 0; k < CDS->getNumElements(); k++) {
2387 Constant *EleCst = CDS->getElementAsConstant(k);
2388 uint32_t EleCstID = VMap[EleCst];
David Neto257c3892018-04-11 13:19:45 -04002389 Ops << MkId(EleCstID);
David Neto22f144c2017-06-12 14:26:21 -04002390 }
2391
2392 Opcode = spv::OpConstantComposite;
David Neto22f144c2017-06-12 14:26:21 -04002393 } else if (const ConstantAggregate *CA = dyn_cast<ConstantAggregate>(Cst)) {
2394 // Let's convert <4 x i8> constant to int constant specially.
David Neto49351ac2017-08-26 17:32:20 -04002395 // This case occurs when at least one of the values is an undef.
David Neto22f144c2017-06-12 14:26:21 -04002396 Type *CstTy = Cst->getType();
2397 if (is4xi8vec(CstTy)) {
2398 LLVMContext &Context = CstTy->getContext();
2399
2400 //
2401 // Generate OpConstant with OpTypeInt 32 0.
2402 //
Neil Henning39672102017-09-29 14:33:13 +01002403 uint32_t IntValue = 0;
David Neto22f144c2017-06-12 14:26:21 -04002404 for (User::const_op_iterator I = Cst->op_begin(), E = Cst->op_end();
2405 I != E; ++I) {
2406 uint64_t Val = 0;
David Neto49351ac2017-08-26 17:32:20 -04002407 const Value* CV = *I;
Neil Henning39672102017-09-29 14:33:13 +01002408 if (auto *CI2 = dyn_cast<ConstantInt>(CV)) {
2409 Val = CI2->getZExtValue();
David Neto22f144c2017-06-12 14:26:21 -04002410 }
David Neto49351ac2017-08-26 17:32:20 -04002411 IntValue = (IntValue << 8) | (Val & 0xffu);
David Neto22f144c2017-06-12 14:26:21 -04002412 }
2413
David Neto49351ac2017-08-26 17:32:20 -04002414 Type *i32 = Type::getInt32Ty(Context);
2415 Constant *CstInt = ConstantInt::get(i32, IntValue);
David Neto22f144c2017-06-12 14:26:21 -04002416 // If this constant is already registered on VMap, use it.
2417 if (VMap.count(CstInt)) {
2418 uint32_t CstID = VMap[CstInt];
2419 VMap[Cst] = CstID;
David Neto19a1bad2017-08-25 15:01:41 -04002420 continue;
David Neto22f144c2017-06-12 14:26:21 -04002421 }
2422
David Neto257c3892018-04-11 13:19:45 -04002423 Ops << MkNum(IntValue);
David Neto22f144c2017-06-12 14:26:21 -04002424
David Neto87846742018-04-11 17:36:22 -04002425 auto *CstInst = new SPIRVInstruction(spv::OpConstant, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002426 SPIRVInstList.push_back(CstInst);
2427
David Neto19a1bad2017-08-25 15:01:41 -04002428 continue;
David Neto22f144c2017-06-12 14:26:21 -04002429 }
2430
2431 // We use a constant composite in SPIR-V for our constant aggregate in
2432 // LLVM.
2433 Opcode = spv::OpConstantComposite;
David Neto22f144c2017-06-12 14:26:21 -04002434
2435 for (unsigned k = 0; k < CA->getNumOperands(); k++) {
2436 // Look up the ID of the element of this aggregate (which we will
2437 // previously have created a constant for).
2438 uint32_t ElementConstantID = VMap[CA->getAggregateElement(k)];
2439
2440 // And add an operand to the composite we are constructing
David Neto257c3892018-04-11 13:19:45 -04002441 Ops << MkId(ElementConstantID);
David Neto22f144c2017-06-12 14:26:21 -04002442 }
2443 } else if (Cst->isNullValue()) {
2444 Opcode = spv::OpConstantNull;
David Neto22f144c2017-06-12 14:26:21 -04002445 } else {
2446 Cst->print(errs());
2447 llvm_unreachable("Unsupported Constant???");
2448 }
2449
David Neto87846742018-04-11 17:36:22 -04002450 auto *CstInst = new SPIRVInstruction(Opcode, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002451 SPIRVInstList.push_back(CstInst);
2452 }
2453}
2454
2455void SPIRVProducerPass::GenerateSamplers(Module &M) {
2456 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
David Neto22f144c2017-06-12 14:26:21 -04002457
David Neto862b7d82018-06-14 18:48:37 -04002458 auto& sampler_map = getSamplerMap();
2459 SamplerMapIndexToIDMap.clear();
David Neto22f144c2017-06-12 14:26:21 -04002460 DenseMap<unsigned, unsigned> SamplerLiteralToIDMap;
David Neto862b7d82018-06-14 18:48:37 -04002461 DenseMap<unsigned, unsigned> SamplerLiteralToDescriptorSetMap;
2462 DenseMap<unsigned, unsigned> SamplerLiteralToBindingMap;
David Neto22f144c2017-06-12 14:26:21 -04002463
David Neto862b7d82018-06-14 18:48:37 -04002464 // We might have samplers in the sampler map that are not used
2465 // in the translation unit. We need to allocate variables
2466 // for them and bindings too.
2467 DenseSet<unsigned> used_bindings;
David Neto22f144c2017-06-12 14:26:21 -04002468
David Neto862b7d82018-06-14 18:48:37 -04002469 auto* var_fn = M.getFunction("clspv.sampler.var.literal");
2470 if (!var_fn) return;
2471 for (auto user : var_fn->users()) {
2472 // Populate SamplerLiteralToDescriptorSetMap and
2473 // SamplerLiteralToBindingMap.
2474 //
2475 // Look for calls like
2476 // call %opencl.sampler_t addrspace(2)*
2477 // @clspv.sampler.var.literal(
2478 // i32 descriptor,
2479 // i32 binding,
2480 // i32 index-into-sampler-map)
2481 if (auto* call = dyn_cast<CallInst>(user)) {
2482 const auto index_into_sampler_map =
2483 dyn_cast<ConstantInt>(call->getArgOperand(2))->getZExtValue();
2484 if (index_into_sampler_map >= sampler_map.size()) {
2485 errs() << "Out of bounds index to sampler map: " << index_into_sampler_map;
2486 llvm_unreachable("bad sampler init: out of bounds");
2487 }
2488
2489 auto sampler_value = sampler_map[index_into_sampler_map].first;
2490 const auto descriptor_set = static_cast<unsigned>(
2491 dyn_cast<ConstantInt>(call->getArgOperand(0))->getZExtValue());
2492 const auto binding = static_cast<unsigned>(
2493 dyn_cast<ConstantInt>(call->getArgOperand(1))->getZExtValue());
2494
2495 SamplerLiteralToDescriptorSetMap[sampler_value] = descriptor_set;
2496 SamplerLiteralToBindingMap[sampler_value] = binding;
2497 used_bindings.insert(binding);
2498 }
2499 }
2500
2501 unsigned index = 0;
2502 for (auto SamplerLiteral : sampler_map) {
David Neto22f144c2017-06-12 14:26:21 -04002503 // Generate OpVariable.
2504 //
2505 // GIDOps[0] : Result Type ID
2506 // GIDOps[1] : Storage Class
2507 SPIRVOperandList Ops;
2508
David Neto257c3892018-04-11 13:19:45 -04002509 Ops << MkId(lookupType(SamplerTy))
2510 << MkNum(spv::StorageClassUniformConstant);
David Neto22f144c2017-06-12 14:26:21 -04002511
David Neto862b7d82018-06-14 18:48:37 -04002512 auto sampler_var_id = nextID++;
2513 auto *Inst = new SPIRVInstruction(spv::OpVariable, sampler_var_id, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002514 SPIRVInstList.push_back(Inst);
2515
David Neto862b7d82018-06-14 18:48:37 -04002516 SamplerMapIndexToIDMap[index] = sampler_var_id;
2517 SamplerLiteralToIDMap[SamplerLiteral.first] = sampler_var_id;
David Neto22f144c2017-06-12 14:26:21 -04002518
2519 // Find Insert Point for OpDecorate.
2520 auto DecoInsertPoint =
2521 std::find_if(SPIRVInstList.begin(), SPIRVInstList.end(),
2522 [](SPIRVInstruction *Inst) -> bool {
2523 return Inst->getOpcode() != spv::OpDecorate &&
2524 Inst->getOpcode() != spv::OpMemberDecorate &&
2525 Inst->getOpcode() != spv::OpExtInstImport;
2526 });
2527
2528 // Ops[0] = Target ID
2529 // Ops[1] = Decoration (DescriptorSet)
2530 // Ops[2] = LiteralNumber according to Decoration
2531 Ops.clear();
2532
David Neto862b7d82018-06-14 18:48:37 -04002533 unsigned descriptor_set;
2534 unsigned binding;
2535 if(SamplerLiteralToBindingMap.find(SamplerLiteral.first) == SamplerLiteralToBindingMap.end()) {
2536 // This sampler is not actually used. Find the next one.
2537 for (binding = 0; used_bindings.count(binding); binding++)
2538 ;
2539 descriptor_set = 0; // Literal samplers always use descriptor set 0.
2540 used_bindings.insert(binding);
2541 } else {
2542 descriptor_set = SamplerLiteralToDescriptorSetMap[SamplerLiteral.first];
2543 binding = SamplerLiteralToBindingMap[SamplerLiteral.first];
2544 }
2545
2546 Ops << MkId(sampler_var_id) << MkNum(spv::DecorationDescriptorSet)
2547 << MkNum(descriptor_set);
David Neto22f144c2017-06-12 14:26:21 -04002548
David Neto44795152017-07-13 15:45:28 -04002549 descriptorMapOut << "sampler," << SamplerLiteral.first << ",samplerExpr,\""
David Neto257c3892018-04-11 13:19:45 -04002550 << SamplerLiteral.second << "\",descriptorSet,"
David Neto862b7d82018-06-14 18:48:37 -04002551 << descriptor_set << ",binding," << binding << "\n";
David Neto22f144c2017-06-12 14:26:21 -04002552
David Neto87846742018-04-11 17:36:22 -04002553 auto *DescDecoInst = new SPIRVInstruction(spv::OpDecorate, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002554 SPIRVInstList.insert(DecoInsertPoint, DescDecoInst);
2555
2556 // Ops[0] = Target ID
2557 // Ops[1] = Decoration (Binding)
2558 // Ops[2] = LiteralNumber according to Decoration
2559 Ops.clear();
David Neto862b7d82018-06-14 18:48:37 -04002560 Ops << MkId(sampler_var_id) << MkNum(spv::DecorationBinding)
2561 << MkNum(binding);
David Neto22f144c2017-06-12 14:26:21 -04002562
David Neto87846742018-04-11 17:36:22 -04002563 auto *BindDecoInst = new SPIRVInstruction(spv::OpDecorate, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002564 SPIRVInstList.insert(DecoInsertPoint, BindDecoInst);
David Neto862b7d82018-06-14 18:48:37 -04002565
2566 index++;
David Neto22f144c2017-06-12 14:26:21 -04002567 }
David Neto862b7d82018-06-14 18:48:37 -04002568}
David Neto22f144c2017-06-12 14:26:21 -04002569
Radek Szymanskibe4b0c42018-10-04 22:20:53 +01002570void SPIRVProducerPass::GenerateResourceVars(Module &) {
David Neto862b7d82018-06-14 18:48:37 -04002571 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
2572 ValueMapType &VMap = getValueMap();
David Neto22f144c2017-06-12 14:26:21 -04002573
David Neto862b7d82018-06-14 18:48:37 -04002574 // Generate variables. Make one for each of resource var info object.
2575 for (auto *info : ModuleOrderedResourceVars) {
2576 Type *type = info->var_fn->getReturnType();
2577 // Remap the address space for opaque types.
2578 switch (info->arg_kind) {
2579 case clspv::ArgKind::Sampler:
2580 case clspv::ArgKind::ReadOnlyImage:
2581 case clspv::ArgKind::WriteOnlyImage:
2582 type = PointerType::get(type->getPointerElementType(),
2583 clspv::AddressSpace::UniformConstant);
2584 break;
2585 default:
2586 break;
2587 }
David Neto22f144c2017-06-12 14:26:21 -04002588
David Neto862b7d82018-06-14 18:48:37 -04002589 info->var_id = nextID++;
David Neto22f144c2017-06-12 14:26:21 -04002590
David Neto862b7d82018-06-14 18:48:37 -04002591 const auto type_id = lookupType(type);
2592 const auto sc = GetStorageClassForArgKind(info->arg_kind);
2593 SPIRVOperandList Ops;
2594 Ops << MkId(type_id) << MkNum(sc);
David Neto22f144c2017-06-12 14:26:21 -04002595
David Neto862b7d82018-06-14 18:48:37 -04002596 auto *Inst = new SPIRVInstruction(spv::OpVariable, info->var_id, Ops);
2597 SPIRVInstList.push_back(Inst);
2598
2599 // Map calls to the variable-builtin-function.
2600 for (auto &U : info->var_fn->uses()) {
2601 if (auto *call = dyn_cast<CallInst>(U.getUser())) {
2602 const auto set = unsigned(
2603 dyn_cast<ConstantInt>(call->getOperand(0))->getZExtValue());
2604 const auto binding = unsigned(
2605 dyn_cast<ConstantInt>(call->getOperand(1))->getZExtValue());
2606 if (set == info->descriptor_set && binding == info->binding) {
2607 switch (info->arg_kind) {
2608 case clspv::ArgKind::Buffer:
Alan Bakerfcda9482018-10-02 17:09:59 -04002609 case clspv::ArgKind::BufferUBO:
David Neto862b7d82018-06-14 18:48:37 -04002610 case clspv::ArgKind::Pod:
2611 // The call maps to the variable directly.
2612 VMap[call] = info->var_id;
2613 break;
2614 case clspv::ArgKind::Sampler:
2615 case clspv::ArgKind::ReadOnlyImage:
2616 case clspv::ArgKind::WriteOnlyImage:
2617 // The call maps to a load we generate later.
2618 ResourceVarDeferredLoadCalls[call] = info->var_id;
2619 break;
2620 default:
2621 llvm_unreachable("Unhandled arg kind");
2622 }
2623 }
David Neto22f144c2017-06-12 14:26:21 -04002624 }
David Neto862b7d82018-06-14 18:48:37 -04002625 }
2626 }
David Neto22f144c2017-06-12 14:26:21 -04002627
David Neto862b7d82018-06-14 18:48:37 -04002628 // Generate associated decorations.
David Neto22f144c2017-06-12 14:26:21 -04002629
David Neto862b7d82018-06-14 18:48:37 -04002630 // Find Insert Point for OpDecorate.
2631 auto DecoInsertPoint =
2632 std::find_if(SPIRVInstList.begin(), SPIRVInstList.end(),
2633 [](SPIRVInstruction *Inst) -> bool {
2634 return Inst->getOpcode() != spv::OpDecorate &&
2635 Inst->getOpcode() != spv::OpMemberDecorate &&
2636 Inst->getOpcode() != spv::OpExtInstImport;
2637 });
2638
2639 SPIRVOperandList Ops;
2640 for (auto *info : ModuleOrderedResourceVars) {
2641 // Decorate with DescriptorSet and Binding.
2642 Ops.clear();
2643 Ops << MkId(info->var_id) << MkNum(spv::DecorationDescriptorSet)
2644 << MkNum(info->descriptor_set);
2645 SPIRVInstList.insert(DecoInsertPoint,
2646 new SPIRVInstruction(spv::OpDecorate, Ops));
2647
2648 Ops.clear();
2649 Ops << MkId(info->var_id) << MkNum(spv::DecorationBinding)
2650 << MkNum(info->binding);
2651 SPIRVInstList.insert(DecoInsertPoint,
2652 new SPIRVInstruction(spv::OpDecorate, Ops));
2653
2654 // Generate NonWritable and NonReadable
2655 switch (info->arg_kind) {
2656 case clspv::ArgKind::Buffer:
Alan Bakerfcda9482018-10-02 17:09:59 -04002657 case clspv::ArgKind::BufferUBO:
David Neto862b7d82018-06-14 18:48:37 -04002658 if (info->var_fn->getReturnType()->getPointerAddressSpace() ==
2659 clspv::AddressSpace::Constant) {
2660 Ops.clear();
2661 Ops << MkId(info->var_id) << MkNum(spv::DecorationNonWritable);
2662 SPIRVInstList.insert(DecoInsertPoint,
2663 new SPIRVInstruction(spv::OpDecorate, Ops));
David Neto22f144c2017-06-12 14:26:21 -04002664 }
David Neto862b7d82018-06-14 18:48:37 -04002665 break;
2666 case clspv::ArgKind::ReadOnlyImage:
2667 Ops.clear();
2668 Ops << MkId(info->var_id) << MkNum(spv::DecorationNonWritable);
2669 SPIRVInstList.insert(DecoInsertPoint,
2670 new SPIRVInstruction(spv::OpDecorate, Ops));
2671 break;
2672 case clspv::ArgKind::WriteOnlyImage:
2673 Ops.clear();
2674 Ops << MkId(info->var_id) << MkNum(spv::DecorationNonReadable);
2675 SPIRVInstList.insert(DecoInsertPoint,
2676 new SPIRVInstruction(spv::OpDecorate, Ops));
2677 break;
2678 default:
2679 break;
David Neto22f144c2017-06-12 14:26:21 -04002680 }
2681 }
2682}
2683
2684void SPIRVProducerPass::GenerateGlobalVar(GlobalVariable &GV) {
David Neto78383442018-06-15 20:31:56 -04002685 Module& M = *GV.getParent();
David Neto22f144c2017-06-12 14:26:21 -04002686 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
2687 ValueMapType &VMap = getValueMap();
2688 std::vector<uint32_t> &BuiltinDimVec = getBuiltinDimVec();
David Neto85082642018-03-24 06:55:20 -07002689 const DataLayout &DL = GV.getParent()->getDataLayout();
David Neto22f144c2017-06-12 14:26:21 -04002690
2691 const spv::BuiltIn BuiltinType = GetBuiltin(GV.getName());
2692 Type *Ty = GV.getType();
2693 PointerType *PTy = cast<PointerType>(Ty);
2694
2695 uint32_t InitializerID = 0;
2696
2697 // Workgroup size is handled differently (it goes into a constant)
2698 if (spv::BuiltInWorkgroupSize == BuiltinType) {
2699 std::vector<bool> HasMDVec;
2700 uint32_t PrevXDimCst = 0xFFFFFFFF;
2701 uint32_t PrevYDimCst = 0xFFFFFFFF;
2702 uint32_t PrevZDimCst = 0xFFFFFFFF;
2703 for (Function &Func : *GV.getParent()) {
2704 if (Func.isDeclaration()) {
2705 continue;
2706 }
2707
2708 // We only need to check kernels.
2709 if (Func.getCallingConv() != CallingConv::SPIR_KERNEL) {
2710 continue;
2711 }
2712
2713 if (const MDNode *MD =
2714 dyn_cast<Function>(&Func)->getMetadata("reqd_work_group_size")) {
2715 uint32_t CurXDimCst = static_cast<uint32_t>(
2716 mdconst::extract<ConstantInt>(MD->getOperand(0))->getZExtValue());
2717 uint32_t CurYDimCst = static_cast<uint32_t>(
2718 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue());
2719 uint32_t CurZDimCst = static_cast<uint32_t>(
2720 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue());
2721
2722 if (PrevXDimCst == 0xFFFFFFFF && PrevYDimCst == 0xFFFFFFFF &&
2723 PrevZDimCst == 0xFFFFFFFF) {
2724 PrevXDimCst = CurXDimCst;
2725 PrevYDimCst = CurYDimCst;
2726 PrevZDimCst = CurZDimCst;
2727 } else if (CurXDimCst != PrevXDimCst || CurYDimCst != PrevYDimCst ||
2728 CurZDimCst != PrevZDimCst) {
2729 llvm_unreachable(
2730 "reqd_work_group_size must be the same across all kernels");
2731 } else {
2732 continue;
2733 }
2734
2735 //
2736 // Generate OpConstantComposite.
2737 //
2738 // Ops[0] : Result Type ID
2739 // Ops[1] : Constant size for x dimension.
2740 // Ops[2] : Constant size for y dimension.
2741 // Ops[3] : Constant size for z dimension.
2742 SPIRVOperandList Ops;
2743
2744 uint32_t XDimCstID =
2745 VMap[mdconst::extract<ConstantInt>(MD->getOperand(0))];
2746 uint32_t YDimCstID =
2747 VMap[mdconst::extract<ConstantInt>(MD->getOperand(1))];
2748 uint32_t ZDimCstID =
2749 VMap[mdconst::extract<ConstantInt>(MD->getOperand(2))];
2750
2751 InitializerID = nextID;
2752
David Neto257c3892018-04-11 13:19:45 -04002753 Ops << MkId(lookupType(Ty->getPointerElementType())) << MkId(XDimCstID)
2754 << MkId(YDimCstID) << MkId(ZDimCstID);
David Neto22f144c2017-06-12 14:26:21 -04002755
David Neto87846742018-04-11 17:36:22 -04002756 auto *Inst =
2757 new SPIRVInstruction(spv::OpConstantComposite, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002758 SPIRVInstList.push_back(Inst);
2759
2760 HasMDVec.push_back(true);
2761 } else {
2762 HasMDVec.push_back(false);
2763 }
2764 }
2765
2766 // Check all kernels have same definitions for work_group_size.
2767 bool HasMD = false;
2768 if (!HasMDVec.empty()) {
2769 HasMD = HasMDVec[0];
2770 for (uint32_t i = 1; i < HasMDVec.size(); i++) {
2771 if (HasMD != HasMDVec[i]) {
2772 llvm_unreachable(
2773 "Kernels should have consistent work group size definition");
2774 }
2775 }
2776 }
2777
2778 // If all kernels do not have metadata for reqd_work_group_size, generate
2779 // OpSpecConstants for x/y/z dimension.
2780 if (!HasMD) {
2781 //
2782 // Generate OpSpecConstants for x/y/z dimension.
2783 //
2784 // Ops[0] : Result Type ID
2785 // Ops[1] : Constant size for x/y/z dimension (Literal Number).
2786 uint32_t XDimCstID = 0;
2787 uint32_t YDimCstID = 0;
2788 uint32_t ZDimCstID = 0;
2789
David Neto22f144c2017-06-12 14:26:21 -04002790 SPIRVOperandList Ops;
David Neto257c3892018-04-11 13:19:45 -04002791 uint32_t result_type_id =
2792 lookupType(Ty->getPointerElementType()->getSequentialElementType());
David Neto22f144c2017-06-12 14:26:21 -04002793
David Neto257c3892018-04-11 13:19:45 -04002794 // X Dimension
2795 Ops << MkId(result_type_id) << MkNum(1);
2796 XDimCstID = nextID++;
2797 SPIRVInstList.push_back(
David Neto87846742018-04-11 17:36:22 -04002798 new SPIRVInstruction(spv::OpSpecConstant, XDimCstID, Ops));
David Neto22f144c2017-06-12 14:26:21 -04002799
2800 // Y Dimension
2801 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04002802 Ops << MkId(result_type_id) << MkNum(1);
2803 YDimCstID = nextID++;
2804 SPIRVInstList.push_back(
David Neto87846742018-04-11 17:36:22 -04002805 new SPIRVInstruction(spv::OpSpecConstant, YDimCstID, Ops));
David Neto22f144c2017-06-12 14:26:21 -04002806
2807 // Z Dimension
2808 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04002809 Ops << MkId(result_type_id) << MkNum(1);
2810 ZDimCstID = nextID++;
2811 SPIRVInstList.push_back(
David Neto87846742018-04-11 17:36:22 -04002812 new SPIRVInstruction(spv::OpSpecConstant, ZDimCstID, Ops));
David Neto22f144c2017-06-12 14:26:21 -04002813
David Neto22f144c2017-06-12 14:26:21 -04002814
David Neto257c3892018-04-11 13:19:45 -04002815 BuiltinDimVec.push_back(XDimCstID);
2816 BuiltinDimVec.push_back(YDimCstID);
David Neto22f144c2017-06-12 14:26:21 -04002817 BuiltinDimVec.push_back(ZDimCstID);
2818
David Neto22f144c2017-06-12 14:26:21 -04002819
2820 //
2821 // Generate OpSpecConstantComposite.
2822 //
2823 // Ops[0] : Result Type ID
2824 // Ops[1] : Constant size for x dimension.
2825 // Ops[2] : Constant size for y dimension.
2826 // Ops[3] : Constant size for z dimension.
2827 InitializerID = nextID;
2828
2829 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04002830 Ops << MkId(lookupType(Ty->getPointerElementType())) << MkId(XDimCstID)
2831 << MkId(YDimCstID) << MkId(ZDimCstID);
David Neto22f144c2017-06-12 14:26:21 -04002832
David Neto87846742018-04-11 17:36:22 -04002833 auto *Inst =
2834 new SPIRVInstruction(spv::OpSpecConstantComposite, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002835 SPIRVInstList.push_back(Inst);
2836 }
2837 }
2838
David Neto22f144c2017-06-12 14:26:21 -04002839 VMap[&GV] = nextID;
2840
2841 //
2842 // Generate OpVariable.
2843 //
2844 // GIDOps[0] : Result Type ID
2845 // GIDOps[1] : Storage Class
2846 SPIRVOperandList Ops;
2847
David Neto85082642018-03-24 06:55:20 -07002848 const auto AS = PTy->getAddressSpace();
David Netoc6f3ab22018-04-06 18:02:31 -04002849 Ops << MkId(lookupType(Ty)) << MkNum(GetStorageClass(AS));
David Neto22f144c2017-06-12 14:26:21 -04002850
David Neto85082642018-03-24 06:55:20 -07002851 if (GV.hasInitializer()) {
2852 InitializerID = VMap[GV.getInitializer()];
David Neto22f144c2017-06-12 14:26:21 -04002853 }
2854
David Neto85082642018-03-24 06:55:20 -07002855 const bool module_scope_constant_external_init =
David Neto862b7d82018-06-14 18:48:37 -04002856 (AS == AddressSpace::Constant) && GV.hasInitializer() &&
David Neto85082642018-03-24 06:55:20 -07002857 clspv::Option::ModuleConstantsInStorageBuffer();
2858
2859 if (0 != InitializerID) {
2860 if (!module_scope_constant_external_init) {
2861 // Emit the ID of the intiializer as part of the variable definition.
David Netoc6f3ab22018-04-06 18:02:31 -04002862 Ops << MkId(InitializerID);
David Neto85082642018-03-24 06:55:20 -07002863 }
2864 }
2865 const uint32_t var_id = nextID++;
2866
David Neto87846742018-04-11 17:36:22 -04002867 auto *Inst = new SPIRVInstruction(spv::OpVariable, var_id, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002868 SPIRVInstList.push_back(Inst);
2869
2870 // If we have a builtin.
2871 if (spv::BuiltInMax != BuiltinType) {
2872 // Find Insert Point for OpDecorate.
2873 auto DecoInsertPoint =
2874 std::find_if(SPIRVInstList.begin(), SPIRVInstList.end(),
2875 [](SPIRVInstruction *Inst) -> bool {
2876 return Inst->getOpcode() != spv::OpDecorate &&
2877 Inst->getOpcode() != spv::OpMemberDecorate &&
2878 Inst->getOpcode() != spv::OpExtInstImport;
2879 });
2880 //
2881 // Generate OpDecorate.
2882 //
2883 // DOps[0] = Target ID
2884 // DOps[1] = Decoration (Builtin)
2885 // DOps[2] = BuiltIn ID
2886 uint32_t ResultID;
2887
2888 // WorkgroupSize is different, we decorate the constant composite that has
2889 // its value, rather than the variable that we use to access the value.
2890 if (spv::BuiltInWorkgroupSize == BuiltinType) {
2891 ResultID = InitializerID;
David Netoa60b00b2017-09-15 16:34:09 -04002892 // Save both the value and variable IDs for later.
2893 WorkgroupSizeValueID = InitializerID;
2894 WorkgroupSizeVarID = VMap[&GV];
David Neto22f144c2017-06-12 14:26:21 -04002895 } else {
2896 ResultID = VMap[&GV];
2897 }
2898
2899 SPIRVOperandList DOps;
David Neto257c3892018-04-11 13:19:45 -04002900 DOps << MkId(ResultID) << MkNum(spv::DecorationBuiltIn)
2901 << MkNum(BuiltinType);
David Neto22f144c2017-06-12 14:26:21 -04002902
David Neto87846742018-04-11 17:36:22 -04002903 auto *DescDecoInst = new SPIRVInstruction(spv::OpDecorate, DOps);
David Neto22f144c2017-06-12 14:26:21 -04002904 SPIRVInstList.insert(DecoInsertPoint, DescDecoInst);
David Neto85082642018-03-24 06:55:20 -07002905 } else if (module_scope_constant_external_init) {
2906 // This module scope constant is initialized from a storage buffer with data
2907 // provided by the host at binding 0 of the next descriptor set.
David Neto78383442018-06-15 20:31:56 -04002908 const uint32_t descriptor_set = TakeDescriptorIndex(&M);
David Neto85082642018-03-24 06:55:20 -07002909
David Neto862b7d82018-06-14 18:48:37 -04002910 // Emit the intializer to the descriptor map file.
David Neto85082642018-03-24 06:55:20 -07002911 // Use "kind,buffer" to indicate storage buffer. We might want to expand
2912 // that later to other types, like uniform buffer.
2913 descriptorMapOut << "constant,descriptorSet," << descriptor_set
2914 << ",binding,0,kind,buffer,hexbytes,";
2915 clspv::ConstantEmitter(DL, descriptorMapOut).Emit(GV.getInitializer());
2916 descriptorMapOut << "\n";
2917
2918 // Find Insert Point for OpDecorate.
2919 auto DecoInsertPoint =
2920 std::find_if(SPIRVInstList.begin(), SPIRVInstList.end(),
2921 [](SPIRVInstruction *Inst) -> bool {
2922 return Inst->getOpcode() != spv::OpDecorate &&
2923 Inst->getOpcode() != spv::OpMemberDecorate &&
2924 Inst->getOpcode() != spv::OpExtInstImport;
2925 });
2926
David Neto257c3892018-04-11 13:19:45 -04002927 // OpDecorate %var Binding <binding>
David Neto85082642018-03-24 06:55:20 -07002928 SPIRVOperandList DOps;
David Neto257c3892018-04-11 13:19:45 -04002929 DOps << MkId(var_id) << MkNum(spv::DecorationBinding) << MkNum(0);
2930 DecoInsertPoint = SPIRVInstList.insert(
David Neto87846742018-04-11 17:36:22 -04002931 DecoInsertPoint, new SPIRVInstruction(spv::OpDecorate, DOps));
David Neto85082642018-03-24 06:55:20 -07002932
2933 // OpDecorate %var DescriptorSet <descriptor_set>
2934 DOps.clear();
David Neto257c3892018-04-11 13:19:45 -04002935 DOps << MkId(var_id) << MkNum(spv::DecorationDescriptorSet)
2936 << MkNum(descriptor_set);
David Netoc6f3ab22018-04-06 18:02:31 -04002937 SPIRVInstList.insert(DecoInsertPoint,
David Neto87846742018-04-11 17:36:22 -04002938 new SPIRVInstruction(spv::OpDecorate, DOps));
David Neto22f144c2017-06-12 14:26:21 -04002939 }
2940}
2941
David Netoc6f3ab22018-04-06 18:02:31 -04002942void SPIRVProducerPass::GenerateWorkgroupVars() {
2943 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
Alan Baker202c8c72018-08-13 13:47:44 -04002944 for (auto spec_id = clspv::FirstLocalSpecId(); spec_id < max_local_spec_id_;
2945 ++spec_id) {
2946 LocalArgInfo& info = LocalSpecIdInfoMap[spec_id];
David Netoc6f3ab22018-04-06 18:02:31 -04002947
2948 // Generate OpVariable.
2949 //
2950 // GIDOps[0] : Result Type ID
2951 // GIDOps[1] : Storage Class
2952 SPIRVOperandList Ops;
2953 Ops << MkId(info.ptr_array_type_id) << MkNum(spv::StorageClassWorkgroup);
2954
2955 SPIRVInstList.push_back(
David Neto87846742018-04-11 17:36:22 -04002956 new SPIRVInstruction(spv::OpVariable, info.variable_id, Ops));
David Netoc6f3ab22018-04-06 18:02:31 -04002957 }
2958}
2959
David Neto862b7d82018-06-14 18:48:37 -04002960void SPIRVProducerPass::GenerateDescriptorMapInfo(const DataLayout &DL,
2961 Function &F) {
David Netoc5fb5242018-07-30 13:28:31 -04002962 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2963 return;
2964 }
David Neto862b7d82018-06-14 18:48:37 -04002965 // Gather the list of resources that are used by this function's arguments.
2966 auto &resource_var_at_index = FunctionToResourceVarsMap[&F];
2967
2968 auto remap_arg_kind = [](StringRef argKind) {
2969 return clspv::Option::PodArgsInUniformBuffer() && argKind.equals("pod")
2970 ? "pod_ubo"
2971 : argKind;
2972 };
2973
2974 auto *fty = F.getType()->getPointerElementType();
2975 auto *func_ty = dyn_cast<FunctionType>(fty);
2976
2977 // If we've clustereed POD arguments, then argument details are in metadata.
2978 // If an argument maps to a resource variable, then get descriptor set and
2979 // binding from the resoure variable. Other info comes from the metadata.
2980 const auto *arg_map = F.getMetadata("kernel_arg_map");
2981 if (arg_map) {
2982 for (const auto &arg : arg_map->operands()) {
2983 const MDNode *arg_node = dyn_cast<MDNode>(arg.get());
Kévin PETITa353c832018-03-20 23:21:21 +00002984 assert(arg_node->getNumOperands() == 7);
David Neto862b7d82018-06-14 18:48:37 -04002985 const auto name =
2986 dyn_cast<MDString>(arg_node->getOperand(0))->getString();
2987 const auto old_index =
2988 dyn_extract<ConstantInt>(arg_node->getOperand(1))->getZExtValue();
2989 // Remapped argument index
2990 const auto new_index =
2991 dyn_extract<ConstantInt>(arg_node->getOperand(2))->getZExtValue();
2992 const auto offset =
2993 dyn_extract<ConstantInt>(arg_node->getOperand(3))->getZExtValue();
Kévin PETITa353c832018-03-20 23:21:21 +00002994 const auto arg_size =
2995 dyn_extract<ConstantInt>(arg_node->getOperand(4))->getZExtValue();
David Neto862b7d82018-06-14 18:48:37 -04002996 const auto argKind = remap_arg_kind(
Kévin PETITa353c832018-03-20 23:21:21 +00002997 dyn_cast<MDString>(arg_node->getOperand(5))->getString());
David Neto862b7d82018-06-14 18:48:37 -04002998 const auto spec_id =
Kévin PETITa353c832018-03-20 23:21:21 +00002999 dyn_extract<ConstantInt>(arg_node->getOperand(6))->getSExtValue();
David Neto862b7d82018-06-14 18:48:37 -04003000 if (spec_id > 0) {
3001 // This was a pointer-to-local argument. It is not associated with a
3002 // resource variable.
3003 descriptorMapOut << "kernel," << F.getName() << ",arg," << name
3004 << ",argOrdinal," << old_index << ",argKind,"
3005 << argKind << ",arrayElemSize,"
Alan Bakerfcda9482018-10-02 17:09:59 -04003006 << GetTypeAllocSize(
David Neto862b7d82018-06-14 18:48:37 -04003007 func_ty->getParamType(unsigned(new_index))
Alan Bakerfcda9482018-10-02 17:09:59 -04003008 ->getPointerElementType(), DL)
David Neto862b7d82018-06-14 18:48:37 -04003009 << ",arrayNumElemSpecId," << spec_id << "\n";
3010 } else {
3011 auto *info = resource_var_at_index[new_index];
3012 assert(info);
3013 descriptorMapOut << "kernel," << F.getName() << ",arg," << name
3014 << ",argOrdinal," << old_index << ",descriptorSet,"
3015 << info->descriptor_set << ",binding," << info->binding
Kévin PETITa353c832018-03-20 23:21:21 +00003016 << ",offset," << offset << ",argKind," << argKind;
3017 if (argKind.startswith("pod")) {
3018 descriptorMapOut << ",argSize," << arg_size;
3019 }
3020 descriptorMapOut << "\n";
David Neto862b7d82018-06-14 18:48:37 -04003021 }
3022 }
3023 } else {
3024 // There is no argument map.
3025 // Take descriptor info from the resource variable calls.
Kévin PETITa353c832018-03-20 23:21:21 +00003026 // Take argument name and size from the arguments list.
David Neto862b7d82018-06-14 18:48:37 -04003027
3028 SmallVector<Argument *, 4> arguments;
3029 for (auto &arg : F.args()) {
3030 arguments.push_back(&arg);
3031 }
3032
3033 unsigned arg_index = 0;
3034 for (auto *info : resource_var_at_index) {
3035 if (info) {
Kévin PETITa353c832018-03-20 23:21:21 +00003036 auto arg = arguments[arg_index];
3037 unsigned arg_size;
3038 if (info->arg_kind == clspv::ArgKind::Pod) {
3039 arg_size = DL.getTypeStoreSize(arg->getType());
3040 }
3041
David Neto862b7d82018-06-14 18:48:37 -04003042 descriptorMapOut << "kernel," << F.getName() << ",arg,"
Kévin PETITa353c832018-03-20 23:21:21 +00003043 << arg->getName() << ",argOrdinal,"
David Neto862b7d82018-06-14 18:48:37 -04003044 << arg_index << ",descriptorSet,"
3045 << info->descriptor_set << ",binding," << info->binding
3046 << ",offset," << 0 << ",argKind,"
3047 << remap_arg_kind(
Kévin PETITa353c832018-03-20 23:21:21 +00003048 clspv::GetArgKindName(info->arg_kind));
3049 if (info->arg_kind == clspv::ArgKind::Pod) {
3050 descriptorMapOut << ",argSize," << arg_size;
3051 }
3052 descriptorMapOut << "\n";
David Neto862b7d82018-06-14 18:48:37 -04003053 }
3054 arg_index++;
3055 }
3056 // Generate mappings for pointer-to-local arguments.
3057 for (arg_index = 0; arg_index < arguments.size(); ++arg_index) {
3058 Argument *arg = arguments[arg_index];
Alan Baker202c8c72018-08-13 13:47:44 -04003059 auto where = LocalArgSpecIds.find(arg);
3060 if (where != LocalArgSpecIds.end()) {
3061 auto &local_arg_info = LocalSpecIdInfoMap[where->second];
David Neto862b7d82018-06-14 18:48:37 -04003062 descriptorMapOut << "kernel," << F.getName() << ",arg,"
3063 << arg->getName() << ",argOrdinal," << arg_index
3064 << ",argKind,"
3065 << "local"
3066 << ",arrayElemSize,"
Alan Bakerfcda9482018-10-02 17:09:59 -04003067 << GetTypeAllocSize(local_arg_info.elem_type, DL)
David Neto862b7d82018-06-14 18:48:37 -04003068 << ",arrayNumElemSpecId," << local_arg_info.spec_id
3069 << "\n";
3070 }
3071 }
3072 }
3073}
3074
David Neto22f144c2017-06-12 14:26:21 -04003075void SPIRVProducerPass::GenerateFuncPrologue(Function &F) {
3076 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
3077 ValueMapType &VMap = getValueMap();
3078 EntryPointVecType &EntryPoints = getEntryPointVec();
David Neto22f144c2017-06-12 14:26:21 -04003079 auto &GlobalConstFuncTyMap = getGlobalConstFuncTypeMap();
3080 auto &GlobalConstArgSet = getGlobalConstArgSet();
3081
3082 FunctionType *FTy = F.getFunctionType();
3083
3084 //
David Neto22f144c2017-06-12 14:26:21 -04003085 // Generate OPFunction.
3086 //
3087
3088 // FOps[0] : Result Type ID
3089 // FOps[1] : Function Control
3090 // FOps[2] : Function Type ID
3091 SPIRVOperandList FOps;
3092
3093 // Find SPIRV instruction for return type.
David Neto257c3892018-04-11 13:19:45 -04003094 FOps << MkId(lookupType(FTy->getReturnType()));
David Neto22f144c2017-06-12 14:26:21 -04003095
3096 // Check function attributes for SPIRV Function Control.
3097 uint32_t FuncControl = spv::FunctionControlMaskNone;
3098 if (F.hasFnAttribute(Attribute::AlwaysInline)) {
3099 FuncControl |= spv::FunctionControlInlineMask;
3100 }
3101 if (F.hasFnAttribute(Attribute::NoInline)) {
3102 FuncControl |= spv::FunctionControlDontInlineMask;
3103 }
3104 // TODO: Check llvm attribute for Function Control Pure.
3105 if (F.hasFnAttribute(Attribute::ReadOnly)) {
3106 FuncControl |= spv::FunctionControlPureMask;
3107 }
3108 // TODO: Check llvm attribute for Function Control Const.
3109 if (F.hasFnAttribute(Attribute::ReadNone)) {
3110 FuncControl |= spv::FunctionControlConstMask;
3111 }
3112
David Neto257c3892018-04-11 13:19:45 -04003113 FOps << MkNum(FuncControl);
David Neto22f144c2017-06-12 14:26:21 -04003114
3115 uint32_t FTyID;
3116 if (F.getCallingConv() == CallingConv::SPIR_KERNEL) {
3117 SmallVector<Type *, 4> NewFuncParamTys;
3118 FunctionType *NewFTy =
3119 FunctionType::get(FTy->getReturnType(), NewFuncParamTys, false);
3120 FTyID = lookupType(NewFTy);
3121 } else {
David Neto9ed8e2f2018-03-24 06:47:24 -07003122 // Handle regular function with global constant parameters.
David Neto22f144c2017-06-12 14:26:21 -04003123 if (GlobalConstFuncTyMap.count(FTy)) {
3124 FTyID = lookupType(GlobalConstFuncTyMap[FTy].first);
3125 } else {
3126 FTyID = lookupType(FTy);
3127 }
3128 }
3129
David Neto257c3892018-04-11 13:19:45 -04003130 FOps << MkId(FTyID);
David Neto22f144c2017-06-12 14:26:21 -04003131
3132 if (F.getCallingConv() == CallingConv::SPIR_KERNEL) {
3133 EntryPoints.push_back(std::make_pair(&F, nextID));
3134 }
3135
3136 VMap[&F] = nextID;
3137
David Neto482550a2018-03-24 05:21:07 -07003138 if (clspv::Option::ShowIDs()) {
David Netob05675d2018-02-16 12:37:49 -05003139 errs() << "Function " << F.getName() << " is " << nextID << "\n";
3140 }
David Neto22f144c2017-06-12 14:26:21 -04003141 // Generate SPIRV instruction for function.
David Neto87846742018-04-11 17:36:22 -04003142 auto *FuncInst = new SPIRVInstruction(spv::OpFunction, nextID++, FOps);
David Neto22f144c2017-06-12 14:26:21 -04003143 SPIRVInstList.push_back(FuncInst);
3144
3145 //
3146 // Generate OpFunctionParameter for Normal function.
3147 //
3148
3149 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
3150 // Iterate Argument for name instead of param type from function type.
3151 unsigned ArgIdx = 0;
3152 for (Argument &Arg : F.args()) {
3153 VMap[&Arg] = nextID;
3154
3155 // ParamOps[0] : Result Type ID
3156 SPIRVOperandList ParamOps;
3157
3158 // Find SPIRV instruction for parameter type.
3159 uint32_t ParamTyID = lookupType(Arg.getType());
3160 if (PointerType *PTy = dyn_cast<PointerType>(Arg.getType())) {
3161 if (GlobalConstFuncTyMap.count(FTy)) {
3162 if (ArgIdx == GlobalConstFuncTyMap[FTy].second) {
3163 Type *EleTy = PTy->getPointerElementType();
3164 Type *ArgTy =
3165 PointerType::get(EleTy, AddressSpace::ModuleScopePrivate);
3166 ParamTyID = lookupType(ArgTy);
3167 GlobalConstArgSet.insert(&Arg);
3168 }
3169 }
3170 }
David Neto257c3892018-04-11 13:19:45 -04003171 ParamOps << MkId(ParamTyID);
David Neto22f144c2017-06-12 14:26:21 -04003172
3173 // Generate SPIRV instruction for parameter.
David Neto87846742018-04-11 17:36:22 -04003174 auto *ParamInst =
3175 new SPIRVInstruction(spv::OpFunctionParameter, nextID++, ParamOps);
David Neto22f144c2017-06-12 14:26:21 -04003176 SPIRVInstList.push_back(ParamInst);
3177
3178 ArgIdx++;
3179 }
3180 }
3181}
3182
David Neto5c22a252018-03-15 16:07:41 -04003183void SPIRVProducerPass::GenerateModuleInfo(Module& module) {
David Neto22f144c2017-06-12 14:26:21 -04003184 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
3185 EntryPointVecType &EntryPoints = getEntryPointVec();
3186 ValueMapType &VMap = getValueMap();
3187 ValueList &EntryPointInterfaces = getEntryPointInterfacesVec();
3188 uint32_t &ExtInstImportID = getOpExtInstImportID();
3189 std::vector<uint32_t> &BuiltinDimVec = getBuiltinDimVec();
3190
3191 // Set up insert point.
3192 auto InsertPoint = SPIRVInstList.begin();
3193
3194 //
3195 // Generate OpCapability
3196 //
3197 // TODO: Which llvm information is mapped to SPIRV Capapbility?
3198
3199 // Ops[0] = Capability
3200 SPIRVOperandList Ops;
3201
David Neto87846742018-04-11 17:36:22 -04003202 auto *CapInst =
3203 new SPIRVInstruction(spv::OpCapability, {MkNum(spv::CapabilityShader)});
David Neto22f144c2017-06-12 14:26:21 -04003204 SPIRVInstList.insert(InsertPoint, CapInst);
3205
3206 for (Type *Ty : getTypeList()) {
3207 // Find the i16 type.
3208 if (Ty->isIntegerTy(16)) {
3209 // Generate OpCapability for i16 type.
David Neto87846742018-04-11 17:36:22 -04003210 SPIRVInstList.insert(InsertPoint,
3211 new SPIRVInstruction(spv::OpCapability,
3212 {MkNum(spv::CapabilityInt16)}));
David Neto22f144c2017-06-12 14:26:21 -04003213 } else if (Ty->isIntegerTy(64)) {
3214 // Generate OpCapability for i64 type.
David Neto87846742018-04-11 17:36:22 -04003215 SPIRVInstList.insert(InsertPoint,
3216 new SPIRVInstruction(spv::OpCapability,
3217 {MkNum(spv::CapabilityInt64)}));
David Neto22f144c2017-06-12 14:26:21 -04003218 } else if (Ty->isHalfTy()) {
3219 // Generate OpCapability for half type.
3220 SPIRVInstList.insert(
David Neto87846742018-04-11 17:36:22 -04003221 InsertPoint, new SPIRVInstruction(spv::OpCapability,
3222 {MkNum(spv::CapabilityFloat16)}));
David Neto22f144c2017-06-12 14:26:21 -04003223 } else if (Ty->isDoubleTy()) {
3224 // Generate OpCapability for double type.
3225 SPIRVInstList.insert(
David Neto87846742018-04-11 17:36:22 -04003226 InsertPoint, new SPIRVInstruction(spv::OpCapability,
3227 {MkNum(spv::CapabilityFloat64)}));
David Neto22f144c2017-06-12 14:26:21 -04003228 } else if (auto *STy = dyn_cast<StructType>(Ty)) {
3229 if (STy->isOpaque()) {
David Neto565571c2017-08-21 12:00:05 -04003230 if (STy->getName().equals("opencl.image2d_wo_t") ||
3231 STy->getName().equals("opencl.image3d_wo_t")) {
David Neto22f144c2017-06-12 14:26:21 -04003232 // Generate OpCapability for write only image type.
3233 SPIRVInstList.insert(
3234 InsertPoint,
3235 new SPIRVInstruction(
David Neto87846742018-04-11 17:36:22 -04003236 spv::OpCapability,
3237 {MkNum(spv::CapabilityStorageImageWriteWithoutFormat)}));
David Neto22f144c2017-06-12 14:26:21 -04003238 }
3239 }
3240 }
3241 }
3242
David Neto5c22a252018-03-15 16:07:41 -04003243 { // OpCapability ImageQuery
3244 bool hasImageQuery = false;
3245 for (const char *imageQuery : {
3246 "_Z15get_image_width14ocl_image2d_ro",
3247 "_Z15get_image_width14ocl_image2d_wo",
3248 "_Z16get_image_height14ocl_image2d_ro",
3249 "_Z16get_image_height14ocl_image2d_wo",
3250 }) {
3251 if (module.getFunction(imageQuery)) {
3252 hasImageQuery = true;
3253 break;
3254 }
3255 }
3256 if (hasImageQuery) {
David Neto87846742018-04-11 17:36:22 -04003257 auto *ImageQueryCapInst = new SPIRVInstruction(
3258 spv::OpCapability, {MkNum(spv::CapabilityImageQuery)});
David Neto5c22a252018-03-15 16:07:41 -04003259 SPIRVInstList.insert(InsertPoint, ImageQueryCapInst);
3260 }
3261 }
3262
David Neto22f144c2017-06-12 14:26:21 -04003263 if (hasVariablePointers()) {
3264 //
3265 // Generate OpCapability and OpExtension
3266 //
3267
3268 //
3269 // Generate OpCapability.
3270 //
3271 // Ops[0] = Capability
3272 //
3273 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003274 Ops << MkNum(spv::CapabilityVariablePointers);
David Neto22f144c2017-06-12 14:26:21 -04003275
David Neto87846742018-04-11 17:36:22 -04003276 SPIRVInstList.insert(InsertPoint,
3277 new SPIRVInstruction(spv::OpCapability, Ops));
David Neto22f144c2017-06-12 14:26:21 -04003278
3279 //
3280 // Generate OpExtension.
3281 //
3282 // Ops[0] = Name (Literal String)
3283 //
David Netoa772fd12017-08-04 14:17:33 -04003284 for (auto extension : {"SPV_KHR_storage_buffer_storage_class",
3285 "SPV_KHR_variable_pointers"}) {
David Neto22f144c2017-06-12 14:26:21 -04003286
David Neto87846742018-04-11 17:36:22 -04003287 auto *ExtensionInst =
3288 new SPIRVInstruction(spv::OpExtension, {MkString(extension)});
David Netoa772fd12017-08-04 14:17:33 -04003289 SPIRVInstList.insert(InsertPoint, ExtensionInst);
David Neto22f144c2017-06-12 14:26:21 -04003290 }
David Neto22f144c2017-06-12 14:26:21 -04003291 }
3292
3293 if (ExtInstImportID) {
3294 ++InsertPoint;
3295 }
3296
3297 //
3298 // Generate OpMemoryModel
3299 //
3300 // Memory model for Vulkan will always be GLSL450.
3301
3302 // Ops[0] = Addressing Model
3303 // Ops[1] = Memory Model
3304 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003305 Ops << MkNum(spv::AddressingModelLogical) << MkNum(spv::MemoryModelGLSL450);
David Neto22f144c2017-06-12 14:26:21 -04003306
David Neto87846742018-04-11 17:36:22 -04003307 auto *MemModelInst = new SPIRVInstruction(spv::OpMemoryModel, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003308 SPIRVInstList.insert(InsertPoint, MemModelInst);
3309
3310 //
3311 // Generate OpEntryPoint
3312 //
3313 for (auto EntryPoint : EntryPoints) {
3314 // Ops[0] = Execution Model
3315 // Ops[1] = EntryPoint ID
3316 // Ops[2] = Name (Literal String)
3317 // ...
3318 //
3319 // TODO: Do we need to consider Interface ID for forward references???
3320 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003321 const StringRef& name = EntryPoint.first->getName();
3322 Ops << MkNum(spv::ExecutionModelGLCompute) << MkId(EntryPoint.second)
3323 << MkString(name);
David Neto22f144c2017-06-12 14:26:21 -04003324
David Neto22f144c2017-06-12 14:26:21 -04003325 for (Value *Interface : EntryPointInterfaces) {
David Neto257c3892018-04-11 13:19:45 -04003326 Ops << MkId(VMap[Interface]);
David Neto22f144c2017-06-12 14:26:21 -04003327 }
3328
David Neto87846742018-04-11 17:36:22 -04003329 auto *EntryPointInst = new SPIRVInstruction(spv::OpEntryPoint, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003330 SPIRVInstList.insert(InsertPoint, EntryPointInst);
3331 }
3332
3333 for (auto EntryPoint : EntryPoints) {
3334 if (const MDNode *MD = dyn_cast<Function>(EntryPoint.first)
3335 ->getMetadata("reqd_work_group_size")) {
3336
3337 if (!BuiltinDimVec.empty()) {
3338 llvm_unreachable(
3339 "Kernels should have consistent work group size definition");
3340 }
3341
3342 //
3343 // Generate OpExecutionMode
3344 //
3345
3346 // Ops[0] = Entry Point ID
3347 // Ops[1] = Execution Mode
3348 // Ops[2] ... Ops[n] = Optional literals according to Execution Mode
3349 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003350 Ops << MkId(EntryPoint.second)
3351 << MkNum(spv::ExecutionModeLocalSize);
David Neto22f144c2017-06-12 14:26:21 -04003352
3353 uint32_t XDim = static_cast<uint32_t>(
3354 mdconst::extract<ConstantInt>(MD->getOperand(0))->getZExtValue());
3355 uint32_t YDim = static_cast<uint32_t>(
3356 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue());
3357 uint32_t ZDim = static_cast<uint32_t>(
3358 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue());
3359
David Neto257c3892018-04-11 13:19:45 -04003360 Ops << MkNum(XDim) << MkNum(YDim) << MkNum(ZDim);
David Neto22f144c2017-06-12 14:26:21 -04003361
David Neto87846742018-04-11 17:36:22 -04003362 auto *ExecModeInst = new SPIRVInstruction(spv::OpExecutionMode, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003363 SPIRVInstList.insert(InsertPoint, ExecModeInst);
3364 }
3365 }
3366
3367 //
3368 // Generate OpSource.
3369 //
3370 // Ops[0] = SourceLanguage ID
3371 // Ops[1] = Version (LiteralNum)
3372 //
3373 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003374 Ops << MkNum(spv::SourceLanguageOpenCL_C) << MkNum(120);
David Neto22f144c2017-06-12 14:26:21 -04003375
David Neto87846742018-04-11 17:36:22 -04003376 auto *OpenSourceInst = new SPIRVInstruction(spv::OpSource, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003377 SPIRVInstList.insert(InsertPoint, OpenSourceInst);
3378
3379 if (!BuiltinDimVec.empty()) {
3380 //
3381 // Generate OpDecorates for x/y/z dimension.
3382 //
3383 // Ops[0] = Target ID
3384 // Ops[1] = Decoration (SpecId)
David Neto257c3892018-04-11 13:19:45 -04003385 // Ops[2] = Specialization Constant ID (Literal Number)
David Neto22f144c2017-06-12 14:26:21 -04003386
3387 // X Dimension
3388 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003389 Ops << MkId(BuiltinDimVec[0]) << MkNum(spv::DecorationSpecId) << MkNum(0);
David Neto87846742018-04-11 17:36:22 -04003390 SPIRVInstList.insert(InsertPoint,
3391 new SPIRVInstruction(spv::OpDecorate, Ops));
David Neto22f144c2017-06-12 14:26:21 -04003392
3393 // Y Dimension
3394 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003395 Ops << MkId(BuiltinDimVec[1]) << MkNum(spv::DecorationSpecId) << MkNum(1);
David Neto87846742018-04-11 17:36:22 -04003396 SPIRVInstList.insert(InsertPoint,
3397 new SPIRVInstruction(spv::OpDecorate, Ops));
David Neto22f144c2017-06-12 14:26:21 -04003398
3399 // Z Dimension
3400 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003401 Ops << MkId(BuiltinDimVec[2]) << MkNum(spv::DecorationSpecId) << MkNum(2);
David Neto87846742018-04-11 17:36:22 -04003402 SPIRVInstList.insert(InsertPoint,
3403 new SPIRVInstruction(spv::OpDecorate, Ops));
David Neto22f144c2017-06-12 14:26:21 -04003404 }
3405}
3406
David Netob6e2e062018-04-25 10:32:06 -04003407void SPIRVProducerPass::GenerateEntryPointInitialStores() {
3408 // Work around a driver bug. Initializers on Private variables might not
3409 // work. So the start of the kernel should store the initializer value to the
3410 // variables. Yes, *every* entry point pays this cost if *any* entry point
3411 // uses this builtin. At this point I judge this to be an acceptable tradeoff
3412 // of complexity vs. runtime, for a broken driver.
3413 // TODO(dneto): Remove this at some point once fixed drivers are widely available.
3414 if (WorkgroupSizeVarID) {
3415 assert(WorkgroupSizeValueID);
3416
3417 SPIRVOperandList Ops;
3418 Ops << MkId(WorkgroupSizeVarID) << MkId(WorkgroupSizeValueID);
3419
3420 auto *Inst = new SPIRVInstruction(spv::OpStore, Ops);
3421 getSPIRVInstList().push_back(Inst);
3422 }
3423}
3424
David Neto22f144c2017-06-12 14:26:21 -04003425void SPIRVProducerPass::GenerateFuncBody(Function &F) {
3426 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
3427 ValueMapType &VMap = getValueMap();
3428
David Netob6e2e062018-04-25 10:32:06 -04003429 const bool IsKernel = F.getCallingConv() == CallingConv::SPIR_KERNEL;
David Neto22f144c2017-06-12 14:26:21 -04003430
3431 for (BasicBlock &BB : F) {
3432 // Register BasicBlock to ValueMap.
3433 VMap[&BB] = nextID;
3434
3435 //
3436 // Generate OpLabel for Basic Block.
3437 //
3438 SPIRVOperandList Ops;
David Neto87846742018-04-11 17:36:22 -04003439 auto *Inst = new SPIRVInstruction(spv::OpLabel, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003440 SPIRVInstList.push_back(Inst);
3441
David Neto6dcd4712017-06-23 11:06:47 -04003442 // OpVariable instructions must come first.
3443 for (Instruction &I : BB) {
3444 if (isa<AllocaInst>(I)) {
3445 GenerateInstruction(I);
3446 }
3447 }
3448
David Neto22f144c2017-06-12 14:26:21 -04003449 if (&BB == &F.getEntryBlock() && IsKernel) {
David Netob6e2e062018-04-25 10:32:06 -04003450 if (clspv::Option::HackInitializers()) {
3451 GenerateEntryPointInitialStores();
3452 }
David Neto22f144c2017-06-12 14:26:21 -04003453 }
3454
3455 for (Instruction &I : BB) {
David Neto6dcd4712017-06-23 11:06:47 -04003456 if (!isa<AllocaInst>(I)) {
3457 GenerateInstruction(I);
3458 }
David Neto22f144c2017-06-12 14:26:21 -04003459 }
3460 }
3461}
3462
3463spv::Op SPIRVProducerPass::GetSPIRVCmpOpcode(CmpInst *I) {
3464 const std::map<CmpInst::Predicate, spv::Op> Map = {
3465 {CmpInst::ICMP_EQ, spv::OpIEqual},
3466 {CmpInst::ICMP_NE, spv::OpINotEqual},
3467 {CmpInst::ICMP_UGT, spv::OpUGreaterThan},
3468 {CmpInst::ICMP_UGE, spv::OpUGreaterThanEqual},
3469 {CmpInst::ICMP_ULT, spv::OpULessThan},
3470 {CmpInst::ICMP_ULE, spv::OpULessThanEqual},
3471 {CmpInst::ICMP_SGT, spv::OpSGreaterThan},
3472 {CmpInst::ICMP_SGE, spv::OpSGreaterThanEqual},
3473 {CmpInst::ICMP_SLT, spv::OpSLessThan},
3474 {CmpInst::ICMP_SLE, spv::OpSLessThanEqual},
3475 {CmpInst::FCMP_OEQ, spv::OpFOrdEqual},
3476 {CmpInst::FCMP_OGT, spv::OpFOrdGreaterThan},
3477 {CmpInst::FCMP_OGE, spv::OpFOrdGreaterThanEqual},
3478 {CmpInst::FCMP_OLT, spv::OpFOrdLessThan},
3479 {CmpInst::FCMP_OLE, spv::OpFOrdLessThanEqual},
3480 {CmpInst::FCMP_ONE, spv::OpFOrdNotEqual},
3481 {CmpInst::FCMP_UEQ, spv::OpFUnordEqual},
3482 {CmpInst::FCMP_UGT, spv::OpFUnordGreaterThan},
3483 {CmpInst::FCMP_UGE, spv::OpFUnordGreaterThanEqual},
3484 {CmpInst::FCMP_ULT, spv::OpFUnordLessThan},
3485 {CmpInst::FCMP_ULE, spv::OpFUnordLessThanEqual},
3486 {CmpInst::FCMP_UNE, spv::OpFUnordNotEqual}};
3487
3488 assert(0 != Map.count(I->getPredicate()));
3489
3490 return Map.at(I->getPredicate());
3491}
3492
3493spv::Op SPIRVProducerPass::GetSPIRVCastOpcode(Instruction &I) {
3494 const std::map<unsigned, spv::Op> Map{
3495 {Instruction::Trunc, spv::OpUConvert},
3496 {Instruction::ZExt, spv::OpUConvert},
3497 {Instruction::SExt, spv::OpSConvert},
3498 {Instruction::FPToUI, spv::OpConvertFToU},
3499 {Instruction::FPToSI, spv::OpConvertFToS},
3500 {Instruction::UIToFP, spv::OpConvertUToF},
3501 {Instruction::SIToFP, spv::OpConvertSToF},
3502 {Instruction::FPTrunc, spv::OpFConvert},
3503 {Instruction::FPExt, spv::OpFConvert},
3504 {Instruction::BitCast, spv::OpBitcast}};
3505
3506 assert(0 != Map.count(I.getOpcode()));
3507
3508 return Map.at(I.getOpcode());
3509}
3510
3511spv::Op SPIRVProducerPass::GetSPIRVBinaryOpcode(Instruction &I) {
Kévin Petit24272b62018-10-18 19:16:12 +00003512 if (I.getType()->isIntOrIntVectorTy(1)) {
David Neto22f144c2017-06-12 14:26:21 -04003513 switch (I.getOpcode()) {
3514 default:
3515 break;
3516 case Instruction::Or:
3517 return spv::OpLogicalOr;
3518 case Instruction::And:
3519 return spv::OpLogicalAnd;
3520 case Instruction::Xor:
3521 return spv::OpLogicalNotEqual;
3522 }
3523 }
3524
3525 const std::map<unsigned, spv::Op> Map {
3526 {Instruction::Add, spv::OpIAdd},
3527 {Instruction::FAdd, spv::OpFAdd},
3528 {Instruction::Sub, spv::OpISub},
3529 {Instruction::FSub, spv::OpFSub},
3530 {Instruction::Mul, spv::OpIMul},
3531 {Instruction::FMul, spv::OpFMul},
3532 {Instruction::UDiv, spv::OpUDiv},
3533 {Instruction::SDiv, spv::OpSDiv},
3534 {Instruction::FDiv, spv::OpFDiv},
3535 {Instruction::URem, spv::OpUMod},
3536 {Instruction::SRem, spv::OpSRem},
3537 {Instruction::FRem, spv::OpFRem},
3538 {Instruction::Or, spv::OpBitwiseOr},
3539 {Instruction::Xor, spv::OpBitwiseXor},
3540 {Instruction::And, spv::OpBitwiseAnd},
3541 {Instruction::Shl, spv::OpShiftLeftLogical},
3542 {Instruction::LShr, spv::OpShiftRightLogical},
3543 {Instruction::AShr, spv::OpShiftRightArithmetic}};
3544
3545 assert(0 != Map.count(I.getOpcode()));
3546
3547 return Map.at(I.getOpcode());
3548}
3549
3550void SPIRVProducerPass::GenerateInstruction(Instruction &I) {
3551 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
3552 ValueMapType &VMap = getValueMap();
David Neto22f144c2017-06-12 14:26:21 -04003553 DeferredInstVecType &DeferredInsts = getDeferredInstVec();
3554 LLVMContext &Context = I.getParent()->getParent()->getParent()->getContext();
3555
3556 // Register Instruction to ValueMap.
3557 if (0 == VMap[&I]) {
3558 VMap[&I] = nextID;
3559 }
3560
3561 switch (I.getOpcode()) {
3562 default: {
3563 if (Instruction::isCast(I.getOpcode())) {
3564 //
3565 // Generate SPIRV instructions for cast operators.
3566 //
3567
David Netod2de94a2017-08-28 17:27:47 -04003568
3569 auto Ty = I.getType();
David Neto22f144c2017-06-12 14:26:21 -04003570 auto OpTy = I.getOperand(0)->getType();
David Netod2de94a2017-08-28 17:27:47 -04003571 auto toI8 = Ty == Type::getInt8Ty(Context);
3572 auto fromI32 = OpTy == Type::getInt32Ty(Context);
David Neto22f144c2017-06-12 14:26:21 -04003573 // Handle zext, sext and uitofp with i1 type specially.
3574 if ((I.getOpcode() == Instruction::ZExt ||
3575 I.getOpcode() == Instruction::SExt ||
3576 I.getOpcode() == Instruction::UIToFP) &&
Kévin Petit24272b62018-10-18 19:16:12 +00003577 OpTy->isIntOrIntVectorTy(1)) {
David Neto22f144c2017-06-12 14:26:21 -04003578 //
3579 // Generate OpSelect.
3580 //
3581
3582 // Ops[0] = Result Type ID
3583 // Ops[1] = Condition ID
3584 // Ops[2] = True Constant ID
3585 // Ops[3] = False Constant ID
3586 SPIRVOperandList Ops;
3587
David Neto257c3892018-04-11 13:19:45 -04003588 Ops << MkId(lookupType(I.getType()));
David Neto22f144c2017-06-12 14:26:21 -04003589
David Neto22f144c2017-06-12 14:26:21 -04003590 uint32_t CondID = VMap[I.getOperand(0)];
David Neto257c3892018-04-11 13:19:45 -04003591 Ops << MkId(CondID);
David Neto22f144c2017-06-12 14:26:21 -04003592
3593 uint32_t TrueID = 0;
3594 if (I.getOpcode() == Instruction::ZExt) {
3595 APInt One(32, 1);
3596 TrueID = VMap[Constant::getIntegerValue(I.getType(), One)];
3597 } else if (I.getOpcode() == Instruction::SExt) {
3598 APInt MinusOne(32, UINT64_MAX, true);
3599 TrueID = VMap[Constant::getIntegerValue(I.getType(), MinusOne)];
3600 } else {
3601 TrueID = VMap[ConstantFP::get(Context, APFloat(1.0f))];
3602 }
David Neto257c3892018-04-11 13:19:45 -04003603 Ops << MkId(TrueID);
David Neto22f144c2017-06-12 14:26:21 -04003604
3605 uint32_t FalseID = 0;
3606 if (I.getOpcode() == Instruction::ZExt) {
3607 FalseID = VMap[Constant::getNullValue(I.getType())];
3608 } else if (I.getOpcode() == Instruction::SExt) {
3609 FalseID = VMap[Constant::getNullValue(I.getType())];
3610 } else {
3611 FalseID = VMap[ConstantFP::get(Context, APFloat(0.0f))];
3612 }
David Neto257c3892018-04-11 13:19:45 -04003613 Ops << MkId(FalseID);
David Neto22f144c2017-06-12 14:26:21 -04003614
David Neto87846742018-04-11 17:36:22 -04003615 auto *Inst = new SPIRVInstruction(spv::OpSelect, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003616 SPIRVInstList.push_back(Inst);
David Netod2de94a2017-08-28 17:27:47 -04003617 } else if (I.getOpcode() == Instruction::Trunc && fromI32 && toI8) {
3618 // The SPIR-V target type is a 32-bit int. Keep only the bottom
3619 // 8 bits.
3620 // Before:
3621 // %result = trunc i32 %a to i8
3622 // After
3623 // %result = OpBitwiseAnd %uint %a %uint_255
3624
3625 SPIRVOperandList Ops;
3626
David Neto257c3892018-04-11 13:19:45 -04003627 Ops << MkId(lookupType(OpTy)) << MkId(VMap[I.getOperand(0)]);
David Netod2de94a2017-08-28 17:27:47 -04003628
3629 Type *UintTy = Type::getInt32Ty(Context);
3630 uint32_t MaskID = VMap[ConstantInt::get(UintTy, 255)];
David Neto257c3892018-04-11 13:19:45 -04003631 Ops << MkId(MaskID);
David Netod2de94a2017-08-28 17:27:47 -04003632
David Neto87846742018-04-11 17:36:22 -04003633 auto *Inst = new SPIRVInstruction(spv::OpBitwiseAnd, nextID++, Ops);
David Netod2de94a2017-08-28 17:27:47 -04003634 SPIRVInstList.push_back(Inst);
David Neto22f144c2017-06-12 14:26:21 -04003635 } else {
3636 // Ops[0] = Result Type ID
3637 // Ops[1] = Source Value ID
3638 SPIRVOperandList Ops;
3639
David Neto257c3892018-04-11 13:19:45 -04003640 Ops << MkId(lookupType(I.getType())) << MkId(VMap[I.getOperand(0)]);
David Neto22f144c2017-06-12 14:26:21 -04003641
David Neto87846742018-04-11 17:36:22 -04003642 auto *Inst = new SPIRVInstruction(GetSPIRVCastOpcode(I), nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003643 SPIRVInstList.push_back(Inst);
3644 }
3645 } else if (isa<BinaryOperator>(I)) {
3646 //
3647 // Generate SPIRV instructions for binary operators.
3648 //
3649
3650 // Handle xor with i1 type specially.
3651 if (I.getOpcode() == Instruction::Xor &&
3652 I.getType() == Type::getInt1Ty(Context) &&
Kévin Petit24272b62018-10-18 19:16:12 +00003653 ((isa<ConstantInt>(I.getOperand(0)) &&
3654 !cast<ConstantInt>(I.getOperand(0))->isZero()) ||
3655 (isa<ConstantInt>(I.getOperand(1)) &&
3656 !cast<ConstantInt>(I.getOperand(1))->isZero()))) {
David Neto22f144c2017-06-12 14:26:21 -04003657 //
3658 // Generate OpLogicalNot.
3659 //
3660 // Ops[0] = Result Type ID
3661 // Ops[1] = Operand
3662 SPIRVOperandList Ops;
3663
David Neto257c3892018-04-11 13:19:45 -04003664 Ops << MkId(lookupType(I.getType()));
David Neto22f144c2017-06-12 14:26:21 -04003665
3666 Value *CondV = I.getOperand(0);
3667 if (isa<Constant>(I.getOperand(0))) {
3668 CondV = I.getOperand(1);
3669 }
David Neto257c3892018-04-11 13:19:45 -04003670 Ops << MkId(VMap[CondV]);
David Neto22f144c2017-06-12 14:26:21 -04003671
David Neto87846742018-04-11 17:36:22 -04003672 auto *Inst = new SPIRVInstruction(spv::OpLogicalNot, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003673 SPIRVInstList.push_back(Inst);
3674 } else {
3675 // Ops[0] = Result Type ID
3676 // Ops[1] = Operand 0
3677 // Ops[2] = Operand 1
3678 SPIRVOperandList Ops;
3679
David Neto257c3892018-04-11 13:19:45 -04003680 Ops << MkId(lookupType(I.getType())) << MkId(VMap[I.getOperand(0)])
3681 << MkId(VMap[I.getOperand(1)]);
David Neto22f144c2017-06-12 14:26:21 -04003682
David Neto87846742018-04-11 17:36:22 -04003683 auto *Inst =
3684 new SPIRVInstruction(GetSPIRVBinaryOpcode(I), nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003685 SPIRVInstList.push_back(Inst);
3686 }
3687 } else {
3688 I.print(errs());
3689 llvm_unreachable("Unsupported instruction???");
3690 }
3691 break;
3692 }
3693 case Instruction::GetElementPtr: {
3694 auto &GlobalConstArgSet = getGlobalConstArgSet();
3695
3696 //
3697 // Generate OpAccessChain.
3698 //
3699 GetElementPtrInst *GEP = cast<GetElementPtrInst>(&I);
3700
3701 //
3702 // Generate OpAccessChain.
3703 //
3704
3705 // Ops[0] = Result Type ID
3706 // Ops[1] = Base ID
3707 // Ops[2] ... Ops[n] = Indexes ID
3708 SPIRVOperandList Ops;
3709
David Neto1a1a0582017-07-07 12:01:44 -04003710 PointerType* ResultType = cast<PointerType>(GEP->getType());
David Neto22f144c2017-06-12 14:26:21 -04003711 if (GEP->getPointerAddressSpace() == AddressSpace::ModuleScopePrivate ||
3712 GlobalConstArgSet.count(GEP->getPointerOperand())) {
3713 // Use pointer type with private address space for global constant.
3714 Type *EleTy = I.getType()->getPointerElementType();
David Neto1a1a0582017-07-07 12:01:44 -04003715 ResultType = PointerType::get(EleTy, AddressSpace::ModuleScopePrivate);
David Neto22f144c2017-06-12 14:26:21 -04003716 }
David Neto257c3892018-04-11 13:19:45 -04003717
3718 Ops << MkId(lookupType(ResultType));
David Neto22f144c2017-06-12 14:26:21 -04003719
David Neto862b7d82018-06-14 18:48:37 -04003720 // Generate the base pointer.
3721 Ops << MkId(VMap[GEP->getPointerOperand()]);
David Neto22f144c2017-06-12 14:26:21 -04003722
David Neto862b7d82018-06-14 18:48:37 -04003723 // TODO(dneto): Simplify the following?
David Neto22f144c2017-06-12 14:26:21 -04003724
3725 //
3726 // Follows below rules for gep.
3727 //
David Neto862b7d82018-06-14 18:48:37 -04003728 // 1. If gep's first index is 0 generate OpAccessChain and ignore gep's
3729 // first index.
David Neto22f144c2017-06-12 14:26:21 -04003730 // 2. If gep's first index is not 0, generate OpPtrAccessChain and use gep's
3731 // first index.
3732 // 3. If gep's first index is not constant, generate OpPtrAccessChain and
3733 // use gep's first index.
3734 // 4. If it is not above case 1, 2 and 3, generate OpAccessChain and use
3735 // gep's first index.
3736 //
3737 spv::Op Opcode = spv::OpAccessChain;
3738 unsigned offset = 0;
3739 if (ConstantInt *CstInt = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
David Neto862b7d82018-06-14 18:48:37 -04003740 if (CstInt->getZExtValue() == 0) {
David Neto22f144c2017-06-12 14:26:21 -04003741 offset = 1;
David Neto862b7d82018-06-14 18:48:37 -04003742 } else if (CstInt->getZExtValue() != 0) {
David Neto22f144c2017-06-12 14:26:21 -04003743 Opcode = spv::OpPtrAccessChain;
David Neto22f144c2017-06-12 14:26:21 -04003744 }
David Neto862b7d82018-06-14 18:48:37 -04003745 } else {
David Neto22f144c2017-06-12 14:26:21 -04003746 Opcode = spv::OpPtrAccessChain;
David Neto1a1a0582017-07-07 12:01:44 -04003747 }
3748
3749 if (Opcode == spv::OpPtrAccessChain) {
David Neto22f144c2017-06-12 14:26:21 -04003750 setVariablePointers(true);
David Neto1a1a0582017-07-07 12:01:44 -04003751 // Do we need to generate ArrayStride? Check against the GEP result type
3752 // rather than the pointer type of the base because when indexing into
3753 // an OpenCL program-scope constant, we'll swap out the LLVM base pointer
3754 // for something else in the SPIR-V.
3755 // E.g. see test/PointerAccessChain/pointer_index_is_constant_1.cl
Alan Bakerfcda9482018-10-02 17:09:59 -04003756 switch (GetStorageClass(ResultType->getAddressSpace())) {
3757 case spv::StorageClassStorageBuffer:
3758 case spv::StorageClassUniform:
David Neto1a1a0582017-07-07 12:01:44 -04003759 // Save the need to generate an ArrayStride decoration. But defer
3760 // generation until later, so we only make one decoration.
David Neto85082642018-03-24 06:55:20 -07003761 getTypesNeedingArrayStride().insert(ResultType);
Alan Bakerfcda9482018-10-02 17:09:59 -04003762 break;
3763 default:
3764 break;
David Neto1a1a0582017-07-07 12:01:44 -04003765 }
David Neto22f144c2017-06-12 14:26:21 -04003766 }
3767
3768 for (auto II = GEP->idx_begin() + offset; II != GEP->idx_end(); II++) {
David Neto257c3892018-04-11 13:19:45 -04003769 Ops << MkId(VMap[*II]);
David Neto22f144c2017-06-12 14:26:21 -04003770 }
3771
David Neto87846742018-04-11 17:36:22 -04003772 auto *Inst = new SPIRVInstruction(Opcode, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003773 SPIRVInstList.push_back(Inst);
3774 break;
3775 }
3776 case Instruction::ExtractValue: {
3777 ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
3778 // Ops[0] = Result Type ID
3779 // Ops[1] = Composite ID
3780 // Ops[2] ... Ops[n] = Indexes (Literal Number)
3781 SPIRVOperandList Ops;
3782
David Neto257c3892018-04-11 13:19:45 -04003783 Ops << MkId(lookupType(I.getType()));
David Neto22f144c2017-06-12 14:26:21 -04003784
3785 uint32_t CompositeID = VMap[EVI->getAggregateOperand()];
David Neto257c3892018-04-11 13:19:45 -04003786 Ops << MkId(CompositeID);
David Neto22f144c2017-06-12 14:26:21 -04003787
3788 for (auto &Index : EVI->indices()) {
David Neto257c3892018-04-11 13:19:45 -04003789 Ops << MkNum(Index);
David Neto22f144c2017-06-12 14:26:21 -04003790 }
3791
David Neto87846742018-04-11 17:36:22 -04003792 auto *Inst = new SPIRVInstruction(spv::OpCompositeExtract, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003793 SPIRVInstList.push_back(Inst);
3794 break;
3795 }
3796 case Instruction::InsertValue: {
3797 InsertValueInst *IVI = cast<InsertValueInst>(&I);
3798 // Ops[0] = Result Type ID
3799 // Ops[1] = Object ID
3800 // Ops[2] = Composite ID
3801 // Ops[3] ... Ops[n] = Indexes (Literal Number)
3802 SPIRVOperandList Ops;
3803
3804 uint32_t ResTyID = lookupType(I.getType());
David Neto257c3892018-04-11 13:19:45 -04003805 Ops << MkId(ResTyID);
David Neto22f144c2017-06-12 14:26:21 -04003806
3807 uint32_t ObjectID = VMap[IVI->getInsertedValueOperand()];
David Neto257c3892018-04-11 13:19:45 -04003808 Ops << MkId(ObjectID);
David Neto22f144c2017-06-12 14:26:21 -04003809
3810 uint32_t CompositeID = VMap[IVI->getAggregateOperand()];
David Neto257c3892018-04-11 13:19:45 -04003811 Ops << MkId(CompositeID);
David Neto22f144c2017-06-12 14:26:21 -04003812
3813 for (auto &Index : IVI->indices()) {
David Neto257c3892018-04-11 13:19:45 -04003814 Ops << MkNum(Index);
David Neto22f144c2017-06-12 14:26:21 -04003815 }
3816
David Neto87846742018-04-11 17:36:22 -04003817 auto *Inst = new SPIRVInstruction(spv::OpCompositeInsert, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003818 SPIRVInstList.push_back(Inst);
3819 break;
3820 }
3821 case Instruction::Select: {
3822 //
3823 // Generate OpSelect.
3824 //
3825
3826 // Ops[0] = Result Type ID
3827 // Ops[1] = Condition ID
3828 // Ops[2] = True Constant ID
3829 // Ops[3] = False Constant ID
3830 SPIRVOperandList Ops;
3831
3832 // Find SPIRV instruction for parameter type.
3833 auto Ty = I.getType();
3834 if (Ty->isPointerTy()) {
3835 auto PointeeTy = Ty->getPointerElementType();
3836 if (PointeeTy->isStructTy() &&
3837 dyn_cast<StructType>(PointeeTy)->isOpaque()) {
3838 Ty = PointeeTy;
3839 }
3840 }
3841
David Neto257c3892018-04-11 13:19:45 -04003842 Ops << MkId(lookupType(Ty)) << MkId(VMap[I.getOperand(0)])
3843 << MkId(VMap[I.getOperand(1)]) << MkId(VMap[I.getOperand(2)]);
David Neto22f144c2017-06-12 14:26:21 -04003844
David Neto87846742018-04-11 17:36:22 -04003845 auto *Inst = new SPIRVInstruction(spv::OpSelect, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003846 SPIRVInstList.push_back(Inst);
3847 break;
3848 }
3849 case Instruction::ExtractElement: {
3850 // Handle <4 x i8> type manually.
3851 Type *CompositeTy = I.getOperand(0)->getType();
3852 if (is4xi8vec(CompositeTy)) {
3853 //
3854 // Generate OpShiftRightLogical and OpBitwiseAnd for extractelement with
3855 // <4 x i8>.
3856 //
3857
3858 //
3859 // Generate OpShiftRightLogical
3860 //
3861 // Ops[0] = Result Type ID
3862 // Ops[1] = Operand 0
3863 // Ops[2] = Operand 1
3864 //
3865 SPIRVOperandList Ops;
3866
David Neto257c3892018-04-11 13:19:45 -04003867 Ops << MkId(lookupType(CompositeTy));
David Neto22f144c2017-06-12 14:26:21 -04003868
3869 uint32_t Op0ID = VMap[I.getOperand(0)];
David Neto257c3892018-04-11 13:19:45 -04003870 Ops << MkId(Op0ID);
David Neto22f144c2017-06-12 14:26:21 -04003871
3872 uint32_t Op1ID = 0;
3873 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
3874 // Handle constant index.
3875 uint64_t Idx = CI->getZExtValue();
3876 Value *ShiftAmount =
3877 ConstantInt::get(Type::getInt32Ty(Context), Idx * 8);
3878 Op1ID = VMap[ShiftAmount];
3879 } else {
3880 // Handle variable index.
3881 SPIRVOperandList TmpOps;
3882
David Neto257c3892018-04-11 13:19:45 -04003883 TmpOps << MkId(lookupType(Type::getInt32Ty(Context)))
3884 << MkId(VMap[I.getOperand(1)]);
David Neto22f144c2017-06-12 14:26:21 -04003885
3886 ConstantInt *Cst8 = ConstantInt::get(Type::getInt32Ty(Context), 8);
David Neto257c3892018-04-11 13:19:45 -04003887 TmpOps << MkId(VMap[Cst8]);
David Neto22f144c2017-06-12 14:26:21 -04003888
3889 Op1ID = nextID;
3890
David Neto87846742018-04-11 17:36:22 -04003891 auto *TmpInst = new SPIRVInstruction(spv::OpIMul, nextID++, TmpOps);
David Neto22f144c2017-06-12 14:26:21 -04003892 SPIRVInstList.push_back(TmpInst);
3893 }
David Neto257c3892018-04-11 13:19:45 -04003894 Ops << MkId(Op1ID);
David Neto22f144c2017-06-12 14:26:21 -04003895
3896 uint32_t ShiftID = nextID;
3897
David Neto87846742018-04-11 17:36:22 -04003898 auto *Inst =
3899 new SPIRVInstruction(spv::OpShiftRightLogical, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003900 SPIRVInstList.push_back(Inst);
3901
3902 //
3903 // Generate OpBitwiseAnd
3904 //
3905 // Ops[0] = Result Type ID
3906 // Ops[1] = Operand 0
3907 // Ops[2] = Operand 1
3908 //
3909 Ops.clear();
3910
David Neto257c3892018-04-11 13:19:45 -04003911 Ops << MkId(lookupType(CompositeTy)) << MkId(ShiftID);
David Neto22f144c2017-06-12 14:26:21 -04003912
3913 Constant *CstFF = ConstantInt::get(Type::getInt32Ty(Context), 0xFF);
David Neto257c3892018-04-11 13:19:45 -04003914 Ops << MkId(VMap[CstFF]);
David Neto22f144c2017-06-12 14:26:21 -04003915
David Neto9b2d6252017-09-06 15:47:37 -04003916 // Reset mapping for this value to the result of the bitwise and.
3917 VMap[&I] = nextID;
3918
David Neto87846742018-04-11 17:36:22 -04003919 Inst = new SPIRVInstruction(spv::OpBitwiseAnd, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003920 SPIRVInstList.push_back(Inst);
3921 break;
3922 }
3923
3924 // Ops[0] = Result Type ID
3925 // Ops[1] = Composite ID
3926 // Ops[2] ... Ops[n] = Indexes (Literal Number)
3927 SPIRVOperandList Ops;
3928
David Neto257c3892018-04-11 13:19:45 -04003929 Ops << MkId(lookupType(I.getType())) << MkId(VMap[I.getOperand(0)]);
David Neto22f144c2017-06-12 14:26:21 -04003930
3931 spv::Op Opcode = spv::OpCompositeExtract;
3932 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
David Neto257c3892018-04-11 13:19:45 -04003933 Ops << MkNum(static_cast<uint32_t>(CI->getZExtValue()));
David Neto22f144c2017-06-12 14:26:21 -04003934 } else {
David Neto257c3892018-04-11 13:19:45 -04003935 Ops << MkId(VMap[I.getOperand(1)]);
David Neto22f144c2017-06-12 14:26:21 -04003936 Opcode = spv::OpVectorExtractDynamic;
3937 }
3938
David Neto87846742018-04-11 17:36:22 -04003939 auto *Inst = new SPIRVInstruction(Opcode, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003940 SPIRVInstList.push_back(Inst);
3941 break;
3942 }
3943 case Instruction::InsertElement: {
3944 // Handle <4 x i8> type manually.
3945 Type *CompositeTy = I.getOperand(0)->getType();
3946 if (is4xi8vec(CompositeTy)) {
3947 Constant *CstFF = ConstantInt::get(Type::getInt32Ty(Context), 0xFF);
3948 uint32_t CstFFID = VMap[CstFF];
3949
3950 uint32_t ShiftAmountID = 0;
3951 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2))) {
3952 // Handle constant index.
3953 uint64_t Idx = CI->getZExtValue();
3954 Value *ShiftAmount =
3955 ConstantInt::get(Type::getInt32Ty(Context), Idx * 8);
3956 ShiftAmountID = VMap[ShiftAmount];
3957 } else {
3958 // Handle variable index.
3959 SPIRVOperandList TmpOps;
3960
David Neto257c3892018-04-11 13:19:45 -04003961 TmpOps << MkId(lookupType(Type::getInt32Ty(Context)))
3962 << MkId(VMap[I.getOperand(2)]);
David Neto22f144c2017-06-12 14:26:21 -04003963
3964 ConstantInt *Cst8 = ConstantInt::get(Type::getInt32Ty(Context), 8);
David Neto257c3892018-04-11 13:19:45 -04003965 TmpOps << MkId(VMap[Cst8]);
David Neto22f144c2017-06-12 14:26:21 -04003966
3967 ShiftAmountID = nextID;
3968
David Neto87846742018-04-11 17:36:22 -04003969 auto *TmpInst = new SPIRVInstruction(spv::OpIMul, nextID++, TmpOps);
David Neto22f144c2017-06-12 14:26:21 -04003970 SPIRVInstList.push_back(TmpInst);
3971 }
3972
3973 //
3974 // Generate mask operations.
3975 //
3976
3977 // ShiftLeft mask according to index of insertelement.
3978 SPIRVOperandList Ops;
3979
David Neto257c3892018-04-11 13:19:45 -04003980 const uint32_t ResTyID = lookupType(CompositeTy);
3981 Ops << MkId(ResTyID) << MkId(CstFFID) << MkId(ShiftAmountID);
David Neto22f144c2017-06-12 14:26:21 -04003982
3983 uint32_t MaskID = nextID;
3984
David Neto87846742018-04-11 17:36:22 -04003985 auto *Inst = new SPIRVInstruction(spv::OpShiftLeftLogical, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003986 SPIRVInstList.push_back(Inst);
3987
3988 // Inverse mask.
3989 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003990 Ops << MkId(ResTyID) << MkId(MaskID);
David Neto22f144c2017-06-12 14:26:21 -04003991
3992 uint32_t InvMaskID = nextID;
3993
David Neto87846742018-04-11 17:36:22 -04003994 Inst = new SPIRVInstruction(spv::OpNot, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003995 SPIRVInstList.push_back(Inst);
3996
3997 // Apply mask.
3998 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003999 Ops << MkId(ResTyID) << MkId(VMap[I.getOperand(0)]) << MkId(InvMaskID);
David Neto22f144c2017-06-12 14:26:21 -04004000
4001 uint32_t OrgValID = nextID;
4002
David Neto87846742018-04-11 17:36:22 -04004003 Inst = new SPIRVInstruction(spv::OpBitwiseAnd, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004004 SPIRVInstList.push_back(Inst);
4005
4006 // Create correct value according to index of insertelement.
4007 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04004008 Ops << MkId(ResTyID) << MkId(VMap[I.getOperand(1)]) << MkId(ShiftAmountID);
David Neto22f144c2017-06-12 14:26:21 -04004009
4010 uint32_t InsertValID = nextID;
4011
David Neto87846742018-04-11 17:36:22 -04004012 Inst = new SPIRVInstruction(spv::OpShiftLeftLogical, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004013 SPIRVInstList.push_back(Inst);
4014
4015 // Insert value to original value.
4016 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04004017 Ops << MkId(ResTyID) << MkId(OrgValID) << MkId(InsertValID);
David Neto22f144c2017-06-12 14:26:21 -04004018
David Netoa394f392017-08-26 20:45:29 -04004019 VMap[&I] = nextID;
4020
David Neto87846742018-04-11 17:36:22 -04004021 Inst = new SPIRVInstruction(spv::OpBitwiseOr, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004022 SPIRVInstList.push_back(Inst);
4023
4024 break;
4025 }
4026
David Neto22f144c2017-06-12 14:26:21 -04004027 SPIRVOperandList Ops;
4028
James Priced26efea2018-06-09 23:28:32 +01004029 // Ops[0] = Result Type ID
4030 Ops << MkId(lookupType(I.getType()));
David Neto22f144c2017-06-12 14:26:21 -04004031
4032 spv::Op Opcode = spv::OpCompositeInsert;
4033 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2))) {
David Neto257c3892018-04-11 13:19:45 -04004034 const auto value = CI->getZExtValue();
4035 assert(value <= UINT32_MAX);
James Priced26efea2018-06-09 23:28:32 +01004036 // Ops[1] = Object ID
4037 // Ops[2] = Composite ID
4038 // Ops[3] ... Ops[n] = Indexes (Literal Number)
4039 Ops << MkId(VMap[I.getOperand(1)])
4040 << MkId(VMap[I.getOperand(0)])
4041 << MkNum(static_cast<uint32_t>(value));
David Neto22f144c2017-06-12 14:26:21 -04004042 } else {
James Priced26efea2018-06-09 23:28:32 +01004043 // Ops[1] = Composite ID
4044 // Ops[2] = Object ID
4045 // Ops[3] ... Ops[n] = Indexes (Literal Number)
4046 Ops << MkId(VMap[I.getOperand(0)])
4047 << MkId(VMap[I.getOperand(1)])
4048 << MkId(VMap[I.getOperand(2)]);
David Neto22f144c2017-06-12 14:26:21 -04004049 Opcode = spv::OpVectorInsertDynamic;
4050 }
4051
David Neto87846742018-04-11 17:36:22 -04004052 auto *Inst = new SPIRVInstruction(Opcode, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004053 SPIRVInstList.push_back(Inst);
4054 break;
4055 }
4056 case Instruction::ShuffleVector: {
4057 // Ops[0] = Result Type ID
4058 // Ops[1] = Vector 1 ID
4059 // Ops[2] = Vector 2 ID
4060 // Ops[3] ... Ops[n] = Components (Literal Number)
4061 SPIRVOperandList Ops;
4062
David Neto257c3892018-04-11 13:19:45 -04004063 Ops << MkId(lookupType(I.getType())) << MkId(VMap[I.getOperand(0)])
4064 << MkId(VMap[I.getOperand(1)]);
David Neto22f144c2017-06-12 14:26:21 -04004065
4066 uint64_t NumElements = 0;
4067 if (Constant *Cst = dyn_cast<Constant>(I.getOperand(2))) {
4068 NumElements = cast<VectorType>(Cst->getType())->getNumElements();
4069
4070 if (Cst->isNullValue()) {
4071 for (unsigned i = 0; i < NumElements; i++) {
David Neto257c3892018-04-11 13:19:45 -04004072 Ops << MkNum(0);
David Neto22f144c2017-06-12 14:26:21 -04004073 }
4074 } else if (const ConstantDataSequential *CDS =
4075 dyn_cast<ConstantDataSequential>(Cst)) {
4076 for (unsigned i = 0; i < CDS->getNumElements(); i++) {
4077 std::vector<uint32_t> LiteralNum;
David Neto257c3892018-04-11 13:19:45 -04004078 const auto value = CDS->getElementAsInteger(i);
4079 assert(value <= UINT32_MAX);
4080 Ops << MkNum(static_cast<uint32_t>(value));
David Neto22f144c2017-06-12 14:26:21 -04004081 }
4082 } else if (const ConstantVector *CV = dyn_cast<ConstantVector>(Cst)) {
4083 for (unsigned i = 0; i < CV->getNumOperands(); i++) {
4084 auto Op = CV->getOperand(i);
4085
4086 uint32_t literal = 0;
4087
4088 if (auto CI = dyn_cast<ConstantInt>(Op)) {
4089 literal = static_cast<uint32_t>(CI->getZExtValue());
4090 } else if (auto UI = dyn_cast<UndefValue>(Op)) {
4091 literal = 0xFFFFFFFFu;
4092 } else {
4093 Op->print(errs());
4094 llvm_unreachable("Unsupported element in ConstantVector!");
4095 }
4096
David Neto257c3892018-04-11 13:19:45 -04004097 Ops << MkNum(literal);
David Neto22f144c2017-06-12 14:26:21 -04004098 }
4099 } else {
4100 Cst->print(errs());
4101 llvm_unreachable("Unsupported constant mask in ShuffleVector!");
4102 }
4103 }
4104
David Neto87846742018-04-11 17:36:22 -04004105 auto *Inst = new SPIRVInstruction(spv::OpVectorShuffle, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004106 SPIRVInstList.push_back(Inst);
4107 break;
4108 }
4109 case Instruction::ICmp:
4110 case Instruction::FCmp: {
4111 CmpInst *CmpI = cast<CmpInst>(&I);
4112
David Netod4ca2e62017-07-06 18:47:35 -04004113 // Pointer equality is invalid.
4114 Type* ArgTy = CmpI->getOperand(0)->getType();
4115 if (isa<PointerType>(ArgTy)) {
4116 CmpI->print(errs());
4117 std::string name = I.getParent()->getParent()->getName();
4118 errs()
4119 << "\nPointer equality test is not supported by SPIR-V for Vulkan, "
4120 << "in function " << name << "\n";
4121 llvm_unreachable("Pointer equality check is invalid");
4122 break;
4123 }
4124
David Neto257c3892018-04-11 13:19:45 -04004125 // Ops[0] = Result Type ID
4126 // Ops[1] = Operand 1 ID
4127 // Ops[2] = Operand 2 ID
4128 SPIRVOperandList Ops;
David Neto22f144c2017-06-12 14:26:21 -04004129
David Neto257c3892018-04-11 13:19:45 -04004130 Ops << MkId(lookupType(CmpI->getType())) << MkId(VMap[CmpI->getOperand(0)])
4131 << MkId(VMap[CmpI->getOperand(1)]);
David Neto22f144c2017-06-12 14:26:21 -04004132
4133 spv::Op Opcode = GetSPIRVCmpOpcode(CmpI);
David Neto87846742018-04-11 17:36:22 -04004134 auto *Inst = new SPIRVInstruction(Opcode, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004135 SPIRVInstList.push_back(Inst);
4136 break;
4137 }
4138 case Instruction::Br: {
4139 // Branch instrucion is deferred because it needs label's ID. Record slot's
4140 // location on SPIRVInstructionList.
4141 DeferredInsts.push_back(
4142 std::make_tuple(&I, --SPIRVInstList.end(), 0 /* No id */));
4143 break;
4144 }
4145 case Instruction::Switch: {
4146 I.print(errs());
4147 llvm_unreachable("Unsupported instruction???");
4148 break;
4149 }
4150 case Instruction::IndirectBr: {
4151 I.print(errs());
4152 llvm_unreachable("Unsupported instruction???");
4153 break;
4154 }
4155 case Instruction::PHI: {
4156 // Branch instrucion is deferred because it needs label's ID. Record slot's
4157 // location on SPIRVInstructionList.
4158 DeferredInsts.push_back(
4159 std::make_tuple(&I, --SPIRVInstList.end(), nextID++));
4160 break;
4161 }
4162 case Instruction::Alloca: {
4163 //
4164 // Generate OpVariable.
4165 //
4166 // Ops[0] : Result Type ID
4167 // Ops[1] : Storage Class
4168 SPIRVOperandList Ops;
4169
David Neto257c3892018-04-11 13:19:45 -04004170 Ops << MkId(lookupType(I.getType())) << MkNum(spv::StorageClassFunction);
David Neto22f144c2017-06-12 14:26:21 -04004171
David Neto87846742018-04-11 17:36:22 -04004172 auto *Inst = new SPIRVInstruction(spv::OpVariable, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004173 SPIRVInstList.push_back(Inst);
4174 break;
4175 }
4176 case Instruction::Load: {
4177 LoadInst *LD = cast<LoadInst>(&I);
4178 //
4179 // Generate OpLoad.
4180 //
4181
David Neto0a2f98d2017-09-15 19:38:40 -04004182 uint32_t ResTyID = lookupType(LD->getType());
David Netoa60b00b2017-09-15 16:34:09 -04004183 uint32_t PointerID = VMap[LD->getPointerOperand()];
4184
4185 // This is a hack to work around what looks like a driver bug.
4186 // When we're loading from the special variable holding the WorkgroupSize
David Neto0a2f98d2017-09-15 19:38:40 -04004187 // builtin value, use an OpBitWiseAnd of the value's ID rather than
4188 // generating a load.
David Neto66cfe642018-03-24 06:13:56 -07004189 // TODO(dneto): Remove this awful hack once drivers are fixed.
David Netoa60b00b2017-09-15 16:34:09 -04004190 if (PointerID == WorkgroupSizeVarID) {
David Neto0a2f98d2017-09-15 19:38:40 -04004191 // Generate a bitwise-and of the original value with itself.
4192 // We should have been able to get away with just an OpCopyObject,
4193 // but we need something more complex to get past certain driver bugs.
4194 // This is ridiculous, but necessary.
4195 // TODO(dneto): Revisit this once drivers fix their bugs.
4196
4197 SPIRVOperandList Ops;
David Neto257c3892018-04-11 13:19:45 -04004198 Ops << MkId(ResTyID) << MkId(WorkgroupSizeValueID)
4199 << MkId(WorkgroupSizeValueID);
David Neto0a2f98d2017-09-15 19:38:40 -04004200
David Neto87846742018-04-11 17:36:22 -04004201 auto *Inst = new SPIRVInstruction(spv::OpBitwiseAnd, nextID++, Ops);
David Neto0a2f98d2017-09-15 19:38:40 -04004202 SPIRVInstList.push_back(Inst);
David Netoa60b00b2017-09-15 16:34:09 -04004203 break;
4204 }
4205
4206 // This is the normal path. Generate a load.
4207
David Neto22f144c2017-06-12 14:26:21 -04004208 // Ops[0] = Result Type ID
4209 // Ops[1] = Pointer ID
4210 // Ops[2] ... Ops[n] = Optional Memory Access
4211 //
4212 // TODO: Do we need to implement Optional Memory Access???
David Neto0a2f98d2017-09-15 19:38:40 -04004213
David Neto22f144c2017-06-12 14:26:21 -04004214 SPIRVOperandList Ops;
David Neto257c3892018-04-11 13:19:45 -04004215 Ops << MkId(ResTyID) << MkId(PointerID);
David Neto22f144c2017-06-12 14:26:21 -04004216
David Neto87846742018-04-11 17:36:22 -04004217 auto *Inst = new SPIRVInstruction(spv::OpLoad, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004218 SPIRVInstList.push_back(Inst);
4219 break;
4220 }
4221 case Instruction::Store: {
4222 StoreInst *ST = cast<StoreInst>(&I);
4223 //
4224 // Generate OpStore.
4225 //
4226
4227 // Ops[0] = Pointer ID
4228 // Ops[1] = Object ID
4229 // Ops[2] ... Ops[n] = Optional Memory Access (later???)
4230 //
4231 // TODO: Do we need to implement Optional Memory Access???
David Neto257c3892018-04-11 13:19:45 -04004232 SPIRVOperandList Ops;
4233 Ops << MkId(VMap[ST->getPointerOperand()])
4234 << MkId(VMap[ST->getValueOperand()]);
David Neto22f144c2017-06-12 14:26:21 -04004235
David Neto87846742018-04-11 17:36:22 -04004236 auto *Inst = new SPIRVInstruction(spv::OpStore, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004237 SPIRVInstList.push_back(Inst);
4238 break;
4239 }
4240 case Instruction::AtomicCmpXchg: {
4241 I.print(errs());
4242 llvm_unreachable("Unsupported instruction???");
4243 break;
4244 }
4245 case Instruction::AtomicRMW: {
Neil Henning39672102017-09-29 14:33:13 +01004246 AtomicRMWInst *AtomicRMW = dyn_cast<AtomicRMWInst>(&I);
4247
4248 spv::Op opcode;
4249
4250 switch (AtomicRMW->getOperation()) {
4251 default:
4252 I.print(errs());
4253 llvm_unreachable("Unsupported instruction???");
4254 case llvm::AtomicRMWInst::Add:
4255 opcode = spv::OpAtomicIAdd;
4256 break;
4257 case llvm::AtomicRMWInst::Sub:
4258 opcode = spv::OpAtomicISub;
4259 break;
4260 case llvm::AtomicRMWInst::Xchg:
4261 opcode = spv::OpAtomicExchange;
4262 break;
4263 case llvm::AtomicRMWInst::Min:
4264 opcode = spv::OpAtomicSMin;
4265 break;
4266 case llvm::AtomicRMWInst::Max:
4267 opcode = spv::OpAtomicSMax;
4268 break;
4269 case llvm::AtomicRMWInst::UMin:
4270 opcode = spv::OpAtomicUMin;
4271 break;
4272 case llvm::AtomicRMWInst::UMax:
4273 opcode = spv::OpAtomicUMax;
4274 break;
4275 case llvm::AtomicRMWInst::And:
4276 opcode = spv::OpAtomicAnd;
4277 break;
4278 case llvm::AtomicRMWInst::Or:
4279 opcode = spv::OpAtomicOr;
4280 break;
4281 case llvm::AtomicRMWInst::Xor:
4282 opcode = spv::OpAtomicXor;
4283 break;
4284 }
4285
4286 //
4287 // Generate OpAtomic*.
4288 //
4289 SPIRVOperandList Ops;
4290
David Neto257c3892018-04-11 13:19:45 -04004291 Ops << MkId(lookupType(I.getType()))
4292 << MkId(VMap[AtomicRMW->getPointerOperand()]);
Neil Henning39672102017-09-29 14:33:13 +01004293
4294 auto IntTy = Type::getInt32Ty(I.getContext());
Neil Henning39672102017-09-29 14:33:13 +01004295 const auto ConstantScopeDevice = ConstantInt::get(IntTy, spv::ScopeDevice);
David Neto257c3892018-04-11 13:19:45 -04004296 Ops << MkId(VMap[ConstantScopeDevice]);
Neil Henning39672102017-09-29 14:33:13 +01004297
4298 const auto ConstantMemorySemantics = ConstantInt::get(
4299 IntTy, spv::MemorySemanticsUniformMemoryMask |
4300 spv::MemorySemanticsSequentiallyConsistentMask);
David Neto257c3892018-04-11 13:19:45 -04004301 Ops << MkId(VMap[ConstantMemorySemantics]);
Neil Henning39672102017-09-29 14:33:13 +01004302
David Neto257c3892018-04-11 13:19:45 -04004303 Ops << MkId(VMap[AtomicRMW->getValOperand()]);
Neil Henning39672102017-09-29 14:33:13 +01004304
4305 VMap[&I] = nextID;
4306
David Neto87846742018-04-11 17:36:22 -04004307 auto *Inst = new SPIRVInstruction(opcode, nextID++, Ops);
Neil Henning39672102017-09-29 14:33:13 +01004308 SPIRVInstList.push_back(Inst);
David Neto22f144c2017-06-12 14:26:21 -04004309 break;
4310 }
4311 case Instruction::Fence: {
4312 I.print(errs());
4313 llvm_unreachable("Unsupported instruction???");
4314 break;
4315 }
4316 case Instruction::Call: {
4317 CallInst *Call = dyn_cast<CallInst>(&I);
4318 Function *Callee = Call->getCalledFunction();
4319
Alan Baker202c8c72018-08-13 13:47:44 -04004320 if (Callee->getName().startswith(clspv::ResourceAccessorFunction())) {
David Neto862b7d82018-06-14 18:48:37 -04004321 if (ResourceVarDeferredLoadCalls.count(Call) && Call->hasNUsesOrMore(1)) {
4322 // Generate an OpLoad
4323 SPIRVOperandList Ops;
4324 const auto load_id = nextID++;
David Neto22f144c2017-06-12 14:26:21 -04004325
David Neto862b7d82018-06-14 18:48:37 -04004326 Ops << MkId(lookupType(Call->getType()->getPointerElementType()))
4327 << MkId(ResourceVarDeferredLoadCalls[Call]);
4328
4329 auto *Inst = new SPIRVInstruction(spv::OpLoad, load_id, Ops);
4330 SPIRVInstList.push_back(Inst);
4331 VMap[Call] = load_id;
4332 break;
4333
4334 } else {
4335 // This maps to an OpVariable we've already generated.
4336 // No code is generated for the call.
4337 }
4338 break;
Alan Baker202c8c72018-08-13 13:47:44 -04004339 } else if (Callee->getName().startswith(clspv::WorkgroupAccessorFunction())) {
4340 // Don't codegen an instruction here, but instead map this call directly
4341 // to the workgroup variable id.
Radek Szymanskibe4b0c42018-10-04 22:20:53 +01004342 int spec_id = static_cast<int>(cast<ConstantInt>(Call->getOperand(0))->getSExtValue());
Alan Baker202c8c72018-08-13 13:47:44 -04004343 const auto &info = LocalSpecIdInfoMap[spec_id];
4344 VMap[Call] = info.variable_id;
4345 break;
David Neto862b7d82018-06-14 18:48:37 -04004346 }
4347
4348 // Sampler initializers become a load of the corresponding sampler.
4349
4350 if (Callee->getName().equals("clspv.sampler.var.literal")) {
4351 // Map this to a load from the variable.
4352 const auto index_into_sampler_map =
4353 dyn_cast<ConstantInt>(Call->getArgOperand(2))->getZExtValue();
4354
4355 // Generate an OpLoad
David Neto22f144c2017-06-12 14:26:21 -04004356 SPIRVOperandList Ops;
David Neto862b7d82018-06-14 18:48:37 -04004357 const auto load_id = nextID++;
David Neto22f144c2017-06-12 14:26:21 -04004358
David Neto257c3892018-04-11 13:19:45 -04004359 Ops << MkId(lookupType(SamplerTy->getPointerElementType()))
Radek Szymanskibe4b0c42018-10-04 22:20:53 +01004360 << MkId(SamplerMapIndexToIDMap[static_cast<unsigned>(index_into_sampler_map)]);
David Neto22f144c2017-06-12 14:26:21 -04004361
David Neto862b7d82018-06-14 18:48:37 -04004362 auto *Inst = new SPIRVInstruction(spv::OpLoad, load_id, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004363 SPIRVInstList.push_back(Inst);
David Neto862b7d82018-06-14 18:48:37 -04004364 VMap[Call] = load_id;
David Neto22f144c2017-06-12 14:26:21 -04004365 break;
4366 }
4367
4368 if (Callee->getName().startswith("spirv.atomic")) {
4369 spv::Op opcode = StringSwitch<spv::Op>(Callee->getName())
4370 .Case("spirv.atomic_add", spv::OpAtomicIAdd)
4371 .Case("spirv.atomic_sub", spv::OpAtomicISub)
4372 .Case("spirv.atomic_exchange", spv::OpAtomicExchange)
4373 .Case("spirv.atomic_inc", spv::OpAtomicIIncrement)
4374 .Case("spirv.atomic_dec", spv::OpAtomicIDecrement)
4375 .Case("spirv.atomic_compare_exchange",
4376 spv::OpAtomicCompareExchange)
4377 .Case("spirv.atomic_umin", spv::OpAtomicUMin)
4378 .Case("spirv.atomic_smin", spv::OpAtomicSMin)
4379 .Case("spirv.atomic_umax", spv::OpAtomicUMax)
4380 .Case("spirv.atomic_smax", spv::OpAtomicSMax)
4381 .Case("spirv.atomic_and", spv::OpAtomicAnd)
4382 .Case("spirv.atomic_or", spv::OpAtomicOr)
4383 .Case("spirv.atomic_xor", spv::OpAtomicXor)
4384 .Default(spv::OpNop);
4385
4386 //
4387 // Generate OpAtomic*.
4388 //
4389 SPIRVOperandList Ops;
4390
David Neto257c3892018-04-11 13:19:45 -04004391 Ops << MkId(lookupType(I.getType()));
David Neto22f144c2017-06-12 14:26:21 -04004392
4393 for (unsigned i = 0; i < Call->getNumArgOperands(); i++) {
David Neto257c3892018-04-11 13:19:45 -04004394 Ops << MkId(VMap[Call->getArgOperand(i)]);
David Neto22f144c2017-06-12 14:26:21 -04004395 }
4396
4397 VMap[&I] = nextID;
4398
David Neto87846742018-04-11 17:36:22 -04004399 auto *Inst = new SPIRVInstruction(opcode, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004400 SPIRVInstList.push_back(Inst);
4401 break;
4402 }
4403
4404 if (Callee->getName().startswith("_Z3dot")) {
4405 // If the argument is a vector type, generate OpDot
4406 if (Call->getArgOperand(0)->getType()->isVectorTy()) {
4407 //
4408 // Generate OpDot.
4409 //
4410 SPIRVOperandList Ops;
4411
David Neto257c3892018-04-11 13:19:45 -04004412 Ops << MkId(lookupType(I.getType()));
David Neto22f144c2017-06-12 14:26:21 -04004413
4414 for (unsigned i = 0; i < Call->getNumArgOperands(); i++) {
David Neto257c3892018-04-11 13:19:45 -04004415 Ops << MkId(VMap[Call->getArgOperand(i)]);
David Neto22f144c2017-06-12 14:26:21 -04004416 }
4417
4418 VMap[&I] = nextID;
4419
David Neto87846742018-04-11 17:36:22 -04004420 auto *Inst = new SPIRVInstruction(spv::OpDot, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004421 SPIRVInstList.push_back(Inst);
4422 } else {
4423 //
4424 // Generate OpFMul.
4425 //
4426 SPIRVOperandList Ops;
4427
David Neto257c3892018-04-11 13:19:45 -04004428 Ops << MkId(lookupType(I.getType()));
David Neto22f144c2017-06-12 14:26:21 -04004429
4430 for (unsigned i = 0; i < Call->getNumArgOperands(); i++) {
David Neto257c3892018-04-11 13:19:45 -04004431 Ops << MkId(VMap[Call->getArgOperand(i)]);
David Neto22f144c2017-06-12 14:26:21 -04004432 }
4433
4434 VMap[&I] = nextID;
4435
David Neto87846742018-04-11 17:36:22 -04004436 auto *Inst = new SPIRVInstruction(spv::OpFMul, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004437 SPIRVInstList.push_back(Inst);
4438 }
4439 break;
4440 }
4441
David Neto8505ebf2017-10-13 18:50:50 -04004442 if (Callee->getName().startswith("_Z4fmod")) {
4443 // OpenCL fmod(x,y) is x - y * trunc(x/y)
4444 // The sign for a non-zero result is taken from x.
4445 // (Try an example.)
4446 // So translate to OpFRem
4447
4448 SPIRVOperandList Ops;
4449
David Neto257c3892018-04-11 13:19:45 -04004450 Ops << MkId(lookupType(I.getType()));
David Neto8505ebf2017-10-13 18:50:50 -04004451
4452 for (unsigned i = 0; i < Call->getNumArgOperands(); i++) {
David Neto257c3892018-04-11 13:19:45 -04004453 Ops << MkId(VMap[Call->getArgOperand(i)]);
David Neto8505ebf2017-10-13 18:50:50 -04004454 }
4455
4456 VMap[&I] = nextID;
4457
David Neto87846742018-04-11 17:36:22 -04004458 auto *Inst = new SPIRVInstruction(spv::OpFRem, nextID++, Ops);
David Neto8505ebf2017-10-13 18:50:50 -04004459 SPIRVInstList.push_back(Inst);
4460 break;
4461 }
4462
David Neto22f144c2017-06-12 14:26:21 -04004463 // spirv.store_null.* intrinsics become OpStore's.
4464 if (Callee->getName().startswith("spirv.store_null")) {
4465 //
4466 // Generate OpStore.
4467 //
4468
4469 // Ops[0] = Pointer ID
4470 // Ops[1] = Object ID
4471 // Ops[2] ... Ops[n]
4472 SPIRVOperandList Ops;
4473
4474 uint32_t PointerID = VMap[Call->getArgOperand(0)];
David Neto22f144c2017-06-12 14:26:21 -04004475 uint32_t ObjectID = VMap[Call->getArgOperand(1)];
David Neto257c3892018-04-11 13:19:45 -04004476 Ops << MkId(PointerID) << MkId(ObjectID);
David Neto22f144c2017-06-12 14:26:21 -04004477
David Neto87846742018-04-11 17:36:22 -04004478 SPIRVInstList.push_back(new SPIRVInstruction(spv::OpStore, Ops));
David Neto22f144c2017-06-12 14:26:21 -04004479
4480 break;
4481 }
4482
4483 // spirv.copy_memory.* intrinsics become OpMemoryMemory's.
4484 if (Callee->getName().startswith("spirv.copy_memory")) {
4485 //
4486 // Generate OpCopyMemory.
4487 //
4488
4489 // Ops[0] = Dst ID
4490 // Ops[1] = Src ID
4491 // Ops[2] = Memory Access
4492 // Ops[3] = Alignment
4493
4494 auto IsVolatile =
4495 dyn_cast<ConstantInt>(Call->getArgOperand(3))->getZExtValue() != 0;
4496
4497 auto VolatileMemoryAccess = (IsVolatile) ? spv::MemoryAccessVolatileMask
4498 : spv::MemoryAccessMaskNone;
4499
4500 auto MemoryAccess = VolatileMemoryAccess | spv::MemoryAccessAlignedMask;
4501
4502 auto Alignment =
4503 dyn_cast<ConstantInt>(Call->getArgOperand(2))->getZExtValue();
4504
David Neto257c3892018-04-11 13:19:45 -04004505 SPIRVOperandList Ops;
4506 Ops << MkId(VMap[Call->getArgOperand(0)])
4507 << MkId(VMap[Call->getArgOperand(1)]) << MkNum(MemoryAccess)
4508 << MkNum(static_cast<uint32_t>(Alignment));
David Neto22f144c2017-06-12 14:26:21 -04004509
David Neto87846742018-04-11 17:36:22 -04004510 auto *Inst = new SPIRVInstruction(spv::OpCopyMemory, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004511
4512 SPIRVInstList.push_back(Inst);
4513
4514 break;
4515 }
4516
4517 // Nothing to do for abs with uint. Map abs's operand ID to VMap for abs
4518 // with unit.
4519 if (Callee->getName().equals("_Z3absj") ||
4520 Callee->getName().equals("_Z3absDv2_j") ||
4521 Callee->getName().equals("_Z3absDv3_j") ||
4522 Callee->getName().equals("_Z3absDv4_j")) {
4523 VMap[&I] = VMap[Call->getOperand(0)];
4524 break;
4525 }
4526
4527 // barrier is converted to OpControlBarrier
4528 if (Callee->getName().equals("__spirv_control_barrier")) {
4529 //
4530 // Generate OpControlBarrier.
4531 //
4532 // Ops[0] = Execution Scope ID
4533 // Ops[1] = Memory Scope ID
4534 // Ops[2] = Memory Semantics ID
4535 //
4536 Value *ExecutionScope = Call->getArgOperand(0);
4537 Value *MemoryScope = Call->getArgOperand(1);
4538 Value *MemorySemantics = Call->getArgOperand(2);
4539
David Neto257c3892018-04-11 13:19:45 -04004540 SPIRVOperandList Ops;
4541 Ops << MkId(VMap[ExecutionScope]) << MkId(VMap[MemoryScope])
4542 << MkId(VMap[MemorySemantics]);
David Neto22f144c2017-06-12 14:26:21 -04004543
David Neto87846742018-04-11 17:36:22 -04004544 SPIRVInstList.push_back(new SPIRVInstruction(spv::OpControlBarrier, Ops));
David Neto22f144c2017-06-12 14:26:21 -04004545 break;
4546 }
4547
4548 // memory barrier is converted to OpMemoryBarrier
4549 if (Callee->getName().equals("__spirv_memory_barrier")) {
4550 //
4551 // Generate OpMemoryBarrier.
4552 //
4553 // Ops[0] = Memory Scope ID
4554 // Ops[1] = Memory Semantics ID
4555 //
4556 SPIRVOperandList Ops;
4557
David Neto257c3892018-04-11 13:19:45 -04004558 uint32_t MemoryScopeID = VMap[Call->getArgOperand(0)];
4559 uint32_t MemorySemanticsID = VMap[Call->getArgOperand(1)];
David Neto22f144c2017-06-12 14:26:21 -04004560
David Neto257c3892018-04-11 13:19:45 -04004561 Ops << MkId(MemoryScopeID) << MkId(MemorySemanticsID);
David Neto22f144c2017-06-12 14:26:21 -04004562
David Neto87846742018-04-11 17:36:22 -04004563 auto *Inst = new SPIRVInstruction(spv::OpMemoryBarrier, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004564 SPIRVInstList.push_back(Inst);
4565 break;
4566 }
4567
4568 // isinf is converted to OpIsInf
4569 if (Callee->getName().equals("__spirv_isinff") ||
4570 Callee->getName().equals("__spirv_isinfDv2_f") ||
4571 Callee->getName().equals("__spirv_isinfDv3_f") ||
4572 Callee->getName().equals("__spirv_isinfDv4_f")) {
4573 //
4574 // Generate OpIsInf.
4575 //
4576 // Ops[0] = Result Type ID
4577 // Ops[1] = X ID
4578 //
4579 SPIRVOperandList Ops;
4580
David Neto257c3892018-04-11 13:19:45 -04004581 Ops << MkId(lookupType(I.getType()))
4582 << MkId(VMap[Call->getArgOperand(0)]);
David Neto22f144c2017-06-12 14:26:21 -04004583
4584 VMap[&I] = nextID;
4585
David Neto87846742018-04-11 17:36:22 -04004586 auto *Inst = new SPIRVInstruction(spv::OpIsInf, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004587 SPIRVInstList.push_back(Inst);
4588 break;
4589 }
4590
4591 // isnan is converted to OpIsNan
4592 if (Callee->getName().equals("__spirv_isnanf") ||
4593 Callee->getName().equals("__spirv_isnanDv2_f") ||
4594 Callee->getName().equals("__spirv_isnanDv3_f") ||
4595 Callee->getName().equals("__spirv_isnanDv4_f")) {
4596 //
4597 // Generate OpIsInf.
4598 //
4599 // Ops[0] = Result Type ID
4600 // Ops[1] = X ID
4601 //
4602 SPIRVOperandList Ops;
4603
David Neto257c3892018-04-11 13:19:45 -04004604 Ops << MkId(lookupType(I.getType()))
4605 << MkId(VMap[Call->getArgOperand(0)]);
David Neto22f144c2017-06-12 14:26:21 -04004606
4607 VMap[&I] = nextID;
4608
David Neto87846742018-04-11 17:36:22 -04004609 auto *Inst = new SPIRVInstruction(spv::OpIsNan, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004610 SPIRVInstList.push_back(Inst);
4611 break;
4612 }
4613
4614 // all is converted to OpAll
4615 if (Callee->getName().equals("__spirv_allDv2_i") ||
4616 Callee->getName().equals("__spirv_allDv3_i") ||
4617 Callee->getName().equals("__spirv_allDv4_i")) {
4618 //
4619 // Generate OpAll.
4620 //
4621 // Ops[0] = Result Type ID
4622 // Ops[1] = Vector ID
4623 //
4624 SPIRVOperandList Ops;
4625
David Neto257c3892018-04-11 13:19:45 -04004626 Ops << MkId(lookupType(I.getType()))
4627 << MkId(VMap[Call->getArgOperand(0)]);
David Neto22f144c2017-06-12 14:26:21 -04004628
4629 VMap[&I] = nextID;
4630
David Neto87846742018-04-11 17:36:22 -04004631 auto *Inst = new SPIRVInstruction(spv::OpAll, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004632 SPIRVInstList.push_back(Inst);
4633 break;
4634 }
4635
4636 // any is converted to OpAny
4637 if (Callee->getName().equals("__spirv_anyDv2_i") ||
4638 Callee->getName().equals("__spirv_anyDv3_i") ||
4639 Callee->getName().equals("__spirv_anyDv4_i")) {
4640 //
4641 // Generate OpAny.
4642 //
4643 // Ops[0] = Result Type ID
4644 // Ops[1] = Vector ID
4645 //
4646 SPIRVOperandList Ops;
4647
David Neto257c3892018-04-11 13:19:45 -04004648 Ops << MkId(lookupType(I.getType()))
4649 << MkId(VMap[Call->getArgOperand(0)]);
David Neto22f144c2017-06-12 14:26:21 -04004650
4651 VMap[&I] = nextID;
4652
David Neto87846742018-04-11 17:36:22 -04004653 auto *Inst = new SPIRVInstruction(spv::OpAny, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004654 SPIRVInstList.push_back(Inst);
4655 break;
4656 }
4657
4658 // read_image is converted to OpSampledImage and OpImageSampleExplicitLod.
4659 // Additionally, OpTypeSampledImage is generated.
4660 if (Callee->getName().equals(
4661 "_Z11read_imagef14ocl_image2d_ro11ocl_samplerDv2_f") ||
4662 Callee->getName().equals(
4663 "_Z11read_imagef14ocl_image3d_ro11ocl_samplerDv4_f")) {
4664 //
4665 // Generate OpSampledImage.
4666 //
4667 // Ops[0] = Result Type ID
4668 // Ops[1] = Image ID
4669 // Ops[2] = Sampler ID
4670 //
4671 SPIRVOperandList Ops;
4672
4673 Value *Image = Call->getArgOperand(0);
4674 Value *Sampler = Call->getArgOperand(1);
4675 Value *Coordinate = Call->getArgOperand(2);
4676
4677 TypeMapType &OpImageTypeMap = getImageTypeMap();
4678 Type *ImageTy = Image->getType()->getPointerElementType();
4679 uint32_t ImageTyID = OpImageTypeMap[ImageTy];
David Neto22f144c2017-06-12 14:26:21 -04004680 uint32_t ImageID = VMap[Image];
David Neto22f144c2017-06-12 14:26:21 -04004681 uint32_t SamplerID = VMap[Sampler];
David Neto257c3892018-04-11 13:19:45 -04004682
4683 Ops << MkId(ImageTyID) << MkId(ImageID) << MkId(SamplerID);
David Neto22f144c2017-06-12 14:26:21 -04004684
4685 uint32_t SampledImageID = nextID;
4686
David Neto87846742018-04-11 17:36:22 -04004687 auto *Inst = new SPIRVInstruction(spv::OpSampledImage, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004688 SPIRVInstList.push_back(Inst);
4689
4690 //
4691 // Generate OpImageSampleExplicitLod.
4692 //
4693 // Ops[0] = Result Type ID
4694 // Ops[1] = Sampled Image ID
4695 // Ops[2] = Coordinate ID
4696 // Ops[3] = Image Operands Type ID
4697 // Ops[4] ... Ops[n] = Operands ID
4698 //
4699 Ops.clear();
4700
David Neto257c3892018-04-11 13:19:45 -04004701 Ops << MkId(lookupType(Call->getType())) << MkId(SampledImageID)
4702 << MkId(VMap[Coordinate]) << MkNum(spv::ImageOperandsLodMask);
David Neto22f144c2017-06-12 14:26:21 -04004703
4704 Constant *CstFP0 = ConstantFP::get(Context, APFloat(0.0f));
David Neto257c3892018-04-11 13:19:45 -04004705 Ops << MkId(VMap[CstFP0]);
David Neto22f144c2017-06-12 14:26:21 -04004706
4707 VMap[&I] = nextID;
4708
David Neto87846742018-04-11 17:36:22 -04004709 Inst = new SPIRVInstruction(spv::OpImageSampleExplicitLod, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004710 SPIRVInstList.push_back(Inst);
4711 break;
4712 }
4713
4714 // write_imagef is mapped to OpImageWrite.
4715 if (Callee->getName().equals(
4716 "_Z12write_imagef14ocl_image2d_woDv2_iDv4_f") ||
4717 Callee->getName().equals(
4718 "_Z12write_imagef14ocl_image3d_woDv4_iDv4_f")) {
4719 //
4720 // Generate OpImageWrite.
4721 //
4722 // Ops[0] = Image ID
4723 // Ops[1] = Coordinate ID
4724 // Ops[2] = Texel ID
4725 // Ops[3] = (Optional) Image Operands Type (Literal Number)
4726 // Ops[4] ... Ops[n] = (Optional) Operands ID
4727 //
4728 SPIRVOperandList Ops;
4729
4730 Value *Image = Call->getArgOperand(0);
4731 Value *Coordinate = Call->getArgOperand(1);
4732 Value *Texel = Call->getArgOperand(2);
4733
4734 uint32_t ImageID = VMap[Image];
David Neto22f144c2017-06-12 14:26:21 -04004735 uint32_t CoordinateID = VMap[Coordinate];
David Neto22f144c2017-06-12 14:26:21 -04004736 uint32_t TexelID = VMap[Texel];
David Neto257c3892018-04-11 13:19:45 -04004737 Ops << MkId(ImageID) << MkId(CoordinateID) << MkId(TexelID);
David Neto22f144c2017-06-12 14:26:21 -04004738
David Neto87846742018-04-11 17:36:22 -04004739 auto *Inst = new SPIRVInstruction(spv::OpImageWrite, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004740 SPIRVInstList.push_back(Inst);
4741 break;
4742 }
4743
David Neto5c22a252018-03-15 16:07:41 -04004744 // get_image_width is mapped to OpImageQuerySize
4745 if (Callee->getName().equals("_Z15get_image_width14ocl_image2d_ro") ||
4746 Callee->getName().equals("_Z15get_image_width14ocl_image2d_wo") ||
4747 Callee->getName().equals("_Z16get_image_height14ocl_image2d_ro") ||
4748 Callee->getName().equals("_Z16get_image_height14ocl_image2d_wo")) {
4749 //
4750 // Generate OpImageQuerySize, then pull out the right component.
4751 // Assume 2D image for now.
4752 //
4753 // Ops[0] = Image ID
4754 //
4755 // %sizes = OpImageQuerySizes %uint2 %im
4756 // %result = OpCompositeExtract %uint %sizes 0-or-1
4757 SPIRVOperandList Ops;
4758
4759 // Implement:
4760 // %sizes = OpImageQuerySizes %uint2 %im
4761 uint32_t SizesTypeID =
4762 TypeMap[VectorType::get(Type::getInt32Ty(Context), 2)];
David Neto5c22a252018-03-15 16:07:41 -04004763 Value *Image = Call->getArgOperand(0);
4764 uint32_t ImageID = VMap[Image];
David Neto257c3892018-04-11 13:19:45 -04004765 Ops << MkId(SizesTypeID) << MkId(ImageID);
David Neto5c22a252018-03-15 16:07:41 -04004766
4767 uint32_t SizesID = nextID++;
David Neto87846742018-04-11 17:36:22 -04004768 auto *QueryInst =
4769 new SPIRVInstruction(spv::OpImageQuerySize, SizesID, Ops);
David Neto5c22a252018-03-15 16:07:41 -04004770 SPIRVInstList.push_back(QueryInst);
4771
4772 // Reset value map entry since we generated an intermediate instruction.
4773 VMap[&I] = nextID;
4774
4775 // Implement:
4776 // %result = OpCompositeExtract %uint %sizes 0-or-1
4777 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04004778 Ops << MkId(TypeMap[I.getType()]) << MkId(SizesID);
David Neto5c22a252018-03-15 16:07:41 -04004779
4780 uint32_t component = Callee->getName().contains("height") ? 1 : 0;
David Neto257c3892018-04-11 13:19:45 -04004781 Ops << MkNum(component);
David Neto5c22a252018-03-15 16:07:41 -04004782
David Neto87846742018-04-11 17:36:22 -04004783 auto *Inst = new SPIRVInstruction(spv::OpCompositeExtract, nextID++, Ops);
David Neto5c22a252018-03-15 16:07:41 -04004784 SPIRVInstList.push_back(Inst);
4785 break;
4786 }
4787
David Neto22f144c2017-06-12 14:26:21 -04004788 // Call instrucion is deferred because it needs function's ID. Record
4789 // slot's location on SPIRVInstructionList.
4790 DeferredInsts.push_back(
4791 std::make_tuple(&I, --SPIRVInstList.end(), nextID++));
4792
David Neto3fbb4072017-10-16 11:28:14 -04004793 // Check whether the implementation of this call uses an extended
4794 // instruction plus one more value-producing instruction. If so, then
4795 // reserve the id for the extra value-producing slot.
4796 glsl::ExtInst EInst = getIndirectExtInstEnum(Callee->getName());
4797 if (EInst != kGlslExtInstBad) {
4798 // Reserve a spot for the extra value.
David Neto4d02a532017-09-17 12:57:44 -04004799 // Increase nextID.
David Neto22f144c2017-06-12 14:26:21 -04004800 VMap[&I] = nextID;
4801 nextID++;
4802 }
4803 break;
4804 }
4805 case Instruction::Ret: {
4806 unsigned NumOps = I.getNumOperands();
4807 if (NumOps == 0) {
4808 //
4809 // Generate OpReturn.
4810 //
David Neto87846742018-04-11 17:36:22 -04004811 SPIRVInstList.push_back(new SPIRVInstruction(spv::OpReturn, {}));
David Neto22f144c2017-06-12 14:26:21 -04004812 } else {
4813 //
4814 // Generate OpReturnValue.
4815 //
4816
4817 // Ops[0] = Return Value ID
4818 SPIRVOperandList Ops;
David Neto257c3892018-04-11 13:19:45 -04004819
4820 Ops << MkId(VMap[I.getOperand(0)]);
David Neto22f144c2017-06-12 14:26:21 -04004821
David Neto87846742018-04-11 17:36:22 -04004822 auto *Inst = new SPIRVInstruction(spv::OpReturnValue, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004823 SPIRVInstList.push_back(Inst);
4824 break;
4825 }
4826 break;
4827 }
4828 }
4829}
4830
4831void SPIRVProducerPass::GenerateFuncEpilogue() {
4832 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
4833
4834 //
4835 // Generate OpFunctionEnd
4836 //
4837
David Neto87846742018-04-11 17:36:22 -04004838 auto *Inst = new SPIRVInstruction(spv::OpFunctionEnd, {});
David Neto22f144c2017-06-12 14:26:21 -04004839 SPIRVInstList.push_back(Inst);
4840}
4841
4842bool SPIRVProducerPass::is4xi8vec(Type *Ty) const {
4843 LLVMContext &Context = Ty->getContext();
4844 if (Ty->isVectorTy()) {
4845 if (Ty->getVectorElementType() == Type::getInt8Ty(Context) &&
4846 Ty->getVectorNumElements() == 4) {
4847 return true;
4848 }
4849 }
4850
4851 return false;
4852}
4853
David Neto257c3892018-04-11 13:19:45 -04004854uint32_t SPIRVProducerPass::GetI32Zero() {
4855 if (0 == constant_i32_zero_id_) {
4856 llvm_unreachable("Requesting a 32-bit integer constant but it is not "
4857 "defined in the SPIR-V module");
4858 }
4859 return constant_i32_zero_id_;
4860}
4861
David Neto22f144c2017-06-12 14:26:21 -04004862void SPIRVProducerPass::HandleDeferredInstruction() {
4863 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
4864 ValueMapType &VMap = getValueMap();
4865 DeferredInstVecType &DeferredInsts = getDeferredInstVec();
4866
4867 for (auto DeferredInst = DeferredInsts.rbegin();
4868 DeferredInst != DeferredInsts.rend(); ++DeferredInst) {
4869 Value *Inst = std::get<0>(*DeferredInst);
4870 SPIRVInstructionList::iterator InsertPoint = ++std::get<1>(*DeferredInst);
4871 if (InsertPoint != SPIRVInstList.end()) {
4872 while ((*InsertPoint)->getOpcode() == spv::OpPhi) {
4873 ++InsertPoint;
4874 }
4875 }
4876
4877 if (BranchInst *Br = dyn_cast<BranchInst>(Inst)) {
4878 // Check whether basic block, which has this branch instruction, is loop
4879 // header or not. If it is loop header, generate OpLoopMerge and
4880 // OpBranchConditional.
4881 Function *Func = Br->getParent()->getParent();
4882 DominatorTree &DT =
4883 getAnalysis<DominatorTreeWrapperPass>(*Func).getDomTree();
4884 const LoopInfo &LI =
4885 getAnalysis<LoopInfoWrapperPass>(*Func).getLoopInfo();
4886
4887 BasicBlock *BrBB = Br->getParent();
4888 if (LI.isLoopHeader(BrBB)) {
4889 Value *ContinueBB = nullptr;
4890 Value *MergeBB = nullptr;
4891
4892 Loop *L = LI.getLoopFor(BrBB);
4893 MergeBB = L->getExitBlock();
4894 if (!MergeBB) {
4895 // StructurizeCFG pass converts CFG into triangle shape and the cfg
4896 // has regions with single entry/exit. As a result, loop should not
4897 // have multiple exits.
4898 llvm_unreachable("Loop has multiple exits???");
4899 }
4900
4901 if (L->isLoopLatch(BrBB)) {
4902 ContinueBB = BrBB;
4903 } else {
4904 // From SPIR-V spec 2.11, Continue Target must dominate that back-edge
4905 // block.
4906 BasicBlock *Header = L->getHeader();
4907 BasicBlock *Latch = L->getLoopLatch();
4908 for (BasicBlock *BB : L->blocks()) {
4909 if (BB == Header) {
4910 continue;
4911 }
4912
4913 // Check whether block dominates block with back-edge.
4914 if (DT.dominates(BB, Latch)) {
4915 ContinueBB = BB;
4916 }
4917 }
4918
4919 if (!ContinueBB) {
4920 llvm_unreachable("Wrong continue block from loop");
4921 }
4922 }
4923
4924 //
4925 // Generate OpLoopMerge.
4926 //
4927 // Ops[0] = Merge Block ID
4928 // Ops[1] = Continue Target ID
4929 // Ops[2] = Selection Control
4930 SPIRVOperandList Ops;
4931
4932 // StructurizeCFG pass already manipulated CFG. Just use false block of
4933 // branch instruction as merge block.
4934 uint32_t MergeBBID = VMap[MergeBB];
David Neto22f144c2017-06-12 14:26:21 -04004935 uint32_t ContinueBBID = VMap[ContinueBB];
David Neto257c3892018-04-11 13:19:45 -04004936 Ops << MkId(MergeBBID) << MkId(ContinueBBID)
4937 << MkNum(spv::SelectionControlMaskNone);
David Neto22f144c2017-06-12 14:26:21 -04004938
David Neto87846742018-04-11 17:36:22 -04004939 auto *MergeInst = new SPIRVInstruction(spv::OpLoopMerge, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004940 SPIRVInstList.insert(InsertPoint, MergeInst);
4941
4942 } else if (Br->isConditional()) {
4943 bool HasBackEdge = false;
4944
4945 for (unsigned i = 0; i < Br->getNumSuccessors(); i++) {
4946 if (LI.isLoopHeader(Br->getSuccessor(i))) {
4947 HasBackEdge = true;
4948 }
4949 }
4950 if (!HasBackEdge) {
4951 //
4952 // Generate OpSelectionMerge.
4953 //
4954 // Ops[0] = Merge Block ID
4955 // Ops[1] = Selection Control
4956 SPIRVOperandList Ops;
4957
4958 // StructurizeCFG pass already manipulated CFG. Just use false block
4959 // of branch instruction as merge block.
4960 uint32_t MergeBBID = VMap[Br->getSuccessor(1)];
David Neto257c3892018-04-11 13:19:45 -04004961 Ops << MkId(MergeBBID) << MkNum(spv::SelectionControlMaskNone);
David Neto22f144c2017-06-12 14:26:21 -04004962
David Neto87846742018-04-11 17:36:22 -04004963 auto *MergeInst = new SPIRVInstruction(spv::OpSelectionMerge, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004964 SPIRVInstList.insert(InsertPoint, MergeInst);
4965 }
4966 }
4967
4968 if (Br->isConditional()) {
4969 //
4970 // Generate OpBranchConditional.
4971 //
4972 // Ops[0] = Condition ID
4973 // Ops[1] = True Label ID
4974 // Ops[2] = False Label ID
4975 // Ops[3] ... Ops[n] = Branch weights (Literal Number)
4976 SPIRVOperandList Ops;
4977
4978 uint32_t CondID = VMap[Br->getCondition()];
David Neto22f144c2017-06-12 14:26:21 -04004979 uint32_t TrueBBID = VMap[Br->getSuccessor(0)];
David Neto22f144c2017-06-12 14:26:21 -04004980 uint32_t FalseBBID = VMap[Br->getSuccessor(1)];
David Neto257c3892018-04-11 13:19:45 -04004981
4982 Ops << MkId(CondID) << MkId(TrueBBID) << MkId(FalseBBID);
David Neto22f144c2017-06-12 14:26:21 -04004983
David Neto87846742018-04-11 17:36:22 -04004984 auto *BrInst = new SPIRVInstruction(spv::OpBranchConditional, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004985 SPIRVInstList.insert(InsertPoint, BrInst);
4986 } else {
4987 //
4988 // Generate OpBranch.
4989 //
4990 // Ops[0] = Target Label ID
4991 SPIRVOperandList Ops;
4992
4993 uint32_t TargetID = VMap[Br->getSuccessor(0)];
David Neto257c3892018-04-11 13:19:45 -04004994 Ops << MkId(TargetID);
David Neto22f144c2017-06-12 14:26:21 -04004995
David Neto87846742018-04-11 17:36:22 -04004996 SPIRVInstList.insert(InsertPoint,
4997 new SPIRVInstruction(spv::OpBranch, Ops));
David Neto22f144c2017-06-12 14:26:21 -04004998 }
4999 } else if (PHINode *PHI = dyn_cast<PHINode>(Inst)) {
5000 //
5001 // Generate OpPhi.
5002 //
5003 // Ops[0] = Result Type ID
5004 // Ops[1] ... Ops[n] = (Variable ID, Parent ID) pairs
5005 SPIRVOperandList Ops;
5006
David Neto257c3892018-04-11 13:19:45 -04005007 Ops << MkId(lookupType(PHI->getType()));
David Neto22f144c2017-06-12 14:26:21 -04005008
David Neto22f144c2017-06-12 14:26:21 -04005009 for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
5010 uint32_t VarID = VMap[PHI->getIncomingValue(i)];
David Neto22f144c2017-06-12 14:26:21 -04005011 uint32_t ParentID = VMap[PHI->getIncomingBlock(i)];
David Neto257c3892018-04-11 13:19:45 -04005012 Ops << MkId(VarID) << MkId(ParentID);
David Neto22f144c2017-06-12 14:26:21 -04005013 }
5014
5015 SPIRVInstList.insert(
David Neto87846742018-04-11 17:36:22 -04005016 InsertPoint,
5017 new SPIRVInstruction(spv::OpPhi, std::get<2>(*DeferredInst), Ops));
David Neto22f144c2017-06-12 14:26:21 -04005018 } else if (CallInst *Call = dyn_cast<CallInst>(Inst)) {
5019 Function *Callee = Call->getCalledFunction();
David Neto3fbb4072017-10-16 11:28:14 -04005020 auto callee_name = Callee->getName();
5021 glsl::ExtInst EInst = getDirectOrIndirectExtInstEnum(callee_name);
David Neto22f144c2017-06-12 14:26:21 -04005022
5023 if (EInst) {
5024 uint32_t &ExtInstImportID = getOpExtInstImportID();
5025
5026 //
5027 // Generate OpExtInst.
5028 //
5029
5030 // Ops[0] = Result Type ID
5031 // Ops[1] = Set ID (OpExtInstImport ID)
5032 // Ops[2] = Instruction Number (Literal Number)
5033 // Ops[3] ... Ops[n] = Operand 1, ... , Operand n
5034 SPIRVOperandList Ops;
5035
David Neto862b7d82018-06-14 18:48:37 -04005036 Ops << MkId(lookupType(Call->getType())) << MkId(ExtInstImportID)
5037 << MkNum(EInst);
David Neto22f144c2017-06-12 14:26:21 -04005038
David Neto22f144c2017-06-12 14:26:21 -04005039 FunctionType *CalleeFTy = cast<FunctionType>(Call->getFunctionType());
5040 for (unsigned i = 0; i < CalleeFTy->getNumParams(); i++) {
David Neto257c3892018-04-11 13:19:45 -04005041 Ops << MkId(VMap[Call->getOperand(i)]);
David Neto22f144c2017-06-12 14:26:21 -04005042 }
5043
David Neto87846742018-04-11 17:36:22 -04005044 auto *ExtInst = new SPIRVInstruction(spv::OpExtInst,
5045 std::get<2>(*DeferredInst), Ops);
David Neto22f144c2017-06-12 14:26:21 -04005046 SPIRVInstList.insert(InsertPoint, ExtInst);
5047
David Neto3fbb4072017-10-16 11:28:14 -04005048 const auto IndirectExtInst = getIndirectExtInstEnum(callee_name);
5049 if (IndirectExtInst != kGlslExtInstBad) {
5050 // Generate one more instruction that uses the result of the extended
5051 // instruction. Its result id is one more than the id of the
5052 // extended instruction.
David Neto22f144c2017-06-12 14:26:21 -04005053 LLVMContext &Context =
5054 Call->getParent()->getParent()->getParent()->getContext();
David Neto22f144c2017-06-12 14:26:21 -04005055
David Neto3fbb4072017-10-16 11:28:14 -04005056 auto generate_extra_inst = [this, &Context, &Call, &DeferredInst,
5057 &VMap, &SPIRVInstList, &InsertPoint](
5058 spv::Op opcode, Constant *constant) {
5059 //
5060 // Generate instruction like:
5061 // result = opcode constant <extinst-result>
5062 //
5063 // Ops[0] = Result Type ID
5064 // Ops[1] = Operand 0 ;; the constant, suitably splatted
5065 // Ops[2] = Operand 1 ;; the result of the extended instruction
5066 SPIRVOperandList Ops;
David Neto22f144c2017-06-12 14:26:21 -04005067
David Neto3fbb4072017-10-16 11:28:14 -04005068 Type *resultTy = Call->getType();
David Neto257c3892018-04-11 13:19:45 -04005069 Ops << MkId(lookupType(resultTy));
David Neto3fbb4072017-10-16 11:28:14 -04005070
5071 if (auto *vectorTy = dyn_cast<VectorType>(resultTy)) {
5072 constant = ConstantVector::getSplat(
5073 static_cast<unsigned>(vectorTy->getNumElements()), constant);
5074 }
David Neto257c3892018-04-11 13:19:45 -04005075 Ops << MkId(VMap[constant]) << MkId(std::get<2>(*DeferredInst));
David Neto3fbb4072017-10-16 11:28:14 -04005076
5077 SPIRVInstList.insert(
David Neto87846742018-04-11 17:36:22 -04005078 InsertPoint, new SPIRVInstruction(
5079 opcode, std::get<2>(*DeferredInst) + 1, Ops));
David Neto3fbb4072017-10-16 11:28:14 -04005080 };
5081
5082 switch (IndirectExtInst) {
5083 case glsl::ExtInstFindUMsb: // Implementing clz
5084 generate_extra_inst(
5085 spv::OpISub, ConstantInt::get(Type::getInt32Ty(Context), 31));
5086 break;
5087 case glsl::ExtInstAcos: // Implementing acospi
5088 case glsl::ExtInstAsin: // Implementing asinpi
Kévin Petiteb9f90a2018-09-29 12:29:34 +01005089 case glsl::ExtInstAtan: // Implementing atanpi
David Neto3fbb4072017-10-16 11:28:14 -04005090 case glsl::ExtInstAtan2: // Implementing atan2pi
5091 generate_extra_inst(
5092 spv::OpFMul,
5093 ConstantFP::get(Type::getFloatTy(Context), kOneOverPi));
5094 break;
5095
5096 default:
5097 assert(false && "internally inconsistent");
David Neto4d02a532017-09-17 12:57:44 -04005098 }
David Neto22f144c2017-06-12 14:26:21 -04005099 }
David Neto3fbb4072017-10-16 11:28:14 -04005100
David Neto862b7d82018-06-14 18:48:37 -04005101 } else if (callee_name.equals("_Z8popcounti") ||
5102 callee_name.equals("_Z8popcountj") ||
5103 callee_name.equals("_Z8popcountDv2_i") ||
5104 callee_name.equals("_Z8popcountDv3_i") ||
5105 callee_name.equals("_Z8popcountDv4_i") ||
5106 callee_name.equals("_Z8popcountDv2_j") ||
5107 callee_name.equals("_Z8popcountDv3_j") ||
5108 callee_name.equals("_Z8popcountDv4_j")) {
David Neto22f144c2017-06-12 14:26:21 -04005109 //
5110 // Generate OpBitCount
5111 //
5112 // Ops[0] = Result Type ID
5113 // Ops[1] = Base ID
David Neto257c3892018-04-11 13:19:45 -04005114 SPIRVOperandList Ops;
5115 Ops << MkId(lookupType(Call->getType()))
5116 << MkId(VMap[Call->getOperand(0)]);
David Neto22f144c2017-06-12 14:26:21 -04005117
5118 SPIRVInstList.insert(
David Neto87846742018-04-11 17:36:22 -04005119 InsertPoint, new SPIRVInstruction(spv::OpBitCount,
David Neto22f144c2017-06-12 14:26:21 -04005120 std::get<2>(*DeferredInst), Ops));
David Netoab03f432017-11-03 17:00:44 -04005121
David Neto862b7d82018-06-14 18:48:37 -04005122 } else if (callee_name.startswith(kCompositeConstructFunctionPrefix)) {
David Netoab03f432017-11-03 17:00:44 -04005123
5124 // Generate an OpCompositeConstruct
5125 SPIRVOperandList Ops;
5126
5127 // The result type.
David Neto257c3892018-04-11 13:19:45 -04005128 Ops << MkId(lookupType(Call->getType()));
David Netoab03f432017-11-03 17:00:44 -04005129
5130 for (Use &use : Call->arg_operands()) {
David Neto257c3892018-04-11 13:19:45 -04005131 Ops << MkId(VMap[use.get()]);
David Netoab03f432017-11-03 17:00:44 -04005132 }
5133
5134 SPIRVInstList.insert(
David Neto87846742018-04-11 17:36:22 -04005135 InsertPoint, new SPIRVInstruction(spv::OpCompositeConstruct,
5136 std::get<2>(*DeferredInst), Ops));
David Netoab03f432017-11-03 17:00:44 -04005137
Alan Baker202c8c72018-08-13 13:47:44 -04005138 } else if (callee_name.startswith(clspv::ResourceAccessorFunction())) {
5139
5140 // We have already mapped the call's result value to an ID.
5141 // Don't generate any code now.
5142
5143 } else if (callee_name.startswith(clspv::WorkgroupAccessorFunction())) {
David Neto862b7d82018-06-14 18:48:37 -04005144
5145 // We have already mapped the call's result value to an ID.
5146 // Don't generate any code now.
5147
David Neto22f144c2017-06-12 14:26:21 -04005148 } else {
5149 //
5150 // Generate OpFunctionCall.
5151 //
5152
5153 // Ops[0] = Result Type ID
5154 // Ops[1] = Callee Function ID
5155 // Ops[2] ... Ops[n] = Argument 0, ... , Argument n
5156 SPIRVOperandList Ops;
5157
David Neto862b7d82018-06-14 18:48:37 -04005158 Ops << MkId(lookupType(Call->getType()));
David Neto22f144c2017-06-12 14:26:21 -04005159
5160 uint32_t CalleeID = VMap[Callee];
David Neto43568eb2017-10-13 18:25:25 -04005161 if (CalleeID == 0) {
5162 errs() << "Can't translate function call. Missing builtin? "
David Neto862b7d82018-06-14 18:48:37 -04005163 << callee_name << " in: " << *Call << "\n";
David Neto43568eb2017-10-13 18:25:25 -04005164 // TODO(dneto): Can we error out? Enabling this llvm_unreachable
5165 // causes an infinite loop. Instead, go ahead and generate
5166 // the bad function call. A validator will catch the 0-Id.
5167 // llvm_unreachable("Can't translate function call");
5168 }
David Neto22f144c2017-06-12 14:26:21 -04005169
David Neto257c3892018-04-11 13:19:45 -04005170 Ops << MkId(CalleeID);
David Neto22f144c2017-06-12 14:26:21 -04005171
David Neto22f144c2017-06-12 14:26:21 -04005172 FunctionType *CalleeFTy = cast<FunctionType>(Call->getFunctionType());
5173 for (unsigned i = 0; i < CalleeFTy->getNumParams(); i++) {
David Neto257c3892018-04-11 13:19:45 -04005174 Ops << MkId(VMap[Call->getOperand(i)]);
David Neto22f144c2017-06-12 14:26:21 -04005175 }
5176
David Neto87846742018-04-11 17:36:22 -04005177 auto *CallInst = new SPIRVInstruction(spv::OpFunctionCall,
5178 std::get<2>(*DeferredInst), Ops);
David Neto22f144c2017-06-12 14:26:21 -04005179 SPIRVInstList.insert(InsertPoint, CallInst);
5180 }
5181 }
5182 }
5183}
5184
David Neto1a1a0582017-07-07 12:01:44 -04005185void SPIRVProducerPass::HandleDeferredDecorations(const DataLayout &DL) {
Alan Baker202c8c72018-08-13 13:47:44 -04005186 if (getTypesNeedingArrayStride().empty() && LocalArgSpecIds.empty()) {
David Neto1a1a0582017-07-07 12:01:44 -04005187 return;
David Netoc6f3ab22018-04-06 18:02:31 -04005188 }
David Neto1a1a0582017-07-07 12:01:44 -04005189
5190 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
David Neto1a1a0582017-07-07 12:01:44 -04005191
5192 // Find an iterator pointing just past the last decoration.
5193 bool seen_decorations = false;
5194 auto DecoInsertPoint =
5195 std::find_if(SPIRVInstList.begin(), SPIRVInstList.end(),
5196 [&seen_decorations](SPIRVInstruction *Inst) -> bool {
5197 const bool is_decoration =
5198 Inst->getOpcode() == spv::OpDecorate ||
5199 Inst->getOpcode() == spv::OpMemberDecorate;
5200 if (is_decoration) {
5201 seen_decorations = true;
5202 return false;
5203 } else {
5204 return seen_decorations;
5205 }
5206 });
5207
David Netoc6f3ab22018-04-06 18:02:31 -04005208 // Insert ArrayStride decorations on pointer types, due to OpPtrAccessChain
5209 // instructions we generated earlier.
David Neto85082642018-03-24 06:55:20 -07005210 for (auto *type : getTypesNeedingArrayStride()) {
5211 Type *elemTy = nullptr;
5212 if (auto *ptrTy = dyn_cast<PointerType>(type)) {
5213 elemTy = ptrTy->getElementType();
5214 } else if (auto* arrayTy = dyn_cast<ArrayType>(type)) {
5215 elemTy = arrayTy->getArrayElementType();
5216 } else if (auto* seqTy = dyn_cast<SequentialType>(type)) {
5217 elemTy = seqTy->getSequentialElementType();
5218 } else {
5219 errs() << "Unhandled strided type " << *type << "\n";
5220 llvm_unreachable("Unhandled strided type");
5221 }
David Neto1a1a0582017-07-07 12:01:44 -04005222
5223 // Ops[0] = Target ID
5224 // Ops[1] = Decoration (ArrayStride)
5225 // Ops[2] = Stride number (Literal Number)
5226 SPIRVOperandList Ops;
5227
David Neto85082642018-03-24 06:55:20 -07005228 // Same as DL.getIndexedOffsetInType( elemTy, { 1 } );
Alan Bakerfcda9482018-10-02 17:09:59 -04005229 const uint32_t stride = static_cast<uint32_t>(GetTypeAllocSize(elemTy, DL));
David Neto257c3892018-04-11 13:19:45 -04005230
5231 Ops << MkId(lookupType(type)) << MkNum(spv::DecorationArrayStride)
5232 << MkNum(stride);
David Neto1a1a0582017-07-07 12:01:44 -04005233
David Neto87846742018-04-11 17:36:22 -04005234 auto *DecoInst = new SPIRVInstruction(spv::OpDecorate, Ops);
David Neto1a1a0582017-07-07 12:01:44 -04005235 SPIRVInstList.insert(DecoInsertPoint, DecoInst);
5236 }
David Netoc6f3ab22018-04-06 18:02:31 -04005237
5238 // Emit SpecId decorations targeting the array size value.
Alan Baker202c8c72018-08-13 13:47:44 -04005239 for (auto spec_id = clspv::FirstLocalSpecId(); spec_id < max_local_spec_id_;
5240 ++spec_id) {
5241 LocalArgInfo& arg_info = LocalSpecIdInfoMap[spec_id];
David Netoc6f3ab22018-04-06 18:02:31 -04005242 SPIRVOperandList Ops;
5243 Ops << MkId(arg_info.array_size_id) << MkNum(spv::DecorationSpecId)
5244 << MkNum(arg_info.spec_id);
5245 SPIRVInstList.insert(DecoInsertPoint,
David Neto87846742018-04-11 17:36:22 -04005246 new SPIRVInstruction(spv::OpDecorate, Ops));
David Netoc6f3ab22018-04-06 18:02:31 -04005247 }
David Neto1a1a0582017-07-07 12:01:44 -04005248}
5249
David Neto22f144c2017-06-12 14:26:21 -04005250glsl::ExtInst SPIRVProducerPass::getExtInstEnum(StringRef Name) {
5251 return StringSwitch<glsl::ExtInst>(Name)
5252 .Case("_Z3absi", glsl::ExtInst::ExtInstSAbs)
5253 .Case("_Z3absDv2_i", glsl::ExtInst::ExtInstSAbs)
5254 .Case("_Z3absDv3_i", glsl::ExtInst::ExtInstSAbs)
5255 .Case("_Z3absDv4_i", glsl::ExtInst::ExtInstSAbs)
5256 .Case("_Z5clampiii", glsl::ExtInst::ExtInstSClamp)
5257 .Case("_Z5clampDv2_iS_S_", glsl::ExtInst::ExtInstSClamp)
5258 .Case("_Z5clampDv3_iS_S_", glsl::ExtInst::ExtInstSClamp)
5259 .Case("_Z5clampDv4_iS_S_", glsl::ExtInst::ExtInstSClamp)
5260 .Case("_Z5clampjjj", glsl::ExtInst::ExtInstUClamp)
5261 .Case("_Z5clampDv2_jS_S_", glsl::ExtInst::ExtInstUClamp)
5262 .Case("_Z5clampDv3_jS_S_", glsl::ExtInst::ExtInstUClamp)
5263 .Case("_Z5clampDv4_jS_S_", glsl::ExtInst::ExtInstUClamp)
5264 .Case("_Z5clampfff", glsl::ExtInst::ExtInstFClamp)
5265 .Case("_Z5clampDv2_fS_S_", glsl::ExtInst::ExtInstFClamp)
5266 .Case("_Z5clampDv3_fS_S_", glsl::ExtInst::ExtInstFClamp)
5267 .Case("_Z5clampDv4_fS_S_", glsl::ExtInst::ExtInstFClamp)
David Neto22f144c2017-06-12 14:26:21 -04005268 .Case("_Z3maxii", glsl::ExtInst::ExtInstSMax)
5269 .Case("_Z3maxDv2_iS_", glsl::ExtInst::ExtInstSMax)
5270 .Case("_Z3maxDv3_iS_", glsl::ExtInst::ExtInstSMax)
5271 .Case("_Z3maxDv4_iS_", glsl::ExtInst::ExtInstSMax)
5272 .Case("_Z3maxjj", glsl::ExtInst::ExtInstUMax)
5273 .Case("_Z3maxDv2_jS_", glsl::ExtInst::ExtInstUMax)
5274 .Case("_Z3maxDv3_jS_", glsl::ExtInst::ExtInstUMax)
5275 .Case("_Z3maxDv4_jS_", glsl::ExtInst::ExtInstUMax)
5276 .Case("_Z3maxff", glsl::ExtInst::ExtInstFMax)
5277 .Case("_Z3maxDv2_fS_", glsl::ExtInst::ExtInstFMax)
5278 .Case("_Z3maxDv3_fS_", glsl::ExtInst::ExtInstFMax)
5279 .Case("_Z3maxDv4_fS_", glsl::ExtInst::ExtInstFMax)
5280 .StartsWith("_Z4fmax", glsl::ExtInst::ExtInstFMax)
5281 .Case("_Z3minii", glsl::ExtInst::ExtInstSMin)
5282 .Case("_Z3minDv2_iS_", glsl::ExtInst::ExtInstSMin)
5283 .Case("_Z3minDv3_iS_", glsl::ExtInst::ExtInstSMin)
5284 .Case("_Z3minDv4_iS_", glsl::ExtInst::ExtInstSMin)
5285 .Case("_Z3minjj", glsl::ExtInst::ExtInstUMin)
5286 .Case("_Z3minDv2_jS_", glsl::ExtInst::ExtInstUMin)
5287 .Case("_Z3minDv3_jS_", glsl::ExtInst::ExtInstUMin)
5288 .Case("_Z3minDv4_jS_", glsl::ExtInst::ExtInstUMin)
5289 .Case("_Z3minff", glsl::ExtInst::ExtInstFMin)
5290 .Case("_Z3minDv2_fS_", glsl::ExtInst::ExtInstFMin)
5291 .Case("_Z3minDv3_fS_", glsl::ExtInst::ExtInstFMin)
5292 .Case("_Z3minDv4_fS_", glsl::ExtInst::ExtInstFMin)
5293 .StartsWith("_Z4fmin", glsl::ExtInst::ExtInstFMin)
5294 .StartsWith("_Z7degrees", glsl::ExtInst::ExtInstDegrees)
5295 .StartsWith("_Z7radians", glsl::ExtInst::ExtInstRadians)
5296 .StartsWith("_Z3mix", glsl::ExtInst::ExtInstFMix)
5297 .StartsWith("_Z4acos", glsl::ExtInst::ExtInstAcos)
5298 .StartsWith("_Z5acosh", glsl::ExtInst::ExtInstAcosh)
5299 .StartsWith("_Z4asin", glsl::ExtInst::ExtInstAsin)
5300 .StartsWith("_Z5asinh", glsl::ExtInst::ExtInstAsinh)
5301 .StartsWith("_Z4atan", glsl::ExtInst::ExtInstAtan)
5302 .StartsWith("_Z5atan2", glsl::ExtInst::ExtInstAtan2)
5303 .StartsWith("_Z5atanh", glsl::ExtInst::ExtInstAtanh)
5304 .StartsWith("_Z4ceil", glsl::ExtInst::ExtInstCeil)
5305 .StartsWith("_Z3sin", glsl::ExtInst::ExtInstSin)
5306 .StartsWith("_Z4sinh", glsl::ExtInst::ExtInstSinh)
5307 .StartsWith("_Z8half_sin", glsl::ExtInst::ExtInstSin)
5308 .StartsWith("_Z10native_sin", glsl::ExtInst::ExtInstSin)
5309 .StartsWith("_Z3cos", glsl::ExtInst::ExtInstCos)
5310 .StartsWith("_Z4cosh", glsl::ExtInst::ExtInstCosh)
5311 .StartsWith("_Z8half_cos", glsl::ExtInst::ExtInstCos)
5312 .StartsWith("_Z10native_cos", glsl::ExtInst::ExtInstCos)
5313 .StartsWith("_Z3tan", glsl::ExtInst::ExtInstTan)
5314 .StartsWith("_Z4tanh", glsl::ExtInst::ExtInstTanh)
5315 .StartsWith("_Z8half_tan", glsl::ExtInst::ExtInstTan)
5316 .StartsWith("_Z10native_tan", glsl::ExtInst::ExtInstTan)
5317 .StartsWith("_Z3exp", glsl::ExtInst::ExtInstExp)
5318 .StartsWith("_Z8half_exp", glsl::ExtInst::ExtInstExp)
5319 .StartsWith("_Z10native_exp", glsl::ExtInst::ExtInstExp)
5320 .StartsWith("_Z4exp2", glsl::ExtInst::ExtInstExp2)
5321 .StartsWith("_Z9half_exp2", glsl::ExtInst::ExtInstExp2)
5322 .StartsWith("_Z11native_exp2", glsl::ExtInst::ExtInstExp2)
5323 .StartsWith("_Z3log", glsl::ExtInst::ExtInstLog)
5324 .StartsWith("_Z8half_log", glsl::ExtInst::ExtInstLog)
5325 .StartsWith("_Z10native_log", glsl::ExtInst::ExtInstLog)
5326 .StartsWith("_Z4log2", glsl::ExtInst::ExtInstLog2)
5327 .StartsWith("_Z9half_log2", glsl::ExtInst::ExtInstLog2)
5328 .StartsWith("_Z11native_log2", glsl::ExtInst::ExtInstLog2)
5329 .StartsWith("_Z4fabs", glsl::ExtInst::ExtInstFAbs)
kpet3458e942018-10-03 14:35:21 +01005330 .StartsWith("_Z3fma", glsl::ExtInst::ExtInstFma)
David Neto22f144c2017-06-12 14:26:21 -04005331 .StartsWith("_Z5floor", glsl::ExtInst::ExtInstFloor)
5332 .StartsWith("_Z5ldexp", glsl::ExtInst::ExtInstLdexp)
5333 .StartsWith("_Z3pow", glsl::ExtInst::ExtInstPow)
5334 .StartsWith("_Z4powr", glsl::ExtInst::ExtInstPow)
5335 .StartsWith("_Z9half_powr", glsl::ExtInst::ExtInstPow)
5336 .StartsWith("_Z11native_powr", glsl::ExtInst::ExtInstPow)
5337 .StartsWith("_Z5round", glsl::ExtInst::ExtInstRound)
5338 .StartsWith("_Z4sqrt", glsl::ExtInst::ExtInstSqrt)
5339 .StartsWith("_Z9half_sqrt", glsl::ExtInst::ExtInstSqrt)
5340 .StartsWith("_Z11native_sqrt", glsl::ExtInst::ExtInstSqrt)
5341 .StartsWith("_Z5rsqrt", glsl::ExtInst::ExtInstInverseSqrt)
5342 .StartsWith("_Z10half_rsqrt", glsl::ExtInst::ExtInstInverseSqrt)
5343 .StartsWith("_Z12native_rsqrt", glsl::ExtInst::ExtInstInverseSqrt)
5344 .StartsWith("_Z5trunc", glsl::ExtInst::ExtInstTrunc)
5345 .StartsWith("_Z5frexp", glsl::ExtInst::ExtInstFrexp)
5346 .StartsWith("_Z4sign", glsl::ExtInst::ExtInstFSign)
5347 .StartsWith("_Z6length", glsl::ExtInst::ExtInstLength)
Kévin Petit7d09cec2018-09-22 15:43:38 +01005348 .StartsWith("_Z11fast_length", glsl::ExtInst::ExtInstLength)
David Neto22f144c2017-06-12 14:26:21 -04005349 .StartsWith("_Z8distance", glsl::ExtInst::ExtInstDistance)
Kévin Petit7d09cec2018-09-22 15:43:38 +01005350 .StartsWith("_Z13fast_distance", glsl::ExtInst::ExtInstDistance)
David Netoe9a03512017-10-16 10:08:27 -04005351 .StartsWith("_Z4step", glsl::ExtInst::ExtInstStep)
kpet6fd2a262018-10-03 14:48:01 +01005352 .StartsWith("_Z10smoothstep", glsl::ExtInst::ExtInstSmoothStep)
David Neto22f144c2017-06-12 14:26:21 -04005353 .Case("_Z5crossDv3_fS_", glsl::ExtInst::ExtInstCross)
5354 .StartsWith("_Z9normalize", glsl::ExtInst::ExtInstNormalize)
Kévin Petit7d09cec2018-09-22 15:43:38 +01005355 .StartsWith("_Z14fast_normalize", glsl::ExtInst::ExtInstNormalize)
David Neto22f144c2017-06-12 14:26:21 -04005356 .StartsWith("llvm.fmuladd.", glsl::ExtInst::ExtInstFma)
5357 .Case("spirv.unpack.v2f16", glsl::ExtInst::ExtInstUnpackHalf2x16)
5358 .Case("spirv.pack.v2f16", glsl::ExtInst::ExtInstPackHalf2x16)
David Neto62653202017-10-16 19:05:18 -04005359 .Case("clspv.fract.f", glsl::ExtInst::ExtInstFract)
5360 .Case("clspv.fract.v2f", glsl::ExtInst::ExtInstFract)
5361 .Case("clspv.fract.v3f", glsl::ExtInst::ExtInstFract)
5362 .Case("clspv.fract.v4f", glsl::ExtInst::ExtInstFract)
David Neto3fbb4072017-10-16 11:28:14 -04005363 .Default(kGlslExtInstBad);
5364}
5365
5366glsl::ExtInst SPIRVProducerPass::getIndirectExtInstEnum(StringRef Name) {
5367 // Check indirect cases.
5368 return StringSwitch<glsl::ExtInst>(Name)
5369 .StartsWith("_Z3clz", glsl::ExtInst::ExtInstFindUMsb)
5370 // Use exact match on float arg because these need a multiply
5371 // of a constant of the right floating point type.
5372 .Case("_Z6acospif", glsl::ExtInst::ExtInstAcos)
5373 .Case("_Z6acospiDv2_f", glsl::ExtInst::ExtInstAcos)
5374 .Case("_Z6acospiDv3_f", glsl::ExtInst::ExtInstAcos)
5375 .Case("_Z6acospiDv4_f", glsl::ExtInst::ExtInstAcos)
5376 .Case("_Z6asinpif", glsl::ExtInst::ExtInstAsin)
5377 .Case("_Z6asinpiDv2_f", glsl::ExtInst::ExtInstAsin)
5378 .Case("_Z6asinpiDv3_f", glsl::ExtInst::ExtInstAsin)
5379 .Case("_Z6asinpiDv4_f", glsl::ExtInst::ExtInstAsin)
Kévin Petiteb9f90a2018-09-29 12:29:34 +01005380 .Case("_Z6atanpif", glsl::ExtInst::ExtInstAtan)
5381 .Case("_Z6atanpiDv2_f", glsl::ExtInst::ExtInstAtan)
5382 .Case("_Z6atanpiDv3_f", glsl::ExtInst::ExtInstAtan)
5383 .Case("_Z6atanpiDv4_f", glsl::ExtInst::ExtInstAtan)
David Neto3fbb4072017-10-16 11:28:14 -04005384 .Case("_Z7atan2piff", glsl::ExtInst::ExtInstAtan2)
5385 .Case("_Z7atan2piDv2_fS_", glsl::ExtInst::ExtInstAtan2)
5386 .Case("_Z7atan2piDv3_fS_", glsl::ExtInst::ExtInstAtan2)
5387 .Case("_Z7atan2piDv4_fS_", glsl::ExtInst::ExtInstAtan2)
5388 .Default(kGlslExtInstBad);
5389}
5390
5391glsl::ExtInst SPIRVProducerPass::getDirectOrIndirectExtInstEnum(StringRef Name) {
5392 auto direct = getExtInstEnum(Name);
5393 if (direct != kGlslExtInstBad)
5394 return direct;
5395 return getIndirectExtInstEnum(Name);
David Neto22f144c2017-06-12 14:26:21 -04005396}
5397
5398void SPIRVProducerPass::PrintResID(SPIRVInstruction *Inst) {
5399 out << "%" << Inst->getResultID();
5400}
5401
5402void SPIRVProducerPass::PrintOpcode(SPIRVInstruction *Inst) {
5403 spv::Op Opcode = static_cast<spv::Op>(Inst->getOpcode());
5404 out << "\t" << spv::getOpName(Opcode);
5405}
5406
5407void SPIRVProducerPass::PrintOperand(SPIRVOperand *Op) {
5408 SPIRVOperandType OpTy = Op->getType();
5409 switch (OpTy) {
5410 default: {
5411 llvm_unreachable("Unsupported SPIRV Operand Type???");
5412 break;
5413 }
5414 case SPIRVOperandType::NUMBERID: {
5415 out << "%" << Op->getNumID();
5416 break;
5417 }
5418 case SPIRVOperandType::LITERAL_STRING: {
5419 out << "\"" << Op->getLiteralStr() << "\"";
5420 break;
5421 }
5422 case SPIRVOperandType::LITERAL_INTEGER: {
5423 // TODO: Handle LiteralNum carefully.
5424 for (auto Word : Op->getLiteralNum()) {
5425 out << Word;
5426 }
5427 break;
5428 }
5429 case SPIRVOperandType::LITERAL_FLOAT: {
5430 // TODO: Handle LiteralNum carefully.
5431 for (auto Word : Op->getLiteralNum()) {
5432 APFloat APF = APFloat(APFloat::IEEEsingle(), APInt(32, Word));
5433 SmallString<8> Str;
5434 APF.toString(Str, 6, 2);
5435 out << Str;
5436 }
5437 break;
5438 }
5439 }
5440}
5441
5442void SPIRVProducerPass::PrintCapability(SPIRVOperand *Op) {
5443 spv::Capability Cap = static_cast<spv::Capability>(Op->getNumID());
5444 out << spv::getCapabilityName(Cap);
5445}
5446
5447void SPIRVProducerPass::PrintExtInst(SPIRVOperand *Op) {
5448 auto LiteralNum = Op->getLiteralNum();
5449 glsl::ExtInst Ext = static_cast<glsl::ExtInst>(LiteralNum[0]);
5450 out << glsl::getExtInstName(Ext);
5451}
5452
5453void SPIRVProducerPass::PrintAddrModel(SPIRVOperand *Op) {
5454 spv::AddressingModel AddrModel =
5455 static_cast<spv::AddressingModel>(Op->getNumID());
5456 out << spv::getAddressingModelName(AddrModel);
5457}
5458
5459void SPIRVProducerPass::PrintMemModel(SPIRVOperand *Op) {
5460 spv::MemoryModel MemModel = static_cast<spv::MemoryModel>(Op->getNumID());
5461 out << spv::getMemoryModelName(MemModel);
5462}
5463
5464void SPIRVProducerPass::PrintExecModel(SPIRVOperand *Op) {
5465 spv::ExecutionModel ExecModel =
5466 static_cast<spv::ExecutionModel>(Op->getNumID());
5467 out << spv::getExecutionModelName(ExecModel);
5468}
5469
5470void SPIRVProducerPass::PrintExecMode(SPIRVOperand *Op) {
5471 spv::ExecutionMode ExecMode = static_cast<spv::ExecutionMode>(Op->getNumID());
5472 out << spv::getExecutionModeName(ExecMode);
5473}
5474
5475void SPIRVProducerPass::PrintSourceLanguage(SPIRVOperand *Op) {
5476 spv::SourceLanguage SourceLang = static_cast<spv::SourceLanguage>(Op->getNumID());
5477 out << spv::getSourceLanguageName(SourceLang);
5478}
5479
5480void SPIRVProducerPass::PrintFuncCtrl(SPIRVOperand *Op) {
5481 spv::FunctionControlMask FuncCtrl =
5482 static_cast<spv::FunctionControlMask>(Op->getNumID());
5483 out << spv::getFunctionControlName(FuncCtrl);
5484}
5485
5486void SPIRVProducerPass::PrintStorageClass(SPIRVOperand *Op) {
5487 spv::StorageClass StClass = static_cast<spv::StorageClass>(Op->getNumID());
5488 out << getStorageClassName(StClass);
5489}
5490
5491void SPIRVProducerPass::PrintDecoration(SPIRVOperand *Op) {
5492 spv::Decoration Deco = static_cast<spv::Decoration>(Op->getNumID());
5493 out << getDecorationName(Deco);
5494}
5495
5496void SPIRVProducerPass::PrintBuiltIn(SPIRVOperand *Op) {
5497 spv::BuiltIn BIn = static_cast<spv::BuiltIn>(Op->getNumID());
5498 out << getBuiltInName(BIn);
5499}
5500
5501void SPIRVProducerPass::PrintSelectionControl(SPIRVOperand *Op) {
5502 spv::SelectionControlMask BIn =
5503 static_cast<spv::SelectionControlMask>(Op->getNumID());
5504 out << getSelectionControlName(BIn);
5505}
5506
5507void SPIRVProducerPass::PrintLoopControl(SPIRVOperand *Op) {
5508 spv::LoopControlMask BIn = static_cast<spv::LoopControlMask>(Op->getNumID());
5509 out << getLoopControlName(BIn);
5510}
5511
5512void SPIRVProducerPass::PrintDimensionality(SPIRVOperand *Op) {
5513 spv::Dim DIM = static_cast<spv::Dim>(Op->getNumID());
5514 out << getDimName(DIM);
5515}
5516
5517void SPIRVProducerPass::PrintImageFormat(SPIRVOperand *Op) {
5518 spv::ImageFormat Format = static_cast<spv::ImageFormat>(Op->getNumID());
5519 out << getImageFormatName(Format);
5520}
5521
5522void SPIRVProducerPass::PrintMemoryAccess(SPIRVOperand *Op) {
5523 out << spv::getMemoryAccessName(
5524 static_cast<spv::MemoryAccessMask>(Op->getNumID()));
5525}
5526
5527void SPIRVProducerPass::PrintImageOperandsType(SPIRVOperand *Op) {
5528 auto LiteralNum = Op->getLiteralNum();
5529 spv::ImageOperandsMask Type =
5530 static_cast<spv::ImageOperandsMask>(LiteralNum[0]);
5531 out << getImageOperandsName(Type);
5532}
5533
5534void SPIRVProducerPass::WriteSPIRVAssembly() {
5535 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
5536
5537 for (auto Inst : SPIRVInstList) {
5538 SPIRVOperandList Ops = Inst->getOperands();
5539 spv::Op Opcode = static_cast<spv::Op>(Inst->getOpcode());
5540
5541 switch (Opcode) {
5542 default: {
5543 llvm_unreachable("Unsupported SPIRV instruction");
5544 break;
5545 }
5546 case spv::OpCapability: {
5547 // Ops[0] = Capability
5548 PrintOpcode(Inst);
5549 out << " ";
5550 PrintCapability(Ops[0]);
5551 out << "\n";
5552 break;
5553 }
5554 case spv::OpMemoryModel: {
5555 // Ops[0] = Addressing Model
5556 // Ops[1] = Memory Model
5557 PrintOpcode(Inst);
5558 out << " ";
5559 PrintAddrModel(Ops[0]);
5560 out << " ";
5561 PrintMemModel(Ops[1]);
5562 out << "\n";
5563 break;
5564 }
5565 case spv::OpEntryPoint: {
5566 // Ops[0] = Execution Model
5567 // Ops[1] = EntryPoint ID
5568 // Ops[2] = Name (Literal String)
5569 // Ops[3] ... Ops[n] = Interface ID
5570 PrintOpcode(Inst);
5571 out << " ";
5572 PrintExecModel(Ops[0]);
5573 for (uint32_t i = 1; i < Ops.size(); i++) {
5574 out << " ";
5575 PrintOperand(Ops[i]);
5576 }
5577 out << "\n";
5578 break;
5579 }
5580 case spv::OpExecutionMode: {
5581 // Ops[0] = Entry Point ID
5582 // Ops[1] = Execution Mode
5583 // Ops[2] ... Ops[n] = Optional literals according to Execution Mode
5584 PrintOpcode(Inst);
5585 out << " ";
5586 PrintOperand(Ops[0]);
5587 out << " ";
5588 PrintExecMode(Ops[1]);
5589 for (uint32_t i = 2; i < Ops.size(); i++) {
5590 out << " ";
5591 PrintOperand(Ops[i]);
5592 }
5593 out << "\n";
5594 break;
5595 }
5596 case spv::OpSource: {
5597 // Ops[0] = SourceLanguage ID
5598 // Ops[1] = Version (LiteralNum)
5599 PrintOpcode(Inst);
5600 out << " ";
5601 PrintSourceLanguage(Ops[0]);
5602 out << " ";
5603 PrintOperand(Ops[1]);
5604 out << "\n";
5605 break;
5606 }
5607 case spv::OpDecorate: {
5608 // Ops[0] = Target ID
5609 // Ops[1] = Decoration (Block or BufferBlock)
5610 // Ops[2] ... Ops[n] = Optional literals according to Decoration
5611 PrintOpcode(Inst);
5612 out << " ";
5613 PrintOperand(Ops[0]);
5614 out << " ";
5615 PrintDecoration(Ops[1]);
5616 // Handle BuiltIn OpDecorate specially.
5617 if (Ops[1]->getNumID() == spv::DecorationBuiltIn) {
5618 out << " ";
5619 PrintBuiltIn(Ops[2]);
5620 } else {
5621 for (uint32_t i = 2; i < Ops.size(); i++) {
5622 out << " ";
5623 PrintOperand(Ops[i]);
5624 }
5625 }
5626 out << "\n";
5627 break;
5628 }
5629 case spv::OpMemberDecorate: {
5630 // Ops[0] = Structure Type ID
5631 // Ops[1] = Member Index(Literal Number)
5632 // Ops[2] = Decoration
5633 // Ops[3] ... Ops[n] = Optional literals according to Decoration
5634 PrintOpcode(Inst);
5635 out << " ";
5636 PrintOperand(Ops[0]);
5637 out << " ";
5638 PrintOperand(Ops[1]);
5639 out << " ";
5640 PrintDecoration(Ops[2]);
5641 for (uint32_t i = 3; i < Ops.size(); i++) {
5642 out << " ";
5643 PrintOperand(Ops[i]);
5644 }
5645 out << "\n";
5646 break;
5647 }
5648 case spv::OpTypePointer: {
5649 // Ops[0] = Storage Class
5650 // Ops[1] = Element Type ID
5651 PrintResID(Inst);
5652 out << " = ";
5653 PrintOpcode(Inst);
5654 out << " ";
5655 PrintStorageClass(Ops[0]);
5656 out << " ";
5657 PrintOperand(Ops[1]);
5658 out << "\n";
5659 break;
5660 }
5661 case spv::OpTypeImage: {
5662 // Ops[0] = Sampled Type ID
5663 // Ops[1] = Dim ID
5664 // Ops[2] = Depth (Literal Number)
5665 // Ops[3] = Arrayed (Literal Number)
5666 // Ops[4] = MS (Literal Number)
5667 // Ops[5] = Sampled (Literal Number)
5668 // Ops[6] = Image Format ID
5669 PrintResID(Inst);
5670 out << " = ";
5671 PrintOpcode(Inst);
5672 out << " ";
5673 PrintOperand(Ops[0]);
5674 out << " ";
5675 PrintDimensionality(Ops[1]);
5676 out << " ";
5677 PrintOperand(Ops[2]);
5678 out << " ";
5679 PrintOperand(Ops[3]);
5680 out << " ";
5681 PrintOperand(Ops[4]);
5682 out << " ";
5683 PrintOperand(Ops[5]);
5684 out << " ";
5685 PrintImageFormat(Ops[6]);
5686 out << "\n";
5687 break;
5688 }
5689 case spv::OpFunction: {
5690 // Ops[0] : Result Type ID
5691 // Ops[1] : Function Control
5692 // Ops[2] : Function Type ID
5693 PrintResID(Inst);
5694 out << " = ";
5695 PrintOpcode(Inst);
5696 out << " ";
5697 PrintOperand(Ops[0]);
5698 out << " ";
5699 PrintFuncCtrl(Ops[1]);
5700 out << " ";
5701 PrintOperand(Ops[2]);
5702 out << "\n";
5703 break;
5704 }
5705 case spv::OpSelectionMerge: {
5706 // Ops[0] = Merge Block ID
5707 // Ops[1] = Selection Control
5708 PrintOpcode(Inst);
5709 out << " ";
5710 PrintOperand(Ops[0]);
5711 out << " ";
5712 PrintSelectionControl(Ops[1]);
5713 out << "\n";
5714 break;
5715 }
5716 case spv::OpLoopMerge: {
5717 // Ops[0] = Merge Block ID
5718 // Ops[1] = Continue Target ID
5719 // Ops[2] = Selection Control
5720 PrintOpcode(Inst);
5721 out << " ";
5722 PrintOperand(Ops[0]);
5723 out << " ";
5724 PrintOperand(Ops[1]);
5725 out << " ";
5726 PrintLoopControl(Ops[2]);
5727 out << "\n";
5728 break;
5729 }
5730 case spv::OpImageSampleExplicitLod: {
5731 // Ops[0] = Result Type ID
5732 // Ops[1] = Sampled Image ID
5733 // Ops[2] = Coordinate ID
5734 // Ops[3] = Image Operands Type ID
5735 // Ops[4] ... Ops[n] = Operands ID
5736 PrintResID(Inst);
5737 out << " = ";
5738 PrintOpcode(Inst);
5739 for (uint32_t i = 0; i < 3; i++) {
5740 out << " ";
5741 PrintOperand(Ops[i]);
5742 }
5743 out << " ";
5744 PrintImageOperandsType(Ops[3]);
5745 for (uint32_t i = 4; i < Ops.size(); i++) {
5746 out << " ";
5747 PrintOperand(Ops[i]);
5748 }
5749 out << "\n";
5750 break;
5751 }
5752 case spv::OpVariable: {
5753 // Ops[0] : Result Type ID
5754 // Ops[1] : Storage Class
5755 // Ops[2] ... Ops[n] = Initializer IDs
5756 PrintResID(Inst);
5757 out << " = ";
5758 PrintOpcode(Inst);
5759 out << " ";
5760 PrintOperand(Ops[0]);
5761 out << " ";
5762 PrintStorageClass(Ops[1]);
5763 for (uint32_t i = 2; i < Ops.size(); i++) {
5764 out << " ";
5765 PrintOperand(Ops[i]);
5766 }
5767 out << "\n";
5768 break;
5769 }
5770 case spv::OpExtInst: {
5771 // Ops[0] = Result Type ID
5772 // Ops[1] = Set ID (OpExtInstImport ID)
5773 // Ops[2] = Instruction Number (Literal Number)
5774 // Ops[3] ... Ops[n] = Operand 1, ... , Operand n
5775 PrintResID(Inst);
5776 out << " = ";
5777 PrintOpcode(Inst);
5778 out << " ";
5779 PrintOperand(Ops[0]);
5780 out << " ";
5781 PrintOperand(Ops[1]);
5782 out << " ";
5783 PrintExtInst(Ops[2]);
5784 for (uint32_t i = 3; i < Ops.size(); i++) {
5785 out << " ";
5786 PrintOperand(Ops[i]);
5787 }
5788 out << "\n";
5789 break;
5790 }
5791 case spv::OpCopyMemory: {
5792 // Ops[0] = Addressing Model
5793 // Ops[1] = Memory Model
5794 PrintOpcode(Inst);
5795 out << " ";
5796 PrintOperand(Ops[0]);
5797 out << " ";
5798 PrintOperand(Ops[1]);
5799 out << " ";
5800 PrintMemoryAccess(Ops[2]);
5801 out << " ";
5802 PrintOperand(Ops[3]);
5803 out << "\n";
5804 break;
5805 }
5806 case spv::OpExtension:
5807 case spv::OpControlBarrier:
5808 case spv::OpMemoryBarrier:
5809 case spv::OpBranch:
5810 case spv::OpBranchConditional:
5811 case spv::OpStore:
5812 case spv::OpImageWrite:
5813 case spv::OpReturnValue:
5814 case spv::OpReturn:
5815 case spv::OpFunctionEnd: {
5816 PrintOpcode(Inst);
5817 for (uint32_t i = 0; i < Ops.size(); i++) {
5818 out << " ";
5819 PrintOperand(Ops[i]);
5820 }
5821 out << "\n";
5822 break;
5823 }
5824 case spv::OpExtInstImport:
5825 case spv::OpTypeRuntimeArray:
5826 case spv::OpTypeStruct:
5827 case spv::OpTypeSampler:
5828 case spv::OpTypeSampledImage:
5829 case spv::OpTypeInt:
5830 case spv::OpTypeFloat:
5831 case spv::OpTypeArray:
5832 case spv::OpTypeVector:
5833 case spv::OpTypeBool:
5834 case spv::OpTypeVoid:
5835 case spv::OpTypeFunction:
5836 case spv::OpFunctionParameter:
5837 case spv::OpLabel:
5838 case spv::OpPhi:
5839 case spv::OpLoad:
5840 case spv::OpSelect:
5841 case spv::OpAccessChain:
5842 case spv::OpPtrAccessChain:
5843 case spv::OpInBoundsAccessChain:
5844 case spv::OpUConvert:
5845 case spv::OpSConvert:
5846 case spv::OpConvertFToU:
5847 case spv::OpConvertFToS:
5848 case spv::OpConvertUToF:
5849 case spv::OpConvertSToF:
5850 case spv::OpFConvert:
5851 case spv::OpConvertPtrToU:
5852 case spv::OpConvertUToPtr:
5853 case spv::OpBitcast:
5854 case spv::OpIAdd:
5855 case spv::OpFAdd:
5856 case spv::OpISub:
5857 case spv::OpFSub:
5858 case spv::OpIMul:
5859 case spv::OpFMul:
5860 case spv::OpUDiv:
5861 case spv::OpSDiv:
5862 case spv::OpFDiv:
5863 case spv::OpUMod:
5864 case spv::OpSRem:
5865 case spv::OpFRem:
5866 case spv::OpBitwiseOr:
5867 case spv::OpBitwiseXor:
5868 case spv::OpBitwiseAnd:
David Netoa394f392017-08-26 20:45:29 -04005869 case spv::OpNot:
David Neto22f144c2017-06-12 14:26:21 -04005870 case spv::OpShiftLeftLogical:
5871 case spv::OpShiftRightLogical:
5872 case spv::OpShiftRightArithmetic:
5873 case spv::OpBitCount:
David Netoab03f432017-11-03 17:00:44 -04005874 case spv::OpCompositeConstruct:
David Neto22f144c2017-06-12 14:26:21 -04005875 case spv::OpCompositeExtract:
5876 case spv::OpVectorExtractDynamic:
5877 case spv::OpCompositeInsert:
David Neto0a2f98d2017-09-15 19:38:40 -04005878 case spv::OpCopyObject:
David Neto22f144c2017-06-12 14:26:21 -04005879 case spv::OpVectorInsertDynamic:
5880 case spv::OpVectorShuffle:
5881 case spv::OpIEqual:
5882 case spv::OpINotEqual:
5883 case spv::OpUGreaterThan:
5884 case spv::OpUGreaterThanEqual:
5885 case spv::OpULessThan:
5886 case spv::OpULessThanEqual:
5887 case spv::OpSGreaterThan:
5888 case spv::OpSGreaterThanEqual:
5889 case spv::OpSLessThan:
5890 case spv::OpSLessThanEqual:
5891 case spv::OpFOrdEqual:
5892 case spv::OpFOrdGreaterThan:
5893 case spv::OpFOrdGreaterThanEqual:
5894 case spv::OpFOrdLessThan:
5895 case spv::OpFOrdLessThanEqual:
5896 case spv::OpFOrdNotEqual:
5897 case spv::OpFUnordEqual:
5898 case spv::OpFUnordGreaterThan:
5899 case spv::OpFUnordGreaterThanEqual:
5900 case spv::OpFUnordLessThan:
5901 case spv::OpFUnordLessThanEqual:
5902 case spv::OpFUnordNotEqual:
5903 case spv::OpSampledImage:
5904 case spv::OpFunctionCall:
5905 case spv::OpConstantTrue:
5906 case spv::OpConstantFalse:
5907 case spv::OpConstant:
5908 case spv::OpSpecConstant:
5909 case spv::OpConstantComposite:
5910 case spv::OpSpecConstantComposite:
5911 case spv::OpConstantNull:
5912 case spv::OpLogicalOr:
5913 case spv::OpLogicalAnd:
5914 case spv::OpLogicalNot:
5915 case spv::OpLogicalNotEqual:
5916 case spv::OpUndef:
5917 case spv::OpIsInf:
5918 case spv::OpIsNan:
5919 case spv::OpAny:
5920 case spv::OpAll:
David Neto5c22a252018-03-15 16:07:41 -04005921 case spv::OpImageQuerySize:
David Neto22f144c2017-06-12 14:26:21 -04005922 case spv::OpAtomicIAdd:
5923 case spv::OpAtomicISub:
5924 case spv::OpAtomicExchange:
5925 case spv::OpAtomicIIncrement:
5926 case spv::OpAtomicIDecrement:
5927 case spv::OpAtomicCompareExchange:
5928 case spv::OpAtomicUMin:
5929 case spv::OpAtomicSMin:
5930 case spv::OpAtomicUMax:
5931 case spv::OpAtomicSMax:
5932 case spv::OpAtomicAnd:
5933 case spv::OpAtomicOr:
5934 case spv::OpAtomicXor:
5935 case spv::OpDot: {
5936 PrintResID(Inst);
5937 out << " = ";
5938 PrintOpcode(Inst);
5939 for (uint32_t i = 0; i < Ops.size(); i++) {
5940 out << " ";
5941 PrintOperand(Ops[i]);
5942 }
5943 out << "\n";
5944 break;
5945 }
5946 }
5947 }
5948}
5949
5950void SPIRVProducerPass::WriteOneWord(uint32_t Word) {
David Neto0676e6f2017-07-11 18:47:44 -04005951 binaryOut->write(reinterpret_cast<const char *>(&Word), sizeof(uint32_t));
David Neto22f144c2017-06-12 14:26:21 -04005952}
5953
5954void SPIRVProducerPass::WriteResultID(SPIRVInstruction *Inst) {
5955 WriteOneWord(Inst->getResultID());
5956}
5957
5958void SPIRVProducerPass::WriteWordCountAndOpcode(SPIRVInstruction *Inst) {
5959 // High 16 bit : Word Count
5960 // Low 16 bit : Opcode
5961 uint32_t Word = Inst->getOpcode();
David Netoee2660d2018-06-28 16:31:29 -04005962 const uint32_t count = Inst->getWordCount();
5963 if (count > 65535) {
5964 errs() << "Word count limit of 65535 exceeded: " << count << "\n";
5965 llvm_unreachable("Word count too high");
5966 }
David Neto22f144c2017-06-12 14:26:21 -04005967 Word |= Inst->getWordCount() << 16;
5968 WriteOneWord(Word);
5969}
5970
5971void SPIRVProducerPass::WriteOperand(SPIRVOperand *Op) {
5972 SPIRVOperandType OpTy = Op->getType();
5973 switch (OpTy) {
5974 default: {
5975 llvm_unreachable("Unsupported SPIRV Operand Type???");
5976 break;
5977 }
5978 case SPIRVOperandType::NUMBERID: {
5979 WriteOneWord(Op->getNumID());
5980 break;
5981 }
5982 case SPIRVOperandType::LITERAL_STRING: {
5983 std::string Str = Op->getLiteralStr();
5984 const char *Data = Str.c_str();
5985 size_t WordSize = Str.size() / 4;
5986 for (unsigned Idx = 0; Idx < WordSize; Idx++) {
5987 WriteOneWord(*reinterpret_cast<const uint32_t *>(&Data[4 * Idx]));
5988 }
5989
5990 uint32_t Remainder = Str.size() % 4;
5991 uint32_t LastWord = 0;
5992 if (Remainder) {
5993 for (unsigned Idx = 0; Idx < Remainder; Idx++) {
5994 LastWord |= Data[4 * WordSize + Idx] << 8 * Idx;
5995 }
5996 }
5997
5998 WriteOneWord(LastWord);
5999 break;
6000 }
6001 case SPIRVOperandType::LITERAL_INTEGER:
6002 case SPIRVOperandType::LITERAL_FLOAT: {
6003 auto LiteralNum = Op->getLiteralNum();
6004 // TODO: Handle LiteranNum carefully.
6005 for (auto Word : LiteralNum) {
6006 WriteOneWord(Word);
6007 }
6008 break;
6009 }
6010 }
6011}
6012
6013void SPIRVProducerPass::WriteSPIRVBinary() {
6014 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
6015
6016 for (auto Inst : SPIRVInstList) {
David Netoc6f3ab22018-04-06 18:02:31 -04006017 SPIRVOperandList Ops{Inst->getOperands()};
David Neto22f144c2017-06-12 14:26:21 -04006018 spv::Op Opcode = static_cast<spv::Op>(Inst->getOpcode());
6019
6020 switch (Opcode) {
6021 default: {
David Neto5c22a252018-03-15 16:07:41 -04006022 errs() << "Unsupported SPIR-V instruction opcode " << int(Opcode) << "\n";
David Neto22f144c2017-06-12 14:26:21 -04006023 llvm_unreachable("Unsupported SPIRV instruction");
6024 break;
6025 }
6026 case spv::OpCapability:
6027 case spv::OpExtension:
6028 case spv::OpMemoryModel:
6029 case spv::OpEntryPoint:
6030 case spv::OpExecutionMode:
6031 case spv::OpSource:
6032 case spv::OpDecorate:
6033 case spv::OpMemberDecorate:
6034 case spv::OpBranch:
6035 case spv::OpBranchConditional:
6036 case spv::OpSelectionMerge:
6037 case spv::OpLoopMerge:
6038 case spv::OpStore:
6039 case spv::OpImageWrite:
6040 case spv::OpReturnValue:
6041 case spv::OpControlBarrier:
6042 case spv::OpMemoryBarrier:
6043 case spv::OpReturn:
6044 case spv::OpFunctionEnd:
6045 case spv::OpCopyMemory: {
6046 WriteWordCountAndOpcode(Inst);
6047 for (uint32_t i = 0; i < Ops.size(); i++) {
6048 WriteOperand(Ops[i]);
6049 }
6050 break;
6051 }
6052 case spv::OpTypeBool:
6053 case spv::OpTypeVoid:
6054 case spv::OpTypeSampler:
6055 case spv::OpLabel:
6056 case spv::OpExtInstImport:
6057 case spv::OpTypePointer:
6058 case spv::OpTypeRuntimeArray:
6059 case spv::OpTypeStruct:
6060 case spv::OpTypeImage:
6061 case spv::OpTypeSampledImage:
6062 case spv::OpTypeInt:
6063 case spv::OpTypeFloat:
6064 case spv::OpTypeArray:
6065 case spv::OpTypeVector:
6066 case spv::OpTypeFunction: {
6067 WriteWordCountAndOpcode(Inst);
6068 WriteResultID(Inst);
6069 for (uint32_t i = 0; i < Ops.size(); i++) {
6070 WriteOperand(Ops[i]);
6071 }
6072 break;
6073 }
6074 case spv::OpFunction:
6075 case spv::OpFunctionParameter:
6076 case spv::OpAccessChain:
6077 case spv::OpPtrAccessChain:
6078 case spv::OpInBoundsAccessChain:
6079 case spv::OpUConvert:
6080 case spv::OpSConvert:
6081 case spv::OpConvertFToU:
6082 case spv::OpConvertFToS:
6083 case spv::OpConvertUToF:
6084 case spv::OpConvertSToF:
6085 case spv::OpFConvert:
6086 case spv::OpConvertPtrToU:
6087 case spv::OpConvertUToPtr:
6088 case spv::OpBitcast:
6089 case spv::OpIAdd:
6090 case spv::OpFAdd:
6091 case spv::OpISub:
6092 case spv::OpFSub:
6093 case spv::OpIMul:
6094 case spv::OpFMul:
6095 case spv::OpUDiv:
6096 case spv::OpSDiv:
6097 case spv::OpFDiv:
6098 case spv::OpUMod:
6099 case spv::OpSRem:
6100 case spv::OpFRem:
6101 case spv::OpBitwiseOr:
6102 case spv::OpBitwiseXor:
6103 case spv::OpBitwiseAnd:
David Netoa394f392017-08-26 20:45:29 -04006104 case spv::OpNot:
David Neto22f144c2017-06-12 14:26:21 -04006105 case spv::OpShiftLeftLogical:
6106 case spv::OpShiftRightLogical:
6107 case spv::OpShiftRightArithmetic:
6108 case spv::OpBitCount:
David Netoab03f432017-11-03 17:00:44 -04006109 case spv::OpCompositeConstruct:
David Neto22f144c2017-06-12 14:26:21 -04006110 case spv::OpCompositeExtract:
6111 case spv::OpVectorExtractDynamic:
6112 case spv::OpCompositeInsert:
David Neto0a2f98d2017-09-15 19:38:40 -04006113 case spv::OpCopyObject:
David Neto22f144c2017-06-12 14:26:21 -04006114 case spv::OpVectorInsertDynamic:
6115 case spv::OpVectorShuffle:
6116 case spv::OpIEqual:
6117 case spv::OpINotEqual:
6118 case spv::OpUGreaterThan:
6119 case spv::OpUGreaterThanEqual:
6120 case spv::OpULessThan:
6121 case spv::OpULessThanEqual:
6122 case spv::OpSGreaterThan:
6123 case spv::OpSGreaterThanEqual:
6124 case spv::OpSLessThan:
6125 case spv::OpSLessThanEqual:
6126 case spv::OpFOrdEqual:
6127 case spv::OpFOrdGreaterThan:
6128 case spv::OpFOrdGreaterThanEqual:
6129 case spv::OpFOrdLessThan:
6130 case spv::OpFOrdLessThanEqual:
6131 case spv::OpFOrdNotEqual:
6132 case spv::OpFUnordEqual:
6133 case spv::OpFUnordGreaterThan:
6134 case spv::OpFUnordGreaterThanEqual:
6135 case spv::OpFUnordLessThan:
6136 case spv::OpFUnordLessThanEqual:
6137 case spv::OpFUnordNotEqual:
6138 case spv::OpExtInst:
6139 case spv::OpIsInf:
6140 case spv::OpIsNan:
6141 case spv::OpAny:
6142 case spv::OpAll:
6143 case spv::OpUndef:
6144 case spv::OpConstantNull:
6145 case spv::OpLogicalOr:
6146 case spv::OpLogicalAnd:
6147 case spv::OpLogicalNot:
6148 case spv::OpLogicalNotEqual:
6149 case spv::OpConstantComposite:
6150 case spv::OpSpecConstantComposite:
6151 case spv::OpConstantTrue:
6152 case spv::OpConstantFalse:
6153 case spv::OpConstant:
6154 case spv::OpSpecConstant:
6155 case spv::OpVariable:
6156 case spv::OpFunctionCall:
6157 case spv::OpSampledImage:
6158 case spv::OpImageSampleExplicitLod:
David Neto5c22a252018-03-15 16:07:41 -04006159 case spv::OpImageQuerySize:
David Neto22f144c2017-06-12 14:26:21 -04006160 case spv::OpSelect:
6161 case spv::OpPhi:
6162 case spv::OpLoad:
6163 case spv::OpAtomicIAdd:
6164 case spv::OpAtomicISub:
6165 case spv::OpAtomicExchange:
6166 case spv::OpAtomicIIncrement:
6167 case spv::OpAtomicIDecrement:
6168 case spv::OpAtomicCompareExchange:
6169 case spv::OpAtomicUMin:
6170 case spv::OpAtomicSMin:
6171 case spv::OpAtomicUMax:
6172 case spv::OpAtomicSMax:
6173 case spv::OpAtomicAnd:
6174 case spv::OpAtomicOr:
6175 case spv::OpAtomicXor:
6176 case spv::OpDot: {
6177 WriteWordCountAndOpcode(Inst);
6178 WriteOperand(Ops[0]);
6179 WriteResultID(Inst);
6180 for (uint32_t i = 1; i < Ops.size(); i++) {
6181 WriteOperand(Ops[i]);
6182 }
6183 break;
6184 }
6185 }
6186 }
6187}
Alan Baker9bf93fb2018-08-28 16:59:26 -04006188
6189bool SPIRVProducerPass::IsTypeNullable(const Type* type) const {
6190 switch (type->getTypeID()) {
6191 case Type::HalfTyID:
6192 case Type::FloatTyID:
6193 case Type::DoubleTyID:
6194 case Type::IntegerTyID:
6195 case Type::VectorTyID:
6196 return true;
6197 case Type::PointerTyID: {
6198 const PointerType *pointer_type = cast<PointerType>(type);
6199 if (pointer_type->getPointerAddressSpace() !=
6200 AddressSpace::UniformConstant) {
6201 auto pointee_type = pointer_type->getPointerElementType();
6202 if (pointee_type->isStructTy() &&
6203 cast<StructType>(pointee_type)->isOpaque()) {
6204 // Images and samplers are not nullable.
6205 return false;
6206 }
6207 }
6208 return true;
6209 }
6210 case Type::ArrayTyID:
6211 return IsTypeNullable(cast<CompositeType>(type)->getTypeAtIndex(0u));
6212 case Type::StructTyID: {
6213 const StructType* struct_type = cast<StructType>(type);
6214 // Images and samplers are not nullable.
6215 if (struct_type->isOpaque()) return false;
6216 for (const auto element : struct_type->elements()) {
6217 if (!IsTypeNullable(element)) return false;
6218 }
6219 return true;
6220 }
6221 default:
6222 return false;
6223 }
6224}
Alan Bakerfcda9482018-10-02 17:09:59 -04006225
6226void SPIRVProducerPass::PopulateUBOTypeMaps(Module &module) {
6227 if (auto *offsets_md =
6228 module.getNamedMetadata(clspv::RemappedTypeOffsetMetadataName())) {
6229 // Metdata is stored as key-value pair operands. The first element of each
6230 // operand is the type and the second is a vector of offsets.
6231 for (const auto *operand : offsets_md->operands()) {
6232 const auto *pair = cast<MDTuple>(operand);
6233 auto *type =
6234 cast<ConstantAsMetadata>(pair->getOperand(0))->getValue()->getType();
6235 const auto *offset_vector = cast<MDTuple>(pair->getOperand(1));
6236 std::vector<uint32_t> offsets;
6237 for (const Metadata *offset_md : offset_vector->operands()) {
6238 const auto *constant_md = cast<ConstantAsMetadata>(offset_md);
6239 offsets.push_back(
6240 cast<ConstantInt>(constant_md->getValue())->getZExtValue());
6241 }
6242 RemappedUBOTypeOffsets.insert(std::make_pair(type, offsets));
6243 }
6244 }
6245
6246 if (auto *sizes_md =
6247 module.getNamedMetadata(clspv::RemappedTypeSizesMetadataName())) {
6248 // Metadata is stored as key-value pair operands. The first element of each
6249 // operand is the type and the second is a triple of sizes: type size in
6250 // bits, store size and alloc size.
6251 for (const auto *operand : sizes_md->operands()) {
6252 const auto *pair = cast<MDTuple>(operand);
6253 auto *type =
6254 cast<ConstantAsMetadata>(pair->getOperand(0))->getValue()->getType();
6255 const auto *size_triple = cast<MDTuple>(pair->getOperand(1));
6256 uint64_t type_size_in_bits =
6257 cast<ConstantInt>(
6258 cast<ConstantAsMetadata>(size_triple->getOperand(0))->getValue())
6259 ->getZExtValue();
6260 uint64_t type_store_size =
6261 cast<ConstantInt>(
6262 cast<ConstantAsMetadata>(size_triple->getOperand(1))->getValue())
6263 ->getZExtValue();
6264 uint64_t type_alloc_size =
6265 cast<ConstantInt>(
6266 cast<ConstantAsMetadata>(size_triple->getOperand(2))->getValue())
6267 ->getZExtValue();
6268 RemappedUBOTypeSizes.insert(std::make_pair(
6269 type, std::make_tuple(type_size_in_bits, type_store_size,
6270 type_alloc_size)));
6271 }
6272 }
6273}
6274
6275uint64_t SPIRVProducerPass::GetTypeSizeInBits(Type *type,
6276 const DataLayout &DL) {
6277 auto iter = RemappedUBOTypeSizes.find(type);
6278 if (iter != RemappedUBOTypeSizes.end()) {
6279 return std::get<0>(iter->second);
6280 }
6281
6282 return DL.getTypeSizeInBits(type);
6283}
6284
6285uint64_t SPIRVProducerPass::GetTypeStoreSize(Type *type, const DataLayout &DL) {
6286 auto iter = RemappedUBOTypeSizes.find(type);
6287 if (iter != RemappedUBOTypeSizes.end()) {
6288 return std::get<1>(iter->second);
6289 }
6290
6291 return DL.getTypeStoreSize(type);
6292}
6293
6294uint64_t SPIRVProducerPass::GetTypeAllocSize(Type *type, const DataLayout &DL) {
6295 auto iter = RemappedUBOTypeSizes.find(type);
6296 if (iter != RemappedUBOTypeSizes.end()) {
6297 return std::get<2>(iter->second);
6298 }
6299
6300 return DL.getTypeAllocSize(type);
6301}