blob: c0a745093e05cc08c042f0b6cb8615cb51565189 [file] [log] [blame]
David Neto22f144c2017-06-12 14:26:21 -04001// Copyright 2017 The Clspv Authors. All rights reserved.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#ifdef _MSC_VER
16#pragma warning(push, 0)
17#endif
18
David Neto156783e2017-07-05 15:39:41 -040019#include <cassert>
David Neto257c3892018-04-11 13:19:45 -040020#include <cstring>
21
David Neto5c22a252018-03-15 16:07:41 -040022#include <unordered_set>
David Neto862b7d82018-06-14 18:48:37 -040023#include <memory>
24
David Neto482550a2018-03-24 05:21:07 -070025#include <clspv/Option.h>
David Neto22f144c2017-06-12 14:26:21 -040026#include <clspv/Passes.h>
27
28#include <llvm/ADT/StringSwitch.h>
29#include <llvm/ADT/UniqueVector.h>
30#include <llvm/Analysis/LoopInfo.h>
31#include <llvm/IR/Constants.h>
32#include <llvm/IR/Dominators.h>
33#include <llvm/IR/Instructions.h>
34#include <llvm/IR/Metadata.h>
35#include <llvm/IR/Module.h>
36#include <llvm/Pass.h>
David Netocd8ca5f2017-10-02 23:34:11 -040037#include <llvm/Support/CommandLine.h>
David Neto22f144c2017-06-12 14:26:21 -040038#include <llvm/Support/raw_ostream.h>
39#include <llvm/Transforms/Utils/Cloning.h>
40
David Neto85082642018-03-24 06:55:20 -070041#include "spirv/1.0/spirv.hpp"
42#include "clspv/AddressSpace.h"
43#include "clspv/spirv_c_strings.hpp"
44#include "clspv/spirv_glsl.hpp"
David Neto22f144c2017-06-12 14:26:21 -040045
David Neto4feb7a42017-10-06 17:29:42 -040046#include "ArgKind.h"
David Neto85082642018-03-24 06:55:20 -070047#include "ConstantEmitter.h"
Alan Baker202c8c72018-08-13 13:47:44 -040048#include "Constants.h"
David Neto78383442018-06-15 20:31:56 -040049#include "DescriptorCounter.h"
David Neto48f56a42017-10-06 16:44:25 -040050
David Neto22f144c2017-06-12 14:26:21 -040051#include <list>
David Neto0676e6f2017-07-11 18:47:44 -040052#include <iomanip>
David Neto26aaf622017-10-23 18:11:53 -040053#include <set>
David Neto0676e6f2017-07-11 18:47:44 -040054#include <sstream>
David Neto257c3892018-04-11 13:19:45 -040055#include <string>
David Neto26aaf622017-10-23 18:11:53 -040056#include <tuple>
David Neto44795152017-07-13 15:45:28 -040057#include <utility>
David Neto22f144c2017-06-12 14:26:21 -040058
59#if defined(_MSC_VER)
60#pragma warning(pop)
61#endif
62
63using namespace llvm;
64using namespace clspv;
David Neto156783e2017-07-05 15:39:41 -040065using namespace mdconst;
David Neto22f144c2017-06-12 14:26:21 -040066
67namespace {
David Netocd8ca5f2017-10-02 23:34:11 -040068
David Neto862b7d82018-06-14 18:48:37 -040069cl::opt<bool> ShowResourceVars("show-rv", cl::init(false), cl::Hidden,
70 cl::desc("Show resource variable creation"));
71
72// These hacks exist to help transition code generation algorithms
73// without making huge noise in detailed test output.
74const bool Hack_generate_runtime_array_stride_early = true;
75
David Neto3fbb4072017-10-16 11:28:14 -040076// The value of 1/pi. This value is from MSDN
77// https://msdn.microsoft.com/en-us/library/4hwaceh6.aspx
78const double kOneOverPi = 0.318309886183790671538;
79const glsl::ExtInst kGlslExtInstBad = static_cast<glsl::ExtInst>(0);
80
David Netoab03f432017-11-03 17:00:44 -040081const char* kCompositeConstructFunctionPrefix = "clspv.composite_construct.";
82
David Neto22f144c2017-06-12 14:26:21 -040083enum SPIRVOperandType {
84 NUMBERID,
85 LITERAL_INTEGER,
86 LITERAL_STRING,
87 LITERAL_FLOAT
88};
89
90struct SPIRVOperand {
91 explicit SPIRVOperand(SPIRVOperandType Ty, uint32_t Num)
92 : Type(Ty), LiteralNum(1, Num) {}
93 explicit SPIRVOperand(SPIRVOperandType Ty, const char *Str)
94 : Type(Ty), LiteralStr(Str) {}
95 explicit SPIRVOperand(SPIRVOperandType Ty, StringRef Str)
96 : Type(Ty), LiteralStr(Str) {}
97 explicit SPIRVOperand(SPIRVOperandType Ty, ArrayRef<uint32_t> NumVec)
98 : Type(Ty), LiteralNum(NumVec.begin(), NumVec.end()) {}
99
100 SPIRVOperandType getType() { return Type; };
101 uint32_t getNumID() { return LiteralNum[0]; };
102 std::string getLiteralStr() { return LiteralStr; };
103 ArrayRef<uint32_t> getLiteralNum() { return LiteralNum; };
104
David Neto87846742018-04-11 17:36:22 -0400105 uint32_t GetNumWords() const {
106 switch (Type) {
107 case NUMBERID:
108 return 1;
109 case LITERAL_INTEGER:
110 case LITERAL_FLOAT:
David Netoee2660d2018-06-28 16:31:29 -0400111 return uint32_t(LiteralNum.size());
David Neto87846742018-04-11 17:36:22 -0400112 case LITERAL_STRING:
113 // Account for the terminating null character.
David Netoee2660d2018-06-28 16:31:29 -0400114 return uint32_t((LiteralStr.size() + 4) / 4);
David Neto87846742018-04-11 17:36:22 -0400115 }
116 llvm_unreachable("Unhandled case in SPIRVOperand::GetNumWords()");
117 }
118
David Neto22f144c2017-06-12 14:26:21 -0400119private:
120 SPIRVOperandType Type;
121 std::string LiteralStr;
122 SmallVector<uint32_t, 4> LiteralNum;
123};
124
David Netoc6f3ab22018-04-06 18:02:31 -0400125class SPIRVOperandList {
126public:
127 SPIRVOperandList() {}
128 SPIRVOperandList(const SPIRVOperandList& other) = delete;
129 SPIRVOperandList(SPIRVOperandList&& other) {
130 contents_ = std::move(other.contents_);
131 other.contents_.clear();
132 }
133 SPIRVOperandList(ArrayRef<SPIRVOperand *> init)
134 : contents_(init.begin(), init.end()) {}
135 operator ArrayRef<SPIRVOperand *>() { return contents_; }
136 void push_back(SPIRVOperand *op) { contents_.push_back(op); }
137 void clear() { contents_.clear();}
138 size_t size() const { return contents_.size(); }
139 SPIRVOperand *&operator[](size_t i) { return contents_[i]; }
140
David Neto87846742018-04-11 17:36:22 -0400141 const SmallVector<SPIRVOperand *, 8> &getOperands() const {
142 return contents_;
143 }
144
David Netoc6f3ab22018-04-06 18:02:31 -0400145private:
146 SmallVector<SPIRVOperand *,8> contents_;
147};
148
149SPIRVOperandList &operator<<(SPIRVOperandList &list, SPIRVOperand *elem) {
150 list.push_back(elem);
151 return list;
152}
153
154SPIRVOperand* MkNum(uint32_t num) {
155 return new SPIRVOperand(LITERAL_INTEGER, num);
156}
David Neto257c3892018-04-11 13:19:45 -0400157SPIRVOperand* MkInteger(ArrayRef<uint32_t> num_vec) {
158 return new SPIRVOperand(LITERAL_INTEGER, num_vec);
159}
160SPIRVOperand* MkFloat(ArrayRef<uint32_t> num_vec) {
161 return new SPIRVOperand(LITERAL_FLOAT, num_vec);
162}
David Netoc6f3ab22018-04-06 18:02:31 -0400163SPIRVOperand* MkId(uint32_t id) {
164 return new SPIRVOperand(NUMBERID, id);
165}
David Neto257c3892018-04-11 13:19:45 -0400166SPIRVOperand* MkString(StringRef str) {
167 return new SPIRVOperand(LITERAL_STRING, str);
168}
David Netoc6f3ab22018-04-06 18:02:31 -0400169
David Neto22f144c2017-06-12 14:26:21 -0400170struct SPIRVInstruction {
David Neto87846742018-04-11 17:36:22 -0400171 // Create an instruction with an opcode and no result ID, and with the given
172 // operands. This computes its own word count.
173 explicit SPIRVInstruction(spv::Op Opc, ArrayRef<SPIRVOperand *> Ops)
174 : WordCount(1), Opcode(static_cast<uint16_t>(Opc)), ResultID(0),
175 Operands(Ops.begin(), Ops.end()) {
176 for (auto *operand : Ops) {
David Netoee2660d2018-06-28 16:31:29 -0400177 WordCount += uint16_t(operand->GetNumWords());
David Neto87846742018-04-11 17:36:22 -0400178 }
179 }
180 // Create an instruction with an opcode and a no-zero result ID, and
181 // with the given operands. This computes its own word count.
182 explicit SPIRVInstruction(spv::Op Opc, uint32_t ResID,
David Neto22f144c2017-06-12 14:26:21 -0400183 ArrayRef<SPIRVOperand *> Ops)
David Neto87846742018-04-11 17:36:22 -0400184 : WordCount(2), Opcode(static_cast<uint16_t>(Opc)), ResultID(ResID),
185 Operands(Ops.begin(), Ops.end()) {
186 if (ResID == 0) {
187 llvm_unreachable("Result ID of 0 was provided");
188 }
189 for (auto *operand : Ops) {
190 WordCount += operand->GetNumWords();
191 }
192 }
David Neto22f144c2017-06-12 14:26:21 -0400193
David Netoee2660d2018-06-28 16:31:29 -0400194 uint32_t getWordCount() const { return WordCount; }
David Neto22f144c2017-06-12 14:26:21 -0400195 uint16_t getOpcode() const { return Opcode; }
196 uint32_t getResultID() const { return ResultID; }
197 ArrayRef<SPIRVOperand *> getOperands() const { return Operands; }
198
199private:
David Netoee2660d2018-06-28 16:31:29 -0400200 uint32_t WordCount; // Check the 16-bit bound at code generation time.
David Neto22f144c2017-06-12 14:26:21 -0400201 uint16_t Opcode;
202 uint32_t ResultID;
203 SmallVector<SPIRVOperand *, 4> Operands;
204};
205
206struct SPIRVProducerPass final : public ModulePass {
David Neto22f144c2017-06-12 14:26:21 -0400207 typedef DenseMap<Type *, uint32_t> TypeMapType;
208 typedef UniqueVector<Type *> TypeList;
209 typedef DenseMap<Value *, uint32_t> ValueMapType;
David Netofb9a7972017-08-25 17:08:24 -0400210 typedef UniqueVector<Value *> ValueList;
David Neto22f144c2017-06-12 14:26:21 -0400211 typedef std::vector<std::pair<Value *, uint32_t>> EntryPointVecType;
212 typedef std::list<SPIRVInstruction *> SPIRVInstructionList;
David Neto87846742018-04-11 17:36:22 -0400213 // A vector of tuples, each of which is:
214 // - the LLVM instruction that we will later generate SPIR-V code for
215 // - where the SPIR-V instruction should be inserted
216 // - the result ID of the SPIR-V instruction
David Neto22f144c2017-06-12 14:26:21 -0400217 typedef std::vector<
218 std::tuple<Value *, SPIRVInstructionList::iterator, uint32_t>>
219 DeferredInstVecType;
220 typedef DenseMap<FunctionType *, std::pair<FunctionType *, uint32_t>>
221 GlobalConstFuncMapType;
222
David Neto44795152017-07-13 15:45:28 -0400223 explicit SPIRVProducerPass(
224 raw_pwrite_stream &out, raw_ostream &descriptor_map_out,
225 ArrayRef<std::pair<unsigned, std::string>> samplerMap, bool outputAsm,
226 bool outputCInitList)
David Netoc2c368d2017-06-30 16:50:17 -0400227 : ModulePass(ID), samplerMap(samplerMap), out(out),
David Neto0676e6f2017-07-11 18:47:44 -0400228 binaryTempOut(binaryTempUnderlyingVector), binaryOut(&out),
David Netoc2c368d2017-06-30 16:50:17 -0400229 descriptorMapOut(descriptor_map_out), outputAsm(outputAsm),
David Neto0676e6f2017-07-11 18:47:44 -0400230 outputCInitList(outputCInitList), patchBoundOffset(0), nextID(1),
David Netoa60b00b2017-09-15 16:34:09 -0400231 OpExtInstImportID(0), HasVariablePointers(false), SamplerTy(nullptr),
David Neto85082642018-03-24 06:55:20 -0700232 WorkgroupSizeValueID(0), WorkgroupSizeVarID(0),
Alan Baker202c8c72018-08-13 13:47:44 -0400233 max_local_spec_id_(0), constant_i32_zero_id_(0) {}
David Neto22f144c2017-06-12 14:26:21 -0400234
235 void getAnalysisUsage(AnalysisUsage &AU) const override {
236 AU.addRequired<DominatorTreeWrapperPass>();
237 AU.addRequired<LoopInfoWrapperPass>();
238 }
239
240 virtual bool runOnModule(Module &module) override;
241
242 // output the SPIR-V header block
243 void outputHeader();
244
245 // patch the SPIR-V header block
246 void patchHeader();
247
248 uint32_t lookupType(Type *Ty) {
249 if (Ty->isPointerTy() &&
250 (Ty->getPointerAddressSpace() != AddressSpace::UniformConstant)) {
251 auto PointeeTy = Ty->getPointerElementType();
252 if (PointeeTy->isStructTy() &&
253 dyn_cast<StructType>(PointeeTy)->isOpaque()) {
254 Ty = PointeeTy;
255 }
256 }
257
David Neto862b7d82018-06-14 18:48:37 -0400258 auto where = TypeMap.find(Ty);
259 if (where == TypeMap.end()) {
260 if (Ty) {
261 errs() << "Unhandled type " << *Ty << "\n";
262 } else {
263 errs() << "Unhandled type (null)\n";
264 }
David Netoe439d702018-03-23 13:14:08 -0700265 llvm_unreachable("\nUnhandled type!");
David Neto22f144c2017-06-12 14:26:21 -0400266 }
267
David Neto862b7d82018-06-14 18:48:37 -0400268 return where->second;
David Neto22f144c2017-06-12 14:26:21 -0400269 }
270 TypeMapType &getImageTypeMap() { return ImageTypeMap; }
271 TypeList &getTypeList() { return Types; };
272 ValueList &getConstantList() { return Constants; };
273 ValueMapType &getValueMap() { return ValueMap; }
274 ValueMapType &getAllocatedValueMap() { return AllocatedValueMap; }
275 SPIRVInstructionList &getSPIRVInstList() { return SPIRVInsts; };
David Neto22f144c2017-06-12 14:26:21 -0400276 EntryPointVecType &getEntryPointVec() { return EntryPointVec; };
277 DeferredInstVecType &getDeferredInstVec() { return DeferredInstVec; };
278 ValueList &getEntryPointInterfacesVec() { return EntryPointInterfacesVec; };
279 uint32_t &getOpExtInstImportID() { return OpExtInstImportID; };
280 std::vector<uint32_t> &getBuiltinDimVec() { return BuiltinDimensionVec; };
281 bool hasVariablePointers() { return true; /* We use StorageBuffer everywhere */ };
282 void setVariablePointers(bool Val) { HasVariablePointers = Val; };
David Neto44795152017-07-13 15:45:28 -0400283 ArrayRef<std::pair<unsigned, std::string>> &getSamplerMap() { return samplerMap; }
David Neto22f144c2017-06-12 14:26:21 -0400284 GlobalConstFuncMapType &getGlobalConstFuncTypeMap() {
285 return GlobalConstFuncTypeMap;
286 }
287 SmallPtrSet<Value *, 16> &getGlobalConstArgSet() {
288 return GlobalConstArgumentSet;
289 }
David Neto85082642018-03-24 06:55:20 -0700290 TypeList &getTypesNeedingArrayStride() {
291 return TypesNeedingArrayStride;
David Neto1a1a0582017-07-07 12:01:44 -0400292 }
David Neto22f144c2017-06-12 14:26:21 -0400293
David Netoc6f3ab22018-04-06 18:02:31 -0400294 void GenerateLLVMIRInfo(Module &M, const DataLayout &DL);
David Neto862b7d82018-06-14 18:48:37 -0400295 // Populate GlobalConstFuncTypeMap. Also, if module-scope __constant will *not*
296 // be converted to a storage buffer, replace each such global variable with
297 // one in the storage class expecgted by SPIR-V.
298 void FindGlobalConstVars(Module &M, const DataLayout &DL);
299 // Populate ResourceVarInfoList, FunctionToResourceVarsMap, and
300 // ModuleOrderedResourceVars.
301 void FindResourceVars(Module &M, const DataLayout &DL);
Alan Baker202c8c72018-08-13 13:47:44 -0400302 void FindWorkgroupVars(Module &M);
David Neto22f144c2017-06-12 14:26:21 -0400303 bool FindExtInst(Module &M);
304 void FindTypePerGlobalVar(GlobalVariable &GV);
305 void FindTypePerFunc(Function &F);
David Neto862b7d82018-06-14 18:48:37 -0400306 void FindTypesForSamplerMap(Module &M);
307 void FindTypesForResourceVars(Module &M);
David Neto19a1bad2017-08-25 15:01:41 -0400308 // Inserts |Ty| and relevant sub-types into the |Types| member, indicating that
309 // |Ty| and its subtypes will need a corresponding SPIR-V type.
David Neto22f144c2017-06-12 14:26:21 -0400310 void FindType(Type *Ty);
311 void FindConstantPerGlobalVar(GlobalVariable &GV);
312 void FindConstantPerFunc(Function &F);
313 void FindConstant(Value *V);
314 void GenerateExtInstImport();
David Neto19a1bad2017-08-25 15:01:41 -0400315 // Generates instructions for SPIR-V types corresponding to the LLVM types
316 // saved in the |Types| member. A type follows its subtypes. IDs are
317 // allocated sequentially starting with the current value of nextID, and
318 // with a type following its subtypes. Also updates nextID to just beyond
319 // the last generated ID.
David Netoc6f3ab22018-04-06 18:02:31 -0400320 void GenerateSPIRVTypes(LLVMContext& context, const DataLayout &DL);
David Neto22f144c2017-06-12 14:26:21 -0400321 void GenerateSPIRVConstants();
David Neto5c22a252018-03-15 16:07:41 -0400322 void GenerateModuleInfo(Module &M);
David Neto22f144c2017-06-12 14:26:21 -0400323 void GenerateGlobalVar(GlobalVariable &GV);
David Netoc6f3ab22018-04-06 18:02:31 -0400324 void GenerateWorkgroupVars();
David Neto862b7d82018-06-14 18:48:37 -0400325 // Generate descriptor map entries for resource variables associated with
326 // arguments to F.
327 void GenerateDescriptorMapInfo(const DataLayout& DL, Function& F);
David Neto22f144c2017-06-12 14:26:21 -0400328 void GenerateSamplers(Module &M);
David Neto862b7d82018-06-14 18:48:37 -0400329 // Generate OpVariables for %clspv.resource.var.* calls.
330 void GenerateResourceVars(Module &M);
David Neto22f144c2017-06-12 14:26:21 -0400331 void GenerateFuncPrologue(Function &F);
332 void GenerateFuncBody(Function &F);
David Netob6e2e062018-04-25 10:32:06 -0400333 void GenerateEntryPointInitialStores();
David Neto22f144c2017-06-12 14:26:21 -0400334 spv::Op GetSPIRVCmpOpcode(CmpInst *CmpI);
335 spv::Op GetSPIRVCastOpcode(Instruction &I);
336 spv::Op GetSPIRVBinaryOpcode(Instruction &I);
337 void GenerateInstruction(Instruction &I);
338 void GenerateFuncEpilogue();
339 void HandleDeferredInstruction();
David Neto1a1a0582017-07-07 12:01:44 -0400340 void HandleDeferredDecorations(const DataLayout& DL);
David Neto22f144c2017-06-12 14:26:21 -0400341 bool is4xi8vec(Type *Ty) const;
David Neto257c3892018-04-11 13:19:45 -0400342 // Return the SPIR-V Id for 32-bit constant zero. The constant must already
343 // have been created.
344 uint32_t GetI32Zero();
David Neto22f144c2017-06-12 14:26:21 -0400345 spv::StorageClass GetStorageClass(unsigned AddrSpace) const;
David Neto862b7d82018-06-14 18:48:37 -0400346 spv::StorageClass GetStorageClassForArgKind(clspv::ArgKind arg_kind) const;
David Neto22f144c2017-06-12 14:26:21 -0400347 spv::BuiltIn GetBuiltin(StringRef globalVarName) const;
David Neto3fbb4072017-10-16 11:28:14 -0400348 // Returns the GLSL extended instruction enum that the given function
349 // call maps to. If none, then returns the 0 value, i.e. GLSLstd4580Bad.
David Neto22f144c2017-06-12 14:26:21 -0400350 glsl::ExtInst getExtInstEnum(StringRef Name);
David Neto3fbb4072017-10-16 11:28:14 -0400351 // Returns the GLSL extended instruction enum indirectly used by the given
352 // function. That is, to implement the given function, we use an extended
353 // instruction plus one more instruction. If none, then returns the 0 value,
354 // i.e. GLSLstd4580Bad.
355 glsl::ExtInst getIndirectExtInstEnum(StringRef Name);
356 // Returns the single GLSL extended instruction used directly or
357 // indirectly by the given function call.
358 glsl::ExtInst getDirectOrIndirectExtInstEnum(StringRef Name);
David Neto22f144c2017-06-12 14:26:21 -0400359 void PrintResID(SPIRVInstruction *Inst);
360 void PrintOpcode(SPIRVInstruction *Inst);
361 void PrintOperand(SPIRVOperand *Op);
362 void PrintCapability(SPIRVOperand *Op);
363 void PrintExtInst(SPIRVOperand *Op);
364 void PrintAddrModel(SPIRVOperand *Op);
365 void PrintMemModel(SPIRVOperand *Op);
366 void PrintExecModel(SPIRVOperand *Op);
367 void PrintExecMode(SPIRVOperand *Op);
368 void PrintSourceLanguage(SPIRVOperand *Op);
369 void PrintFuncCtrl(SPIRVOperand *Op);
370 void PrintStorageClass(SPIRVOperand *Op);
371 void PrintDecoration(SPIRVOperand *Op);
372 void PrintBuiltIn(SPIRVOperand *Op);
373 void PrintSelectionControl(SPIRVOperand *Op);
374 void PrintLoopControl(SPIRVOperand *Op);
375 void PrintDimensionality(SPIRVOperand *Op);
376 void PrintImageFormat(SPIRVOperand *Op);
377 void PrintMemoryAccess(SPIRVOperand *Op);
378 void PrintImageOperandsType(SPIRVOperand *Op);
379 void WriteSPIRVAssembly();
380 void WriteOneWord(uint32_t Word);
381 void WriteResultID(SPIRVInstruction *Inst);
382 void WriteWordCountAndOpcode(SPIRVInstruction *Inst);
383 void WriteOperand(SPIRVOperand *Op);
384 void WriteSPIRVBinary();
385
386private:
387 static char ID;
David Neto44795152017-07-13 15:45:28 -0400388 ArrayRef<std::pair<unsigned, std::string>> samplerMap;
David Neto22f144c2017-06-12 14:26:21 -0400389 raw_pwrite_stream &out;
David Neto0676e6f2017-07-11 18:47:44 -0400390
391 // TODO(dneto): Wouldn't it be better to always just emit a binary, and then
392 // convert to other formats on demand?
393
394 // When emitting a C initialization list, the WriteSPIRVBinary method
395 // will actually write its words to this vector via binaryTempOut.
396 SmallVector<char, 100> binaryTempUnderlyingVector;
397 raw_svector_ostream binaryTempOut;
398
399 // Binary output writes to this stream, which might be |out| or
400 // |binaryTempOut|. It's the latter when we really want to write a C
401 // initializer list.
402 raw_pwrite_stream* binaryOut;
David Netoc2c368d2017-06-30 16:50:17 -0400403 raw_ostream &descriptorMapOut;
David Neto22f144c2017-06-12 14:26:21 -0400404 const bool outputAsm;
David Neto0676e6f2017-07-11 18:47:44 -0400405 const bool outputCInitList; // If true, output look like {0x7023, ... , 5}
David Neto22f144c2017-06-12 14:26:21 -0400406 uint64_t patchBoundOffset;
407 uint32_t nextID;
408
David Neto19a1bad2017-08-25 15:01:41 -0400409 // Maps an LLVM Value pointer to the corresponding SPIR-V Id.
David Neto22f144c2017-06-12 14:26:21 -0400410 TypeMapType TypeMap;
David Neto19a1bad2017-08-25 15:01:41 -0400411 // Maps an LLVM image type to its SPIR-V ID.
David Neto22f144c2017-06-12 14:26:21 -0400412 TypeMapType ImageTypeMap;
David Neto19a1bad2017-08-25 15:01:41 -0400413 // A unique-vector of LLVM types that map to a SPIR-V type.
David Neto22f144c2017-06-12 14:26:21 -0400414 TypeList Types;
415 ValueList Constants;
David Neto19a1bad2017-08-25 15:01:41 -0400416 // Maps an LLVM Value pointer to the corresponding SPIR-V Id.
David Neto22f144c2017-06-12 14:26:21 -0400417 ValueMapType ValueMap;
418 ValueMapType AllocatedValueMap;
419 SPIRVInstructionList SPIRVInsts;
David Neto862b7d82018-06-14 18:48:37 -0400420
David Neto22f144c2017-06-12 14:26:21 -0400421 EntryPointVecType EntryPointVec;
422 DeferredInstVecType DeferredInstVec;
423 ValueList EntryPointInterfacesVec;
424 uint32_t OpExtInstImportID;
425 std::vector<uint32_t> BuiltinDimensionVec;
426 bool HasVariablePointers;
427 Type *SamplerTy;
David Neto862b7d82018-06-14 18:48:37 -0400428 DenseMap<unsigned,uint32_t> SamplerMapIndexToIDMap;
David Netoc77d9e22018-03-24 06:30:28 -0700429
430 // If a function F has a pointer-to-__constant parameter, then this variable
David Neto9ed8e2f2018-03-24 06:47:24 -0700431 // will map F's type to (G, index of the parameter), where in a first phase
432 // G is F's type. During FindTypePerFunc, G will be changed to F's type
433 // but replacing the pointer-to-constant parameter with
434 // pointer-to-ModuleScopePrivate.
David Netoc77d9e22018-03-24 06:30:28 -0700435 // TODO(dneto): This doesn't seem general enough? A function might have
436 // more than one such parameter.
David Neto22f144c2017-06-12 14:26:21 -0400437 GlobalConstFuncMapType GlobalConstFuncTypeMap;
438 SmallPtrSet<Value *, 16> GlobalConstArgumentSet;
David Neto1a1a0582017-07-07 12:01:44 -0400439 // An ordered set of pointer types of Base arguments to OpPtrAccessChain,
David Neto85082642018-03-24 06:55:20 -0700440 // or array types, and which point into transparent memory (StorageBuffer
441 // storage class). These will require an ArrayStride decoration.
David Neto1a1a0582017-07-07 12:01:44 -0400442 // See SPV_KHR_variable_pointers rev 13.
David Neto85082642018-03-24 06:55:20 -0700443 TypeList TypesNeedingArrayStride;
David Netoa60b00b2017-09-15 16:34:09 -0400444
445 // This is truly ugly, but works around what look like driver bugs.
446 // For get_local_size, an earlier part of the flow has created a module-scope
447 // variable in Private address space to hold the value for the workgroup
448 // size. Its intializer is a uint3 value marked as builtin WorkgroupSize.
449 // When this is present, save the IDs of the initializer value and variable
450 // in these two variables. We only ever do a vector load from it, and
451 // when we see one of those, substitute just the value of the intializer.
452 // This mimics what Glslang does, and that's what drivers are used to.
David Neto66cfe642018-03-24 06:13:56 -0700453 // TODO(dneto): Remove this once drivers are fixed.
David Netoa60b00b2017-09-15 16:34:09 -0400454 uint32_t WorkgroupSizeValueID;
455 uint32_t WorkgroupSizeVarID;
David Neto26aaf622017-10-23 18:11:53 -0400456
David Neto862b7d82018-06-14 18:48:37 -0400457 // Bookkeeping for mapping kernel arguments to resource variables.
458 struct ResourceVarInfo {
459 ResourceVarInfo(int index_arg, unsigned set_arg, unsigned binding_arg,
460 Function *fn, clspv::ArgKind arg_kind_arg)
461 : index(index_arg), descriptor_set(set_arg), binding(binding_arg),
462 var_fn(fn), arg_kind(arg_kind_arg),
463 addr_space(fn->getReturnType()->getPointerAddressSpace()) {}
464 const int index; // Index into ResourceVarInfoList
465 const unsigned descriptor_set;
466 const unsigned binding;
467 Function *const var_fn; // The @clspv.resource.var.* function.
468 const clspv::ArgKind arg_kind;
469 const unsigned addr_space; // The LLVM address space
470 // The SPIR-V ID of the OpVariable. Not populated at construction time.
471 uint32_t var_id = 0;
472 };
473 // A list of resource var info. Each one correponds to a module-scope
474 // resource variable we will have to create. Resource var indices are
475 // indices into this vector.
476 SmallVector<std::unique_ptr<ResourceVarInfo>, 8> ResourceVarInfoList;
477 // This is a vector of pointers of all the resource vars, but ordered by
478 // kernel function, and then by argument.
479 UniqueVector<ResourceVarInfo*> ModuleOrderedResourceVars;
480 // Map a function to the ordered list of resource variables it uses, one for
481 // each argument. If an argument does not use a resource variable, it
482 // will have a null pointer entry.
483 using FunctionToResourceVarsMapType =
484 DenseMap<Function *, SmallVector<ResourceVarInfo *, 8>>;
485 FunctionToResourceVarsMapType FunctionToResourceVarsMap;
486
487 // What LLVM types map to SPIR-V types needing layout? These are the
488 // arrays and structures supporting storage buffers and uniform buffers.
489 TypeList TypesNeedingLayout;
490 // What LLVM struct types map to a SPIR-V struct type with Block decoration?
491 UniqueVector<StructType *> StructTypesNeedingBlock;
492 // For a call that represents a load from an opaque type (samplers, images),
493 // map it to the variable id it should load from.
494 DenseMap<CallInst *, uint32_t> ResourceVarDeferredLoadCalls;
David Neto85082642018-03-24 06:55:20 -0700495
Alan Baker202c8c72018-08-13 13:47:44 -0400496 // One larger than the maximum used SpecId for pointer-to-local arguments.
497 int max_local_spec_id_;
David Netoc6f3ab22018-04-06 18:02:31 -0400498 // An ordered list of the kernel arguments of type pointer-to-local.
Alan Baker202c8c72018-08-13 13:47:44 -0400499 using LocalArgList = SmallVector<Argument*, 8>;
David Netoc6f3ab22018-04-06 18:02:31 -0400500 LocalArgList LocalArgs;
501 // Information about a pointer-to-local argument.
502 struct LocalArgInfo {
503 // The SPIR-V ID of the array variable.
504 uint32_t variable_id;
505 // The element type of the
506 Type* elem_type;
507 // The ID of the array type.
508 uint32_t array_size_id;
509 // The ID of the array type.
510 uint32_t array_type_id;
511 // The ID of the pointer to the array type.
512 uint32_t ptr_array_type_id;
David Netoc6f3ab22018-04-06 18:02:31 -0400513 // The specialization constant ID of the array size.
514 int spec_id;
515 };
Alan Baker202c8c72018-08-13 13:47:44 -0400516 // A mapping from Argument to its assigned SpecId.
517 DenseMap<const Argument*, int> LocalArgSpecIds;
518 // A mapping from SpecId to its LocalArgInfo.
519 DenseMap<int, LocalArgInfo> LocalSpecIdInfoMap;
David Neto257c3892018-04-11 13:19:45 -0400520
521 // The ID of 32-bit integer zero constant. This is only valid after
522 // GenerateSPIRVConstants has run.
523 uint32_t constant_i32_zero_id_;
David Neto22f144c2017-06-12 14:26:21 -0400524};
525
526char SPIRVProducerPass::ID;
David Netoc6f3ab22018-04-06 18:02:31 -0400527
David Neto22f144c2017-06-12 14:26:21 -0400528}
529
530namespace clspv {
David Neto44795152017-07-13 15:45:28 -0400531ModulePass *
532createSPIRVProducerPass(raw_pwrite_stream &out, raw_ostream &descriptor_map_out,
533 ArrayRef<std::pair<unsigned, std::string>> samplerMap,
534 bool outputAsm, bool outputCInitList) {
535 return new SPIRVProducerPass(out, descriptor_map_out, samplerMap, outputAsm,
536 outputCInitList);
David Neto22f144c2017-06-12 14:26:21 -0400537}
David Netoc2c368d2017-06-30 16:50:17 -0400538} // namespace clspv
David Neto22f144c2017-06-12 14:26:21 -0400539
540bool SPIRVProducerPass::runOnModule(Module &module) {
David Neto0676e6f2017-07-11 18:47:44 -0400541 binaryOut = outputCInitList ? &binaryTempOut : &out;
542
David Neto257c3892018-04-11 13:19:45 -0400543 constant_i32_zero_id_ = 0; // Reset, for the benefit of validity checks.
544
David Neto22f144c2017-06-12 14:26:21 -0400545 // SPIR-V always begins with its header information
546 outputHeader();
547
David Netoc6f3ab22018-04-06 18:02:31 -0400548 const DataLayout &DL = module.getDataLayout();
549
David Neto22f144c2017-06-12 14:26:21 -0400550 // Gather information from the LLVM IR that we require.
David Netoc6f3ab22018-04-06 18:02:31 -0400551 GenerateLLVMIRInfo(module, DL);
David Neto22f144c2017-06-12 14:26:21 -0400552
David Neto22f144c2017-06-12 14:26:21 -0400553 // Collect information on global variables too.
554 for (GlobalVariable &GV : module.globals()) {
555 // If the GV is one of our special __spirv_* variables, remove the
556 // initializer as it was only placed there to force LLVM to not throw the
557 // value away.
558 if (GV.getName().startswith("__spirv_")) {
559 GV.setInitializer(nullptr);
560 }
561
562 // Collect types' information from global variable.
563 FindTypePerGlobalVar(GV);
564
565 // Collect constant information from global variable.
566 FindConstantPerGlobalVar(GV);
567
568 // If the variable is an input, entry points need to know about it.
569 if (AddressSpace::Input == GV.getType()->getPointerAddressSpace()) {
David Netofb9a7972017-08-25 17:08:24 -0400570 getEntryPointInterfacesVec().insert(&GV);
David Neto22f144c2017-06-12 14:26:21 -0400571 }
572 }
573
574 // If there are extended instructions, generate OpExtInstImport.
575 if (FindExtInst(module)) {
576 GenerateExtInstImport();
577 }
578
579 // Generate SPIRV instructions for types.
David Netoc6f3ab22018-04-06 18:02:31 -0400580 GenerateSPIRVTypes(module.getContext(), DL);
David Neto22f144c2017-06-12 14:26:21 -0400581
582 // Generate SPIRV constants.
583 GenerateSPIRVConstants();
584
585 // If we have a sampler map, we might have literal samplers to generate.
586 if (0 < getSamplerMap().size()) {
587 GenerateSamplers(module);
588 }
589
590 // Generate SPIRV variables.
591 for (GlobalVariable &GV : module.globals()) {
592 GenerateGlobalVar(GV);
593 }
David Neto862b7d82018-06-14 18:48:37 -0400594 GenerateResourceVars(module);
David Netoc6f3ab22018-04-06 18:02:31 -0400595 GenerateWorkgroupVars();
David Neto22f144c2017-06-12 14:26:21 -0400596
597 // Generate SPIRV instructions for each function.
598 for (Function &F : module) {
599 if (F.isDeclaration()) {
600 continue;
601 }
602
David Neto862b7d82018-06-14 18:48:37 -0400603 GenerateDescriptorMapInfo(DL, F);
604
David Neto22f144c2017-06-12 14:26:21 -0400605 // Generate Function Prologue.
606 GenerateFuncPrologue(F);
607
608 // Generate SPIRV instructions for function body.
609 GenerateFuncBody(F);
610
611 // Generate Function Epilogue.
612 GenerateFuncEpilogue();
613 }
614
615 HandleDeferredInstruction();
David Neto1a1a0582017-07-07 12:01:44 -0400616 HandleDeferredDecorations(DL);
David Neto22f144c2017-06-12 14:26:21 -0400617
618 // Generate SPIRV module information.
David Neto5c22a252018-03-15 16:07:41 -0400619 GenerateModuleInfo(module);
David Neto22f144c2017-06-12 14:26:21 -0400620
621 if (outputAsm) {
622 WriteSPIRVAssembly();
623 } else {
624 WriteSPIRVBinary();
625 }
626
627 // We need to patch the SPIR-V header to set bound correctly.
628 patchHeader();
David Neto0676e6f2017-07-11 18:47:44 -0400629
630 if (outputCInitList) {
631 bool first = true;
David Neto0676e6f2017-07-11 18:47:44 -0400632 std::ostringstream os;
633
David Neto57fb0b92017-08-04 15:35:09 -0400634 auto emit_word = [&os, &first](uint32_t word) {
David Neto0676e6f2017-07-11 18:47:44 -0400635 if (!first)
David Neto57fb0b92017-08-04 15:35:09 -0400636 os << ",\n";
637 os << word;
David Neto0676e6f2017-07-11 18:47:44 -0400638 first = false;
639 };
640
641 os << "{";
David Neto57fb0b92017-08-04 15:35:09 -0400642 const std::string str(binaryTempOut.str());
643 for (unsigned i = 0; i < str.size(); i += 4) {
644 const uint32_t a = static_cast<unsigned char>(str[i]);
645 const uint32_t b = static_cast<unsigned char>(str[i + 1]);
646 const uint32_t c = static_cast<unsigned char>(str[i + 2]);
647 const uint32_t d = static_cast<unsigned char>(str[i + 3]);
648 emit_word(a | (b << 8) | (c << 16) | (d << 24));
David Neto0676e6f2017-07-11 18:47:44 -0400649 }
650 os << "}\n";
651 out << os.str();
652 }
653
David Neto22f144c2017-06-12 14:26:21 -0400654 return false;
655}
656
657void SPIRVProducerPass::outputHeader() {
658 if (outputAsm) {
659 // for ASM output the header goes into 5 comments at the beginning of the
660 // file
661 out << "; SPIR-V\n";
662
663 // the major version number is in the 2nd highest byte
664 const uint32_t major = (spv::Version >> 16) & 0xFF;
665
666 // the minor version number is in the 2nd lowest byte
667 const uint32_t minor = (spv::Version >> 8) & 0xFF;
668 out << "; Version: " << major << "." << minor << "\n";
669
670 // use Codeplay's vendor ID
671 out << "; Generator: Codeplay; 0\n";
672
673 out << "; Bound: ";
674
675 // we record where we need to come back to and patch in the bound value
676 patchBoundOffset = out.tell();
677
678 // output one space per digit for the max size of a 32 bit unsigned integer
679 // (which is the maximum ID we could possibly be using)
680 for (uint32_t i = std::numeric_limits<uint32_t>::max(); 0 != i; i /= 10) {
681 out << " ";
682 }
683
684 out << "\n";
685
686 out << "; Schema: 0\n";
687 } else {
David Neto0676e6f2017-07-11 18:47:44 -0400688 binaryOut->write(reinterpret_cast<const char *>(&spv::MagicNumber),
David Neto22f144c2017-06-12 14:26:21 -0400689 sizeof(spv::MagicNumber));
David Neto0676e6f2017-07-11 18:47:44 -0400690 binaryOut->write(reinterpret_cast<const char *>(&spv::Version),
David Neto22f144c2017-06-12 14:26:21 -0400691 sizeof(spv::Version));
692
693 // use Codeplay's vendor ID
694 const uint32_t vendor = 3 << 16;
David Neto0676e6f2017-07-11 18:47:44 -0400695 binaryOut->write(reinterpret_cast<const char *>(&vendor), sizeof(vendor));
David Neto22f144c2017-06-12 14:26:21 -0400696
697 // we record where we need to come back to and patch in the bound value
David Neto0676e6f2017-07-11 18:47:44 -0400698 patchBoundOffset = binaryOut->tell();
David Neto22f144c2017-06-12 14:26:21 -0400699
700 // output a bad bound for now
David Neto0676e6f2017-07-11 18:47:44 -0400701 binaryOut->write(reinterpret_cast<const char *>(&nextID), sizeof(nextID));
David Neto22f144c2017-06-12 14:26:21 -0400702
703 // output the schema (reserved for use and must be 0)
704 const uint32_t schema = 0;
David Neto0676e6f2017-07-11 18:47:44 -0400705 binaryOut->write(reinterpret_cast<const char *>(&schema), sizeof(schema));
David Neto22f144c2017-06-12 14:26:21 -0400706 }
707}
708
709void SPIRVProducerPass::patchHeader() {
710 if (outputAsm) {
711 // get the string representation of the max bound used (nextID will be the
712 // max ID used)
713 auto asString = std::to_string(nextID);
714 out.pwrite(asString.c_str(), asString.size(), patchBoundOffset);
715 } else {
716 // for a binary we just write the value of nextID over bound
David Neto0676e6f2017-07-11 18:47:44 -0400717 binaryOut->pwrite(reinterpret_cast<char *>(&nextID), sizeof(nextID),
718 patchBoundOffset);
David Neto22f144c2017-06-12 14:26:21 -0400719 }
720}
721
David Netoc6f3ab22018-04-06 18:02:31 -0400722void SPIRVProducerPass::GenerateLLVMIRInfo(Module &M, const DataLayout &DL) {
David Neto22f144c2017-06-12 14:26:21 -0400723 // This function generates LLVM IR for function such as global variable for
724 // argument, constant and pointer type for argument access. These information
725 // is artificial one because we need Vulkan SPIR-V output. This function is
726 // executed ahead of FindType and FindConstant.
David Neto22f144c2017-06-12 14:26:21 -0400727 LLVMContext &Context = M.getContext();
728
David Neto862b7d82018-06-14 18:48:37 -0400729 FindGlobalConstVars(M, DL);
David Neto5c22a252018-03-15 16:07:41 -0400730
David Neto862b7d82018-06-14 18:48:37 -0400731 FindResourceVars(M, DL);
David Neto22f144c2017-06-12 14:26:21 -0400732
733 bool HasWorkGroupBuiltin = false;
734 for (GlobalVariable &GV : M.globals()) {
735 const spv::BuiltIn BuiltinType = GetBuiltin(GV.getName());
736 if (spv::BuiltInWorkgroupSize == BuiltinType) {
737 HasWorkGroupBuiltin = true;
738 }
739 }
740
David Neto862b7d82018-06-14 18:48:37 -0400741 FindTypesForSamplerMap(M);
742 FindTypesForResourceVars(M);
Alan Baker202c8c72018-08-13 13:47:44 -0400743 FindWorkgroupVars(M);
David Neto22f144c2017-06-12 14:26:21 -0400744
David Neto862b7d82018-06-14 18:48:37 -0400745 // TODO(dneto): Delete the next 3 vars.
746
747 //#error "remove arg handling from this code"
David Neto26aaf622017-10-23 18:11:53 -0400748 // Map kernel functions to their ordinal number in the compilation unit.
749 UniqueVector<Function*> KernelOrdinal;
750
751 // Map the global variables created for kernel args to their creation
752 // order.
753 UniqueVector<GlobalVariable*> KernelArgVarOrdinal;
754
David Neto862b7d82018-06-14 18:48:37 -0400755 // For each kernel argument type, record the kernel arg global resource
756 // variables generated for that type, the function in which that variable
757 // was most recently used, and the binding number it took. For
758 // reproducibility, we track things by ordinal number (rather than pointer),
759 // and we use a std::set rather than DenseSet since std::set maintains an
760 // ordering. Each tuple is the ordinals of the kernel function, the binding
761 // number, and the ordinal of the kernal-arg-var.
David Neto26aaf622017-10-23 18:11:53 -0400762 //
763 // This table lets us reuse module-scope StorageBuffer variables between
764 // different kernels.
765 DenseMap<Type *, std::set<std::tuple<unsigned, unsigned, unsigned>>>
766 GVarsForType;
767
David Neto862b7d82018-06-14 18:48:37 -0400768 // These function calls need a <2 x i32> as an intermediate result but not
769 // the final result.
770 std::unordered_set<std::string> NeedsIVec2{
771 "_Z15get_image_width14ocl_image2d_ro",
772 "_Z15get_image_width14ocl_image2d_wo",
773 "_Z16get_image_height14ocl_image2d_ro",
774 "_Z16get_image_height14ocl_image2d_wo",
775 };
776
David Neto22f144c2017-06-12 14:26:21 -0400777 for (Function &F : M) {
778 // Handle kernel function first.
779 if (F.isDeclaration() || F.getCallingConv() != CallingConv::SPIR_KERNEL) {
780 continue;
781 }
David Neto26aaf622017-10-23 18:11:53 -0400782 KernelOrdinal.insert(&F);
David Neto22f144c2017-06-12 14:26:21 -0400783
784 for (BasicBlock &BB : F) {
785 for (Instruction &I : BB) {
786 if (I.getOpcode() == Instruction::ZExt ||
787 I.getOpcode() == Instruction::SExt ||
788 I.getOpcode() == Instruction::UIToFP) {
789 // If there is zext with i1 type, it will be changed to OpSelect. The
790 // OpSelect needs constant 0 and 1 so the constants are added here.
791
792 auto OpTy = I.getOperand(0)->getType();
793
794 if (OpTy->isIntegerTy(1) ||
795 (OpTy->isVectorTy() &&
796 OpTy->getVectorElementType()->isIntegerTy(1))) {
797 if (I.getOpcode() == Instruction::ZExt) {
798 APInt One(32, 1);
799 FindConstant(Constant::getNullValue(I.getType()));
800 FindConstant(Constant::getIntegerValue(I.getType(), One));
801 } else if (I.getOpcode() == Instruction::SExt) {
802 APInt MinusOne(32, UINT64_MAX, true);
803 FindConstant(Constant::getNullValue(I.getType()));
804 FindConstant(Constant::getIntegerValue(I.getType(), MinusOne));
805 } else {
806 FindConstant(ConstantFP::get(Context, APFloat(0.0f)));
807 FindConstant(ConstantFP::get(Context, APFloat(1.0f)));
808 }
809 }
810 } else if (CallInst *Call = dyn_cast<CallInst>(&I)) {
David Neto862b7d82018-06-14 18:48:37 -0400811 StringRef callee_name = Call->getCalledFunction()->getName();
David Neto22f144c2017-06-12 14:26:21 -0400812
813 // Handle image type specially.
David Neto862b7d82018-06-14 18:48:37 -0400814 if (callee_name.equals(
David Neto22f144c2017-06-12 14:26:21 -0400815 "_Z11read_imagef14ocl_image2d_ro11ocl_samplerDv2_f") ||
David Neto862b7d82018-06-14 18:48:37 -0400816 callee_name.equals(
David Neto22f144c2017-06-12 14:26:21 -0400817 "_Z11read_imagef14ocl_image3d_ro11ocl_samplerDv4_f")) {
818 TypeMapType &OpImageTypeMap = getImageTypeMap();
819 Type *ImageTy =
820 Call->getArgOperand(0)->getType()->getPointerElementType();
821 OpImageTypeMap[ImageTy] = 0;
822
823 FindConstant(ConstantFP::get(Context, APFloat(0.0f)));
824 }
David Neto5c22a252018-03-15 16:07:41 -0400825
David Neto862b7d82018-06-14 18:48:37 -0400826 if (NeedsIVec2.find(callee_name) != NeedsIVec2.end()) {
David Neto5c22a252018-03-15 16:07:41 -0400827 FindType(VectorType::get(Type::getInt32Ty(Context), 2));
828 }
David Neto22f144c2017-06-12 14:26:21 -0400829 }
830 }
831 }
832
David Neto22f144c2017-06-12 14:26:21 -0400833 if (const MDNode *MD =
834 dyn_cast<Function>(&F)->getMetadata("reqd_work_group_size")) {
835 // We generate constants if the WorkgroupSize builtin is being used.
836 if (HasWorkGroupBuiltin) {
837 // Collect constant information for work group size.
838 FindConstant(mdconst::extract<ConstantInt>(MD->getOperand(0)));
839 FindConstant(mdconst::extract<ConstantInt>(MD->getOperand(1)));
840 FindConstant(mdconst::extract<ConstantInt>(MD->getOperand(2)));
841 }
842 }
843
David Neto22f144c2017-06-12 14:26:21 -0400844 // Collect types' information from function.
845 FindTypePerFunc(F);
846
847 // Collect constant information from function.
848 FindConstantPerFunc(F);
849 }
850
851 for (Function &F : M) {
852 // Handle non-kernel functions.
853 if (F.isDeclaration() || F.getCallingConv() == CallingConv::SPIR_KERNEL) {
854 continue;
855 }
856
857 for (BasicBlock &BB : F) {
858 for (Instruction &I : BB) {
859 if (I.getOpcode() == Instruction::ZExt ||
860 I.getOpcode() == Instruction::SExt ||
861 I.getOpcode() == Instruction::UIToFP) {
862 // If there is zext with i1 type, it will be changed to OpSelect. The
863 // OpSelect needs constant 0 and 1 so the constants are added here.
864
865 auto OpTy = I.getOperand(0)->getType();
866
867 if (OpTy->isIntegerTy(1) ||
868 (OpTy->isVectorTy() &&
869 OpTy->getVectorElementType()->isIntegerTy(1))) {
870 if (I.getOpcode() == Instruction::ZExt) {
871 APInt One(32, 1);
872 FindConstant(Constant::getNullValue(I.getType()));
873 FindConstant(Constant::getIntegerValue(I.getType(), One));
874 } else if (I.getOpcode() == Instruction::SExt) {
875 APInt MinusOne(32, UINT64_MAX, true);
876 FindConstant(Constant::getNullValue(I.getType()));
877 FindConstant(Constant::getIntegerValue(I.getType(), MinusOne));
878 } else {
879 FindConstant(ConstantFP::get(Context, APFloat(0.0f)));
880 FindConstant(ConstantFP::get(Context, APFloat(1.0f)));
881 }
882 }
883 } else if (CallInst *Call = dyn_cast<CallInst>(&I)) {
884 Function *Callee = Call->getCalledFunction();
885
886 // Handle image type specially.
887 if (Callee->getName().equals(
888 "_Z11read_imagef14ocl_image2d_ro11ocl_samplerDv2_f") ||
889 Callee->getName().equals(
890 "_Z11read_imagef14ocl_image3d_ro11ocl_samplerDv4_f")) {
891 TypeMapType &OpImageTypeMap = getImageTypeMap();
892 Type *ImageTy =
893 Call->getArgOperand(0)->getType()->getPointerElementType();
894 OpImageTypeMap[ImageTy] = 0;
895
896 FindConstant(ConstantFP::get(Context, APFloat(0.0f)));
897 }
898 }
899 }
900 }
901
902 if (M.getTypeByName("opencl.image2d_ro_t") ||
903 M.getTypeByName("opencl.image2d_wo_t") ||
904 M.getTypeByName("opencl.image3d_ro_t") ||
905 M.getTypeByName("opencl.image3d_wo_t")) {
906 // Assume Image type's sampled type is float type.
907 FindType(Type::getFloatTy(Context));
908 }
909
910 // Collect types' information from function.
911 FindTypePerFunc(F);
912
913 // Collect constant information from function.
914 FindConstantPerFunc(F);
915 }
916}
917
David Neto862b7d82018-06-14 18:48:37 -0400918void SPIRVProducerPass::FindGlobalConstVars(Module &M, const DataLayout &DL) {
919 SmallVector<GlobalVariable *, 8> GVList;
920 SmallVector<GlobalVariable *, 8> DeadGVList;
921 for (GlobalVariable &GV : M.globals()) {
922 if (GV.getType()->getAddressSpace() == AddressSpace::Constant) {
923 if (GV.use_empty()) {
924 DeadGVList.push_back(&GV);
925 } else {
926 GVList.push_back(&GV);
927 }
928 }
929 }
930
931 // Remove dead global __constant variables.
932 for (auto GV : DeadGVList) {
933 GV->eraseFromParent();
934 }
935 DeadGVList.clear();
936
937 if (clspv::Option::ModuleConstantsInStorageBuffer()) {
938 // For now, we only support a single storage buffer.
939 if (GVList.size() > 0) {
940 assert(GVList.size() == 1);
941 const auto *GV = GVList[0];
942 const auto constants_byte_size =
943 (DL.getTypeSizeInBits(GV->getInitializer()->getType())) / 8;
944 const size_t kConstantMaxSize = 65536;
945 if (constants_byte_size > kConstantMaxSize) {
946 outs() << "Max __constant capacity of " << kConstantMaxSize
947 << " bytes exceeded: " << constants_byte_size << " bytes used\n";
948 llvm_unreachable("Max __constant capacity exceeded");
949 }
950 }
951 } else {
952 // Change global constant variable's address space to ModuleScopePrivate.
953 auto &GlobalConstFuncTyMap = getGlobalConstFuncTypeMap();
954 for (auto GV : GVList) {
955 // Create new gv with ModuleScopePrivate address space.
956 Type *NewGVTy = GV->getType()->getPointerElementType();
957 GlobalVariable *NewGV = new GlobalVariable(
958 M, NewGVTy, false, GV->getLinkage(), GV->getInitializer(), "",
959 nullptr, GV->getThreadLocalMode(), AddressSpace::ModuleScopePrivate);
960 NewGV->takeName(GV);
961
962 const SmallVector<User *, 8> GVUsers(GV->user_begin(), GV->user_end());
963 SmallVector<User *, 8> CandidateUsers;
964
965 auto record_called_function_type_as_user =
966 [&GlobalConstFuncTyMap](Value *gv, CallInst *call) {
967 // Find argument index.
968 unsigned index = 0;
969 for (unsigned i = 0; i < call->getNumArgOperands(); i++) {
970 if (gv == call->getOperand(i)) {
971 // TODO(dneto): Should we break here?
972 index = i;
973 }
974 }
975
976 // Record function type with global constant.
977 GlobalConstFuncTyMap[call->getFunctionType()] =
978 std::make_pair(call->getFunctionType(), index);
979 };
980
981 for (User *GVU : GVUsers) {
982 if (CallInst *Call = dyn_cast<CallInst>(GVU)) {
983 record_called_function_type_as_user(GV, Call);
984 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(GVU)) {
985 // Check GEP users.
986 for (User *GEPU : GEP->users()) {
987 if (CallInst *GEPCall = dyn_cast<CallInst>(GEPU)) {
988 record_called_function_type_as_user(GEP, GEPCall);
989 }
990 }
991 }
992
993 CandidateUsers.push_back(GVU);
994 }
995
996 for (User *U : CandidateUsers) {
997 // Update users of gv with new gv.
998 U->replaceUsesOfWith(GV, NewGV);
999 }
1000
1001 // Delete original gv.
1002 GV->eraseFromParent();
1003 }
1004 }
1005}
1006
1007void SPIRVProducerPass::FindResourceVars(Module &M, const DataLayout &DL) {
1008 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
1009 ValueMapType &VMap = getValueMap();
1010
1011 ResourceVarInfoList.clear();
1012 FunctionToResourceVarsMap.clear();
1013 ModuleOrderedResourceVars.reset();
1014 // Normally, there is one resource variable per clspv.resource.var.*
1015 // function, since that is unique'd by arg type and index. By design,
1016 // we can share these resource variables across kernels because all
1017 // kernels use the same descriptor set.
1018 //
1019 // But if the user requested distinct descriptor sets per kernel, then
1020 // the descriptor allocator has made different (set,binding) pairs for
1021 // the same (type,arg_index) pair. Since we can decorate a resource
1022 // variable with only exactly one DescriptorSet and Binding, we are
1023 // forced in this case to make distinct resource variables whenever
1024 // the same clspv.reource.var.X function is seen with disintct
1025 // (set,binding) values.
1026 const bool always_distinct_sets =
1027 clspv::Option::DistinctKernelDescriptorSets();
1028 for (Function &F : M) {
1029 // Rely on the fact the resource var functions have a stable ordering
1030 // in the module.
Alan Baker202c8c72018-08-13 13:47:44 -04001031 if (F.getName().startswith(clspv::ResourceAccessorFunction())) {
David Neto862b7d82018-06-14 18:48:37 -04001032 // Find all calls to this function with distinct set and binding pairs.
1033 // Save them in ResourceVarInfoList.
1034
1035 // Determine uniqueness of the (set,binding) pairs only withing this
1036 // one resource-var builtin function.
1037 using SetAndBinding = std::pair<unsigned, unsigned>;
1038 // Maps set and binding to the resource var info.
1039 DenseMap<SetAndBinding, ResourceVarInfo *> set_and_binding_map;
1040 bool first_use = true;
1041 for (auto &U : F.uses()) {
1042 if (auto *call = dyn_cast<CallInst>(U.getUser())) {
1043 const auto set = unsigned(
1044 dyn_cast<ConstantInt>(call->getArgOperand(0))->getZExtValue());
1045 const auto binding = unsigned(
1046 dyn_cast<ConstantInt>(call->getArgOperand(1))->getZExtValue());
1047 const auto arg_kind = clspv::ArgKind(
1048 dyn_cast<ConstantInt>(call->getArgOperand(2))->getZExtValue());
1049 const auto arg_index = unsigned(
1050 dyn_cast<ConstantInt>(call->getArgOperand(3))->getZExtValue());
1051
1052 // Find or make the resource var info for this combination.
1053 ResourceVarInfo *rv = nullptr;
1054 if (always_distinct_sets) {
1055 // Make a new resource var any time we see a different
1056 // (set,binding) pair.
1057 SetAndBinding key{set, binding};
1058 auto where = set_and_binding_map.find(key);
1059 if (where == set_and_binding_map.end()) {
1060 rv = new ResourceVarInfo(int(ResourceVarInfoList.size()), set,
1061 binding, &F, arg_kind);
1062 ResourceVarInfoList.emplace_back(rv);
1063 set_and_binding_map[key] = rv;
1064 } else {
1065 rv = where->second;
1066 }
1067 } else {
1068 // The default is to make exactly one resource for each
1069 // clspv.resource.var.* function.
1070 if (first_use) {
1071 first_use = false;
1072 rv = new ResourceVarInfo(int(ResourceVarInfoList.size()), set,
1073 binding, &F, arg_kind);
1074 ResourceVarInfoList.emplace_back(rv);
1075 } else {
1076 rv = ResourceVarInfoList.back().get();
1077 }
1078 }
1079
1080 // Now populate FunctionToResourceVarsMap.
1081 auto &mapping =
1082 FunctionToResourceVarsMap[call->getParent()->getParent()];
1083 while (mapping.size() <= arg_index) {
1084 mapping.push_back(nullptr);
1085 }
1086 mapping[arg_index] = rv;
1087 }
1088 }
1089 }
1090 }
1091
1092 // Populate ModuleOrderedResourceVars.
1093 for (Function &F : M) {
1094 auto where = FunctionToResourceVarsMap.find(&F);
1095 if (where != FunctionToResourceVarsMap.end()) {
1096 for (auto &rv : where->second) {
1097 if (rv != nullptr) {
1098 ModuleOrderedResourceVars.insert(rv);
1099 }
1100 }
1101 }
1102 }
1103 if (ShowResourceVars) {
1104 for (auto *info : ModuleOrderedResourceVars) {
1105 outs() << "MORV index " << info->index << " (" << info->descriptor_set
1106 << "," << info->binding << ") " << *(info->var_fn->getReturnType())
1107 << "\n";
1108 }
1109 }
1110}
1111
David Neto22f144c2017-06-12 14:26:21 -04001112bool SPIRVProducerPass::FindExtInst(Module &M) {
1113 LLVMContext &Context = M.getContext();
1114 bool HasExtInst = false;
1115
1116 for (Function &F : M) {
1117 for (BasicBlock &BB : F) {
1118 for (Instruction &I : BB) {
1119 if (CallInst *Call = dyn_cast<CallInst>(&I)) {
1120 Function *Callee = Call->getCalledFunction();
1121 // Check whether this call is for extend instructions.
David Neto3fbb4072017-10-16 11:28:14 -04001122 auto callee_name = Callee->getName();
1123 const glsl::ExtInst EInst = getExtInstEnum(callee_name);
1124 const glsl::ExtInst IndirectEInst =
1125 getIndirectExtInstEnum(callee_name);
David Neto22f144c2017-06-12 14:26:21 -04001126
David Neto3fbb4072017-10-16 11:28:14 -04001127 HasExtInst |=
1128 (EInst != kGlslExtInstBad) || (IndirectEInst != kGlslExtInstBad);
1129
1130 if (IndirectEInst) {
1131 // Register extra constants if needed.
1132
1133 // Registers a type and constant for computing the result of the
1134 // given instruction. If the result of the instruction is a vector,
1135 // then make a splat vector constant with the same number of
1136 // elements.
1137 auto register_constant = [this, &I](Constant *constant) {
1138 FindType(constant->getType());
1139 FindConstant(constant);
1140 if (auto *vectorTy = dyn_cast<VectorType>(I.getType())) {
1141 // Register the splat vector of the value with the same
1142 // width as the result of the instruction.
1143 auto *vec_constant = ConstantVector::getSplat(
1144 static_cast<unsigned>(vectorTy->getNumElements()),
1145 constant);
1146 FindConstant(vec_constant);
1147 FindType(vec_constant->getType());
1148 }
1149 };
1150 switch (IndirectEInst) {
1151 case glsl::ExtInstFindUMsb:
1152 // clz needs OpExtInst and OpISub with constant 31, or splat
1153 // vector of 31. Add it to the constant list here.
1154 register_constant(
1155 ConstantInt::get(Type::getInt32Ty(Context), 31));
1156 break;
1157 case glsl::ExtInstAcos:
1158 case glsl::ExtInstAsin:
1159 case glsl::ExtInstAtan2:
1160 // We need 1/pi for acospi, asinpi, atan2pi.
1161 register_constant(
1162 ConstantFP::get(Type::getFloatTy(Context), kOneOverPi));
1163 break;
1164 default:
1165 assert(false && "internally inconsistent");
1166 }
David Neto22f144c2017-06-12 14:26:21 -04001167 }
1168 }
1169 }
1170 }
1171 }
1172
1173 return HasExtInst;
1174}
1175
1176void SPIRVProducerPass::FindTypePerGlobalVar(GlobalVariable &GV) {
1177 // Investigate global variable's type.
1178 FindType(GV.getType());
1179}
1180
1181void SPIRVProducerPass::FindTypePerFunc(Function &F) {
1182 // Investigate function's type.
1183 FunctionType *FTy = F.getFunctionType();
1184
1185 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
1186 auto &GlobalConstFuncTyMap = getGlobalConstFuncTypeMap();
David Neto9ed8e2f2018-03-24 06:47:24 -07001187 // Handle a regular function with global constant parameters.
David Neto22f144c2017-06-12 14:26:21 -04001188 if (GlobalConstFuncTyMap.count(FTy)) {
1189 uint32_t GVCstArgIdx = GlobalConstFuncTypeMap[FTy].second;
1190 SmallVector<Type *, 4> NewFuncParamTys;
1191 for (unsigned i = 0; i < FTy->getNumParams(); i++) {
1192 Type *ParamTy = FTy->getParamType(i);
1193 if (i == GVCstArgIdx) {
1194 Type *EleTy = ParamTy->getPointerElementType();
1195 ParamTy = PointerType::get(EleTy, AddressSpace::ModuleScopePrivate);
1196 }
1197
1198 NewFuncParamTys.push_back(ParamTy);
1199 }
1200
1201 FunctionType *NewFTy =
1202 FunctionType::get(FTy->getReturnType(), NewFuncParamTys, false);
1203 GlobalConstFuncTyMap[FTy] = std::make_pair(NewFTy, GVCstArgIdx);
1204 FTy = NewFTy;
1205 }
1206
1207 FindType(FTy);
1208 } else {
1209 // As kernel functions do not have parameters, create new function type and
1210 // add it to type map.
1211 SmallVector<Type *, 4> NewFuncParamTys;
1212 FunctionType *NewFTy =
1213 FunctionType::get(FTy->getReturnType(), NewFuncParamTys, false);
1214 FindType(NewFTy);
1215 }
1216
1217 // Investigate instructions' type in function body.
1218 for (BasicBlock &BB : F) {
1219 for (Instruction &I : BB) {
1220 if (isa<ShuffleVectorInst>(I)) {
1221 for (unsigned i = 0; i < I.getNumOperands(); i++) {
1222 // Ignore type for mask of shuffle vector instruction.
1223 if (i == 2) {
1224 continue;
1225 }
1226
1227 Value *Op = I.getOperand(i);
1228 if (!isa<MetadataAsValue>(Op)) {
1229 FindType(Op->getType());
1230 }
1231 }
1232
1233 FindType(I.getType());
1234 continue;
1235 }
1236
David Neto862b7d82018-06-14 18:48:37 -04001237 CallInst *Call = dyn_cast<CallInst>(&I);
1238
1239 if (Call && Call->getCalledFunction()->getName().startswith(
Alan Baker202c8c72018-08-13 13:47:44 -04001240 clspv::ResourceAccessorFunction())) {
David Neto862b7d82018-06-14 18:48:37 -04001241 // This is a fake call representing access to a resource variable.
1242 // We handle that elsewhere.
1243 continue;
1244 }
1245
Alan Baker202c8c72018-08-13 13:47:44 -04001246 if (Call && Call->getCalledFunction()->getName().startswith(
1247 clspv::WorkgroupAccessorFunction())) {
1248 // This is a fake call representing access to a workgroup variable.
1249 // We handle that elsewhere.
1250 continue;
1251 }
1252
David Neto22f144c2017-06-12 14:26:21 -04001253 // Work through the operands of the instruction.
1254 for (unsigned i = 0; i < I.getNumOperands(); i++) {
1255 Value *const Op = I.getOperand(i);
1256 // If any of the operands is a constant, find the type!
1257 if (isa<Constant>(Op) && !isa<GlobalValue>(Op)) {
1258 FindType(Op->getType());
1259 }
1260 }
1261
1262 for (Use &Op : I.operands()) {
1263 if (CallInst *Call = dyn_cast<CallInst>(&I)) {
1264 // Avoid to check call instruction's type.
1265 break;
1266 }
Alan Baker202c8c72018-08-13 13:47:44 -04001267 if (CallInst *OpCall = dyn_cast<CallInst>(Op)) {
1268 if (OpCall && OpCall->getCalledFunction()->getName().startswith(
1269 clspv::WorkgroupAccessorFunction())) {
1270 // This is a fake call representing access to a workgroup variable.
1271 // We handle that elsewhere.
1272 continue;
1273 }
1274 }
David Neto22f144c2017-06-12 14:26:21 -04001275 if (!isa<MetadataAsValue>(&Op)) {
1276 FindType(Op->getType());
1277 continue;
1278 }
1279 }
1280
David Neto22f144c2017-06-12 14:26:21 -04001281 // We don't want to track the type of this call as we are going to replace
1282 // it.
David Neto862b7d82018-06-14 18:48:37 -04001283 if (Call && ("clspv.sampler.var.literal" ==
David Neto22f144c2017-06-12 14:26:21 -04001284 Call->getCalledFunction()->getName())) {
1285 continue;
1286 }
1287
1288 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1289 // If gep's base operand has ModuleScopePrivate address space, make gep
1290 // return ModuleScopePrivate address space.
1291 if (GEP->getPointerAddressSpace() == AddressSpace::ModuleScopePrivate) {
1292 // Add pointer type with private address space for global constant to
1293 // type list.
1294 Type *EleTy = I.getType()->getPointerElementType();
1295 Type *NewPTy =
1296 PointerType::get(EleTy, AddressSpace::ModuleScopePrivate);
1297
1298 FindType(NewPTy);
1299 continue;
1300 }
1301 }
1302
1303 FindType(I.getType());
1304 }
1305 }
1306}
1307
David Neto862b7d82018-06-14 18:48:37 -04001308void SPIRVProducerPass::FindTypesForSamplerMap(Module &M) {
1309 // If we are using a sampler map, find the type of the sampler.
1310 if (M.getFunction("clspv.sampler.var.literal") ||
1311 0 < getSamplerMap().size()) {
1312 auto SamplerStructTy = M.getTypeByName("opencl.sampler_t");
1313 if (!SamplerStructTy) {
1314 SamplerStructTy = StructType::create(M.getContext(), "opencl.sampler_t");
1315 }
1316
1317 SamplerTy = SamplerStructTy->getPointerTo(AddressSpace::UniformConstant);
1318
1319 FindType(SamplerTy);
1320 }
1321}
1322
1323void SPIRVProducerPass::FindTypesForResourceVars(Module &M) {
1324 // Record types so they are generated.
1325 TypesNeedingLayout.reset();
1326 StructTypesNeedingBlock.reset();
1327
1328 // To match older clspv codegen, generate the float type first if required
1329 // for images.
1330 for (const auto *info : ModuleOrderedResourceVars) {
1331 if (info->arg_kind == clspv::ArgKind::ReadOnlyImage ||
1332 info->arg_kind == clspv::ArgKind::WriteOnlyImage) {
1333 // We need "float" for the sampled component type.
1334 FindType(Type::getFloatTy(M.getContext()));
1335 // We only need to find it once.
1336 break;
1337 }
1338 }
1339
1340 for (const auto *info : ModuleOrderedResourceVars) {
1341 Type *type = info->var_fn->getReturnType();
1342
1343 switch (info->arg_kind) {
1344 case clspv::ArgKind::Buffer:
1345 if (auto *sty = dyn_cast<StructType>(type->getPointerElementType())) {
1346 StructTypesNeedingBlock.insert(sty);
1347 } else {
1348 errs() << *type << "\n";
1349 llvm_unreachable("Buffer arguments must map to structures!");
1350 }
1351 break;
1352 case clspv::ArgKind::Pod:
1353 if (auto *sty = dyn_cast<StructType>(type->getPointerElementType())) {
1354 StructTypesNeedingBlock.insert(sty);
1355 } else {
1356 errs() << *type << "\n";
1357 llvm_unreachable("POD arguments must map to structures!");
1358 }
1359 break;
1360 case clspv::ArgKind::ReadOnlyImage:
1361 case clspv::ArgKind::WriteOnlyImage:
1362 case clspv::ArgKind::Sampler:
1363 // Sampler and image types map to the pointee type but
1364 // in the uniform constant address space.
1365 type = PointerType::get(type->getPointerElementType(),
1366 clspv::AddressSpace::UniformConstant);
1367 break;
1368 default:
1369 break;
1370 }
1371
1372 // The converted type is the type of the OpVariable we will generate.
1373 // If the pointee type is an array of size zero, FindType will convert it
1374 // to a runtime array.
1375 FindType(type);
1376 }
1377
1378 // Traverse the arrays and structures underneath each Block, and
1379 // mark them as needing layout.
1380 std::vector<Type *> work_list(StructTypesNeedingBlock.begin(),
1381 StructTypesNeedingBlock.end());
1382 while (!work_list.empty()) {
1383 Type *type = work_list.back();
1384 work_list.pop_back();
1385 TypesNeedingLayout.insert(type);
1386 switch (type->getTypeID()) {
1387 case Type::ArrayTyID:
1388 work_list.push_back(type->getArrayElementType());
1389 if (!Hack_generate_runtime_array_stride_early) {
1390 // Remember this array type for deferred decoration.
1391 TypesNeedingArrayStride.insert(type);
1392 }
1393 break;
1394 case Type::StructTyID:
1395 for (auto *elem_ty : cast<StructType>(type)->elements()) {
1396 work_list.push_back(elem_ty);
1397 }
1398 default:
1399 // This type and its contained types don't get layout.
1400 break;
1401 }
1402 }
1403}
1404
Alan Baker202c8c72018-08-13 13:47:44 -04001405void SPIRVProducerPass::FindWorkgroupVars(Module &M) {
1406 // The SpecId assignment for pointer-to-local arguments is recorded in
1407 // module-level metadata. Translate that information into local argument
1408 // information.
1409 NamedMDNode *nmd = M.getNamedMetadata(clspv::LocalSpecIdMetadataName());
1410 if (!nmd) return;
1411 for (auto operand : nmd->operands()) {
1412 MDTuple *tuple = cast<MDTuple>(operand);
1413 ValueAsMetadata *fn_md = cast<ValueAsMetadata>(tuple->getOperand(0));
1414 Function *func = cast<Function>(fn_md->getValue());
1415 ConstantAsMetadata *arg_index_md = cast<ConstantAsMetadata>(tuple->getOperand(1));
1416 int arg_index = cast<ConstantInt>(arg_index_md->getValue())->getSExtValue();
1417 Argument* arg = &*(func->arg_begin() + arg_index);
1418
1419 ConstantAsMetadata *spec_id_md =
1420 cast<ConstantAsMetadata>(tuple->getOperand(2));
1421 int spec_id = cast<ConstantInt>(spec_id_md->getValue())->getSExtValue();
1422
1423 max_local_spec_id_ = std::max(max_local_spec_id_, spec_id + 1);
1424 LocalArgSpecIds[arg] = spec_id;
1425 if (LocalSpecIdInfoMap.count(spec_id)) continue;
1426
1427 // We haven't seen this SpecId yet, so generate the LocalArgInfo for it.
1428 LocalArgInfo info{nextID, arg->getType()->getPointerElementType(),
1429 nextID + 1, nextID + 2,
1430 nextID + 3, spec_id};
1431 LocalSpecIdInfoMap[spec_id] = info;
1432 nextID += 4;
1433
1434 // Ensure the types necessary for this argument get generated.
1435 Type *IdxTy = Type::getInt32Ty(M.getContext());
1436 FindConstant(ConstantInt::get(IdxTy, 0));
1437 FindType(IdxTy);
1438 FindType(arg->getType());
1439 }
1440}
1441
David Neto22f144c2017-06-12 14:26:21 -04001442void SPIRVProducerPass::FindType(Type *Ty) {
1443 TypeList &TyList = getTypeList();
1444
1445 if (0 != TyList.idFor(Ty)) {
1446 return;
1447 }
1448
1449 if (Ty->isPointerTy()) {
1450 auto AddrSpace = Ty->getPointerAddressSpace();
1451 if ((AddressSpace::Constant == AddrSpace) ||
1452 (AddressSpace::Global == AddrSpace)) {
1453 auto PointeeTy = Ty->getPointerElementType();
1454
1455 if (PointeeTy->isStructTy() &&
1456 dyn_cast<StructType>(PointeeTy)->isOpaque()) {
1457 FindType(PointeeTy);
1458 auto ActualPointerTy =
1459 PointeeTy->getPointerTo(AddressSpace::UniformConstant);
1460 FindType(ActualPointerTy);
1461 return;
1462 }
1463 }
1464 }
1465
David Neto862b7d82018-06-14 18:48:37 -04001466 // By convention, LLVM array type with 0 elements will map to
1467 // OpTypeRuntimeArray. Otherwise, it will map to OpTypeArray, which
1468 // has a constant number of elements. We need to support type of the
1469 // constant.
1470 if (auto *arrayTy = dyn_cast<ArrayType>(Ty)) {
1471 if (arrayTy->getNumElements() > 0) {
1472 LLVMContext &Context = Ty->getContext();
1473 FindType(Type::getInt32Ty(Context));
1474 }
David Neto22f144c2017-06-12 14:26:21 -04001475 }
1476
1477 for (Type *SubTy : Ty->subtypes()) {
1478 FindType(SubTy);
1479 }
1480
1481 TyList.insert(Ty);
1482}
1483
1484void SPIRVProducerPass::FindConstantPerGlobalVar(GlobalVariable &GV) {
1485 // If the global variable has a (non undef) initializer.
1486 if (GV.hasInitializer() && !isa<UndefValue>(GV.getInitializer())) {
David Neto862b7d82018-06-14 18:48:37 -04001487 // Generate the constant if it's not the initializer to a module scope
1488 // constant that we will expect in a storage buffer.
1489 const bool module_scope_constant_external_init =
1490 (GV.getType()->getPointerAddressSpace() == AddressSpace::Constant) &&
1491 clspv::Option::ModuleConstantsInStorageBuffer();
1492 if (!module_scope_constant_external_init) {
1493 FindConstant(GV.getInitializer());
1494 }
David Neto22f144c2017-06-12 14:26:21 -04001495 }
1496}
1497
1498void SPIRVProducerPass::FindConstantPerFunc(Function &F) {
1499 // Investigate constants in function body.
1500 for (BasicBlock &BB : F) {
1501 for (Instruction &I : BB) {
David Neto862b7d82018-06-14 18:48:37 -04001502 if (auto *call = dyn_cast<CallInst>(&I)) {
1503 auto name = call->getCalledFunction()->getName();
1504 if (name == "clspv.sampler.var.literal") {
1505 // We've handled these constants elsewhere, so skip it.
1506 continue;
1507 }
Alan Baker202c8c72018-08-13 13:47:44 -04001508 if (name.startswith(clspv::ResourceAccessorFunction())) {
1509 continue;
1510 }
1511 if (name.startswith(clspv::WorkgroupAccessorFunction())) {
David Neto862b7d82018-06-14 18:48:37 -04001512 continue;
1513 }
David Neto22f144c2017-06-12 14:26:21 -04001514 }
1515
1516 if (isa<AllocaInst>(I)) {
1517 // Alloca instruction has constant for the number of element. Ignore it.
1518 continue;
1519 } else if (isa<ShuffleVectorInst>(I)) {
1520 for (unsigned i = 0; i < I.getNumOperands(); i++) {
1521 // Ignore constant for mask of shuffle vector instruction.
1522 if (i == 2) {
1523 continue;
1524 }
1525
1526 if (isa<Constant>(I.getOperand(i)) &&
1527 !isa<GlobalValue>(I.getOperand(i))) {
1528 FindConstant(I.getOperand(i));
1529 }
1530 }
1531
1532 continue;
1533 } else if (isa<InsertElementInst>(I)) {
1534 // Handle InsertElement with <4 x i8> specially.
1535 Type *CompositeTy = I.getOperand(0)->getType();
1536 if (is4xi8vec(CompositeTy)) {
1537 LLVMContext &Context = CompositeTy->getContext();
1538 if (isa<Constant>(I.getOperand(0))) {
1539 FindConstant(I.getOperand(0));
1540 }
1541
1542 if (isa<Constant>(I.getOperand(1))) {
1543 FindConstant(I.getOperand(1));
1544 }
1545
1546 // Add mask constant 0xFF.
1547 Constant *CstFF = ConstantInt::get(Type::getInt32Ty(Context), 0xFF);
1548 FindConstant(CstFF);
1549
1550 // Add shift amount constant.
1551 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2))) {
1552 uint64_t Idx = CI->getZExtValue();
1553 Constant *CstShiftAmount =
1554 ConstantInt::get(Type::getInt32Ty(Context), Idx * 8);
1555 FindConstant(CstShiftAmount);
1556 }
1557
1558 continue;
1559 }
1560
1561 for (unsigned i = 0; i < I.getNumOperands(); i++) {
1562 // Ignore constant for index of InsertElement instruction.
1563 if (i == 2) {
1564 continue;
1565 }
1566
1567 if (isa<Constant>(I.getOperand(i)) &&
1568 !isa<GlobalValue>(I.getOperand(i))) {
1569 FindConstant(I.getOperand(i));
1570 }
1571 }
1572
1573 continue;
1574 } else if (isa<ExtractElementInst>(I)) {
1575 // Handle ExtractElement with <4 x i8> specially.
1576 Type *CompositeTy = I.getOperand(0)->getType();
1577 if (is4xi8vec(CompositeTy)) {
1578 LLVMContext &Context = CompositeTy->getContext();
1579 if (isa<Constant>(I.getOperand(0))) {
1580 FindConstant(I.getOperand(0));
1581 }
1582
1583 // Add mask constant 0xFF.
1584 Constant *CstFF = ConstantInt::get(Type::getInt32Ty(Context), 0xFF);
1585 FindConstant(CstFF);
1586
1587 // Add shift amount constant.
1588 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
1589 uint64_t Idx = CI->getZExtValue();
1590 Constant *CstShiftAmount =
1591 ConstantInt::get(Type::getInt32Ty(Context), Idx * 8);
1592 FindConstant(CstShiftAmount);
1593 } else {
1594 ConstantInt *Cst8 = ConstantInt::get(Type::getInt32Ty(Context), 8);
1595 FindConstant(Cst8);
1596 }
1597
1598 continue;
1599 }
1600
1601 for (unsigned i = 0; i < I.getNumOperands(); i++) {
1602 // Ignore constant for index of ExtractElement instruction.
1603 if (i == 1) {
1604 continue;
1605 }
1606
1607 if (isa<Constant>(I.getOperand(i)) &&
1608 !isa<GlobalValue>(I.getOperand(i))) {
1609 FindConstant(I.getOperand(i));
1610 }
1611 }
1612
1613 continue;
1614 } else if ((Instruction::Xor == I.getOpcode()) && I.getType()->isIntegerTy(1)) {
1615 // We special case for Xor where the type is i1 and one of the arguments is a constant 1 (true), this is an OpLogicalNot in SPIR-V, and we don't need the constant
1616 bool foundConstantTrue = false;
1617 for (Use &Op : I.operands()) {
1618 if (isa<Constant>(Op) && !isa<GlobalValue>(Op)) {
1619 auto CI = cast<ConstantInt>(Op);
1620
1621 if (CI->isZero() || foundConstantTrue) {
1622 // If we already found the true constant, we might (probably only on -O0) have an OpLogicalNot which is taking a constant argument, so discover it anyway.
1623 FindConstant(Op);
1624 } else {
1625 foundConstantTrue = true;
1626 }
1627 }
1628 }
1629
1630 continue;
David Netod2de94a2017-08-28 17:27:47 -04001631 } else if (isa<TruncInst>(I)) {
1632 // For truncation to i8 we mask against 255.
1633 Type *ToTy = I.getType();
1634 if (8u == ToTy->getPrimitiveSizeInBits()) {
1635 LLVMContext &Context = ToTy->getContext();
1636 Constant *Cst255 = ConstantInt::get(Type::getInt32Ty(Context), 0xff);
1637 FindConstant(Cst255);
1638 }
1639 // Fall through.
Neil Henning39672102017-09-29 14:33:13 +01001640 } else if (isa<AtomicRMWInst>(I)) {
1641 LLVMContext &Context = I.getContext();
1642
1643 FindConstant(
1644 ConstantInt::get(Type::getInt32Ty(Context), spv::ScopeDevice));
1645 FindConstant(ConstantInt::get(
1646 Type::getInt32Ty(Context),
1647 spv::MemorySemanticsUniformMemoryMask |
1648 spv::MemorySemanticsSequentiallyConsistentMask));
David Neto22f144c2017-06-12 14:26:21 -04001649 }
1650
1651 for (Use &Op : I.operands()) {
1652 if (isa<Constant>(Op) && !isa<GlobalValue>(Op)) {
1653 FindConstant(Op);
1654 }
1655 }
1656 }
1657 }
1658}
1659
1660void SPIRVProducerPass::FindConstant(Value *V) {
David Neto22f144c2017-06-12 14:26:21 -04001661 ValueList &CstList = getConstantList();
1662
David Netofb9a7972017-08-25 17:08:24 -04001663 // If V is already tracked, ignore it.
1664 if (0 != CstList.idFor(V)) {
David Neto22f144c2017-06-12 14:26:21 -04001665 return;
1666 }
1667
David Neto862b7d82018-06-14 18:48:37 -04001668 if (isa<GlobalValue>(V) && clspv::Option::ModuleConstantsInStorageBuffer()) {
1669 return;
1670 }
1671
David Neto22f144c2017-06-12 14:26:21 -04001672 Constant *Cst = cast<Constant>(V);
David Neto862b7d82018-06-14 18:48:37 -04001673 Type *CstTy = Cst->getType();
David Neto22f144c2017-06-12 14:26:21 -04001674
1675 // Handle constant with <4 x i8> type specially.
David Neto22f144c2017-06-12 14:26:21 -04001676 if (is4xi8vec(CstTy)) {
1677 if (!isa<GlobalValue>(V)) {
David Netofb9a7972017-08-25 17:08:24 -04001678 CstList.insert(V);
David Neto22f144c2017-06-12 14:26:21 -04001679 }
1680 }
1681
1682 if (Cst->getNumOperands()) {
1683 for (User::const_op_iterator I = Cst->op_begin(), E = Cst->op_end(); I != E;
1684 ++I) {
1685 FindConstant(*I);
1686 }
1687
David Netofb9a7972017-08-25 17:08:24 -04001688 CstList.insert(Cst);
David Neto22f144c2017-06-12 14:26:21 -04001689 return;
1690 } else if (const ConstantDataSequential *CDS =
1691 dyn_cast<ConstantDataSequential>(Cst)) {
1692 // Add constants for each element to constant list.
1693 for (unsigned i = 0; i < CDS->getNumElements(); i++) {
1694 Constant *EleCst = CDS->getElementAsConstant(i);
1695 FindConstant(EleCst);
1696 }
1697 }
1698
1699 if (!isa<GlobalValue>(V)) {
David Netofb9a7972017-08-25 17:08:24 -04001700 CstList.insert(V);
David Neto22f144c2017-06-12 14:26:21 -04001701 }
1702}
1703
1704spv::StorageClass SPIRVProducerPass::GetStorageClass(unsigned AddrSpace) const {
1705 switch (AddrSpace) {
1706 default:
1707 llvm_unreachable("Unsupported OpenCL address space");
1708 case AddressSpace::Private:
1709 return spv::StorageClassFunction;
1710 case AddressSpace::Global:
1711 case AddressSpace::Constant:
1712 return spv::StorageClassStorageBuffer;
1713 case AddressSpace::Input:
1714 return spv::StorageClassInput;
1715 case AddressSpace::Local:
1716 return spv::StorageClassWorkgroup;
1717 case AddressSpace::UniformConstant:
1718 return spv::StorageClassUniformConstant;
David Neto9ed8e2f2018-03-24 06:47:24 -07001719 case AddressSpace::Uniform:
David Netoe439d702018-03-23 13:14:08 -07001720 return spv::StorageClassUniform;
David Neto22f144c2017-06-12 14:26:21 -04001721 case AddressSpace::ModuleScopePrivate:
1722 return spv::StorageClassPrivate;
1723 }
1724}
1725
David Neto862b7d82018-06-14 18:48:37 -04001726spv::StorageClass
1727SPIRVProducerPass::GetStorageClassForArgKind(clspv::ArgKind arg_kind) const {
1728 switch (arg_kind) {
1729 case clspv::ArgKind::Buffer:
1730 return spv::StorageClassStorageBuffer;
1731 case clspv::ArgKind::Pod:
1732 return clspv::Option::PodArgsInUniformBuffer()
1733 ? spv::StorageClassUniform
1734 : spv::StorageClassStorageBuffer;
1735 case clspv::ArgKind::Local:
1736 return spv::StorageClassWorkgroup;
1737 case clspv::ArgKind::ReadOnlyImage:
1738 case clspv::ArgKind::WriteOnlyImage:
1739 case clspv::ArgKind::Sampler:
1740 return spv::StorageClassUniformConstant;
1741 }
1742}
1743
David Neto22f144c2017-06-12 14:26:21 -04001744spv::BuiltIn SPIRVProducerPass::GetBuiltin(StringRef Name) const {
1745 return StringSwitch<spv::BuiltIn>(Name)
1746 .Case("__spirv_GlobalInvocationId", spv::BuiltInGlobalInvocationId)
1747 .Case("__spirv_LocalInvocationId", spv::BuiltInLocalInvocationId)
1748 .Case("__spirv_WorkgroupSize", spv::BuiltInWorkgroupSize)
1749 .Case("__spirv_NumWorkgroups", spv::BuiltInNumWorkgroups)
1750 .Case("__spirv_WorkgroupId", spv::BuiltInWorkgroupId)
1751 .Default(spv::BuiltInMax);
1752}
1753
1754void SPIRVProducerPass::GenerateExtInstImport() {
1755 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
1756 uint32_t &ExtInstImportID = getOpExtInstImportID();
1757
1758 //
1759 // Generate OpExtInstImport.
1760 //
1761 // Ops[0] ... Ops[n] = Name (Literal String)
David Neto22f144c2017-06-12 14:26:21 -04001762 ExtInstImportID = nextID;
David Neto87846742018-04-11 17:36:22 -04001763 SPIRVInstList.push_back(new SPIRVInstruction(spv::OpExtInstImport, nextID++,
1764 MkString("GLSL.std.450")));
David Neto22f144c2017-06-12 14:26:21 -04001765}
1766
David Netoc6f3ab22018-04-06 18:02:31 -04001767void SPIRVProducerPass::GenerateSPIRVTypes(LLVMContext& Context, const DataLayout &DL) {
David Neto22f144c2017-06-12 14:26:21 -04001768 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
1769 ValueMapType &VMap = getValueMap();
1770 ValueMapType &AllocatedVMap = getAllocatedValueMap();
David Neto22f144c2017-06-12 14:26:21 -04001771
1772 // Map for OpTypeRuntimeArray. If argument has pointer type, 2 spirv type
1773 // instructions are generated. They are OpTypePointer and OpTypeRuntimeArray.
1774 DenseMap<Type *, uint32_t> OpRuntimeTyMap;
1775
1776 for (Type *Ty : getTypeList()) {
1777 // Update TypeMap with nextID for reference later.
1778 TypeMap[Ty] = nextID;
1779
1780 switch (Ty->getTypeID()) {
1781 default: {
1782 Ty->print(errs());
1783 llvm_unreachable("Unsupported type???");
1784 break;
1785 }
1786 case Type::MetadataTyID:
1787 case Type::LabelTyID: {
1788 // Ignore these types.
1789 break;
1790 }
1791 case Type::PointerTyID: {
1792 PointerType *PTy = cast<PointerType>(Ty);
1793 unsigned AddrSpace = PTy->getAddressSpace();
1794
1795 // For the purposes of our Vulkan SPIR-V type system, constant and global
1796 // are conflated.
1797 bool UseExistingOpTypePointer = false;
1798 if (AddressSpace::Constant == AddrSpace) {
1799 AddrSpace = AddressSpace::Global;
1800
1801 // Check to see if we already created this type (for instance, if we had
1802 // a constant <type>* and a global <type>*, the type would be created by
1803 // one of these types, and shared by both).
1804 auto GlobalTy = PTy->getPointerElementType()->getPointerTo(AddrSpace);
1805 if (0 < TypeMap.count(GlobalTy)) {
1806 TypeMap[PTy] = TypeMap[GlobalTy];
David Netoe439d702018-03-23 13:14:08 -07001807 UseExistingOpTypePointer = true;
David Neto22f144c2017-06-12 14:26:21 -04001808 break;
1809 }
1810 } else if (AddressSpace::Global == AddrSpace) {
1811 AddrSpace = AddressSpace::Constant;
1812
1813 // Check to see if we already created this type (for instance, if we had
1814 // a constant <type>* and a global <type>*, the type would be created by
1815 // one of these types, and shared by both).
1816 auto ConstantTy = PTy->getPointerElementType()->getPointerTo(AddrSpace);
1817 if (0 < TypeMap.count(ConstantTy)) {
1818 TypeMap[PTy] = TypeMap[ConstantTy];
1819 UseExistingOpTypePointer = true;
1820 }
1821 }
1822
David Neto862b7d82018-06-14 18:48:37 -04001823 const bool HasArgUser = true;
David Neto22f144c2017-06-12 14:26:21 -04001824
David Neto862b7d82018-06-14 18:48:37 -04001825 if (HasArgUser && !UseExistingOpTypePointer) {
David Neto22f144c2017-06-12 14:26:21 -04001826 //
1827 // Generate OpTypePointer.
1828 //
1829
1830 // OpTypePointer
1831 // Ops[0] = Storage Class
1832 // Ops[1] = Element Type ID
1833 SPIRVOperandList Ops;
1834
David Neto257c3892018-04-11 13:19:45 -04001835 Ops << MkNum(GetStorageClass(AddrSpace))
1836 << MkId(lookupType(PTy->getElementType()));
David Neto22f144c2017-06-12 14:26:21 -04001837
David Neto87846742018-04-11 17:36:22 -04001838 auto *Inst = new SPIRVInstruction(spv::OpTypePointer, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04001839 SPIRVInstList.push_back(Inst);
1840 }
David Neto22f144c2017-06-12 14:26:21 -04001841 break;
1842 }
1843 case Type::StructTyID: {
David Neto22f144c2017-06-12 14:26:21 -04001844 StructType *STy = cast<StructType>(Ty);
1845
1846 // Handle sampler type.
1847 if (STy->isOpaque()) {
1848 if (STy->getName().equals("opencl.sampler_t")) {
1849 //
1850 // Generate OpTypeSampler
1851 //
1852 // Empty Ops.
1853 SPIRVOperandList Ops;
1854
David Neto87846742018-04-11 17:36:22 -04001855 auto *Inst = new SPIRVInstruction(spv::OpTypeSampler, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04001856 SPIRVInstList.push_back(Inst);
1857 break;
1858 } else if (STy->getName().equals("opencl.image2d_ro_t") ||
1859 STy->getName().equals("opencl.image2d_wo_t") ||
1860 STy->getName().equals("opencl.image3d_ro_t") ||
1861 STy->getName().equals("opencl.image3d_wo_t")) {
1862 //
1863 // Generate OpTypeImage
1864 //
1865 // Ops[0] = Sampled Type ID
1866 // Ops[1] = Dim ID
1867 // Ops[2] = Depth (Literal Number)
1868 // Ops[3] = Arrayed (Literal Number)
1869 // Ops[4] = MS (Literal Number)
1870 // Ops[5] = Sampled (Literal Number)
1871 // Ops[6] = Image Format ID
1872 //
1873 SPIRVOperandList Ops;
1874
1875 // TODO: Changed Sampled Type according to situations.
1876 uint32_t SampledTyID = lookupType(Type::getFloatTy(Context));
David Neto257c3892018-04-11 13:19:45 -04001877 Ops << MkId(SampledTyID);
David Neto22f144c2017-06-12 14:26:21 -04001878
1879 spv::Dim DimID = spv::Dim2D;
1880 if (STy->getName().equals("opencl.image3d_ro_t") ||
1881 STy->getName().equals("opencl.image3d_wo_t")) {
1882 DimID = spv::Dim3D;
1883 }
David Neto257c3892018-04-11 13:19:45 -04001884 Ops << MkNum(DimID);
David Neto22f144c2017-06-12 14:26:21 -04001885
1886 // TODO: Set up Depth.
David Neto257c3892018-04-11 13:19:45 -04001887 Ops << MkNum(0);
David Neto22f144c2017-06-12 14:26:21 -04001888
1889 // TODO: Set up Arrayed.
David Neto257c3892018-04-11 13:19:45 -04001890 Ops << MkNum(0);
David Neto22f144c2017-06-12 14:26:21 -04001891
1892 // TODO: Set up MS.
David Neto257c3892018-04-11 13:19:45 -04001893 Ops << MkNum(0);
David Neto22f144c2017-06-12 14:26:21 -04001894
1895 // TODO: Set up Sampled.
1896 //
1897 // From Spec
1898 //
1899 // 0 indicates this is only known at run time, not at compile time
1900 // 1 indicates will be used with sampler
1901 // 2 indicates will be used without a sampler (a storage image)
1902 uint32_t Sampled = 1;
1903 if (STy->getName().equals("opencl.image2d_wo_t") ||
1904 STy->getName().equals("opencl.image3d_wo_t")) {
1905 Sampled = 2;
1906 }
David Neto257c3892018-04-11 13:19:45 -04001907 Ops << MkNum(Sampled);
David Neto22f144c2017-06-12 14:26:21 -04001908
1909 // TODO: Set up Image Format.
David Neto257c3892018-04-11 13:19:45 -04001910 Ops << MkNum(spv::ImageFormatUnknown);
David Neto22f144c2017-06-12 14:26:21 -04001911
David Neto87846742018-04-11 17:36:22 -04001912 auto *Inst = new SPIRVInstruction(spv::OpTypeImage, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04001913 SPIRVInstList.push_back(Inst);
1914 break;
1915 }
1916 }
1917
1918 //
1919 // Generate OpTypeStruct
1920 //
1921 // Ops[0] ... Ops[n] = Member IDs
1922 SPIRVOperandList Ops;
1923
1924 for (auto *EleTy : STy->elements()) {
David Neto862b7d82018-06-14 18:48:37 -04001925 Ops << MkId(lookupType(EleTy));
David Neto22f144c2017-06-12 14:26:21 -04001926 }
1927
David Neto22f144c2017-06-12 14:26:21 -04001928 uint32_t STyID = nextID;
1929
David Neto87846742018-04-11 17:36:22 -04001930 auto *Inst =
1931 new SPIRVInstruction(spv::OpTypeStruct, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04001932 SPIRVInstList.push_back(Inst);
1933
1934 // Generate OpMemberDecorate.
1935 auto DecoInsertPoint =
1936 std::find_if(SPIRVInstList.begin(), SPIRVInstList.end(),
1937 [](SPIRVInstruction *Inst) -> bool {
1938 return Inst->getOpcode() != spv::OpDecorate &&
1939 Inst->getOpcode() != spv::OpMemberDecorate &&
1940 Inst->getOpcode() != spv::OpExtInstImport;
1941 });
1942
David Netoc463b372017-08-10 15:32:21 -04001943 const auto StructLayout = DL.getStructLayout(STy);
1944
David Neto862b7d82018-06-14 18:48:37 -04001945 // #error TODO(dneto): Only do this if in TypesNeedingLayout.
David Neto22f144c2017-06-12 14:26:21 -04001946 for (unsigned MemberIdx = 0; MemberIdx < STy->getNumElements();
1947 MemberIdx++) {
1948 // Ops[0] = Structure Type ID
1949 // Ops[1] = Member Index(Literal Number)
1950 // Ops[2] = Decoration (Offset)
1951 // Ops[3] = Byte Offset (Literal Number)
1952 Ops.clear();
1953
David Neto257c3892018-04-11 13:19:45 -04001954 Ops << MkId(STyID) << MkNum(MemberIdx) << MkNum(spv::DecorationOffset);
David Neto22f144c2017-06-12 14:26:21 -04001955
David Netoc463b372017-08-10 15:32:21 -04001956 const auto ByteOffset =
1957 uint32_t(StructLayout->getElementOffset(MemberIdx));
David Neto257c3892018-04-11 13:19:45 -04001958 Ops << MkNum(ByteOffset);
David Neto22f144c2017-06-12 14:26:21 -04001959
David Neto87846742018-04-11 17:36:22 -04001960 auto *DecoInst = new SPIRVInstruction(spv::OpMemberDecorate, Ops);
David Neto22f144c2017-06-12 14:26:21 -04001961 SPIRVInstList.insert(DecoInsertPoint, DecoInst);
David Neto22f144c2017-06-12 14:26:21 -04001962 }
1963
1964 // Generate OpDecorate.
David Neto862b7d82018-06-14 18:48:37 -04001965 if (StructTypesNeedingBlock.idFor(STy)) {
1966 Ops.clear();
1967 // Use Block decorations with StorageBuffer storage class.
1968 Ops << MkId(STyID) << MkNum(spv::DecorationBlock);
David Neto22f144c2017-06-12 14:26:21 -04001969
David Neto862b7d82018-06-14 18:48:37 -04001970 auto *DecoInst = new SPIRVInstruction(spv::OpDecorate, Ops);
1971 SPIRVInstList.insert(DecoInsertPoint, DecoInst);
David Neto22f144c2017-06-12 14:26:21 -04001972 }
1973 break;
1974 }
1975 case Type::IntegerTyID: {
1976 unsigned BitWidth = Ty->getPrimitiveSizeInBits();
1977
1978 if (BitWidth == 1) {
David Neto87846742018-04-11 17:36:22 -04001979 auto *Inst = new SPIRVInstruction(spv::OpTypeBool, nextID++, {});
David Neto22f144c2017-06-12 14:26:21 -04001980 SPIRVInstList.push_back(Inst);
1981 } else {
1982 // i8 is added to TypeMap as i32.
David Neto391aeb12017-08-26 15:51:58 -04001983 // No matter what LLVM type is requested first, always alias the
1984 // second one's SPIR-V type to be the same as the one we generated
1985 // first.
Neil Henning39672102017-09-29 14:33:13 +01001986 unsigned aliasToWidth = 0;
David Neto22f144c2017-06-12 14:26:21 -04001987 if (BitWidth == 8) {
David Neto391aeb12017-08-26 15:51:58 -04001988 aliasToWidth = 32;
David Neto22f144c2017-06-12 14:26:21 -04001989 BitWidth = 32;
David Neto391aeb12017-08-26 15:51:58 -04001990 } else if (BitWidth == 32) {
1991 aliasToWidth = 8;
1992 }
1993 if (aliasToWidth) {
1994 Type* otherType = Type::getIntNTy(Ty->getContext(), aliasToWidth);
1995 auto where = TypeMap.find(otherType);
1996 if (where == TypeMap.end()) {
1997 // Go ahead and make it, but also map the other type to it.
1998 TypeMap[otherType] = nextID;
1999 } else {
2000 // Alias this SPIR-V type the existing type.
2001 TypeMap[Ty] = where->second;
2002 break;
2003 }
David Neto22f144c2017-06-12 14:26:21 -04002004 }
2005
David Neto257c3892018-04-11 13:19:45 -04002006 SPIRVOperandList Ops;
2007 Ops << MkNum(BitWidth) << MkNum(0 /* not signed */);
David Neto22f144c2017-06-12 14:26:21 -04002008
2009 SPIRVInstList.push_back(
David Neto87846742018-04-11 17:36:22 -04002010 new SPIRVInstruction(spv::OpTypeInt, nextID++, Ops));
David Neto22f144c2017-06-12 14:26:21 -04002011 }
2012 break;
2013 }
2014 case Type::HalfTyID:
2015 case Type::FloatTyID:
2016 case Type::DoubleTyID: {
2017 SPIRVOperand *WidthOp = new SPIRVOperand(
2018 SPIRVOperandType::LITERAL_INTEGER, Ty->getPrimitiveSizeInBits());
2019
2020 SPIRVInstList.push_back(
David Neto87846742018-04-11 17:36:22 -04002021 new SPIRVInstruction(spv::OpTypeFloat, nextID++, WidthOp));
David Neto22f144c2017-06-12 14:26:21 -04002022 break;
2023 }
2024 case Type::ArrayTyID: {
David Neto22f144c2017-06-12 14:26:21 -04002025 ArrayType *ArrTy = cast<ArrayType>(Ty);
David Neto862b7d82018-06-14 18:48:37 -04002026 const uint64_t Length = ArrTy->getArrayNumElements();
2027 if (Length == 0) {
2028 // By convention, map it to a RuntimeArray.
David Neto22f144c2017-06-12 14:26:21 -04002029
David Neto862b7d82018-06-14 18:48:37 -04002030 // Only generate the type once.
2031 // TODO(dneto): Can it ever be generated more than once?
2032 // Doesn't LLVM type uniqueness guarantee we'll only see this
2033 // once?
2034 Type *EleTy = ArrTy->getArrayElementType();
2035 if (OpRuntimeTyMap.count(EleTy) == 0) {
2036 uint32_t OpTypeRuntimeArrayID = nextID;
2037 OpRuntimeTyMap[Ty] = nextID;
David Neto22f144c2017-06-12 14:26:21 -04002038
David Neto862b7d82018-06-14 18:48:37 -04002039 //
2040 // Generate OpTypeRuntimeArray.
2041 //
David Neto22f144c2017-06-12 14:26:21 -04002042
David Neto862b7d82018-06-14 18:48:37 -04002043 // OpTypeRuntimeArray
2044 // Ops[0] = Element Type ID
2045 SPIRVOperandList Ops;
2046 Ops << MkId(lookupType(EleTy));
David Neto22f144c2017-06-12 14:26:21 -04002047
David Neto862b7d82018-06-14 18:48:37 -04002048 SPIRVInstList.push_back(
2049 new SPIRVInstruction(spv::OpTypeRuntimeArray, nextID++, Ops));
David Neto22f144c2017-06-12 14:26:21 -04002050
David Neto862b7d82018-06-14 18:48:37 -04002051 if (Hack_generate_runtime_array_stride_early) {
2052 // Generate OpDecorate.
2053 auto DecoInsertPoint = std::find_if(
2054 SPIRVInstList.begin(), SPIRVInstList.end(),
2055 [](SPIRVInstruction *Inst) -> bool {
2056 return Inst->getOpcode() != spv::OpDecorate &&
2057 Inst->getOpcode() != spv::OpMemberDecorate &&
2058 Inst->getOpcode() != spv::OpExtInstImport;
2059 });
David Neto22f144c2017-06-12 14:26:21 -04002060
David Neto862b7d82018-06-14 18:48:37 -04002061 // Ops[0] = Target ID
2062 // Ops[1] = Decoration (ArrayStride)
2063 // Ops[2] = Stride Number(Literal Number)
2064 Ops.clear();
David Neto85082642018-03-24 06:55:20 -07002065
David Neto862b7d82018-06-14 18:48:37 -04002066 Ops << MkId(OpTypeRuntimeArrayID)
2067 << MkNum(spv::DecorationArrayStride)
2068 << MkNum(static_cast<uint32_t>(DL.getTypeAllocSize(EleTy)));
David Neto22f144c2017-06-12 14:26:21 -04002069
David Neto862b7d82018-06-14 18:48:37 -04002070 auto *DecoInst = new SPIRVInstruction(spv::OpDecorate, Ops);
2071 SPIRVInstList.insert(DecoInsertPoint, DecoInst);
2072 }
2073 }
David Neto22f144c2017-06-12 14:26:21 -04002074
David Neto862b7d82018-06-14 18:48:37 -04002075 } else {
David Neto22f144c2017-06-12 14:26:21 -04002076
David Neto862b7d82018-06-14 18:48:37 -04002077 //
2078 // Generate OpConstant and OpTypeArray.
2079 //
2080
2081 //
2082 // Generate OpConstant for array length.
2083 //
2084 // Ops[0] = Result Type ID
2085 // Ops[1] .. Ops[n] = Values LiteralNumber
2086 SPIRVOperandList Ops;
2087
2088 Type *LengthTy = Type::getInt32Ty(Context);
2089 uint32_t ResTyID = lookupType(LengthTy);
2090 Ops << MkId(ResTyID);
2091
2092 assert(Length < UINT32_MAX);
2093 Ops << MkNum(static_cast<uint32_t>(Length));
2094
2095 // Add constant for length to constant list.
2096 Constant *CstLength = ConstantInt::get(LengthTy, Length);
2097 AllocatedVMap[CstLength] = nextID;
2098 VMap[CstLength] = nextID;
2099 uint32_t LengthID = nextID;
2100
2101 auto *CstInst = new SPIRVInstruction(spv::OpConstant, nextID++, Ops);
2102 SPIRVInstList.push_back(CstInst);
2103
2104 // Remember to generate ArrayStride later
2105 getTypesNeedingArrayStride().insert(Ty);
2106
2107 //
2108 // Generate OpTypeArray.
2109 //
2110 // Ops[0] = Element Type ID
2111 // Ops[1] = Array Length Constant ID
2112 Ops.clear();
2113
2114 uint32_t EleTyID = lookupType(ArrTy->getElementType());
2115 Ops << MkId(EleTyID) << MkId(LengthID);
2116
2117 // Update TypeMap with nextID.
2118 TypeMap[Ty] = nextID;
2119
2120 auto *ArrayInst = new SPIRVInstruction(spv::OpTypeArray, nextID++, Ops);
2121 SPIRVInstList.push_back(ArrayInst);
2122 }
David Neto22f144c2017-06-12 14:26:21 -04002123 break;
2124 }
2125 case Type::VectorTyID: {
2126 // <4 x i8> is changed to i32.
David Neto22f144c2017-06-12 14:26:21 -04002127 if (Ty->getVectorElementType() == Type::getInt8Ty(Context)) {
2128 if (Ty->getVectorNumElements() == 4) {
2129 TypeMap[Ty] = lookupType(Ty->getVectorElementType());
2130 break;
2131 } else {
2132 Ty->print(errs());
2133 llvm_unreachable("Support above i8 vector type");
2134 }
2135 }
2136
2137 // Ops[0] = Component Type ID
2138 // Ops[1] = Component Count (Literal Number)
David Neto257c3892018-04-11 13:19:45 -04002139 SPIRVOperandList Ops;
2140 Ops << MkId(lookupType(Ty->getVectorElementType()))
2141 << MkNum(Ty->getVectorNumElements());
David Neto22f144c2017-06-12 14:26:21 -04002142
David Neto87846742018-04-11 17:36:22 -04002143 SPIRVInstruction* inst = new SPIRVInstruction(spv::OpTypeVector, nextID++, Ops);
David Netoc6f3ab22018-04-06 18:02:31 -04002144 SPIRVInstList.push_back(inst);
David Neto22f144c2017-06-12 14:26:21 -04002145 break;
2146 }
2147 case Type::VoidTyID: {
David Neto87846742018-04-11 17:36:22 -04002148 auto *Inst = new SPIRVInstruction(spv::OpTypeVoid, nextID++, {});
David Neto22f144c2017-06-12 14:26:21 -04002149 SPIRVInstList.push_back(Inst);
2150 break;
2151 }
2152 case Type::FunctionTyID: {
2153 // Generate SPIRV instruction for function type.
2154 FunctionType *FTy = cast<FunctionType>(Ty);
2155
2156 // Ops[0] = Return Type ID
2157 // Ops[1] ... Ops[n] = Parameter Type IDs
2158 SPIRVOperandList Ops;
2159
2160 // Find SPIRV instruction for return type
David Netoc6f3ab22018-04-06 18:02:31 -04002161 Ops << MkId(lookupType(FTy->getReturnType()));
David Neto22f144c2017-06-12 14:26:21 -04002162
2163 // Find SPIRV instructions for parameter types
2164 for (unsigned k = 0; k < FTy->getNumParams(); k++) {
2165 // Find SPIRV instruction for parameter type.
2166 auto ParamTy = FTy->getParamType(k);
2167 if (ParamTy->isPointerTy()) {
2168 auto PointeeTy = ParamTy->getPointerElementType();
2169 if (PointeeTy->isStructTy() &&
2170 dyn_cast<StructType>(PointeeTy)->isOpaque()) {
2171 ParamTy = PointeeTy;
2172 }
2173 }
2174
David Netoc6f3ab22018-04-06 18:02:31 -04002175 Ops << MkId(lookupType(ParamTy));
David Neto22f144c2017-06-12 14:26:21 -04002176 }
2177
David Neto87846742018-04-11 17:36:22 -04002178 auto *Inst = new SPIRVInstruction(spv::OpTypeFunction, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002179 SPIRVInstList.push_back(Inst);
2180 break;
2181 }
2182 }
2183 }
2184
2185 // Generate OpTypeSampledImage.
2186 TypeMapType &OpImageTypeMap = getImageTypeMap();
2187 for (auto &ImageType : OpImageTypeMap) {
2188 //
2189 // Generate OpTypeSampledImage.
2190 //
2191 // Ops[0] = Image Type ID
2192 //
2193 SPIRVOperandList Ops;
2194
2195 Type *ImgTy = ImageType.first;
David Netoc6f3ab22018-04-06 18:02:31 -04002196 Ops << MkId(TypeMap[ImgTy]);
David Neto22f144c2017-06-12 14:26:21 -04002197
2198 // Update OpImageTypeMap.
2199 ImageType.second = nextID;
2200
David Neto87846742018-04-11 17:36:22 -04002201 auto *Inst = new SPIRVInstruction(spv::OpTypeSampledImage, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002202 SPIRVInstList.push_back(Inst);
2203 }
David Netoc6f3ab22018-04-06 18:02:31 -04002204
2205 // Generate types for pointer-to-local arguments.
Alan Baker202c8c72018-08-13 13:47:44 -04002206 for (auto spec_id = clspv::FirstLocalSpecId(); spec_id < max_local_spec_id_;
2207 ++spec_id) {
2208 LocalArgInfo& arg_info = LocalSpecIdInfoMap[spec_id];
David Netoc6f3ab22018-04-06 18:02:31 -04002209
2210 // Generate the spec constant.
2211 SPIRVOperandList Ops;
2212 Ops << MkId(lookupType(Type::getInt32Ty(Context))) << MkNum(1);
David Neto87846742018-04-11 17:36:22 -04002213 SPIRVInstList.push_back(
2214 new SPIRVInstruction(spv::OpSpecConstant, arg_info.array_size_id, Ops));
David Netoc6f3ab22018-04-06 18:02:31 -04002215
2216 // Generate the array type.
2217 Ops.clear();
2218 // The element type must have been created.
2219 uint32_t elem_ty_id = lookupType(arg_info.elem_type);
2220 assert(elem_ty_id);
2221 Ops << MkId(elem_ty_id) << MkId(arg_info.array_size_id);
2222
2223 SPIRVInstList.push_back(
David Neto87846742018-04-11 17:36:22 -04002224 new SPIRVInstruction(spv::OpTypeArray, arg_info.array_type_id, Ops));
David Netoc6f3ab22018-04-06 18:02:31 -04002225
2226 Ops.clear();
2227 Ops << MkNum(spv::StorageClassWorkgroup) << MkId(arg_info.array_type_id);
David Neto87846742018-04-11 17:36:22 -04002228 SPIRVInstList.push_back(new SPIRVInstruction(
2229 spv::OpTypePointer, arg_info.ptr_array_type_id, Ops));
David Netoc6f3ab22018-04-06 18:02:31 -04002230 }
David Neto22f144c2017-06-12 14:26:21 -04002231}
2232
2233void SPIRVProducerPass::GenerateSPIRVConstants() {
2234 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
2235 ValueMapType &VMap = getValueMap();
2236 ValueMapType &AllocatedVMap = getAllocatedValueMap();
2237 ValueList &CstList = getConstantList();
David Neto482550a2018-03-24 05:21:07 -07002238 const bool hack_undef = clspv::Option::HackUndef();
David Neto22f144c2017-06-12 14:26:21 -04002239
2240 for (uint32_t i = 0; i < CstList.size(); i++) {
David Netofb9a7972017-08-25 17:08:24 -04002241 // UniqueVector ids are 1-based.
2242 Constant *Cst = cast<Constant>(CstList[i+1]);
David Neto22f144c2017-06-12 14:26:21 -04002243
2244 // OpTypeArray's constant was already generated.
David Netofb9a7972017-08-25 17:08:24 -04002245 if (AllocatedVMap.find_as(Cst) != AllocatedVMap.end()) {
David Neto22f144c2017-06-12 14:26:21 -04002246 continue;
2247 }
2248
David Netofb9a7972017-08-25 17:08:24 -04002249 // Set ValueMap with nextID for reference later.
David Neto22f144c2017-06-12 14:26:21 -04002250 VMap[Cst] = nextID;
2251
2252 //
2253 // Generate OpConstant.
2254 //
2255
2256 // Ops[0] = Result Type ID
2257 // Ops[1] .. Ops[n] = Values LiteralNumber
2258 SPIRVOperandList Ops;
2259
David Neto257c3892018-04-11 13:19:45 -04002260 Ops << MkId(lookupType(Cst->getType()));
David Neto22f144c2017-06-12 14:26:21 -04002261
2262 std::vector<uint32_t> LiteralNum;
David Neto22f144c2017-06-12 14:26:21 -04002263 spv::Op Opcode = spv::OpNop;
2264
2265 if (isa<UndefValue>(Cst)) {
2266 // Ops[0] = Result Type ID
David Netoc66b3352017-10-20 14:28:46 -04002267 Opcode = spv::OpUndef;
2268 if (hack_undef) {
2269 Type *type = Cst->getType();
2270 if (type->isFPOrFPVectorTy() || type->isIntOrIntVectorTy()) {
2271 Opcode = spv::OpConstantNull;
2272 }
2273 }
David Neto22f144c2017-06-12 14:26:21 -04002274 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(Cst)) {
2275 unsigned BitWidth = CI->getBitWidth();
2276 if (BitWidth == 1) {
2277 // If the bitwidth of constant is 1, generate OpConstantTrue or
2278 // OpConstantFalse.
2279 if (CI->getZExtValue()) {
2280 // Ops[0] = Result Type ID
2281 Opcode = spv::OpConstantTrue;
2282 } else {
2283 // Ops[0] = Result Type ID
2284 Opcode = spv::OpConstantFalse;
2285 }
David Neto22f144c2017-06-12 14:26:21 -04002286 } else {
2287 auto V = CI->getZExtValue();
2288 LiteralNum.push_back(V & 0xFFFFFFFF);
2289
2290 if (BitWidth > 32) {
2291 LiteralNum.push_back(V >> 32);
2292 }
2293
2294 Opcode = spv::OpConstant;
David Neto22f144c2017-06-12 14:26:21 -04002295
David Neto257c3892018-04-11 13:19:45 -04002296 Ops << MkInteger(LiteralNum);
2297
2298 if (BitWidth == 32 && V == 0) {
2299 constant_i32_zero_id_ = nextID;
2300 }
David Neto22f144c2017-06-12 14:26:21 -04002301 }
2302 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Cst)) {
2303 uint64_t FPVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
2304 Type *CFPTy = CFP->getType();
2305 if (CFPTy->isFloatTy()) {
2306 LiteralNum.push_back(FPVal & 0xFFFFFFFF);
2307 } else {
2308 CFPTy->print(errs());
2309 llvm_unreachable("Implement this ConstantFP Type");
2310 }
2311
2312 Opcode = spv::OpConstant;
David Neto22f144c2017-06-12 14:26:21 -04002313
David Neto257c3892018-04-11 13:19:45 -04002314 Ops << MkFloat(LiteralNum);
David Neto22f144c2017-06-12 14:26:21 -04002315 } else if (isa<ConstantDataSequential>(Cst) &&
2316 cast<ConstantDataSequential>(Cst)->isString()) {
2317 Cst->print(errs());
2318 llvm_unreachable("Implement this Constant");
2319
2320 } else if (const ConstantDataSequential *CDS =
2321 dyn_cast<ConstantDataSequential>(Cst)) {
David Neto49351ac2017-08-26 17:32:20 -04002322 // Let's convert <4 x i8> constant to int constant specially.
2323 // This case occurs when all the values are specified as constant
2324 // ints.
2325 Type *CstTy = Cst->getType();
2326 if (is4xi8vec(CstTy)) {
2327 LLVMContext &Context = CstTy->getContext();
2328
2329 //
2330 // Generate OpConstant with OpTypeInt 32 0.
2331 //
Neil Henning39672102017-09-29 14:33:13 +01002332 uint32_t IntValue = 0;
2333 for (unsigned k = 0; k < 4; k++) {
2334 const uint64_t Val = CDS->getElementAsInteger(k);
David Neto49351ac2017-08-26 17:32:20 -04002335 IntValue = (IntValue << 8) | (Val & 0xffu);
2336 }
2337
2338 Type *i32 = Type::getInt32Ty(Context);
2339 Constant *CstInt = ConstantInt::get(i32, IntValue);
2340 // If this constant is already registered on VMap, use it.
2341 if (VMap.count(CstInt)) {
2342 uint32_t CstID = VMap[CstInt];
2343 VMap[Cst] = CstID;
2344 continue;
2345 }
2346
David Neto257c3892018-04-11 13:19:45 -04002347 Ops << MkNum(IntValue);
David Neto49351ac2017-08-26 17:32:20 -04002348
David Neto87846742018-04-11 17:36:22 -04002349 auto *CstInst = new SPIRVInstruction(spv::OpConstant, nextID++, Ops);
David Neto49351ac2017-08-26 17:32:20 -04002350 SPIRVInstList.push_back(CstInst);
2351
2352 continue;
2353 }
2354
2355 // A normal constant-data-sequential case.
David Neto22f144c2017-06-12 14:26:21 -04002356 for (unsigned k = 0; k < CDS->getNumElements(); k++) {
2357 Constant *EleCst = CDS->getElementAsConstant(k);
2358 uint32_t EleCstID = VMap[EleCst];
David Neto257c3892018-04-11 13:19:45 -04002359 Ops << MkId(EleCstID);
David Neto22f144c2017-06-12 14:26:21 -04002360 }
2361
2362 Opcode = spv::OpConstantComposite;
David Neto22f144c2017-06-12 14:26:21 -04002363 } else if (const ConstantAggregate *CA = dyn_cast<ConstantAggregate>(Cst)) {
2364 // Let's convert <4 x i8> constant to int constant specially.
David Neto49351ac2017-08-26 17:32:20 -04002365 // This case occurs when at least one of the values is an undef.
David Neto22f144c2017-06-12 14:26:21 -04002366 Type *CstTy = Cst->getType();
2367 if (is4xi8vec(CstTy)) {
2368 LLVMContext &Context = CstTy->getContext();
2369
2370 //
2371 // Generate OpConstant with OpTypeInt 32 0.
2372 //
Neil Henning39672102017-09-29 14:33:13 +01002373 uint32_t IntValue = 0;
David Neto22f144c2017-06-12 14:26:21 -04002374 for (User::const_op_iterator I = Cst->op_begin(), E = Cst->op_end();
2375 I != E; ++I) {
2376 uint64_t Val = 0;
David Neto49351ac2017-08-26 17:32:20 -04002377 const Value* CV = *I;
Neil Henning39672102017-09-29 14:33:13 +01002378 if (auto *CI2 = dyn_cast<ConstantInt>(CV)) {
2379 Val = CI2->getZExtValue();
David Neto22f144c2017-06-12 14:26:21 -04002380 }
David Neto49351ac2017-08-26 17:32:20 -04002381 IntValue = (IntValue << 8) | (Val & 0xffu);
David Neto22f144c2017-06-12 14:26:21 -04002382 }
2383
David Neto49351ac2017-08-26 17:32:20 -04002384 Type *i32 = Type::getInt32Ty(Context);
2385 Constant *CstInt = ConstantInt::get(i32, IntValue);
David Neto22f144c2017-06-12 14:26:21 -04002386 // If this constant is already registered on VMap, use it.
2387 if (VMap.count(CstInt)) {
2388 uint32_t CstID = VMap[CstInt];
2389 VMap[Cst] = CstID;
David Neto19a1bad2017-08-25 15:01:41 -04002390 continue;
David Neto22f144c2017-06-12 14:26:21 -04002391 }
2392
David Neto257c3892018-04-11 13:19:45 -04002393 Ops << MkNum(IntValue);
David Neto22f144c2017-06-12 14:26:21 -04002394
David Neto87846742018-04-11 17:36:22 -04002395 auto *CstInst = new SPIRVInstruction(spv::OpConstant, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002396 SPIRVInstList.push_back(CstInst);
2397
David Neto19a1bad2017-08-25 15:01:41 -04002398 continue;
David Neto22f144c2017-06-12 14:26:21 -04002399 }
2400
2401 // We use a constant composite in SPIR-V for our constant aggregate in
2402 // LLVM.
2403 Opcode = spv::OpConstantComposite;
David Neto22f144c2017-06-12 14:26:21 -04002404
2405 for (unsigned k = 0; k < CA->getNumOperands(); k++) {
2406 // Look up the ID of the element of this aggregate (which we will
2407 // previously have created a constant for).
2408 uint32_t ElementConstantID = VMap[CA->getAggregateElement(k)];
2409
2410 // And add an operand to the composite we are constructing
David Neto257c3892018-04-11 13:19:45 -04002411 Ops << MkId(ElementConstantID);
David Neto22f144c2017-06-12 14:26:21 -04002412 }
2413 } else if (Cst->isNullValue()) {
2414 Opcode = spv::OpConstantNull;
David Neto22f144c2017-06-12 14:26:21 -04002415 } else {
2416 Cst->print(errs());
2417 llvm_unreachable("Unsupported Constant???");
2418 }
2419
David Neto87846742018-04-11 17:36:22 -04002420 auto *CstInst = new SPIRVInstruction(Opcode, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002421 SPIRVInstList.push_back(CstInst);
2422 }
2423}
2424
2425void SPIRVProducerPass::GenerateSamplers(Module &M) {
2426 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
2427 ValueMapType &VMap = getValueMap();
2428
David Neto862b7d82018-06-14 18:48:37 -04002429 auto& sampler_map = getSamplerMap();
2430 SamplerMapIndexToIDMap.clear();
David Neto22f144c2017-06-12 14:26:21 -04002431 DenseMap<unsigned, unsigned> SamplerLiteralToIDMap;
David Neto862b7d82018-06-14 18:48:37 -04002432 DenseMap<unsigned, unsigned> SamplerLiteralToDescriptorSetMap;
2433 DenseMap<unsigned, unsigned> SamplerLiteralToBindingMap;
David Neto22f144c2017-06-12 14:26:21 -04002434
David Neto862b7d82018-06-14 18:48:37 -04002435 // We might have samplers in the sampler map that are not used
2436 // in the translation unit. We need to allocate variables
2437 // for them and bindings too.
2438 DenseSet<unsigned> used_bindings;
David Neto22f144c2017-06-12 14:26:21 -04002439
David Neto862b7d82018-06-14 18:48:37 -04002440 auto* var_fn = M.getFunction("clspv.sampler.var.literal");
2441 if (!var_fn) return;
2442 for (auto user : var_fn->users()) {
2443 // Populate SamplerLiteralToDescriptorSetMap and
2444 // SamplerLiteralToBindingMap.
2445 //
2446 // Look for calls like
2447 // call %opencl.sampler_t addrspace(2)*
2448 // @clspv.sampler.var.literal(
2449 // i32 descriptor,
2450 // i32 binding,
2451 // i32 index-into-sampler-map)
2452 if (auto* call = dyn_cast<CallInst>(user)) {
2453 const auto index_into_sampler_map =
2454 dyn_cast<ConstantInt>(call->getArgOperand(2))->getZExtValue();
2455 if (index_into_sampler_map >= sampler_map.size()) {
2456 errs() << "Out of bounds index to sampler map: " << index_into_sampler_map;
2457 llvm_unreachable("bad sampler init: out of bounds");
2458 }
2459
2460 auto sampler_value = sampler_map[index_into_sampler_map].first;
2461 const auto descriptor_set = static_cast<unsigned>(
2462 dyn_cast<ConstantInt>(call->getArgOperand(0))->getZExtValue());
2463 const auto binding = static_cast<unsigned>(
2464 dyn_cast<ConstantInt>(call->getArgOperand(1))->getZExtValue());
2465
2466 SamplerLiteralToDescriptorSetMap[sampler_value] = descriptor_set;
2467 SamplerLiteralToBindingMap[sampler_value] = binding;
2468 used_bindings.insert(binding);
2469 }
2470 }
2471
2472 unsigned index = 0;
2473 for (auto SamplerLiteral : sampler_map) {
David Neto22f144c2017-06-12 14:26:21 -04002474 // Generate OpVariable.
2475 //
2476 // GIDOps[0] : Result Type ID
2477 // GIDOps[1] : Storage Class
2478 SPIRVOperandList Ops;
2479
David Neto257c3892018-04-11 13:19:45 -04002480 Ops << MkId(lookupType(SamplerTy))
2481 << MkNum(spv::StorageClassUniformConstant);
David Neto22f144c2017-06-12 14:26:21 -04002482
David Neto862b7d82018-06-14 18:48:37 -04002483 auto sampler_var_id = nextID++;
2484 auto *Inst = new SPIRVInstruction(spv::OpVariable, sampler_var_id, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002485 SPIRVInstList.push_back(Inst);
2486
David Neto862b7d82018-06-14 18:48:37 -04002487 SamplerMapIndexToIDMap[index] = sampler_var_id;
2488 SamplerLiteralToIDMap[SamplerLiteral.first] = sampler_var_id;
David Neto22f144c2017-06-12 14:26:21 -04002489
2490 // Find Insert Point for OpDecorate.
2491 auto DecoInsertPoint =
2492 std::find_if(SPIRVInstList.begin(), SPIRVInstList.end(),
2493 [](SPIRVInstruction *Inst) -> bool {
2494 return Inst->getOpcode() != spv::OpDecorate &&
2495 Inst->getOpcode() != spv::OpMemberDecorate &&
2496 Inst->getOpcode() != spv::OpExtInstImport;
2497 });
2498
2499 // Ops[0] = Target ID
2500 // Ops[1] = Decoration (DescriptorSet)
2501 // Ops[2] = LiteralNumber according to Decoration
2502 Ops.clear();
2503
David Neto862b7d82018-06-14 18:48:37 -04002504 unsigned descriptor_set;
2505 unsigned binding;
2506 if(SamplerLiteralToBindingMap.find(SamplerLiteral.first) == SamplerLiteralToBindingMap.end()) {
2507 // This sampler is not actually used. Find the next one.
2508 for (binding = 0; used_bindings.count(binding); binding++)
2509 ;
2510 descriptor_set = 0; // Literal samplers always use descriptor set 0.
2511 used_bindings.insert(binding);
2512 } else {
2513 descriptor_set = SamplerLiteralToDescriptorSetMap[SamplerLiteral.first];
2514 binding = SamplerLiteralToBindingMap[SamplerLiteral.first];
2515 }
2516
2517 Ops << MkId(sampler_var_id) << MkNum(spv::DecorationDescriptorSet)
2518 << MkNum(descriptor_set);
David Neto22f144c2017-06-12 14:26:21 -04002519
David Neto44795152017-07-13 15:45:28 -04002520 descriptorMapOut << "sampler," << SamplerLiteral.first << ",samplerExpr,\""
David Neto257c3892018-04-11 13:19:45 -04002521 << SamplerLiteral.second << "\",descriptorSet,"
David Neto862b7d82018-06-14 18:48:37 -04002522 << descriptor_set << ",binding," << binding << "\n";
David Neto22f144c2017-06-12 14:26:21 -04002523
David Neto87846742018-04-11 17:36:22 -04002524 auto *DescDecoInst = new SPIRVInstruction(spv::OpDecorate, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002525 SPIRVInstList.insert(DecoInsertPoint, DescDecoInst);
2526
2527 // Ops[0] = Target ID
2528 // Ops[1] = Decoration (Binding)
2529 // Ops[2] = LiteralNumber according to Decoration
2530 Ops.clear();
David Neto862b7d82018-06-14 18:48:37 -04002531 Ops << MkId(sampler_var_id) << MkNum(spv::DecorationBinding)
2532 << MkNum(binding);
David Neto22f144c2017-06-12 14:26:21 -04002533
David Neto87846742018-04-11 17:36:22 -04002534 auto *BindDecoInst = new SPIRVInstruction(spv::OpDecorate, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002535 SPIRVInstList.insert(DecoInsertPoint, BindDecoInst);
David Neto862b7d82018-06-14 18:48:37 -04002536
2537 index++;
David Neto22f144c2017-06-12 14:26:21 -04002538 }
David Neto862b7d82018-06-14 18:48:37 -04002539}
David Neto22f144c2017-06-12 14:26:21 -04002540
David Neto862b7d82018-06-14 18:48:37 -04002541void SPIRVProducerPass::GenerateResourceVars(Module &M) {
2542 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
2543 ValueMapType &VMap = getValueMap();
David Neto22f144c2017-06-12 14:26:21 -04002544
David Neto862b7d82018-06-14 18:48:37 -04002545 // Generate variables. Make one for each of resource var info object.
2546 for (auto *info : ModuleOrderedResourceVars) {
2547 Type *type = info->var_fn->getReturnType();
2548 // Remap the address space for opaque types.
2549 switch (info->arg_kind) {
2550 case clspv::ArgKind::Sampler:
2551 case clspv::ArgKind::ReadOnlyImage:
2552 case clspv::ArgKind::WriteOnlyImage:
2553 type = PointerType::get(type->getPointerElementType(),
2554 clspv::AddressSpace::UniformConstant);
2555 break;
2556 default:
2557 break;
2558 }
David Neto22f144c2017-06-12 14:26:21 -04002559
David Neto862b7d82018-06-14 18:48:37 -04002560 info->var_id = nextID++;
David Neto22f144c2017-06-12 14:26:21 -04002561
David Neto862b7d82018-06-14 18:48:37 -04002562 const auto type_id = lookupType(type);
2563 const auto sc = GetStorageClassForArgKind(info->arg_kind);
2564 SPIRVOperandList Ops;
2565 Ops << MkId(type_id) << MkNum(sc);
David Neto22f144c2017-06-12 14:26:21 -04002566
David Neto862b7d82018-06-14 18:48:37 -04002567 auto *Inst = new SPIRVInstruction(spv::OpVariable, info->var_id, Ops);
2568 SPIRVInstList.push_back(Inst);
2569
2570 // Map calls to the variable-builtin-function.
2571 for (auto &U : info->var_fn->uses()) {
2572 if (auto *call = dyn_cast<CallInst>(U.getUser())) {
2573 const auto set = unsigned(
2574 dyn_cast<ConstantInt>(call->getOperand(0))->getZExtValue());
2575 const auto binding = unsigned(
2576 dyn_cast<ConstantInt>(call->getOperand(1))->getZExtValue());
2577 if (set == info->descriptor_set && binding == info->binding) {
2578 switch (info->arg_kind) {
2579 case clspv::ArgKind::Buffer:
2580 case clspv::ArgKind::Pod:
2581 // The call maps to the variable directly.
2582 VMap[call] = info->var_id;
2583 break;
2584 case clspv::ArgKind::Sampler:
2585 case clspv::ArgKind::ReadOnlyImage:
2586 case clspv::ArgKind::WriteOnlyImage:
2587 // The call maps to a load we generate later.
2588 ResourceVarDeferredLoadCalls[call] = info->var_id;
2589 break;
2590 default:
2591 llvm_unreachable("Unhandled arg kind");
2592 }
2593 }
David Neto22f144c2017-06-12 14:26:21 -04002594 }
David Neto862b7d82018-06-14 18:48:37 -04002595 }
2596 }
David Neto22f144c2017-06-12 14:26:21 -04002597
David Neto862b7d82018-06-14 18:48:37 -04002598 // Generate associated decorations.
David Neto22f144c2017-06-12 14:26:21 -04002599
David Neto862b7d82018-06-14 18:48:37 -04002600 // Find Insert Point for OpDecorate.
2601 auto DecoInsertPoint =
2602 std::find_if(SPIRVInstList.begin(), SPIRVInstList.end(),
2603 [](SPIRVInstruction *Inst) -> bool {
2604 return Inst->getOpcode() != spv::OpDecorate &&
2605 Inst->getOpcode() != spv::OpMemberDecorate &&
2606 Inst->getOpcode() != spv::OpExtInstImport;
2607 });
2608
2609 SPIRVOperandList Ops;
2610 for (auto *info : ModuleOrderedResourceVars) {
2611 // Decorate with DescriptorSet and Binding.
2612 Ops.clear();
2613 Ops << MkId(info->var_id) << MkNum(spv::DecorationDescriptorSet)
2614 << MkNum(info->descriptor_set);
2615 SPIRVInstList.insert(DecoInsertPoint,
2616 new SPIRVInstruction(spv::OpDecorate, Ops));
2617
2618 Ops.clear();
2619 Ops << MkId(info->var_id) << MkNum(spv::DecorationBinding)
2620 << MkNum(info->binding);
2621 SPIRVInstList.insert(DecoInsertPoint,
2622 new SPIRVInstruction(spv::OpDecorate, Ops));
2623
2624 // Generate NonWritable and NonReadable
2625 switch (info->arg_kind) {
2626 case clspv::ArgKind::Buffer:
2627 if (info->var_fn->getReturnType()->getPointerAddressSpace() ==
2628 clspv::AddressSpace::Constant) {
2629 Ops.clear();
2630 Ops << MkId(info->var_id) << MkNum(spv::DecorationNonWritable);
2631 SPIRVInstList.insert(DecoInsertPoint,
2632 new SPIRVInstruction(spv::OpDecorate, Ops));
David Neto22f144c2017-06-12 14:26:21 -04002633 }
David Neto862b7d82018-06-14 18:48:37 -04002634 break;
2635 case clspv::ArgKind::ReadOnlyImage:
2636 Ops.clear();
2637 Ops << MkId(info->var_id) << MkNum(spv::DecorationNonWritable);
2638 SPIRVInstList.insert(DecoInsertPoint,
2639 new SPIRVInstruction(spv::OpDecorate, Ops));
2640 break;
2641 case clspv::ArgKind::WriteOnlyImage:
2642 Ops.clear();
2643 Ops << MkId(info->var_id) << MkNum(spv::DecorationNonReadable);
2644 SPIRVInstList.insert(DecoInsertPoint,
2645 new SPIRVInstruction(spv::OpDecorate, Ops));
2646 break;
2647 default:
2648 break;
David Neto22f144c2017-06-12 14:26:21 -04002649 }
2650 }
2651}
2652
2653void SPIRVProducerPass::GenerateGlobalVar(GlobalVariable &GV) {
David Neto78383442018-06-15 20:31:56 -04002654 Module& M = *GV.getParent();
David Neto22f144c2017-06-12 14:26:21 -04002655 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
2656 ValueMapType &VMap = getValueMap();
2657 std::vector<uint32_t> &BuiltinDimVec = getBuiltinDimVec();
David Neto85082642018-03-24 06:55:20 -07002658 const DataLayout &DL = GV.getParent()->getDataLayout();
David Neto22f144c2017-06-12 14:26:21 -04002659
2660 const spv::BuiltIn BuiltinType = GetBuiltin(GV.getName());
2661 Type *Ty = GV.getType();
2662 PointerType *PTy = cast<PointerType>(Ty);
2663
2664 uint32_t InitializerID = 0;
2665
2666 // Workgroup size is handled differently (it goes into a constant)
2667 if (spv::BuiltInWorkgroupSize == BuiltinType) {
2668 std::vector<bool> HasMDVec;
2669 uint32_t PrevXDimCst = 0xFFFFFFFF;
2670 uint32_t PrevYDimCst = 0xFFFFFFFF;
2671 uint32_t PrevZDimCst = 0xFFFFFFFF;
2672 for (Function &Func : *GV.getParent()) {
2673 if (Func.isDeclaration()) {
2674 continue;
2675 }
2676
2677 // We only need to check kernels.
2678 if (Func.getCallingConv() != CallingConv::SPIR_KERNEL) {
2679 continue;
2680 }
2681
2682 if (const MDNode *MD =
2683 dyn_cast<Function>(&Func)->getMetadata("reqd_work_group_size")) {
2684 uint32_t CurXDimCst = static_cast<uint32_t>(
2685 mdconst::extract<ConstantInt>(MD->getOperand(0))->getZExtValue());
2686 uint32_t CurYDimCst = static_cast<uint32_t>(
2687 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue());
2688 uint32_t CurZDimCst = static_cast<uint32_t>(
2689 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue());
2690
2691 if (PrevXDimCst == 0xFFFFFFFF && PrevYDimCst == 0xFFFFFFFF &&
2692 PrevZDimCst == 0xFFFFFFFF) {
2693 PrevXDimCst = CurXDimCst;
2694 PrevYDimCst = CurYDimCst;
2695 PrevZDimCst = CurZDimCst;
2696 } else if (CurXDimCst != PrevXDimCst || CurYDimCst != PrevYDimCst ||
2697 CurZDimCst != PrevZDimCst) {
2698 llvm_unreachable(
2699 "reqd_work_group_size must be the same across all kernels");
2700 } else {
2701 continue;
2702 }
2703
2704 //
2705 // Generate OpConstantComposite.
2706 //
2707 // Ops[0] : Result Type ID
2708 // Ops[1] : Constant size for x dimension.
2709 // Ops[2] : Constant size for y dimension.
2710 // Ops[3] : Constant size for z dimension.
2711 SPIRVOperandList Ops;
2712
2713 uint32_t XDimCstID =
2714 VMap[mdconst::extract<ConstantInt>(MD->getOperand(0))];
2715 uint32_t YDimCstID =
2716 VMap[mdconst::extract<ConstantInt>(MD->getOperand(1))];
2717 uint32_t ZDimCstID =
2718 VMap[mdconst::extract<ConstantInt>(MD->getOperand(2))];
2719
2720 InitializerID = nextID;
2721
David Neto257c3892018-04-11 13:19:45 -04002722 Ops << MkId(lookupType(Ty->getPointerElementType())) << MkId(XDimCstID)
2723 << MkId(YDimCstID) << MkId(ZDimCstID);
David Neto22f144c2017-06-12 14:26:21 -04002724
David Neto87846742018-04-11 17:36:22 -04002725 auto *Inst =
2726 new SPIRVInstruction(spv::OpConstantComposite, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002727 SPIRVInstList.push_back(Inst);
2728
2729 HasMDVec.push_back(true);
2730 } else {
2731 HasMDVec.push_back(false);
2732 }
2733 }
2734
2735 // Check all kernels have same definitions for work_group_size.
2736 bool HasMD = false;
2737 if (!HasMDVec.empty()) {
2738 HasMD = HasMDVec[0];
2739 for (uint32_t i = 1; i < HasMDVec.size(); i++) {
2740 if (HasMD != HasMDVec[i]) {
2741 llvm_unreachable(
2742 "Kernels should have consistent work group size definition");
2743 }
2744 }
2745 }
2746
2747 // If all kernels do not have metadata for reqd_work_group_size, generate
2748 // OpSpecConstants for x/y/z dimension.
2749 if (!HasMD) {
2750 //
2751 // Generate OpSpecConstants for x/y/z dimension.
2752 //
2753 // Ops[0] : Result Type ID
2754 // Ops[1] : Constant size for x/y/z dimension (Literal Number).
2755 uint32_t XDimCstID = 0;
2756 uint32_t YDimCstID = 0;
2757 uint32_t ZDimCstID = 0;
2758
David Neto22f144c2017-06-12 14:26:21 -04002759 SPIRVOperandList Ops;
David Neto257c3892018-04-11 13:19:45 -04002760 uint32_t result_type_id =
2761 lookupType(Ty->getPointerElementType()->getSequentialElementType());
David Neto22f144c2017-06-12 14:26:21 -04002762
David Neto257c3892018-04-11 13:19:45 -04002763 // X Dimension
2764 Ops << MkId(result_type_id) << MkNum(1);
2765 XDimCstID = nextID++;
2766 SPIRVInstList.push_back(
David Neto87846742018-04-11 17:36:22 -04002767 new SPIRVInstruction(spv::OpSpecConstant, XDimCstID, Ops));
David Neto22f144c2017-06-12 14:26:21 -04002768
2769 // Y Dimension
2770 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04002771 Ops << MkId(result_type_id) << MkNum(1);
2772 YDimCstID = nextID++;
2773 SPIRVInstList.push_back(
David Neto87846742018-04-11 17:36:22 -04002774 new SPIRVInstruction(spv::OpSpecConstant, YDimCstID, Ops));
David Neto22f144c2017-06-12 14:26:21 -04002775
2776 // Z Dimension
2777 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04002778 Ops << MkId(result_type_id) << MkNum(1);
2779 ZDimCstID = nextID++;
2780 SPIRVInstList.push_back(
David Neto87846742018-04-11 17:36:22 -04002781 new SPIRVInstruction(spv::OpSpecConstant, ZDimCstID, Ops));
David Neto22f144c2017-06-12 14:26:21 -04002782
David Neto22f144c2017-06-12 14:26:21 -04002783
David Neto257c3892018-04-11 13:19:45 -04002784 BuiltinDimVec.push_back(XDimCstID);
2785 BuiltinDimVec.push_back(YDimCstID);
David Neto22f144c2017-06-12 14:26:21 -04002786 BuiltinDimVec.push_back(ZDimCstID);
2787
David Neto22f144c2017-06-12 14:26:21 -04002788
2789 //
2790 // Generate OpSpecConstantComposite.
2791 //
2792 // Ops[0] : Result Type ID
2793 // Ops[1] : Constant size for x dimension.
2794 // Ops[2] : Constant size for y dimension.
2795 // Ops[3] : Constant size for z dimension.
2796 InitializerID = nextID;
2797
2798 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04002799 Ops << MkId(lookupType(Ty->getPointerElementType())) << MkId(XDimCstID)
2800 << MkId(YDimCstID) << MkId(ZDimCstID);
David Neto22f144c2017-06-12 14:26:21 -04002801
David Neto87846742018-04-11 17:36:22 -04002802 auto *Inst =
2803 new SPIRVInstruction(spv::OpSpecConstantComposite, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002804 SPIRVInstList.push_back(Inst);
2805 }
2806 }
2807
David Neto22f144c2017-06-12 14:26:21 -04002808 VMap[&GV] = nextID;
2809
2810 //
2811 // Generate OpVariable.
2812 //
2813 // GIDOps[0] : Result Type ID
2814 // GIDOps[1] : Storage Class
2815 SPIRVOperandList Ops;
2816
David Neto85082642018-03-24 06:55:20 -07002817 const auto AS = PTy->getAddressSpace();
David Netoc6f3ab22018-04-06 18:02:31 -04002818 Ops << MkId(lookupType(Ty)) << MkNum(GetStorageClass(AS));
David Neto22f144c2017-06-12 14:26:21 -04002819
David Neto85082642018-03-24 06:55:20 -07002820 if (GV.hasInitializer()) {
2821 InitializerID = VMap[GV.getInitializer()];
David Neto22f144c2017-06-12 14:26:21 -04002822 }
2823
David Neto85082642018-03-24 06:55:20 -07002824 const bool module_scope_constant_external_init =
David Neto862b7d82018-06-14 18:48:37 -04002825 (AS == AddressSpace::Constant) && GV.hasInitializer() &&
David Neto85082642018-03-24 06:55:20 -07002826 clspv::Option::ModuleConstantsInStorageBuffer();
2827
2828 if (0 != InitializerID) {
2829 if (!module_scope_constant_external_init) {
2830 // Emit the ID of the intiializer as part of the variable definition.
David Netoc6f3ab22018-04-06 18:02:31 -04002831 Ops << MkId(InitializerID);
David Neto85082642018-03-24 06:55:20 -07002832 }
2833 }
2834 const uint32_t var_id = nextID++;
2835
David Neto87846742018-04-11 17:36:22 -04002836 auto *Inst = new SPIRVInstruction(spv::OpVariable, var_id, Ops);
David Neto22f144c2017-06-12 14:26:21 -04002837 SPIRVInstList.push_back(Inst);
2838
2839 // If we have a builtin.
2840 if (spv::BuiltInMax != BuiltinType) {
2841 // Find Insert Point for OpDecorate.
2842 auto DecoInsertPoint =
2843 std::find_if(SPIRVInstList.begin(), SPIRVInstList.end(),
2844 [](SPIRVInstruction *Inst) -> bool {
2845 return Inst->getOpcode() != spv::OpDecorate &&
2846 Inst->getOpcode() != spv::OpMemberDecorate &&
2847 Inst->getOpcode() != spv::OpExtInstImport;
2848 });
2849 //
2850 // Generate OpDecorate.
2851 //
2852 // DOps[0] = Target ID
2853 // DOps[1] = Decoration (Builtin)
2854 // DOps[2] = BuiltIn ID
2855 uint32_t ResultID;
2856
2857 // WorkgroupSize is different, we decorate the constant composite that has
2858 // its value, rather than the variable that we use to access the value.
2859 if (spv::BuiltInWorkgroupSize == BuiltinType) {
2860 ResultID = InitializerID;
David Netoa60b00b2017-09-15 16:34:09 -04002861 // Save both the value and variable IDs for later.
2862 WorkgroupSizeValueID = InitializerID;
2863 WorkgroupSizeVarID = VMap[&GV];
David Neto22f144c2017-06-12 14:26:21 -04002864 } else {
2865 ResultID = VMap[&GV];
2866 }
2867
2868 SPIRVOperandList DOps;
David Neto257c3892018-04-11 13:19:45 -04002869 DOps << MkId(ResultID) << MkNum(spv::DecorationBuiltIn)
2870 << MkNum(BuiltinType);
David Neto22f144c2017-06-12 14:26:21 -04002871
David Neto87846742018-04-11 17:36:22 -04002872 auto *DescDecoInst = new SPIRVInstruction(spv::OpDecorate, DOps);
David Neto22f144c2017-06-12 14:26:21 -04002873 SPIRVInstList.insert(DecoInsertPoint, DescDecoInst);
David Neto85082642018-03-24 06:55:20 -07002874 } else if (module_scope_constant_external_init) {
2875 // This module scope constant is initialized from a storage buffer with data
2876 // provided by the host at binding 0 of the next descriptor set.
David Neto78383442018-06-15 20:31:56 -04002877 const uint32_t descriptor_set = TakeDescriptorIndex(&M);
David Neto85082642018-03-24 06:55:20 -07002878
David Neto862b7d82018-06-14 18:48:37 -04002879 // Emit the intializer to the descriptor map file.
David Neto85082642018-03-24 06:55:20 -07002880 // Use "kind,buffer" to indicate storage buffer. We might want to expand
2881 // that later to other types, like uniform buffer.
2882 descriptorMapOut << "constant,descriptorSet," << descriptor_set
2883 << ",binding,0,kind,buffer,hexbytes,";
2884 clspv::ConstantEmitter(DL, descriptorMapOut).Emit(GV.getInitializer());
2885 descriptorMapOut << "\n";
2886
2887 // Find Insert Point for OpDecorate.
2888 auto DecoInsertPoint =
2889 std::find_if(SPIRVInstList.begin(), SPIRVInstList.end(),
2890 [](SPIRVInstruction *Inst) -> bool {
2891 return Inst->getOpcode() != spv::OpDecorate &&
2892 Inst->getOpcode() != spv::OpMemberDecorate &&
2893 Inst->getOpcode() != spv::OpExtInstImport;
2894 });
2895
David Neto257c3892018-04-11 13:19:45 -04002896 // OpDecorate %var Binding <binding>
David Neto85082642018-03-24 06:55:20 -07002897 SPIRVOperandList DOps;
David Neto257c3892018-04-11 13:19:45 -04002898 DOps << MkId(var_id) << MkNum(spv::DecorationBinding) << MkNum(0);
2899 DecoInsertPoint = SPIRVInstList.insert(
David Neto87846742018-04-11 17:36:22 -04002900 DecoInsertPoint, new SPIRVInstruction(spv::OpDecorate, DOps));
David Neto85082642018-03-24 06:55:20 -07002901
2902 // OpDecorate %var DescriptorSet <descriptor_set>
2903 DOps.clear();
David Neto257c3892018-04-11 13:19:45 -04002904 DOps << MkId(var_id) << MkNum(spv::DecorationDescriptorSet)
2905 << MkNum(descriptor_set);
David Netoc6f3ab22018-04-06 18:02:31 -04002906 SPIRVInstList.insert(DecoInsertPoint,
David Neto87846742018-04-11 17:36:22 -04002907 new SPIRVInstruction(spv::OpDecorate, DOps));
David Neto22f144c2017-06-12 14:26:21 -04002908 }
2909}
2910
David Netoc6f3ab22018-04-06 18:02:31 -04002911void SPIRVProducerPass::GenerateWorkgroupVars() {
2912 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
Alan Baker202c8c72018-08-13 13:47:44 -04002913 for (auto spec_id = clspv::FirstLocalSpecId(); spec_id < max_local_spec_id_;
2914 ++spec_id) {
2915 LocalArgInfo& info = LocalSpecIdInfoMap[spec_id];
David Netoc6f3ab22018-04-06 18:02:31 -04002916
2917 // Generate OpVariable.
2918 //
2919 // GIDOps[0] : Result Type ID
2920 // GIDOps[1] : Storage Class
2921 SPIRVOperandList Ops;
2922 Ops << MkId(info.ptr_array_type_id) << MkNum(spv::StorageClassWorkgroup);
2923
2924 SPIRVInstList.push_back(
David Neto87846742018-04-11 17:36:22 -04002925 new SPIRVInstruction(spv::OpVariable, info.variable_id, Ops));
David Netoc6f3ab22018-04-06 18:02:31 -04002926 }
2927}
2928
David Neto862b7d82018-06-14 18:48:37 -04002929void SPIRVProducerPass::GenerateDescriptorMapInfo(const DataLayout &DL,
2930 Function &F) {
David Netoc5fb5242018-07-30 13:28:31 -04002931 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2932 return;
2933 }
David Neto862b7d82018-06-14 18:48:37 -04002934 // Gather the list of resources that are used by this function's arguments.
2935 auto &resource_var_at_index = FunctionToResourceVarsMap[&F];
2936
2937 auto remap_arg_kind = [](StringRef argKind) {
2938 return clspv::Option::PodArgsInUniformBuffer() && argKind.equals("pod")
2939 ? "pod_ubo"
2940 : argKind;
2941 };
2942
2943 auto *fty = F.getType()->getPointerElementType();
2944 auto *func_ty = dyn_cast<FunctionType>(fty);
2945
2946 // If we've clustereed POD arguments, then argument details are in metadata.
2947 // If an argument maps to a resource variable, then get descriptor set and
2948 // binding from the resoure variable. Other info comes from the metadata.
2949 const auto *arg_map = F.getMetadata("kernel_arg_map");
2950 if (arg_map) {
2951 for (const auto &arg : arg_map->operands()) {
2952 const MDNode *arg_node = dyn_cast<MDNode>(arg.get());
2953 assert(arg_node->getNumOperands() == 6);
2954 const auto name =
2955 dyn_cast<MDString>(arg_node->getOperand(0))->getString();
2956 const auto old_index =
2957 dyn_extract<ConstantInt>(arg_node->getOperand(1))->getZExtValue();
2958 // Remapped argument index
2959 const auto new_index =
2960 dyn_extract<ConstantInt>(arg_node->getOperand(2))->getZExtValue();
2961 const auto offset =
2962 dyn_extract<ConstantInt>(arg_node->getOperand(3))->getZExtValue();
2963 const auto argKind = remap_arg_kind(
2964 dyn_cast<MDString>(arg_node->getOperand(4))->getString());
2965 const auto spec_id =
2966 dyn_extract<ConstantInt>(arg_node->getOperand(5))->getSExtValue();
2967 if (spec_id > 0) {
2968 // This was a pointer-to-local argument. It is not associated with a
2969 // resource variable.
2970 descriptorMapOut << "kernel," << F.getName() << ",arg," << name
2971 << ",argOrdinal," << old_index << ",argKind,"
2972 << argKind << ",arrayElemSize,"
2973 << DL.getTypeAllocSize(
2974 func_ty->getParamType(unsigned(new_index))
2975 ->getPointerElementType())
2976 << ",arrayNumElemSpecId," << spec_id << "\n";
2977 } else {
2978 auto *info = resource_var_at_index[new_index];
2979 assert(info);
2980 descriptorMapOut << "kernel," << F.getName() << ",arg," << name
2981 << ",argOrdinal," << old_index << ",descriptorSet,"
2982 << info->descriptor_set << ",binding," << info->binding
2983 << ",offset," << offset << ",argKind," << argKind
2984 << "\n";
2985 }
2986 }
2987 } else {
2988 // There is no argument map.
2989 // Take descriptor info from the resource variable calls.
2990 // Take argument name from the arguments list.
2991
2992 SmallVector<Argument *, 4> arguments;
2993 for (auto &arg : F.args()) {
2994 arguments.push_back(&arg);
2995 }
2996
2997 unsigned arg_index = 0;
2998 for (auto *info : resource_var_at_index) {
2999 if (info) {
3000 descriptorMapOut << "kernel," << F.getName() << ",arg,"
3001 << arguments[arg_index]->getName() << ",argOrdinal,"
3002 << arg_index << ",descriptorSet,"
3003 << info->descriptor_set << ",binding," << info->binding
3004 << ",offset," << 0 << ",argKind,"
3005 << remap_arg_kind(
3006 clspv::GetArgKindName(info->arg_kind))
3007 << "\n";
3008 }
3009 arg_index++;
3010 }
3011 // Generate mappings for pointer-to-local arguments.
3012 for (arg_index = 0; arg_index < arguments.size(); ++arg_index) {
3013 Argument *arg = arguments[arg_index];
Alan Baker202c8c72018-08-13 13:47:44 -04003014 auto where = LocalArgSpecIds.find(arg);
3015 if (where != LocalArgSpecIds.end()) {
3016 auto &local_arg_info = LocalSpecIdInfoMap[where->second];
David Neto862b7d82018-06-14 18:48:37 -04003017 descriptorMapOut << "kernel," << F.getName() << ",arg,"
3018 << arg->getName() << ",argOrdinal," << arg_index
3019 << ",argKind,"
3020 << "local"
3021 << ",arrayElemSize,"
3022 << DL.getTypeAllocSize(local_arg_info.elem_type)
3023 << ",arrayNumElemSpecId," << local_arg_info.spec_id
3024 << "\n";
3025 }
3026 }
3027 }
3028}
3029
David Neto22f144c2017-06-12 14:26:21 -04003030void SPIRVProducerPass::GenerateFuncPrologue(Function &F) {
David Neto78383442018-06-15 20:31:56 -04003031 Module& M = *F.getParent();
3032 const DataLayout &DL = M.getDataLayout();
David Neto22f144c2017-06-12 14:26:21 -04003033 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
3034 ValueMapType &VMap = getValueMap();
3035 EntryPointVecType &EntryPoints = getEntryPointVec();
David Neto22f144c2017-06-12 14:26:21 -04003036 auto &GlobalConstFuncTyMap = getGlobalConstFuncTypeMap();
3037 auto &GlobalConstArgSet = getGlobalConstArgSet();
3038
3039 FunctionType *FTy = F.getFunctionType();
3040
3041 //
David Neto22f144c2017-06-12 14:26:21 -04003042 // Generate OPFunction.
3043 //
3044
3045 // FOps[0] : Result Type ID
3046 // FOps[1] : Function Control
3047 // FOps[2] : Function Type ID
3048 SPIRVOperandList FOps;
3049
3050 // Find SPIRV instruction for return type.
David Neto257c3892018-04-11 13:19:45 -04003051 FOps << MkId(lookupType(FTy->getReturnType()));
David Neto22f144c2017-06-12 14:26:21 -04003052
3053 // Check function attributes for SPIRV Function Control.
3054 uint32_t FuncControl = spv::FunctionControlMaskNone;
3055 if (F.hasFnAttribute(Attribute::AlwaysInline)) {
3056 FuncControl |= spv::FunctionControlInlineMask;
3057 }
3058 if (F.hasFnAttribute(Attribute::NoInline)) {
3059 FuncControl |= spv::FunctionControlDontInlineMask;
3060 }
3061 // TODO: Check llvm attribute for Function Control Pure.
3062 if (F.hasFnAttribute(Attribute::ReadOnly)) {
3063 FuncControl |= spv::FunctionControlPureMask;
3064 }
3065 // TODO: Check llvm attribute for Function Control Const.
3066 if (F.hasFnAttribute(Attribute::ReadNone)) {
3067 FuncControl |= spv::FunctionControlConstMask;
3068 }
3069
David Neto257c3892018-04-11 13:19:45 -04003070 FOps << MkNum(FuncControl);
David Neto22f144c2017-06-12 14:26:21 -04003071
3072 uint32_t FTyID;
3073 if (F.getCallingConv() == CallingConv::SPIR_KERNEL) {
3074 SmallVector<Type *, 4> NewFuncParamTys;
3075 FunctionType *NewFTy =
3076 FunctionType::get(FTy->getReturnType(), NewFuncParamTys, false);
3077 FTyID = lookupType(NewFTy);
3078 } else {
David Neto9ed8e2f2018-03-24 06:47:24 -07003079 // Handle regular function with global constant parameters.
David Neto22f144c2017-06-12 14:26:21 -04003080 if (GlobalConstFuncTyMap.count(FTy)) {
3081 FTyID = lookupType(GlobalConstFuncTyMap[FTy].first);
3082 } else {
3083 FTyID = lookupType(FTy);
3084 }
3085 }
3086
David Neto257c3892018-04-11 13:19:45 -04003087 FOps << MkId(FTyID);
David Neto22f144c2017-06-12 14:26:21 -04003088
3089 if (F.getCallingConv() == CallingConv::SPIR_KERNEL) {
3090 EntryPoints.push_back(std::make_pair(&F, nextID));
3091 }
3092
3093 VMap[&F] = nextID;
3094
David Neto482550a2018-03-24 05:21:07 -07003095 if (clspv::Option::ShowIDs()) {
David Netob05675d2018-02-16 12:37:49 -05003096 errs() << "Function " << F.getName() << " is " << nextID << "\n";
3097 }
David Neto22f144c2017-06-12 14:26:21 -04003098 // Generate SPIRV instruction for function.
David Neto87846742018-04-11 17:36:22 -04003099 auto *FuncInst = new SPIRVInstruction(spv::OpFunction, nextID++, FOps);
David Neto22f144c2017-06-12 14:26:21 -04003100 SPIRVInstList.push_back(FuncInst);
3101
3102 //
3103 // Generate OpFunctionParameter for Normal function.
3104 //
3105
3106 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
3107 // Iterate Argument for name instead of param type from function type.
3108 unsigned ArgIdx = 0;
3109 for (Argument &Arg : F.args()) {
3110 VMap[&Arg] = nextID;
3111
3112 // ParamOps[0] : Result Type ID
3113 SPIRVOperandList ParamOps;
3114
3115 // Find SPIRV instruction for parameter type.
3116 uint32_t ParamTyID = lookupType(Arg.getType());
3117 if (PointerType *PTy = dyn_cast<PointerType>(Arg.getType())) {
3118 if (GlobalConstFuncTyMap.count(FTy)) {
3119 if (ArgIdx == GlobalConstFuncTyMap[FTy].second) {
3120 Type *EleTy = PTy->getPointerElementType();
3121 Type *ArgTy =
3122 PointerType::get(EleTy, AddressSpace::ModuleScopePrivate);
3123 ParamTyID = lookupType(ArgTy);
3124 GlobalConstArgSet.insert(&Arg);
3125 }
3126 }
3127 }
David Neto257c3892018-04-11 13:19:45 -04003128 ParamOps << MkId(ParamTyID);
David Neto22f144c2017-06-12 14:26:21 -04003129
3130 // Generate SPIRV instruction for parameter.
David Neto87846742018-04-11 17:36:22 -04003131 auto *ParamInst =
3132 new SPIRVInstruction(spv::OpFunctionParameter, nextID++, ParamOps);
David Neto22f144c2017-06-12 14:26:21 -04003133 SPIRVInstList.push_back(ParamInst);
3134
3135 ArgIdx++;
3136 }
3137 }
3138}
3139
David Neto5c22a252018-03-15 16:07:41 -04003140void SPIRVProducerPass::GenerateModuleInfo(Module& module) {
David Neto22f144c2017-06-12 14:26:21 -04003141 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
3142 EntryPointVecType &EntryPoints = getEntryPointVec();
3143 ValueMapType &VMap = getValueMap();
3144 ValueList &EntryPointInterfaces = getEntryPointInterfacesVec();
3145 uint32_t &ExtInstImportID = getOpExtInstImportID();
3146 std::vector<uint32_t> &BuiltinDimVec = getBuiltinDimVec();
3147
3148 // Set up insert point.
3149 auto InsertPoint = SPIRVInstList.begin();
3150
3151 //
3152 // Generate OpCapability
3153 //
3154 // TODO: Which llvm information is mapped to SPIRV Capapbility?
3155
3156 // Ops[0] = Capability
3157 SPIRVOperandList Ops;
3158
David Neto87846742018-04-11 17:36:22 -04003159 auto *CapInst =
3160 new SPIRVInstruction(spv::OpCapability, {MkNum(spv::CapabilityShader)});
David Neto22f144c2017-06-12 14:26:21 -04003161 SPIRVInstList.insert(InsertPoint, CapInst);
3162
3163 for (Type *Ty : getTypeList()) {
3164 // Find the i16 type.
3165 if (Ty->isIntegerTy(16)) {
3166 // Generate OpCapability for i16 type.
David Neto87846742018-04-11 17:36:22 -04003167 SPIRVInstList.insert(InsertPoint,
3168 new SPIRVInstruction(spv::OpCapability,
3169 {MkNum(spv::CapabilityInt16)}));
David Neto22f144c2017-06-12 14:26:21 -04003170 } else if (Ty->isIntegerTy(64)) {
3171 // Generate OpCapability for i64 type.
David Neto87846742018-04-11 17:36:22 -04003172 SPIRVInstList.insert(InsertPoint,
3173 new SPIRVInstruction(spv::OpCapability,
3174 {MkNum(spv::CapabilityInt64)}));
David Neto22f144c2017-06-12 14:26:21 -04003175 } else if (Ty->isHalfTy()) {
3176 // Generate OpCapability for half type.
3177 SPIRVInstList.insert(
David Neto87846742018-04-11 17:36:22 -04003178 InsertPoint, new SPIRVInstruction(spv::OpCapability,
3179 {MkNum(spv::CapabilityFloat16)}));
David Neto22f144c2017-06-12 14:26:21 -04003180 } else if (Ty->isDoubleTy()) {
3181 // Generate OpCapability for double type.
3182 SPIRVInstList.insert(
David Neto87846742018-04-11 17:36:22 -04003183 InsertPoint, new SPIRVInstruction(spv::OpCapability,
3184 {MkNum(spv::CapabilityFloat64)}));
David Neto22f144c2017-06-12 14:26:21 -04003185 } else if (auto *STy = dyn_cast<StructType>(Ty)) {
3186 if (STy->isOpaque()) {
David Neto565571c2017-08-21 12:00:05 -04003187 if (STy->getName().equals("opencl.image2d_wo_t") ||
3188 STy->getName().equals("opencl.image3d_wo_t")) {
David Neto22f144c2017-06-12 14:26:21 -04003189 // Generate OpCapability for write only image type.
3190 SPIRVInstList.insert(
3191 InsertPoint,
3192 new SPIRVInstruction(
David Neto87846742018-04-11 17:36:22 -04003193 spv::OpCapability,
3194 {MkNum(spv::CapabilityStorageImageWriteWithoutFormat)}));
David Neto22f144c2017-06-12 14:26:21 -04003195 }
3196 }
3197 }
3198 }
3199
David Neto5c22a252018-03-15 16:07:41 -04003200 { // OpCapability ImageQuery
3201 bool hasImageQuery = false;
3202 for (const char *imageQuery : {
3203 "_Z15get_image_width14ocl_image2d_ro",
3204 "_Z15get_image_width14ocl_image2d_wo",
3205 "_Z16get_image_height14ocl_image2d_ro",
3206 "_Z16get_image_height14ocl_image2d_wo",
3207 }) {
3208 if (module.getFunction(imageQuery)) {
3209 hasImageQuery = true;
3210 break;
3211 }
3212 }
3213 if (hasImageQuery) {
David Neto87846742018-04-11 17:36:22 -04003214 auto *ImageQueryCapInst = new SPIRVInstruction(
3215 spv::OpCapability, {MkNum(spv::CapabilityImageQuery)});
David Neto5c22a252018-03-15 16:07:41 -04003216 SPIRVInstList.insert(InsertPoint, ImageQueryCapInst);
3217 }
3218 }
3219
David Neto22f144c2017-06-12 14:26:21 -04003220 if (hasVariablePointers()) {
3221 //
3222 // Generate OpCapability and OpExtension
3223 //
3224
3225 //
3226 // Generate OpCapability.
3227 //
3228 // Ops[0] = Capability
3229 //
3230 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003231 Ops << MkNum(spv::CapabilityVariablePointers);
David Neto22f144c2017-06-12 14:26:21 -04003232
David Neto87846742018-04-11 17:36:22 -04003233 SPIRVInstList.insert(InsertPoint,
3234 new SPIRVInstruction(spv::OpCapability, Ops));
David Neto22f144c2017-06-12 14:26:21 -04003235
3236 //
3237 // Generate OpExtension.
3238 //
3239 // Ops[0] = Name (Literal String)
3240 //
David Netoa772fd12017-08-04 14:17:33 -04003241 for (auto extension : {"SPV_KHR_storage_buffer_storage_class",
3242 "SPV_KHR_variable_pointers"}) {
David Neto22f144c2017-06-12 14:26:21 -04003243
David Neto87846742018-04-11 17:36:22 -04003244 auto *ExtensionInst =
3245 new SPIRVInstruction(spv::OpExtension, {MkString(extension)});
David Netoa772fd12017-08-04 14:17:33 -04003246 SPIRVInstList.insert(InsertPoint, ExtensionInst);
David Neto22f144c2017-06-12 14:26:21 -04003247 }
David Neto22f144c2017-06-12 14:26:21 -04003248 }
3249
3250 if (ExtInstImportID) {
3251 ++InsertPoint;
3252 }
3253
3254 //
3255 // Generate OpMemoryModel
3256 //
3257 // Memory model for Vulkan will always be GLSL450.
3258
3259 // Ops[0] = Addressing Model
3260 // Ops[1] = Memory Model
3261 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003262 Ops << MkNum(spv::AddressingModelLogical) << MkNum(spv::MemoryModelGLSL450);
David Neto22f144c2017-06-12 14:26:21 -04003263
David Neto87846742018-04-11 17:36:22 -04003264 auto *MemModelInst = new SPIRVInstruction(spv::OpMemoryModel, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003265 SPIRVInstList.insert(InsertPoint, MemModelInst);
3266
3267 //
3268 // Generate OpEntryPoint
3269 //
3270 for (auto EntryPoint : EntryPoints) {
3271 // Ops[0] = Execution Model
3272 // Ops[1] = EntryPoint ID
3273 // Ops[2] = Name (Literal String)
3274 // ...
3275 //
3276 // TODO: Do we need to consider Interface ID for forward references???
3277 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003278 const StringRef& name = EntryPoint.first->getName();
3279 Ops << MkNum(spv::ExecutionModelGLCompute) << MkId(EntryPoint.second)
3280 << MkString(name);
David Neto22f144c2017-06-12 14:26:21 -04003281
David Neto22f144c2017-06-12 14:26:21 -04003282 for (Value *Interface : EntryPointInterfaces) {
David Neto257c3892018-04-11 13:19:45 -04003283 Ops << MkId(VMap[Interface]);
David Neto22f144c2017-06-12 14:26:21 -04003284 }
3285
David Neto87846742018-04-11 17:36:22 -04003286 auto *EntryPointInst = new SPIRVInstruction(spv::OpEntryPoint, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003287 SPIRVInstList.insert(InsertPoint, EntryPointInst);
3288 }
3289
3290 for (auto EntryPoint : EntryPoints) {
3291 if (const MDNode *MD = dyn_cast<Function>(EntryPoint.first)
3292 ->getMetadata("reqd_work_group_size")) {
3293
3294 if (!BuiltinDimVec.empty()) {
3295 llvm_unreachable(
3296 "Kernels should have consistent work group size definition");
3297 }
3298
3299 //
3300 // Generate OpExecutionMode
3301 //
3302
3303 // Ops[0] = Entry Point ID
3304 // Ops[1] = Execution Mode
3305 // Ops[2] ... Ops[n] = Optional literals according to Execution Mode
3306 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003307 Ops << MkId(EntryPoint.second)
3308 << MkNum(spv::ExecutionModeLocalSize);
David Neto22f144c2017-06-12 14:26:21 -04003309
3310 uint32_t XDim = static_cast<uint32_t>(
3311 mdconst::extract<ConstantInt>(MD->getOperand(0))->getZExtValue());
3312 uint32_t YDim = static_cast<uint32_t>(
3313 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue());
3314 uint32_t ZDim = static_cast<uint32_t>(
3315 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue());
3316
David Neto257c3892018-04-11 13:19:45 -04003317 Ops << MkNum(XDim) << MkNum(YDim) << MkNum(ZDim);
David Neto22f144c2017-06-12 14:26:21 -04003318
David Neto87846742018-04-11 17:36:22 -04003319 auto *ExecModeInst = new SPIRVInstruction(spv::OpExecutionMode, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003320 SPIRVInstList.insert(InsertPoint, ExecModeInst);
3321 }
3322 }
3323
3324 //
3325 // Generate OpSource.
3326 //
3327 // Ops[0] = SourceLanguage ID
3328 // Ops[1] = Version (LiteralNum)
3329 //
3330 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003331 Ops << MkNum(spv::SourceLanguageOpenCL_C) << MkNum(120);
David Neto22f144c2017-06-12 14:26:21 -04003332
David Neto87846742018-04-11 17:36:22 -04003333 auto *OpenSourceInst = new SPIRVInstruction(spv::OpSource, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003334 SPIRVInstList.insert(InsertPoint, OpenSourceInst);
3335
3336 if (!BuiltinDimVec.empty()) {
3337 //
3338 // Generate OpDecorates for x/y/z dimension.
3339 //
3340 // Ops[0] = Target ID
3341 // Ops[1] = Decoration (SpecId)
David Neto257c3892018-04-11 13:19:45 -04003342 // Ops[2] = Specialization Constant ID (Literal Number)
David Neto22f144c2017-06-12 14:26:21 -04003343
3344 // X Dimension
3345 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003346 Ops << MkId(BuiltinDimVec[0]) << MkNum(spv::DecorationSpecId) << MkNum(0);
David Neto87846742018-04-11 17:36:22 -04003347 SPIRVInstList.insert(InsertPoint,
3348 new SPIRVInstruction(spv::OpDecorate, Ops));
David Neto22f144c2017-06-12 14:26:21 -04003349
3350 // Y Dimension
3351 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003352 Ops << MkId(BuiltinDimVec[1]) << MkNum(spv::DecorationSpecId) << MkNum(1);
David Neto87846742018-04-11 17:36:22 -04003353 SPIRVInstList.insert(InsertPoint,
3354 new SPIRVInstruction(spv::OpDecorate, Ops));
David Neto22f144c2017-06-12 14:26:21 -04003355
3356 // Z Dimension
3357 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003358 Ops << MkId(BuiltinDimVec[2]) << MkNum(spv::DecorationSpecId) << MkNum(2);
David Neto87846742018-04-11 17:36:22 -04003359 SPIRVInstList.insert(InsertPoint,
3360 new SPIRVInstruction(spv::OpDecorate, Ops));
David Neto22f144c2017-06-12 14:26:21 -04003361 }
3362}
3363
David Netob6e2e062018-04-25 10:32:06 -04003364void SPIRVProducerPass::GenerateEntryPointInitialStores() {
3365 // Work around a driver bug. Initializers on Private variables might not
3366 // work. So the start of the kernel should store the initializer value to the
3367 // variables. Yes, *every* entry point pays this cost if *any* entry point
3368 // uses this builtin. At this point I judge this to be an acceptable tradeoff
3369 // of complexity vs. runtime, for a broken driver.
3370 // TODO(dneto): Remove this at some point once fixed drivers are widely available.
3371 if (WorkgroupSizeVarID) {
3372 assert(WorkgroupSizeValueID);
3373
3374 SPIRVOperandList Ops;
3375 Ops << MkId(WorkgroupSizeVarID) << MkId(WorkgroupSizeValueID);
3376
3377 auto *Inst = new SPIRVInstruction(spv::OpStore, Ops);
3378 getSPIRVInstList().push_back(Inst);
3379 }
3380}
3381
David Neto22f144c2017-06-12 14:26:21 -04003382void SPIRVProducerPass::GenerateFuncBody(Function &F) {
3383 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
3384 ValueMapType &VMap = getValueMap();
3385
David Netob6e2e062018-04-25 10:32:06 -04003386 const bool IsKernel = F.getCallingConv() == CallingConv::SPIR_KERNEL;
David Neto22f144c2017-06-12 14:26:21 -04003387
3388 for (BasicBlock &BB : F) {
3389 // Register BasicBlock to ValueMap.
3390 VMap[&BB] = nextID;
3391
3392 //
3393 // Generate OpLabel for Basic Block.
3394 //
3395 SPIRVOperandList Ops;
David Neto87846742018-04-11 17:36:22 -04003396 auto *Inst = new SPIRVInstruction(spv::OpLabel, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003397 SPIRVInstList.push_back(Inst);
3398
David Neto6dcd4712017-06-23 11:06:47 -04003399 // OpVariable instructions must come first.
3400 for (Instruction &I : BB) {
3401 if (isa<AllocaInst>(I)) {
3402 GenerateInstruction(I);
3403 }
3404 }
3405
David Neto22f144c2017-06-12 14:26:21 -04003406 if (&BB == &F.getEntryBlock() && IsKernel) {
David Netob6e2e062018-04-25 10:32:06 -04003407 if (clspv::Option::HackInitializers()) {
3408 GenerateEntryPointInitialStores();
3409 }
David Neto22f144c2017-06-12 14:26:21 -04003410 }
3411
3412 for (Instruction &I : BB) {
David Neto6dcd4712017-06-23 11:06:47 -04003413 if (!isa<AllocaInst>(I)) {
3414 GenerateInstruction(I);
3415 }
David Neto22f144c2017-06-12 14:26:21 -04003416 }
3417 }
3418}
3419
3420spv::Op SPIRVProducerPass::GetSPIRVCmpOpcode(CmpInst *I) {
3421 const std::map<CmpInst::Predicate, spv::Op> Map = {
3422 {CmpInst::ICMP_EQ, spv::OpIEqual},
3423 {CmpInst::ICMP_NE, spv::OpINotEqual},
3424 {CmpInst::ICMP_UGT, spv::OpUGreaterThan},
3425 {CmpInst::ICMP_UGE, spv::OpUGreaterThanEqual},
3426 {CmpInst::ICMP_ULT, spv::OpULessThan},
3427 {CmpInst::ICMP_ULE, spv::OpULessThanEqual},
3428 {CmpInst::ICMP_SGT, spv::OpSGreaterThan},
3429 {CmpInst::ICMP_SGE, spv::OpSGreaterThanEqual},
3430 {CmpInst::ICMP_SLT, spv::OpSLessThan},
3431 {CmpInst::ICMP_SLE, spv::OpSLessThanEqual},
3432 {CmpInst::FCMP_OEQ, spv::OpFOrdEqual},
3433 {CmpInst::FCMP_OGT, spv::OpFOrdGreaterThan},
3434 {CmpInst::FCMP_OGE, spv::OpFOrdGreaterThanEqual},
3435 {CmpInst::FCMP_OLT, spv::OpFOrdLessThan},
3436 {CmpInst::FCMP_OLE, spv::OpFOrdLessThanEqual},
3437 {CmpInst::FCMP_ONE, spv::OpFOrdNotEqual},
3438 {CmpInst::FCMP_UEQ, spv::OpFUnordEqual},
3439 {CmpInst::FCMP_UGT, spv::OpFUnordGreaterThan},
3440 {CmpInst::FCMP_UGE, spv::OpFUnordGreaterThanEqual},
3441 {CmpInst::FCMP_ULT, spv::OpFUnordLessThan},
3442 {CmpInst::FCMP_ULE, spv::OpFUnordLessThanEqual},
3443 {CmpInst::FCMP_UNE, spv::OpFUnordNotEqual}};
3444
3445 assert(0 != Map.count(I->getPredicate()));
3446
3447 return Map.at(I->getPredicate());
3448}
3449
3450spv::Op SPIRVProducerPass::GetSPIRVCastOpcode(Instruction &I) {
3451 const std::map<unsigned, spv::Op> Map{
3452 {Instruction::Trunc, spv::OpUConvert},
3453 {Instruction::ZExt, spv::OpUConvert},
3454 {Instruction::SExt, spv::OpSConvert},
3455 {Instruction::FPToUI, spv::OpConvertFToU},
3456 {Instruction::FPToSI, spv::OpConvertFToS},
3457 {Instruction::UIToFP, spv::OpConvertUToF},
3458 {Instruction::SIToFP, spv::OpConvertSToF},
3459 {Instruction::FPTrunc, spv::OpFConvert},
3460 {Instruction::FPExt, spv::OpFConvert},
3461 {Instruction::BitCast, spv::OpBitcast}};
3462
3463 assert(0 != Map.count(I.getOpcode()));
3464
3465 return Map.at(I.getOpcode());
3466}
3467
3468spv::Op SPIRVProducerPass::GetSPIRVBinaryOpcode(Instruction &I) {
3469 if (I.getType()->isIntegerTy(1)) {
3470 switch (I.getOpcode()) {
3471 default:
3472 break;
3473 case Instruction::Or:
3474 return spv::OpLogicalOr;
3475 case Instruction::And:
3476 return spv::OpLogicalAnd;
3477 case Instruction::Xor:
3478 return spv::OpLogicalNotEqual;
3479 }
3480 }
3481
3482 const std::map<unsigned, spv::Op> Map {
3483 {Instruction::Add, spv::OpIAdd},
3484 {Instruction::FAdd, spv::OpFAdd},
3485 {Instruction::Sub, spv::OpISub},
3486 {Instruction::FSub, spv::OpFSub},
3487 {Instruction::Mul, spv::OpIMul},
3488 {Instruction::FMul, spv::OpFMul},
3489 {Instruction::UDiv, spv::OpUDiv},
3490 {Instruction::SDiv, spv::OpSDiv},
3491 {Instruction::FDiv, spv::OpFDiv},
3492 {Instruction::URem, spv::OpUMod},
3493 {Instruction::SRem, spv::OpSRem},
3494 {Instruction::FRem, spv::OpFRem},
3495 {Instruction::Or, spv::OpBitwiseOr},
3496 {Instruction::Xor, spv::OpBitwiseXor},
3497 {Instruction::And, spv::OpBitwiseAnd},
3498 {Instruction::Shl, spv::OpShiftLeftLogical},
3499 {Instruction::LShr, spv::OpShiftRightLogical},
3500 {Instruction::AShr, spv::OpShiftRightArithmetic}};
3501
3502 assert(0 != Map.count(I.getOpcode()));
3503
3504 return Map.at(I.getOpcode());
3505}
3506
3507void SPIRVProducerPass::GenerateInstruction(Instruction &I) {
3508 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
3509 ValueMapType &VMap = getValueMap();
David Neto22f144c2017-06-12 14:26:21 -04003510 DeferredInstVecType &DeferredInsts = getDeferredInstVec();
3511 LLVMContext &Context = I.getParent()->getParent()->getParent()->getContext();
3512
3513 // Register Instruction to ValueMap.
3514 if (0 == VMap[&I]) {
3515 VMap[&I] = nextID;
3516 }
3517
3518 switch (I.getOpcode()) {
3519 default: {
3520 if (Instruction::isCast(I.getOpcode())) {
3521 //
3522 // Generate SPIRV instructions for cast operators.
3523 //
3524
David Netod2de94a2017-08-28 17:27:47 -04003525
3526 auto Ty = I.getType();
David Neto22f144c2017-06-12 14:26:21 -04003527 auto OpTy = I.getOperand(0)->getType();
David Netod2de94a2017-08-28 17:27:47 -04003528 auto toI8 = Ty == Type::getInt8Ty(Context);
3529 auto fromI32 = OpTy == Type::getInt32Ty(Context);
David Neto22f144c2017-06-12 14:26:21 -04003530 // Handle zext, sext and uitofp with i1 type specially.
3531 if ((I.getOpcode() == Instruction::ZExt ||
3532 I.getOpcode() == Instruction::SExt ||
3533 I.getOpcode() == Instruction::UIToFP) &&
3534 (OpTy->isIntegerTy(1) ||
3535 (OpTy->isVectorTy() &&
3536 OpTy->getVectorElementType()->isIntegerTy(1)))) {
3537 //
3538 // Generate OpSelect.
3539 //
3540
3541 // Ops[0] = Result Type ID
3542 // Ops[1] = Condition ID
3543 // Ops[2] = True Constant ID
3544 // Ops[3] = False Constant ID
3545 SPIRVOperandList Ops;
3546
David Neto257c3892018-04-11 13:19:45 -04003547 Ops << MkId(lookupType(I.getType()));
David Neto22f144c2017-06-12 14:26:21 -04003548
David Neto22f144c2017-06-12 14:26:21 -04003549 uint32_t CondID = VMap[I.getOperand(0)];
David Neto257c3892018-04-11 13:19:45 -04003550 Ops << MkId(CondID);
David Neto22f144c2017-06-12 14:26:21 -04003551
3552 uint32_t TrueID = 0;
3553 if (I.getOpcode() == Instruction::ZExt) {
3554 APInt One(32, 1);
3555 TrueID = VMap[Constant::getIntegerValue(I.getType(), One)];
3556 } else if (I.getOpcode() == Instruction::SExt) {
3557 APInt MinusOne(32, UINT64_MAX, true);
3558 TrueID = VMap[Constant::getIntegerValue(I.getType(), MinusOne)];
3559 } else {
3560 TrueID = VMap[ConstantFP::get(Context, APFloat(1.0f))];
3561 }
David Neto257c3892018-04-11 13:19:45 -04003562 Ops << MkId(TrueID);
David Neto22f144c2017-06-12 14:26:21 -04003563
3564 uint32_t FalseID = 0;
3565 if (I.getOpcode() == Instruction::ZExt) {
3566 FalseID = VMap[Constant::getNullValue(I.getType())];
3567 } else if (I.getOpcode() == Instruction::SExt) {
3568 FalseID = VMap[Constant::getNullValue(I.getType())];
3569 } else {
3570 FalseID = VMap[ConstantFP::get(Context, APFloat(0.0f))];
3571 }
David Neto257c3892018-04-11 13:19:45 -04003572 Ops << MkId(FalseID);
David Neto22f144c2017-06-12 14:26:21 -04003573
David Neto87846742018-04-11 17:36:22 -04003574 auto *Inst = new SPIRVInstruction(spv::OpSelect, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003575 SPIRVInstList.push_back(Inst);
David Netod2de94a2017-08-28 17:27:47 -04003576 } else if (I.getOpcode() == Instruction::Trunc && fromI32 && toI8) {
3577 // The SPIR-V target type is a 32-bit int. Keep only the bottom
3578 // 8 bits.
3579 // Before:
3580 // %result = trunc i32 %a to i8
3581 // After
3582 // %result = OpBitwiseAnd %uint %a %uint_255
3583
3584 SPIRVOperandList Ops;
3585
David Neto257c3892018-04-11 13:19:45 -04003586 Ops << MkId(lookupType(OpTy)) << MkId(VMap[I.getOperand(0)]);
David Netod2de94a2017-08-28 17:27:47 -04003587
3588 Type *UintTy = Type::getInt32Ty(Context);
3589 uint32_t MaskID = VMap[ConstantInt::get(UintTy, 255)];
David Neto257c3892018-04-11 13:19:45 -04003590 Ops << MkId(MaskID);
David Netod2de94a2017-08-28 17:27:47 -04003591
David Neto87846742018-04-11 17:36:22 -04003592 auto *Inst = new SPIRVInstruction(spv::OpBitwiseAnd, nextID++, Ops);
David Netod2de94a2017-08-28 17:27:47 -04003593 SPIRVInstList.push_back(Inst);
David Neto22f144c2017-06-12 14:26:21 -04003594 } else {
3595 // Ops[0] = Result Type ID
3596 // Ops[1] = Source Value ID
3597 SPIRVOperandList Ops;
3598
David Neto257c3892018-04-11 13:19:45 -04003599 Ops << MkId(lookupType(I.getType())) << MkId(VMap[I.getOperand(0)]);
David Neto22f144c2017-06-12 14:26:21 -04003600
David Neto87846742018-04-11 17:36:22 -04003601 auto *Inst = new SPIRVInstruction(GetSPIRVCastOpcode(I), nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003602 SPIRVInstList.push_back(Inst);
3603 }
3604 } else if (isa<BinaryOperator>(I)) {
3605 //
3606 // Generate SPIRV instructions for binary operators.
3607 //
3608
3609 // Handle xor with i1 type specially.
3610 if (I.getOpcode() == Instruction::Xor &&
3611 I.getType() == Type::getInt1Ty(Context) &&
3612 (isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
3613 //
3614 // Generate OpLogicalNot.
3615 //
3616 // Ops[0] = Result Type ID
3617 // Ops[1] = Operand
3618 SPIRVOperandList Ops;
3619
David Neto257c3892018-04-11 13:19:45 -04003620 Ops << MkId(lookupType(I.getType()));
David Neto22f144c2017-06-12 14:26:21 -04003621
3622 Value *CondV = I.getOperand(0);
3623 if (isa<Constant>(I.getOperand(0))) {
3624 CondV = I.getOperand(1);
3625 }
David Neto257c3892018-04-11 13:19:45 -04003626 Ops << MkId(VMap[CondV]);
David Neto22f144c2017-06-12 14:26:21 -04003627
David Neto87846742018-04-11 17:36:22 -04003628 auto *Inst = new SPIRVInstruction(spv::OpLogicalNot, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003629 SPIRVInstList.push_back(Inst);
3630 } else {
3631 // Ops[0] = Result Type ID
3632 // Ops[1] = Operand 0
3633 // Ops[2] = Operand 1
3634 SPIRVOperandList Ops;
3635
David Neto257c3892018-04-11 13:19:45 -04003636 Ops << MkId(lookupType(I.getType())) << MkId(VMap[I.getOperand(0)])
3637 << MkId(VMap[I.getOperand(1)]);
David Neto22f144c2017-06-12 14:26:21 -04003638
David Neto87846742018-04-11 17:36:22 -04003639 auto *Inst =
3640 new SPIRVInstruction(GetSPIRVBinaryOpcode(I), nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003641 SPIRVInstList.push_back(Inst);
3642 }
3643 } else {
3644 I.print(errs());
3645 llvm_unreachable("Unsupported instruction???");
3646 }
3647 break;
3648 }
3649 case Instruction::GetElementPtr: {
3650 auto &GlobalConstArgSet = getGlobalConstArgSet();
3651
3652 //
3653 // Generate OpAccessChain.
3654 //
3655 GetElementPtrInst *GEP = cast<GetElementPtrInst>(&I);
3656
3657 //
3658 // Generate OpAccessChain.
3659 //
3660
3661 // Ops[0] = Result Type ID
3662 // Ops[1] = Base ID
3663 // Ops[2] ... Ops[n] = Indexes ID
3664 SPIRVOperandList Ops;
3665
David Neto1a1a0582017-07-07 12:01:44 -04003666 PointerType* ResultType = cast<PointerType>(GEP->getType());
David Neto22f144c2017-06-12 14:26:21 -04003667 if (GEP->getPointerAddressSpace() == AddressSpace::ModuleScopePrivate ||
3668 GlobalConstArgSet.count(GEP->getPointerOperand())) {
3669 // Use pointer type with private address space for global constant.
3670 Type *EleTy = I.getType()->getPointerElementType();
David Neto1a1a0582017-07-07 12:01:44 -04003671 ResultType = PointerType::get(EleTy, AddressSpace::ModuleScopePrivate);
David Neto22f144c2017-06-12 14:26:21 -04003672 }
David Neto257c3892018-04-11 13:19:45 -04003673
3674 Ops << MkId(lookupType(ResultType));
David Neto22f144c2017-06-12 14:26:21 -04003675
David Neto862b7d82018-06-14 18:48:37 -04003676 // Generate the base pointer.
3677 Ops << MkId(VMap[GEP->getPointerOperand()]);
David Neto22f144c2017-06-12 14:26:21 -04003678
David Neto862b7d82018-06-14 18:48:37 -04003679 // TODO(dneto): Simplify the following?
David Neto22f144c2017-06-12 14:26:21 -04003680
3681 //
3682 // Follows below rules for gep.
3683 //
David Neto862b7d82018-06-14 18:48:37 -04003684 // 1. If gep's first index is 0 generate OpAccessChain and ignore gep's
3685 // first index.
David Neto22f144c2017-06-12 14:26:21 -04003686 // 2. If gep's first index is not 0, generate OpPtrAccessChain and use gep's
3687 // first index.
3688 // 3. If gep's first index is not constant, generate OpPtrAccessChain and
3689 // use gep's first index.
3690 // 4. If it is not above case 1, 2 and 3, generate OpAccessChain and use
3691 // gep's first index.
3692 //
3693 spv::Op Opcode = spv::OpAccessChain;
3694 unsigned offset = 0;
3695 if (ConstantInt *CstInt = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
David Neto862b7d82018-06-14 18:48:37 -04003696 if (CstInt->getZExtValue() == 0) {
David Neto22f144c2017-06-12 14:26:21 -04003697 offset = 1;
David Neto862b7d82018-06-14 18:48:37 -04003698 } else if (CstInt->getZExtValue() != 0) {
David Neto22f144c2017-06-12 14:26:21 -04003699 Opcode = spv::OpPtrAccessChain;
David Neto22f144c2017-06-12 14:26:21 -04003700 }
David Neto862b7d82018-06-14 18:48:37 -04003701 } else {
David Neto22f144c2017-06-12 14:26:21 -04003702 Opcode = spv::OpPtrAccessChain;
David Neto1a1a0582017-07-07 12:01:44 -04003703 }
3704
3705 if (Opcode == spv::OpPtrAccessChain) {
David Neto22f144c2017-06-12 14:26:21 -04003706 setVariablePointers(true);
David Neto1a1a0582017-07-07 12:01:44 -04003707 // Do we need to generate ArrayStride? Check against the GEP result type
3708 // rather than the pointer type of the base because when indexing into
3709 // an OpenCL program-scope constant, we'll swap out the LLVM base pointer
3710 // for something else in the SPIR-V.
3711 // E.g. see test/PointerAccessChain/pointer_index_is_constant_1.cl
3712 if (GetStorageClass(ResultType->getAddressSpace()) ==
3713 spv::StorageClassStorageBuffer) {
3714 // Save the need to generate an ArrayStride decoration. But defer
3715 // generation until later, so we only make one decoration.
David Neto85082642018-03-24 06:55:20 -07003716 getTypesNeedingArrayStride().insert(ResultType);
David Neto1a1a0582017-07-07 12:01:44 -04003717 }
David Neto22f144c2017-06-12 14:26:21 -04003718 }
3719
3720 for (auto II = GEP->idx_begin() + offset; II != GEP->idx_end(); II++) {
David Neto257c3892018-04-11 13:19:45 -04003721 Ops << MkId(VMap[*II]);
David Neto22f144c2017-06-12 14:26:21 -04003722 }
3723
David Neto87846742018-04-11 17:36:22 -04003724 auto *Inst = new SPIRVInstruction(Opcode, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003725 SPIRVInstList.push_back(Inst);
3726 break;
3727 }
3728 case Instruction::ExtractValue: {
3729 ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
3730 // Ops[0] = Result Type ID
3731 // Ops[1] = Composite ID
3732 // Ops[2] ... Ops[n] = Indexes (Literal Number)
3733 SPIRVOperandList Ops;
3734
David Neto257c3892018-04-11 13:19:45 -04003735 Ops << MkId(lookupType(I.getType()));
David Neto22f144c2017-06-12 14:26:21 -04003736
3737 uint32_t CompositeID = VMap[EVI->getAggregateOperand()];
David Neto257c3892018-04-11 13:19:45 -04003738 Ops << MkId(CompositeID);
David Neto22f144c2017-06-12 14:26:21 -04003739
3740 for (auto &Index : EVI->indices()) {
David Neto257c3892018-04-11 13:19:45 -04003741 Ops << MkNum(Index);
David Neto22f144c2017-06-12 14:26:21 -04003742 }
3743
David Neto87846742018-04-11 17:36:22 -04003744 auto *Inst = new SPIRVInstruction(spv::OpCompositeExtract, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003745 SPIRVInstList.push_back(Inst);
3746 break;
3747 }
3748 case Instruction::InsertValue: {
3749 InsertValueInst *IVI = cast<InsertValueInst>(&I);
3750 // Ops[0] = Result Type ID
3751 // Ops[1] = Object ID
3752 // Ops[2] = Composite ID
3753 // Ops[3] ... Ops[n] = Indexes (Literal Number)
3754 SPIRVOperandList Ops;
3755
3756 uint32_t ResTyID = lookupType(I.getType());
David Neto257c3892018-04-11 13:19:45 -04003757 Ops << MkId(ResTyID);
David Neto22f144c2017-06-12 14:26:21 -04003758
3759 uint32_t ObjectID = VMap[IVI->getInsertedValueOperand()];
David Neto257c3892018-04-11 13:19:45 -04003760 Ops << MkId(ObjectID);
David Neto22f144c2017-06-12 14:26:21 -04003761
3762 uint32_t CompositeID = VMap[IVI->getAggregateOperand()];
David Neto257c3892018-04-11 13:19:45 -04003763 Ops << MkId(CompositeID);
David Neto22f144c2017-06-12 14:26:21 -04003764
3765 for (auto &Index : IVI->indices()) {
David Neto257c3892018-04-11 13:19:45 -04003766 Ops << MkNum(Index);
David Neto22f144c2017-06-12 14:26:21 -04003767 }
3768
David Neto87846742018-04-11 17:36:22 -04003769 auto *Inst = new SPIRVInstruction(spv::OpCompositeInsert, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003770 SPIRVInstList.push_back(Inst);
3771 break;
3772 }
3773 case Instruction::Select: {
3774 //
3775 // Generate OpSelect.
3776 //
3777
3778 // Ops[0] = Result Type ID
3779 // Ops[1] = Condition ID
3780 // Ops[2] = True Constant ID
3781 // Ops[3] = False Constant ID
3782 SPIRVOperandList Ops;
3783
3784 // Find SPIRV instruction for parameter type.
3785 auto Ty = I.getType();
3786 if (Ty->isPointerTy()) {
3787 auto PointeeTy = Ty->getPointerElementType();
3788 if (PointeeTy->isStructTy() &&
3789 dyn_cast<StructType>(PointeeTy)->isOpaque()) {
3790 Ty = PointeeTy;
3791 }
3792 }
3793
David Neto257c3892018-04-11 13:19:45 -04003794 Ops << MkId(lookupType(Ty)) << MkId(VMap[I.getOperand(0)])
3795 << MkId(VMap[I.getOperand(1)]) << MkId(VMap[I.getOperand(2)]);
David Neto22f144c2017-06-12 14:26:21 -04003796
David Neto87846742018-04-11 17:36:22 -04003797 auto *Inst = new SPIRVInstruction(spv::OpSelect, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003798 SPIRVInstList.push_back(Inst);
3799 break;
3800 }
3801 case Instruction::ExtractElement: {
3802 // Handle <4 x i8> type manually.
3803 Type *CompositeTy = I.getOperand(0)->getType();
3804 if (is4xi8vec(CompositeTy)) {
3805 //
3806 // Generate OpShiftRightLogical and OpBitwiseAnd for extractelement with
3807 // <4 x i8>.
3808 //
3809
3810 //
3811 // Generate OpShiftRightLogical
3812 //
3813 // Ops[0] = Result Type ID
3814 // Ops[1] = Operand 0
3815 // Ops[2] = Operand 1
3816 //
3817 SPIRVOperandList Ops;
3818
David Neto257c3892018-04-11 13:19:45 -04003819 Ops << MkId(lookupType(CompositeTy));
David Neto22f144c2017-06-12 14:26:21 -04003820
3821 uint32_t Op0ID = VMap[I.getOperand(0)];
David Neto257c3892018-04-11 13:19:45 -04003822 Ops << MkId(Op0ID);
David Neto22f144c2017-06-12 14:26:21 -04003823
3824 uint32_t Op1ID = 0;
3825 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
3826 // Handle constant index.
3827 uint64_t Idx = CI->getZExtValue();
3828 Value *ShiftAmount =
3829 ConstantInt::get(Type::getInt32Ty(Context), Idx * 8);
3830 Op1ID = VMap[ShiftAmount];
3831 } else {
3832 // Handle variable index.
3833 SPIRVOperandList TmpOps;
3834
David Neto257c3892018-04-11 13:19:45 -04003835 TmpOps << MkId(lookupType(Type::getInt32Ty(Context)))
3836 << MkId(VMap[I.getOperand(1)]);
David Neto22f144c2017-06-12 14:26:21 -04003837
3838 ConstantInt *Cst8 = ConstantInt::get(Type::getInt32Ty(Context), 8);
David Neto257c3892018-04-11 13:19:45 -04003839 TmpOps << MkId(VMap[Cst8]);
David Neto22f144c2017-06-12 14:26:21 -04003840
3841 Op1ID = nextID;
3842
David Neto87846742018-04-11 17:36:22 -04003843 auto *TmpInst = new SPIRVInstruction(spv::OpIMul, nextID++, TmpOps);
David Neto22f144c2017-06-12 14:26:21 -04003844 SPIRVInstList.push_back(TmpInst);
3845 }
David Neto257c3892018-04-11 13:19:45 -04003846 Ops << MkId(Op1ID);
David Neto22f144c2017-06-12 14:26:21 -04003847
3848 uint32_t ShiftID = nextID;
3849
David Neto87846742018-04-11 17:36:22 -04003850 auto *Inst =
3851 new SPIRVInstruction(spv::OpShiftRightLogical, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003852 SPIRVInstList.push_back(Inst);
3853
3854 //
3855 // Generate OpBitwiseAnd
3856 //
3857 // Ops[0] = Result Type ID
3858 // Ops[1] = Operand 0
3859 // Ops[2] = Operand 1
3860 //
3861 Ops.clear();
3862
David Neto257c3892018-04-11 13:19:45 -04003863 Ops << MkId(lookupType(CompositeTy)) << MkId(ShiftID);
David Neto22f144c2017-06-12 14:26:21 -04003864
3865 Constant *CstFF = ConstantInt::get(Type::getInt32Ty(Context), 0xFF);
David Neto257c3892018-04-11 13:19:45 -04003866 Ops << MkId(VMap[CstFF]);
David Neto22f144c2017-06-12 14:26:21 -04003867
David Neto9b2d6252017-09-06 15:47:37 -04003868 // Reset mapping for this value to the result of the bitwise and.
3869 VMap[&I] = nextID;
3870
David Neto87846742018-04-11 17:36:22 -04003871 Inst = new SPIRVInstruction(spv::OpBitwiseAnd, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003872 SPIRVInstList.push_back(Inst);
3873 break;
3874 }
3875
3876 // Ops[0] = Result Type ID
3877 // Ops[1] = Composite ID
3878 // Ops[2] ... Ops[n] = Indexes (Literal Number)
3879 SPIRVOperandList Ops;
3880
David Neto257c3892018-04-11 13:19:45 -04003881 Ops << MkId(lookupType(I.getType())) << MkId(VMap[I.getOperand(0)]);
David Neto22f144c2017-06-12 14:26:21 -04003882
3883 spv::Op Opcode = spv::OpCompositeExtract;
3884 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
David Neto257c3892018-04-11 13:19:45 -04003885 Ops << MkNum(static_cast<uint32_t>(CI->getZExtValue()));
David Neto22f144c2017-06-12 14:26:21 -04003886 } else {
David Neto257c3892018-04-11 13:19:45 -04003887 Ops << MkId(VMap[I.getOperand(1)]);
David Neto22f144c2017-06-12 14:26:21 -04003888 Opcode = spv::OpVectorExtractDynamic;
3889 }
3890
David Neto87846742018-04-11 17:36:22 -04003891 auto *Inst = new SPIRVInstruction(Opcode, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003892 SPIRVInstList.push_back(Inst);
3893 break;
3894 }
3895 case Instruction::InsertElement: {
3896 // Handle <4 x i8> type manually.
3897 Type *CompositeTy = I.getOperand(0)->getType();
3898 if (is4xi8vec(CompositeTy)) {
3899 Constant *CstFF = ConstantInt::get(Type::getInt32Ty(Context), 0xFF);
3900 uint32_t CstFFID = VMap[CstFF];
3901
3902 uint32_t ShiftAmountID = 0;
3903 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2))) {
3904 // Handle constant index.
3905 uint64_t Idx = CI->getZExtValue();
3906 Value *ShiftAmount =
3907 ConstantInt::get(Type::getInt32Ty(Context), Idx * 8);
3908 ShiftAmountID = VMap[ShiftAmount];
3909 } else {
3910 // Handle variable index.
3911 SPIRVOperandList TmpOps;
3912
David Neto257c3892018-04-11 13:19:45 -04003913 TmpOps << MkId(lookupType(Type::getInt32Ty(Context)))
3914 << MkId(VMap[I.getOperand(2)]);
David Neto22f144c2017-06-12 14:26:21 -04003915
3916 ConstantInt *Cst8 = ConstantInt::get(Type::getInt32Ty(Context), 8);
David Neto257c3892018-04-11 13:19:45 -04003917 TmpOps << MkId(VMap[Cst8]);
David Neto22f144c2017-06-12 14:26:21 -04003918
3919 ShiftAmountID = nextID;
3920
David Neto87846742018-04-11 17:36:22 -04003921 auto *TmpInst = new SPIRVInstruction(spv::OpIMul, nextID++, TmpOps);
David Neto22f144c2017-06-12 14:26:21 -04003922 SPIRVInstList.push_back(TmpInst);
3923 }
3924
3925 //
3926 // Generate mask operations.
3927 //
3928
3929 // ShiftLeft mask according to index of insertelement.
3930 SPIRVOperandList Ops;
3931
David Neto257c3892018-04-11 13:19:45 -04003932 const uint32_t ResTyID = lookupType(CompositeTy);
3933 Ops << MkId(ResTyID) << MkId(CstFFID) << MkId(ShiftAmountID);
David Neto22f144c2017-06-12 14:26:21 -04003934
3935 uint32_t MaskID = nextID;
3936
David Neto87846742018-04-11 17:36:22 -04003937 auto *Inst = new SPIRVInstruction(spv::OpShiftLeftLogical, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003938 SPIRVInstList.push_back(Inst);
3939
3940 // Inverse mask.
3941 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003942 Ops << MkId(ResTyID) << MkId(MaskID);
David Neto22f144c2017-06-12 14:26:21 -04003943
3944 uint32_t InvMaskID = nextID;
3945
David Neto87846742018-04-11 17:36:22 -04003946 Inst = new SPIRVInstruction(spv::OpNot, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003947 SPIRVInstList.push_back(Inst);
3948
3949 // Apply mask.
3950 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003951 Ops << MkId(ResTyID) << MkId(VMap[I.getOperand(0)]) << MkId(InvMaskID);
David Neto22f144c2017-06-12 14:26:21 -04003952
3953 uint32_t OrgValID = nextID;
3954
David Neto87846742018-04-11 17:36:22 -04003955 Inst = new SPIRVInstruction(spv::OpBitwiseAnd, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003956 SPIRVInstList.push_back(Inst);
3957
3958 // Create correct value according to index of insertelement.
3959 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003960 Ops << MkId(ResTyID) << MkId(VMap[I.getOperand(1)]) << MkId(ShiftAmountID);
David Neto22f144c2017-06-12 14:26:21 -04003961
3962 uint32_t InsertValID = nextID;
3963
David Neto87846742018-04-11 17:36:22 -04003964 Inst = new SPIRVInstruction(spv::OpShiftLeftLogical, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003965 SPIRVInstList.push_back(Inst);
3966
3967 // Insert value to original value.
3968 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04003969 Ops << MkId(ResTyID) << MkId(OrgValID) << MkId(InsertValID);
David Neto22f144c2017-06-12 14:26:21 -04003970
David Netoa394f392017-08-26 20:45:29 -04003971 VMap[&I] = nextID;
3972
David Neto87846742018-04-11 17:36:22 -04003973 Inst = new SPIRVInstruction(spv::OpBitwiseOr, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04003974 SPIRVInstList.push_back(Inst);
3975
3976 break;
3977 }
3978
David Neto22f144c2017-06-12 14:26:21 -04003979 SPIRVOperandList Ops;
3980
James Priced26efea2018-06-09 23:28:32 +01003981 // Ops[0] = Result Type ID
3982 Ops << MkId(lookupType(I.getType()));
David Neto22f144c2017-06-12 14:26:21 -04003983
3984 spv::Op Opcode = spv::OpCompositeInsert;
3985 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2))) {
David Neto257c3892018-04-11 13:19:45 -04003986 const auto value = CI->getZExtValue();
3987 assert(value <= UINT32_MAX);
James Priced26efea2018-06-09 23:28:32 +01003988 // Ops[1] = Object ID
3989 // Ops[2] = Composite ID
3990 // Ops[3] ... Ops[n] = Indexes (Literal Number)
3991 Ops << MkId(VMap[I.getOperand(1)])
3992 << MkId(VMap[I.getOperand(0)])
3993 << MkNum(static_cast<uint32_t>(value));
David Neto22f144c2017-06-12 14:26:21 -04003994 } else {
James Priced26efea2018-06-09 23:28:32 +01003995 // Ops[1] = Composite ID
3996 // Ops[2] = Object ID
3997 // Ops[3] ... Ops[n] = Indexes (Literal Number)
3998 Ops << MkId(VMap[I.getOperand(0)])
3999 << MkId(VMap[I.getOperand(1)])
4000 << MkId(VMap[I.getOperand(2)]);
David Neto22f144c2017-06-12 14:26:21 -04004001 Opcode = spv::OpVectorInsertDynamic;
4002 }
4003
David Neto87846742018-04-11 17:36:22 -04004004 auto *Inst = new SPIRVInstruction(Opcode, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004005 SPIRVInstList.push_back(Inst);
4006 break;
4007 }
4008 case Instruction::ShuffleVector: {
4009 // Ops[0] = Result Type ID
4010 // Ops[1] = Vector 1 ID
4011 // Ops[2] = Vector 2 ID
4012 // Ops[3] ... Ops[n] = Components (Literal Number)
4013 SPIRVOperandList Ops;
4014
David Neto257c3892018-04-11 13:19:45 -04004015 Ops << MkId(lookupType(I.getType())) << MkId(VMap[I.getOperand(0)])
4016 << MkId(VMap[I.getOperand(1)]);
David Neto22f144c2017-06-12 14:26:21 -04004017
4018 uint64_t NumElements = 0;
4019 if (Constant *Cst = dyn_cast<Constant>(I.getOperand(2))) {
4020 NumElements = cast<VectorType>(Cst->getType())->getNumElements();
4021
4022 if (Cst->isNullValue()) {
4023 for (unsigned i = 0; i < NumElements; i++) {
David Neto257c3892018-04-11 13:19:45 -04004024 Ops << MkNum(0);
David Neto22f144c2017-06-12 14:26:21 -04004025 }
4026 } else if (const ConstantDataSequential *CDS =
4027 dyn_cast<ConstantDataSequential>(Cst)) {
4028 for (unsigned i = 0; i < CDS->getNumElements(); i++) {
4029 std::vector<uint32_t> LiteralNum;
David Neto257c3892018-04-11 13:19:45 -04004030 const auto value = CDS->getElementAsInteger(i);
4031 assert(value <= UINT32_MAX);
4032 Ops << MkNum(static_cast<uint32_t>(value));
David Neto22f144c2017-06-12 14:26:21 -04004033 }
4034 } else if (const ConstantVector *CV = dyn_cast<ConstantVector>(Cst)) {
4035 for (unsigned i = 0; i < CV->getNumOperands(); i++) {
4036 auto Op = CV->getOperand(i);
4037
4038 uint32_t literal = 0;
4039
4040 if (auto CI = dyn_cast<ConstantInt>(Op)) {
4041 literal = static_cast<uint32_t>(CI->getZExtValue());
4042 } else if (auto UI = dyn_cast<UndefValue>(Op)) {
4043 literal = 0xFFFFFFFFu;
4044 } else {
4045 Op->print(errs());
4046 llvm_unreachable("Unsupported element in ConstantVector!");
4047 }
4048
David Neto257c3892018-04-11 13:19:45 -04004049 Ops << MkNum(literal);
David Neto22f144c2017-06-12 14:26:21 -04004050 }
4051 } else {
4052 Cst->print(errs());
4053 llvm_unreachable("Unsupported constant mask in ShuffleVector!");
4054 }
4055 }
4056
David Neto87846742018-04-11 17:36:22 -04004057 auto *Inst = new SPIRVInstruction(spv::OpVectorShuffle, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004058 SPIRVInstList.push_back(Inst);
4059 break;
4060 }
4061 case Instruction::ICmp:
4062 case Instruction::FCmp: {
4063 CmpInst *CmpI = cast<CmpInst>(&I);
4064
David Netod4ca2e62017-07-06 18:47:35 -04004065 // Pointer equality is invalid.
4066 Type* ArgTy = CmpI->getOperand(0)->getType();
4067 if (isa<PointerType>(ArgTy)) {
4068 CmpI->print(errs());
4069 std::string name = I.getParent()->getParent()->getName();
4070 errs()
4071 << "\nPointer equality test is not supported by SPIR-V for Vulkan, "
4072 << "in function " << name << "\n";
4073 llvm_unreachable("Pointer equality check is invalid");
4074 break;
4075 }
4076
David Neto257c3892018-04-11 13:19:45 -04004077 // Ops[0] = Result Type ID
4078 // Ops[1] = Operand 1 ID
4079 // Ops[2] = Operand 2 ID
4080 SPIRVOperandList Ops;
David Neto22f144c2017-06-12 14:26:21 -04004081
David Neto257c3892018-04-11 13:19:45 -04004082 Ops << MkId(lookupType(CmpI->getType())) << MkId(VMap[CmpI->getOperand(0)])
4083 << MkId(VMap[CmpI->getOperand(1)]);
David Neto22f144c2017-06-12 14:26:21 -04004084
4085 spv::Op Opcode = GetSPIRVCmpOpcode(CmpI);
David Neto87846742018-04-11 17:36:22 -04004086 auto *Inst = new SPIRVInstruction(Opcode, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004087 SPIRVInstList.push_back(Inst);
4088 break;
4089 }
4090 case Instruction::Br: {
4091 // Branch instrucion is deferred because it needs label's ID. Record slot's
4092 // location on SPIRVInstructionList.
4093 DeferredInsts.push_back(
4094 std::make_tuple(&I, --SPIRVInstList.end(), 0 /* No id */));
4095 break;
4096 }
4097 case Instruction::Switch: {
4098 I.print(errs());
4099 llvm_unreachable("Unsupported instruction???");
4100 break;
4101 }
4102 case Instruction::IndirectBr: {
4103 I.print(errs());
4104 llvm_unreachable("Unsupported instruction???");
4105 break;
4106 }
4107 case Instruction::PHI: {
4108 // Branch instrucion is deferred because it needs label's ID. Record slot's
4109 // location on SPIRVInstructionList.
4110 DeferredInsts.push_back(
4111 std::make_tuple(&I, --SPIRVInstList.end(), nextID++));
4112 break;
4113 }
4114 case Instruction::Alloca: {
4115 //
4116 // Generate OpVariable.
4117 //
4118 // Ops[0] : Result Type ID
4119 // Ops[1] : Storage Class
4120 SPIRVOperandList Ops;
4121
David Neto257c3892018-04-11 13:19:45 -04004122 Ops << MkId(lookupType(I.getType())) << MkNum(spv::StorageClassFunction);
David Neto22f144c2017-06-12 14:26:21 -04004123
David Neto87846742018-04-11 17:36:22 -04004124 auto *Inst = new SPIRVInstruction(spv::OpVariable, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004125 SPIRVInstList.push_back(Inst);
4126 break;
4127 }
4128 case Instruction::Load: {
4129 LoadInst *LD = cast<LoadInst>(&I);
4130 //
4131 // Generate OpLoad.
4132 //
4133
David Neto0a2f98d2017-09-15 19:38:40 -04004134 uint32_t ResTyID = lookupType(LD->getType());
David Netoa60b00b2017-09-15 16:34:09 -04004135 uint32_t PointerID = VMap[LD->getPointerOperand()];
4136
4137 // This is a hack to work around what looks like a driver bug.
4138 // When we're loading from the special variable holding the WorkgroupSize
David Neto0a2f98d2017-09-15 19:38:40 -04004139 // builtin value, use an OpBitWiseAnd of the value's ID rather than
4140 // generating a load.
David Neto66cfe642018-03-24 06:13:56 -07004141 // TODO(dneto): Remove this awful hack once drivers are fixed.
David Netoa60b00b2017-09-15 16:34:09 -04004142 if (PointerID == WorkgroupSizeVarID) {
David Neto0a2f98d2017-09-15 19:38:40 -04004143 // Generate a bitwise-and of the original value with itself.
4144 // We should have been able to get away with just an OpCopyObject,
4145 // but we need something more complex to get past certain driver bugs.
4146 // This is ridiculous, but necessary.
4147 // TODO(dneto): Revisit this once drivers fix their bugs.
4148
4149 SPIRVOperandList Ops;
David Neto257c3892018-04-11 13:19:45 -04004150 Ops << MkId(ResTyID) << MkId(WorkgroupSizeValueID)
4151 << MkId(WorkgroupSizeValueID);
David Neto0a2f98d2017-09-15 19:38:40 -04004152
David Neto87846742018-04-11 17:36:22 -04004153 auto *Inst = new SPIRVInstruction(spv::OpBitwiseAnd, nextID++, Ops);
David Neto0a2f98d2017-09-15 19:38:40 -04004154 SPIRVInstList.push_back(Inst);
David Netoa60b00b2017-09-15 16:34:09 -04004155 break;
4156 }
4157
4158 // This is the normal path. Generate a load.
4159
David Neto22f144c2017-06-12 14:26:21 -04004160 // Ops[0] = Result Type ID
4161 // Ops[1] = Pointer ID
4162 // Ops[2] ... Ops[n] = Optional Memory Access
4163 //
4164 // TODO: Do we need to implement Optional Memory Access???
David Neto0a2f98d2017-09-15 19:38:40 -04004165
David Neto22f144c2017-06-12 14:26:21 -04004166 SPIRVOperandList Ops;
David Neto257c3892018-04-11 13:19:45 -04004167 Ops << MkId(ResTyID) << MkId(PointerID);
David Neto22f144c2017-06-12 14:26:21 -04004168
David Neto87846742018-04-11 17:36:22 -04004169 auto *Inst = new SPIRVInstruction(spv::OpLoad, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004170 SPIRVInstList.push_back(Inst);
4171 break;
4172 }
4173 case Instruction::Store: {
4174 StoreInst *ST = cast<StoreInst>(&I);
4175 //
4176 // Generate OpStore.
4177 //
4178
4179 // Ops[0] = Pointer ID
4180 // Ops[1] = Object ID
4181 // Ops[2] ... Ops[n] = Optional Memory Access (later???)
4182 //
4183 // TODO: Do we need to implement Optional Memory Access???
David Neto257c3892018-04-11 13:19:45 -04004184 SPIRVOperandList Ops;
4185 Ops << MkId(VMap[ST->getPointerOperand()])
4186 << MkId(VMap[ST->getValueOperand()]);
David Neto22f144c2017-06-12 14:26:21 -04004187
David Neto87846742018-04-11 17:36:22 -04004188 auto *Inst = new SPIRVInstruction(spv::OpStore, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004189 SPIRVInstList.push_back(Inst);
4190 break;
4191 }
4192 case Instruction::AtomicCmpXchg: {
4193 I.print(errs());
4194 llvm_unreachable("Unsupported instruction???");
4195 break;
4196 }
4197 case Instruction::AtomicRMW: {
Neil Henning39672102017-09-29 14:33:13 +01004198 AtomicRMWInst *AtomicRMW = dyn_cast<AtomicRMWInst>(&I);
4199
4200 spv::Op opcode;
4201
4202 switch (AtomicRMW->getOperation()) {
4203 default:
4204 I.print(errs());
4205 llvm_unreachable("Unsupported instruction???");
4206 case llvm::AtomicRMWInst::Add:
4207 opcode = spv::OpAtomicIAdd;
4208 break;
4209 case llvm::AtomicRMWInst::Sub:
4210 opcode = spv::OpAtomicISub;
4211 break;
4212 case llvm::AtomicRMWInst::Xchg:
4213 opcode = spv::OpAtomicExchange;
4214 break;
4215 case llvm::AtomicRMWInst::Min:
4216 opcode = spv::OpAtomicSMin;
4217 break;
4218 case llvm::AtomicRMWInst::Max:
4219 opcode = spv::OpAtomicSMax;
4220 break;
4221 case llvm::AtomicRMWInst::UMin:
4222 opcode = spv::OpAtomicUMin;
4223 break;
4224 case llvm::AtomicRMWInst::UMax:
4225 opcode = spv::OpAtomicUMax;
4226 break;
4227 case llvm::AtomicRMWInst::And:
4228 opcode = spv::OpAtomicAnd;
4229 break;
4230 case llvm::AtomicRMWInst::Or:
4231 opcode = spv::OpAtomicOr;
4232 break;
4233 case llvm::AtomicRMWInst::Xor:
4234 opcode = spv::OpAtomicXor;
4235 break;
4236 }
4237
4238 //
4239 // Generate OpAtomic*.
4240 //
4241 SPIRVOperandList Ops;
4242
David Neto257c3892018-04-11 13:19:45 -04004243 Ops << MkId(lookupType(I.getType()))
4244 << MkId(VMap[AtomicRMW->getPointerOperand()]);
Neil Henning39672102017-09-29 14:33:13 +01004245
4246 auto IntTy = Type::getInt32Ty(I.getContext());
Neil Henning39672102017-09-29 14:33:13 +01004247 const auto ConstantScopeDevice = ConstantInt::get(IntTy, spv::ScopeDevice);
David Neto257c3892018-04-11 13:19:45 -04004248 Ops << MkId(VMap[ConstantScopeDevice]);
Neil Henning39672102017-09-29 14:33:13 +01004249
4250 const auto ConstantMemorySemantics = ConstantInt::get(
4251 IntTy, spv::MemorySemanticsUniformMemoryMask |
4252 spv::MemorySemanticsSequentiallyConsistentMask);
David Neto257c3892018-04-11 13:19:45 -04004253 Ops << MkId(VMap[ConstantMemorySemantics]);
Neil Henning39672102017-09-29 14:33:13 +01004254
David Neto257c3892018-04-11 13:19:45 -04004255 Ops << MkId(VMap[AtomicRMW->getValOperand()]);
Neil Henning39672102017-09-29 14:33:13 +01004256
4257 VMap[&I] = nextID;
4258
David Neto87846742018-04-11 17:36:22 -04004259 auto *Inst = new SPIRVInstruction(opcode, nextID++, Ops);
Neil Henning39672102017-09-29 14:33:13 +01004260 SPIRVInstList.push_back(Inst);
David Neto22f144c2017-06-12 14:26:21 -04004261 break;
4262 }
4263 case Instruction::Fence: {
4264 I.print(errs());
4265 llvm_unreachable("Unsupported instruction???");
4266 break;
4267 }
4268 case Instruction::Call: {
4269 CallInst *Call = dyn_cast<CallInst>(&I);
4270 Function *Callee = Call->getCalledFunction();
4271
Alan Baker202c8c72018-08-13 13:47:44 -04004272 if (Callee->getName().startswith(clspv::ResourceAccessorFunction())) {
David Neto862b7d82018-06-14 18:48:37 -04004273 if (ResourceVarDeferredLoadCalls.count(Call) && Call->hasNUsesOrMore(1)) {
4274 // Generate an OpLoad
4275 SPIRVOperandList Ops;
4276 const auto load_id = nextID++;
David Neto22f144c2017-06-12 14:26:21 -04004277
David Neto862b7d82018-06-14 18:48:37 -04004278 Ops << MkId(lookupType(Call->getType()->getPointerElementType()))
4279 << MkId(ResourceVarDeferredLoadCalls[Call]);
4280
4281 auto *Inst = new SPIRVInstruction(spv::OpLoad, load_id, Ops);
4282 SPIRVInstList.push_back(Inst);
4283 VMap[Call] = load_id;
4284 break;
4285
4286 } else {
4287 // This maps to an OpVariable we've already generated.
4288 // No code is generated for the call.
4289 }
4290 break;
Alan Baker202c8c72018-08-13 13:47:44 -04004291 } else if (Callee->getName().startswith(clspv::WorkgroupAccessorFunction())) {
4292 // Don't codegen an instruction here, but instead map this call directly
4293 // to the workgroup variable id.
4294 int spec_id = cast<ConstantInt>(Call->getOperand(0))->getSExtValue();
4295 const auto &info = LocalSpecIdInfoMap[spec_id];
4296 VMap[Call] = info.variable_id;
4297 break;
David Neto862b7d82018-06-14 18:48:37 -04004298 }
4299
4300 // Sampler initializers become a load of the corresponding sampler.
4301
4302 if (Callee->getName().equals("clspv.sampler.var.literal")) {
4303 // Map this to a load from the variable.
4304 const auto index_into_sampler_map =
4305 dyn_cast<ConstantInt>(Call->getArgOperand(2))->getZExtValue();
4306
4307 // Generate an OpLoad
David Neto22f144c2017-06-12 14:26:21 -04004308 SPIRVOperandList Ops;
David Neto862b7d82018-06-14 18:48:37 -04004309 const auto load_id = nextID++;
David Neto22f144c2017-06-12 14:26:21 -04004310
David Neto257c3892018-04-11 13:19:45 -04004311 Ops << MkId(lookupType(SamplerTy->getPointerElementType()))
David Neto862b7d82018-06-14 18:48:37 -04004312 << MkId(SamplerMapIndexToIDMap[index_into_sampler_map]);
David Neto22f144c2017-06-12 14:26:21 -04004313
David Neto862b7d82018-06-14 18:48:37 -04004314 auto *Inst = new SPIRVInstruction(spv::OpLoad, load_id, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004315 SPIRVInstList.push_back(Inst);
David Neto862b7d82018-06-14 18:48:37 -04004316 VMap[Call] = load_id;
David Neto22f144c2017-06-12 14:26:21 -04004317 break;
4318 }
4319
4320 if (Callee->getName().startswith("spirv.atomic")) {
4321 spv::Op opcode = StringSwitch<spv::Op>(Callee->getName())
4322 .Case("spirv.atomic_add", spv::OpAtomicIAdd)
4323 .Case("spirv.atomic_sub", spv::OpAtomicISub)
4324 .Case("spirv.atomic_exchange", spv::OpAtomicExchange)
4325 .Case("spirv.atomic_inc", spv::OpAtomicIIncrement)
4326 .Case("spirv.atomic_dec", spv::OpAtomicIDecrement)
4327 .Case("spirv.atomic_compare_exchange",
4328 spv::OpAtomicCompareExchange)
4329 .Case("spirv.atomic_umin", spv::OpAtomicUMin)
4330 .Case("spirv.atomic_smin", spv::OpAtomicSMin)
4331 .Case("spirv.atomic_umax", spv::OpAtomicUMax)
4332 .Case("spirv.atomic_smax", spv::OpAtomicSMax)
4333 .Case("spirv.atomic_and", spv::OpAtomicAnd)
4334 .Case("spirv.atomic_or", spv::OpAtomicOr)
4335 .Case("spirv.atomic_xor", spv::OpAtomicXor)
4336 .Default(spv::OpNop);
4337
4338 //
4339 // Generate OpAtomic*.
4340 //
4341 SPIRVOperandList Ops;
4342
David Neto257c3892018-04-11 13:19:45 -04004343 Ops << MkId(lookupType(I.getType()));
David Neto22f144c2017-06-12 14:26:21 -04004344
4345 for (unsigned i = 0; i < Call->getNumArgOperands(); i++) {
David Neto257c3892018-04-11 13:19:45 -04004346 Ops << MkId(VMap[Call->getArgOperand(i)]);
David Neto22f144c2017-06-12 14:26:21 -04004347 }
4348
4349 VMap[&I] = nextID;
4350
David Neto87846742018-04-11 17:36:22 -04004351 auto *Inst = new SPIRVInstruction(opcode, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004352 SPIRVInstList.push_back(Inst);
4353 break;
4354 }
4355
4356 if (Callee->getName().startswith("_Z3dot")) {
4357 // If the argument is a vector type, generate OpDot
4358 if (Call->getArgOperand(0)->getType()->isVectorTy()) {
4359 //
4360 // Generate OpDot.
4361 //
4362 SPIRVOperandList Ops;
4363
David Neto257c3892018-04-11 13:19:45 -04004364 Ops << MkId(lookupType(I.getType()));
David Neto22f144c2017-06-12 14:26:21 -04004365
4366 for (unsigned i = 0; i < Call->getNumArgOperands(); i++) {
David Neto257c3892018-04-11 13:19:45 -04004367 Ops << MkId(VMap[Call->getArgOperand(i)]);
David Neto22f144c2017-06-12 14:26:21 -04004368 }
4369
4370 VMap[&I] = nextID;
4371
David Neto87846742018-04-11 17:36:22 -04004372 auto *Inst = new SPIRVInstruction(spv::OpDot, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004373 SPIRVInstList.push_back(Inst);
4374 } else {
4375 //
4376 // Generate OpFMul.
4377 //
4378 SPIRVOperandList Ops;
4379
David Neto257c3892018-04-11 13:19:45 -04004380 Ops << MkId(lookupType(I.getType()));
David Neto22f144c2017-06-12 14:26:21 -04004381
4382 for (unsigned i = 0; i < Call->getNumArgOperands(); i++) {
David Neto257c3892018-04-11 13:19:45 -04004383 Ops << MkId(VMap[Call->getArgOperand(i)]);
David Neto22f144c2017-06-12 14:26:21 -04004384 }
4385
4386 VMap[&I] = nextID;
4387
David Neto87846742018-04-11 17:36:22 -04004388 auto *Inst = new SPIRVInstruction(spv::OpFMul, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004389 SPIRVInstList.push_back(Inst);
4390 }
4391 break;
4392 }
4393
David Neto8505ebf2017-10-13 18:50:50 -04004394 if (Callee->getName().startswith("_Z4fmod")) {
4395 // OpenCL fmod(x,y) is x - y * trunc(x/y)
4396 // The sign for a non-zero result is taken from x.
4397 // (Try an example.)
4398 // So translate to OpFRem
4399
4400 SPIRVOperandList Ops;
4401
David Neto257c3892018-04-11 13:19:45 -04004402 Ops << MkId(lookupType(I.getType()));
David Neto8505ebf2017-10-13 18:50:50 -04004403
4404 for (unsigned i = 0; i < Call->getNumArgOperands(); i++) {
David Neto257c3892018-04-11 13:19:45 -04004405 Ops << MkId(VMap[Call->getArgOperand(i)]);
David Neto8505ebf2017-10-13 18:50:50 -04004406 }
4407
4408 VMap[&I] = nextID;
4409
David Neto87846742018-04-11 17:36:22 -04004410 auto *Inst = new SPIRVInstruction(spv::OpFRem, nextID++, Ops);
David Neto8505ebf2017-10-13 18:50:50 -04004411 SPIRVInstList.push_back(Inst);
4412 break;
4413 }
4414
David Neto22f144c2017-06-12 14:26:21 -04004415 // spirv.store_null.* intrinsics become OpStore's.
4416 if (Callee->getName().startswith("spirv.store_null")) {
4417 //
4418 // Generate OpStore.
4419 //
4420
4421 // Ops[0] = Pointer ID
4422 // Ops[1] = Object ID
4423 // Ops[2] ... Ops[n]
4424 SPIRVOperandList Ops;
4425
4426 uint32_t PointerID = VMap[Call->getArgOperand(0)];
David Neto22f144c2017-06-12 14:26:21 -04004427 uint32_t ObjectID = VMap[Call->getArgOperand(1)];
David Neto257c3892018-04-11 13:19:45 -04004428 Ops << MkId(PointerID) << MkId(ObjectID);
David Neto22f144c2017-06-12 14:26:21 -04004429
David Neto87846742018-04-11 17:36:22 -04004430 SPIRVInstList.push_back(new SPIRVInstruction(spv::OpStore, Ops));
David Neto22f144c2017-06-12 14:26:21 -04004431
4432 break;
4433 }
4434
4435 // spirv.copy_memory.* intrinsics become OpMemoryMemory's.
4436 if (Callee->getName().startswith("spirv.copy_memory")) {
4437 //
4438 // Generate OpCopyMemory.
4439 //
4440
4441 // Ops[0] = Dst ID
4442 // Ops[1] = Src ID
4443 // Ops[2] = Memory Access
4444 // Ops[3] = Alignment
4445
4446 auto IsVolatile =
4447 dyn_cast<ConstantInt>(Call->getArgOperand(3))->getZExtValue() != 0;
4448
4449 auto VolatileMemoryAccess = (IsVolatile) ? spv::MemoryAccessVolatileMask
4450 : spv::MemoryAccessMaskNone;
4451
4452 auto MemoryAccess = VolatileMemoryAccess | spv::MemoryAccessAlignedMask;
4453
4454 auto Alignment =
4455 dyn_cast<ConstantInt>(Call->getArgOperand(2))->getZExtValue();
4456
David Neto257c3892018-04-11 13:19:45 -04004457 SPIRVOperandList Ops;
4458 Ops << MkId(VMap[Call->getArgOperand(0)])
4459 << MkId(VMap[Call->getArgOperand(1)]) << MkNum(MemoryAccess)
4460 << MkNum(static_cast<uint32_t>(Alignment));
David Neto22f144c2017-06-12 14:26:21 -04004461
David Neto87846742018-04-11 17:36:22 -04004462 auto *Inst = new SPIRVInstruction(spv::OpCopyMemory, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004463
4464 SPIRVInstList.push_back(Inst);
4465
4466 break;
4467 }
4468
4469 // Nothing to do for abs with uint. Map abs's operand ID to VMap for abs
4470 // with unit.
4471 if (Callee->getName().equals("_Z3absj") ||
4472 Callee->getName().equals("_Z3absDv2_j") ||
4473 Callee->getName().equals("_Z3absDv3_j") ||
4474 Callee->getName().equals("_Z3absDv4_j")) {
4475 VMap[&I] = VMap[Call->getOperand(0)];
4476 break;
4477 }
4478
4479 // barrier is converted to OpControlBarrier
4480 if (Callee->getName().equals("__spirv_control_barrier")) {
4481 //
4482 // Generate OpControlBarrier.
4483 //
4484 // Ops[0] = Execution Scope ID
4485 // Ops[1] = Memory Scope ID
4486 // Ops[2] = Memory Semantics ID
4487 //
4488 Value *ExecutionScope = Call->getArgOperand(0);
4489 Value *MemoryScope = Call->getArgOperand(1);
4490 Value *MemorySemantics = Call->getArgOperand(2);
4491
David Neto257c3892018-04-11 13:19:45 -04004492 SPIRVOperandList Ops;
4493 Ops << MkId(VMap[ExecutionScope]) << MkId(VMap[MemoryScope])
4494 << MkId(VMap[MemorySemantics]);
David Neto22f144c2017-06-12 14:26:21 -04004495
David Neto87846742018-04-11 17:36:22 -04004496 SPIRVInstList.push_back(new SPIRVInstruction(spv::OpControlBarrier, Ops));
David Neto22f144c2017-06-12 14:26:21 -04004497 break;
4498 }
4499
4500 // memory barrier is converted to OpMemoryBarrier
4501 if (Callee->getName().equals("__spirv_memory_barrier")) {
4502 //
4503 // Generate OpMemoryBarrier.
4504 //
4505 // Ops[0] = Memory Scope ID
4506 // Ops[1] = Memory Semantics ID
4507 //
4508 SPIRVOperandList Ops;
4509
David Neto257c3892018-04-11 13:19:45 -04004510 uint32_t MemoryScopeID = VMap[Call->getArgOperand(0)];
4511 uint32_t MemorySemanticsID = VMap[Call->getArgOperand(1)];
David Neto22f144c2017-06-12 14:26:21 -04004512
David Neto257c3892018-04-11 13:19:45 -04004513 Ops << MkId(MemoryScopeID) << MkId(MemorySemanticsID);
David Neto22f144c2017-06-12 14:26:21 -04004514
David Neto87846742018-04-11 17:36:22 -04004515 auto *Inst = new SPIRVInstruction(spv::OpMemoryBarrier, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004516 SPIRVInstList.push_back(Inst);
4517 break;
4518 }
4519
4520 // isinf is converted to OpIsInf
4521 if (Callee->getName().equals("__spirv_isinff") ||
4522 Callee->getName().equals("__spirv_isinfDv2_f") ||
4523 Callee->getName().equals("__spirv_isinfDv3_f") ||
4524 Callee->getName().equals("__spirv_isinfDv4_f")) {
4525 //
4526 // Generate OpIsInf.
4527 //
4528 // Ops[0] = Result Type ID
4529 // Ops[1] = X ID
4530 //
4531 SPIRVOperandList Ops;
4532
David Neto257c3892018-04-11 13:19:45 -04004533 Ops << MkId(lookupType(I.getType()))
4534 << MkId(VMap[Call->getArgOperand(0)]);
David Neto22f144c2017-06-12 14:26:21 -04004535
4536 VMap[&I] = nextID;
4537
David Neto87846742018-04-11 17:36:22 -04004538 auto *Inst = new SPIRVInstruction(spv::OpIsInf, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004539 SPIRVInstList.push_back(Inst);
4540 break;
4541 }
4542
4543 // isnan is converted to OpIsNan
4544 if (Callee->getName().equals("__spirv_isnanf") ||
4545 Callee->getName().equals("__spirv_isnanDv2_f") ||
4546 Callee->getName().equals("__spirv_isnanDv3_f") ||
4547 Callee->getName().equals("__spirv_isnanDv4_f")) {
4548 //
4549 // Generate OpIsInf.
4550 //
4551 // Ops[0] = Result Type ID
4552 // Ops[1] = X ID
4553 //
4554 SPIRVOperandList Ops;
4555
David Neto257c3892018-04-11 13:19:45 -04004556 Ops << MkId(lookupType(I.getType()))
4557 << MkId(VMap[Call->getArgOperand(0)]);
David Neto22f144c2017-06-12 14:26:21 -04004558
4559 VMap[&I] = nextID;
4560
David Neto87846742018-04-11 17:36:22 -04004561 auto *Inst = new SPIRVInstruction(spv::OpIsNan, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004562 SPIRVInstList.push_back(Inst);
4563 break;
4564 }
4565
4566 // all is converted to OpAll
4567 if (Callee->getName().equals("__spirv_allDv2_i") ||
4568 Callee->getName().equals("__spirv_allDv3_i") ||
4569 Callee->getName().equals("__spirv_allDv4_i")) {
4570 //
4571 // Generate OpAll.
4572 //
4573 // Ops[0] = Result Type ID
4574 // Ops[1] = Vector ID
4575 //
4576 SPIRVOperandList Ops;
4577
David Neto257c3892018-04-11 13:19:45 -04004578 Ops << MkId(lookupType(I.getType()))
4579 << MkId(VMap[Call->getArgOperand(0)]);
David Neto22f144c2017-06-12 14:26:21 -04004580
4581 VMap[&I] = nextID;
4582
David Neto87846742018-04-11 17:36:22 -04004583 auto *Inst = new SPIRVInstruction(spv::OpAll, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004584 SPIRVInstList.push_back(Inst);
4585 break;
4586 }
4587
4588 // any is converted to OpAny
4589 if (Callee->getName().equals("__spirv_anyDv2_i") ||
4590 Callee->getName().equals("__spirv_anyDv3_i") ||
4591 Callee->getName().equals("__spirv_anyDv4_i")) {
4592 //
4593 // Generate OpAny.
4594 //
4595 // Ops[0] = Result Type ID
4596 // Ops[1] = Vector ID
4597 //
4598 SPIRVOperandList Ops;
4599
David Neto257c3892018-04-11 13:19:45 -04004600 Ops << MkId(lookupType(I.getType()))
4601 << MkId(VMap[Call->getArgOperand(0)]);
David Neto22f144c2017-06-12 14:26:21 -04004602
4603 VMap[&I] = nextID;
4604
David Neto87846742018-04-11 17:36:22 -04004605 auto *Inst = new SPIRVInstruction(spv::OpAny, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004606 SPIRVInstList.push_back(Inst);
4607 break;
4608 }
4609
4610 // read_image is converted to OpSampledImage and OpImageSampleExplicitLod.
4611 // Additionally, OpTypeSampledImage is generated.
4612 if (Callee->getName().equals(
4613 "_Z11read_imagef14ocl_image2d_ro11ocl_samplerDv2_f") ||
4614 Callee->getName().equals(
4615 "_Z11read_imagef14ocl_image3d_ro11ocl_samplerDv4_f")) {
4616 //
4617 // Generate OpSampledImage.
4618 //
4619 // Ops[0] = Result Type ID
4620 // Ops[1] = Image ID
4621 // Ops[2] = Sampler ID
4622 //
4623 SPIRVOperandList Ops;
4624
4625 Value *Image = Call->getArgOperand(0);
4626 Value *Sampler = Call->getArgOperand(1);
4627 Value *Coordinate = Call->getArgOperand(2);
4628
4629 TypeMapType &OpImageTypeMap = getImageTypeMap();
4630 Type *ImageTy = Image->getType()->getPointerElementType();
4631 uint32_t ImageTyID = OpImageTypeMap[ImageTy];
David Neto22f144c2017-06-12 14:26:21 -04004632 uint32_t ImageID = VMap[Image];
David Neto22f144c2017-06-12 14:26:21 -04004633 uint32_t SamplerID = VMap[Sampler];
David Neto257c3892018-04-11 13:19:45 -04004634
4635 Ops << MkId(ImageTyID) << MkId(ImageID) << MkId(SamplerID);
David Neto22f144c2017-06-12 14:26:21 -04004636
4637 uint32_t SampledImageID = nextID;
4638
David Neto87846742018-04-11 17:36:22 -04004639 auto *Inst = new SPIRVInstruction(spv::OpSampledImage, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004640 SPIRVInstList.push_back(Inst);
4641
4642 //
4643 // Generate OpImageSampleExplicitLod.
4644 //
4645 // Ops[0] = Result Type ID
4646 // Ops[1] = Sampled Image ID
4647 // Ops[2] = Coordinate ID
4648 // Ops[3] = Image Operands Type ID
4649 // Ops[4] ... Ops[n] = Operands ID
4650 //
4651 Ops.clear();
4652
David Neto257c3892018-04-11 13:19:45 -04004653 Ops << MkId(lookupType(Call->getType())) << MkId(SampledImageID)
4654 << MkId(VMap[Coordinate]) << MkNum(spv::ImageOperandsLodMask);
David Neto22f144c2017-06-12 14:26:21 -04004655
4656 Constant *CstFP0 = ConstantFP::get(Context, APFloat(0.0f));
David Neto257c3892018-04-11 13:19:45 -04004657 Ops << MkId(VMap[CstFP0]);
David Neto22f144c2017-06-12 14:26:21 -04004658
4659 VMap[&I] = nextID;
4660
David Neto87846742018-04-11 17:36:22 -04004661 Inst = new SPIRVInstruction(spv::OpImageSampleExplicitLod, nextID++, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004662 SPIRVInstList.push_back(Inst);
4663 break;
4664 }
4665
4666 // write_imagef is mapped to OpImageWrite.
4667 if (Callee->getName().equals(
4668 "_Z12write_imagef14ocl_image2d_woDv2_iDv4_f") ||
4669 Callee->getName().equals(
4670 "_Z12write_imagef14ocl_image3d_woDv4_iDv4_f")) {
4671 //
4672 // Generate OpImageWrite.
4673 //
4674 // Ops[0] = Image ID
4675 // Ops[1] = Coordinate ID
4676 // Ops[2] = Texel ID
4677 // Ops[3] = (Optional) Image Operands Type (Literal Number)
4678 // Ops[4] ... Ops[n] = (Optional) Operands ID
4679 //
4680 SPIRVOperandList Ops;
4681
4682 Value *Image = Call->getArgOperand(0);
4683 Value *Coordinate = Call->getArgOperand(1);
4684 Value *Texel = Call->getArgOperand(2);
4685
4686 uint32_t ImageID = VMap[Image];
David Neto22f144c2017-06-12 14:26:21 -04004687 uint32_t CoordinateID = VMap[Coordinate];
David Neto22f144c2017-06-12 14:26:21 -04004688 uint32_t TexelID = VMap[Texel];
David Neto257c3892018-04-11 13:19:45 -04004689 Ops << MkId(ImageID) << MkId(CoordinateID) << MkId(TexelID);
David Neto22f144c2017-06-12 14:26:21 -04004690
David Neto87846742018-04-11 17:36:22 -04004691 auto *Inst = new SPIRVInstruction(spv::OpImageWrite, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004692 SPIRVInstList.push_back(Inst);
4693 break;
4694 }
4695
David Neto5c22a252018-03-15 16:07:41 -04004696 // get_image_width is mapped to OpImageQuerySize
4697 if (Callee->getName().equals("_Z15get_image_width14ocl_image2d_ro") ||
4698 Callee->getName().equals("_Z15get_image_width14ocl_image2d_wo") ||
4699 Callee->getName().equals("_Z16get_image_height14ocl_image2d_ro") ||
4700 Callee->getName().equals("_Z16get_image_height14ocl_image2d_wo")) {
4701 //
4702 // Generate OpImageQuerySize, then pull out the right component.
4703 // Assume 2D image for now.
4704 //
4705 // Ops[0] = Image ID
4706 //
4707 // %sizes = OpImageQuerySizes %uint2 %im
4708 // %result = OpCompositeExtract %uint %sizes 0-or-1
4709 SPIRVOperandList Ops;
4710
4711 // Implement:
4712 // %sizes = OpImageQuerySizes %uint2 %im
4713 uint32_t SizesTypeID =
4714 TypeMap[VectorType::get(Type::getInt32Ty(Context), 2)];
David Neto5c22a252018-03-15 16:07:41 -04004715 Value *Image = Call->getArgOperand(0);
4716 uint32_t ImageID = VMap[Image];
David Neto257c3892018-04-11 13:19:45 -04004717 Ops << MkId(SizesTypeID) << MkId(ImageID);
David Neto5c22a252018-03-15 16:07:41 -04004718
4719 uint32_t SizesID = nextID++;
David Neto87846742018-04-11 17:36:22 -04004720 auto *QueryInst =
4721 new SPIRVInstruction(spv::OpImageQuerySize, SizesID, Ops);
David Neto5c22a252018-03-15 16:07:41 -04004722 SPIRVInstList.push_back(QueryInst);
4723
4724 // Reset value map entry since we generated an intermediate instruction.
4725 VMap[&I] = nextID;
4726
4727 // Implement:
4728 // %result = OpCompositeExtract %uint %sizes 0-or-1
4729 Ops.clear();
David Neto257c3892018-04-11 13:19:45 -04004730 Ops << MkId(TypeMap[I.getType()]) << MkId(SizesID);
David Neto5c22a252018-03-15 16:07:41 -04004731
4732 uint32_t component = Callee->getName().contains("height") ? 1 : 0;
David Neto257c3892018-04-11 13:19:45 -04004733 Ops << MkNum(component);
David Neto5c22a252018-03-15 16:07:41 -04004734
David Neto87846742018-04-11 17:36:22 -04004735 auto *Inst = new SPIRVInstruction(spv::OpCompositeExtract, nextID++, Ops);
David Neto5c22a252018-03-15 16:07:41 -04004736 SPIRVInstList.push_back(Inst);
4737 break;
4738 }
4739
David Neto22f144c2017-06-12 14:26:21 -04004740 // Call instrucion is deferred because it needs function's ID. Record
4741 // slot's location on SPIRVInstructionList.
4742 DeferredInsts.push_back(
4743 std::make_tuple(&I, --SPIRVInstList.end(), nextID++));
4744
David Neto3fbb4072017-10-16 11:28:14 -04004745 // Check whether the implementation of this call uses an extended
4746 // instruction plus one more value-producing instruction. If so, then
4747 // reserve the id for the extra value-producing slot.
4748 glsl::ExtInst EInst = getIndirectExtInstEnum(Callee->getName());
4749 if (EInst != kGlslExtInstBad) {
4750 // Reserve a spot for the extra value.
David Neto4d02a532017-09-17 12:57:44 -04004751 // Increase nextID.
David Neto22f144c2017-06-12 14:26:21 -04004752 VMap[&I] = nextID;
4753 nextID++;
4754 }
4755 break;
4756 }
4757 case Instruction::Ret: {
4758 unsigned NumOps = I.getNumOperands();
4759 if (NumOps == 0) {
4760 //
4761 // Generate OpReturn.
4762 //
David Neto87846742018-04-11 17:36:22 -04004763 SPIRVInstList.push_back(new SPIRVInstruction(spv::OpReturn, {}));
David Neto22f144c2017-06-12 14:26:21 -04004764 } else {
4765 //
4766 // Generate OpReturnValue.
4767 //
4768
4769 // Ops[0] = Return Value ID
4770 SPIRVOperandList Ops;
David Neto257c3892018-04-11 13:19:45 -04004771
4772 Ops << MkId(VMap[I.getOperand(0)]);
David Neto22f144c2017-06-12 14:26:21 -04004773
David Neto87846742018-04-11 17:36:22 -04004774 auto *Inst = new SPIRVInstruction(spv::OpReturnValue, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004775 SPIRVInstList.push_back(Inst);
4776 break;
4777 }
4778 break;
4779 }
4780 }
4781}
4782
4783void SPIRVProducerPass::GenerateFuncEpilogue() {
4784 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
4785
4786 //
4787 // Generate OpFunctionEnd
4788 //
4789
David Neto87846742018-04-11 17:36:22 -04004790 auto *Inst = new SPIRVInstruction(spv::OpFunctionEnd, {});
David Neto22f144c2017-06-12 14:26:21 -04004791 SPIRVInstList.push_back(Inst);
4792}
4793
4794bool SPIRVProducerPass::is4xi8vec(Type *Ty) const {
4795 LLVMContext &Context = Ty->getContext();
4796 if (Ty->isVectorTy()) {
4797 if (Ty->getVectorElementType() == Type::getInt8Ty(Context) &&
4798 Ty->getVectorNumElements() == 4) {
4799 return true;
4800 }
4801 }
4802
4803 return false;
4804}
4805
David Neto257c3892018-04-11 13:19:45 -04004806uint32_t SPIRVProducerPass::GetI32Zero() {
4807 if (0 == constant_i32_zero_id_) {
4808 llvm_unreachable("Requesting a 32-bit integer constant but it is not "
4809 "defined in the SPIR-V module");
4810 }
4811 return constant_i32_zero_id_;
4812}
4813
David Neto22f144c2017-06-12 14:26:21 -04004814void SPIRVProducerPass::HandleDeferredInstruction() {
4815 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
4816 ValueMapType &VMap = getValueMap();
4817 DeferredInstVecType &DeferredInsts = getDeferredInstVec();
4818
4819 for (auto DeferredInst = DeferredInsts.rbegin();
4820 DeferredInst != DeferredInsts.rend(); ++DeferredInst) {
4821 Value *Inst = std::get<0>(*DeferredInst);
4822 SPIRVInstructionList::iterator InsertPoint = ++std::get<1>(*DeferredInst);
4823 if (InsertPoint != SPIRVInstList.end()) {
4824 while ((*InsertPoint)->getOpcode() == spv::OpPhi) {
4825 ++InsertPoint;
4826 }
4827 }
4828
4829 if (BranchInst *Br = dyn_cast<BranchInst>(Inst)) {
4830 // Check whether basic block, which has this branch instruction, is loop
4831 // header or not. If it is loop header, generate OpLoopMerge and
4832 // OpBranchConditional.
4833 Function *Func = Br->getParent()->getParent();
4834 DominatorTree &DT =
4835 getAnalysis<DominatorTreeWrapperPass>(*Func).getDomTree();
4836 const LoopInfo &LI =
4837 getAnalysis<LoopInfoWrapperPass>(*Func).getLoopInfo();
4838
4839 BasicBlock *BrBB = Br->getParent();
4840 if (LI.isLoopHeader(BrBB)) {
4841 Value *ContinueBB = nullptr;
4842 Value *MergeBB = nullptr;
4843
4844 Loop *L = LI.getLoopFor(BrBB);
4845 MergeBB = L->getExitBlock();
4846 if (!MergeBB) {
4847 // StructurizeCFG pass converts CFG into triangle shape and the cfg
4848 // has regions with single entry/exit. As a result, loop should not
4849 // have multiple exits.
4850 llvm_unreachable("Loop has multiple exits???");
4851 }
4852
4853 if (L->isLoopLatch(BrBB)) {
4854 ContinueBB = BrBB;
4855 } else {
4856 // From SPIR-V spec 2.11, Continue Target must dominate that back-edge
4857 // block.
4858 BasicBlock *Header = L->getHeader();
4859 BasicBlock *Latch = L->getLoopLatch();
4860 for (BasicBlock *BB : L->blocks()) {
4861 if (BB == Header) {
4862 continue;
4863 }
4864
4865 // Check whether block dominates block with back-edge.
4866 if (DT.dominates(BB, Latch)) {
4867 ContinueBB = BB;
4868 }
4869 }
4870
4871 if (!ContinueBB) {
4872 llvm_unreachable("Wrong continue block from loop");
4873 }
4874 }
4875
4876 //
4877 // Generate OpLoopMerge.
4878 //
4879 // Ops[0] = Merge Block ID
4880 // Ops[1] = Continue Target ID
4881 // Ops[2] = Selection Control
4882 SPIRVOperandList Ops;
4883
4884 // StructurizeCFG pass already manipulated CFG. Just use false block of
4885 // branch instruction as merge block.
4886 uint32_t MergeBBID = VMap[MergeBB];
David Neto22f144c2017-06-12 14:26:21 -04004887 uint32_t ContinueBBID = VMap[ContinueBB];
David Neto257c3892018-04-11 13:19:45 -04004888 Ops << MkId(MergeBBID) << MkId(ContinueBBID)
4889 << MkNum(spv::SelectionControlMaskNone);
David Neto22f144c2017-06-12 14:26:21 -04004890
David Neto87846742018-04-11 17:36:22 -04004891 auto *MergeInst = new SPIRVInstruction(spv::OpLoopMerge, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004892 SPIRVInstList.insert(InsertPoint, MergeInst);
4893
4894 } else if (Br->isConditional()) {
4895 bool HasBackEdge = false;
4896
4897 for (unsigned i = 0; i < Br->getNumSuccessors(); i++) {
4898 if (LI.isLoopHeader(Br->getSuccessor(i))) {
4899 HasBackEdge = true;
4900 }
4901 }
4902 if (!HasBackEdge) {
4903 //
4904 // Generate OpSelectionMerge.
4905 //
4906 // Ops[0] = Merge Block ID
4907 // Ops[1] = Selection Control
4908 SPIRVOperandList Ops;
4909
4910 // StructurizeCFG pass already manipulated CFG. Just use false block
4911 // of branch instruction as merge block.
4912 uint32_t MergeBBID = VMap[Br->getSuccessor(1)];
David Neto257c3892018-04-11 13:19:45 -04004913 Ops << MkId(MergeBBID) << MkNum(spv::SelectionControlMaskNone);
David Neto22f144c2017-06-12 14:26:21 -04004914
David Neto87846742018-04-11 17:36:22 -04004915 auto *MergeInst = new SPIRVInstruction(spv::OpSelectionMerge, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004916 SPIRVInstList.insert(InsertPoint, MergeInst);
4917 }
4918 }
4919
4920 if (Br->isConditional()) {
4921 //
4922 // Generate OpBranchConditional.
4923 //
4924 // Ops[0] = Condition ID
4925 // Ops[1] = True Label ID
4926 // Ops[2] = False Label ID
4927 // Ops[3] ... Ops[n] = Branch weights (Literal Number)
4928 SPIRVOperandList Ops;
4929
4930 uint32_t CondID = VMap[Br->getCondition()];
David Neto22f144c2017-06-12 14:26:21 -04004931 uint32_t TrueBBID = VMap[Br->getSuccessor(0)];
David Neto22f144c2017-06-12 14:26:21 -04004932 uint32_t FalseBBID = VMap[Br->getSuccessor(1)];
David Neto257c3892018-04-11 13:19:45 -04004933
4934 Ops << MkId(CondID) << MkId(TrueBBID) << MkId(FalseBBID);
David Neto22f144c2017-06-12 14:26:21 -04004935
David Neto87846742018-04-11 17:36:22 -04004936 auto *BrInst = new SPIRVInstruction(spv::OpBranchConditional, Ops);
David Neto22f144c2017-06-12 14:26:21 -04004937 SPIRVInstList.insert(InsertPoint, BrInst);
4938 } else {
4939 //
4940 // Generate OpBranch.
4941 //
4942 // Ops[0] = Target Label ID
4943 SPIRVOperandList Ops;
4944
4945 uint32_t TargetID = VMap[Br->getSuccessor(0)];
David Neto257c3892018-04-11 13:19:45 -04004946 Ops << MkId(TargetID);
David Neto22f144c2017-06-12 14:26:21 -04004947
David Neto87846742018-04-11 17:36:22 -04004948 SPIRVInstList.insert(InsertPoint,
4949 new SPIRVInstruction(spv::OpBranch, Ops));
David Neto22f144c2017-06-12 14:26:21 -04004950 }
4951 } else if (PHINode *PHI = dyn_cast<PHINode>(Inst)) {
4952 //
4953 // Generate OpPhi.
4954 //
4955 // Ops[0] = Result Type ID
4956 // Ops[1] ... Ops[n] = (Variable ID, Parent ID) pairs
4957 SPIRVOperandList Ops;
4958
David Neto257c3892018-04-11 13:19:45 -04004959 Ops << MkId(lookupType(PHI->getType()));
David Neto22f144c2017-06-12 14:26:21 -04004960
David Neto22f144c2017-06-12 14:26:21 -04004961 for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
4962 uint32_t VarID = VMap[PHI->getIncomingValue(i)];
David Neto22f144c2017-06-12 14:26:21 -04004963 uint32_t ParentID = VMap[PHI->getIncomingBlock(i)];
David Neto257c3892018-04-11 13:19:45 -04004964 Ops << MkId(VarID) << MkId(ParentID);
David Neto22f144c2017-06-12 14:26:21 -04004965 }
4966
4967 SPIRVInstList.insert(
David Neto87846742018-04-11 17:36:22 -04004968 InsertPoint,
4969 new SPIRVInstruction(spv::OpPhi, std::get<2>(*DeferredInst), Ops));
David Neto22f144c2017-06-12 14:26:21 -04004970 } else if (CallInst *Call = dyn_cast<CallInst>(Inst)) {
4971 Function *Callee = Call->getCalledFunction();
David Neto3fbb4072017-10-16 11:28:14 -04004972 auto callee_name = Callee->getName();
4973 glsl::ExtInst EInst = getDirectOrIndirectExtInstEnum(callee_name);
David Neto22f144c2017-06-12 14:26:21 -04004974
4975 if (EInst) {
4976 uint32_t &ExtInstImportID = getOpExtInstImportID();
4977
4978 //
4979 // Generate OpExtInst.
4980 //
4981
4982 // Ops[0] = Result Type ID
4983 // Ops[1] = Set ID (OpExtInstImport ID)
4984 // Ops[2] = Instruction Number (Literal Number)
4985 // Ops[3] ... Ops[n] = Operand 1, ... , Operand n
4986 SPIRVOperandList Ops;
4987
David Neto862b7d82018-06-14 18:48:37 -04004988 Ops << MkId(lookupType(Call->getType())) << MkId(ExtInstImportID)
4989 << MkNum(EInst);
David Neto22f144c2017-06-12 14:26:21 -04004990
David Neto22f144c2017-06-12 14:26:21 -04004991 FunctionType *CalleeFTy = cast<FunctionType>(Call->getFunctionType());
4992 for (unsigned i = 0; i < CalleeFTy->getNumParams(); i++) {
David Neto257c3892018-04-11 13:19:45 -04004993 Ops << MkId(VMap[Call->getOperand(i)]);
David Neto22f144c2017-06-12 14:26:21 -04004994 }
4995
David Neto87846742018-04-11 17:36:22 -04004996 auto *ExtInst = new SPIRVInstruction(spv::OpExtInst,
4997 std::get<2>(*DeferredInst), Ops);
David Neto22f144c2017-06-12 14:26:21 -04004998 SPIRVInstList.insert(InsertPoint, ExtInst);
4999
David Neto3fbb4072017-10-16 11:28:14 -04005000 const auto IndirectExtInst = getIndirectExtInstEnum(callee_name);
5001 if (IndirectExtInst != kGlslExtInstBad) {
5002 // Generate one more instruction that uses the result of the extended
5003 // instruction. Its result id is one more than the id of the
5004 // extended instruction.
David Neto22f144c2017-06-12 14:26:21 -04005005 LLVMContext &Context =
5006 Call->getParent()->getParent()->getParent()->getContext();
David Neto22f144c2017-06-12 14:26:21 -04005007
David Neto3fbb4072017-10-16 11:28:14 -04005008 auto generate_extra_inst = [this, &Context, &Call, &DeferredInst,
5009 &VMap, &SPIRVInstList, &InsertPoint](
5010 spv::Op opcode, Constant *constant) {
5011 //
5012 // Generate instruction like:
5013 // result = opcode constant <extinst-result>
5014 //
5015 // Ops[0] = Result Type ID
5016 // Ops[1] = Operand 0 ;; the constant, suitably splatted
5017 // Ops[2] = Operand 1 ;; the result of the extended instruction
5018 SPIRVOperandList Ops;
David Neto22f144c2017-06-12 14:26:21 -04005019
David Neto3fbb4072017-10-16 11:28:14 -04005020 Type *resultTy = Call->getType();
David Neto257c3892018-04-11 13:19:45 -04005021 Ops << MkId(lookupType(resultTy));
David Neto3fbb4072017-10-16 11:28:14 -04005022
5023 if (auto *vectorTy = dyn_cast<VectorType>(resultTy)) {
5024 constant = ConstantVector::getSplat(
5025 static_cast<unsigned>(vectorTy->getNumElements()), constant);
5026 }
David Neto257c3892018-04-11 13:19:45 -04005027 Ops << MkId(VMap[constant]) << MkId(std::get<2>(*DeferredInst));
David Neto3fbb4072017-10-16 11:28:14 -04005028
5029 SPIRVInstList.insert(
David Neto87846742018-04-11 17:36:22 -04005030 InsertPoint, new SPIRVInstruction(
5031 opcode, std::get<2>(*DeferredInst) + 1, Ops));
David Neto3fbb4072017-10-16 11:28:14 -04005032 };
5033
5034 switch (IndirectExtInst) {
5035 case glsl::ExtInstFindUMsb: // Implementing clz
5036 generate_extra_inst(
5037 spv::OpISub, ConstantInt::get(Type::getInt32Ty(Context), 31));
5038 break;
5039 case glsl::ExtInstAcos: // Implementing acospi
5040 case glsl::ExtInstAsin: // Implementing asinpi
5041 case glsl::ExtInstAtan2: // Implementing atan2pi
5042 generate_extra_inst(
5043 spv::OpFMul,
5044 ConstantFP::get(Type::getFloatTy(Context), kOneOverPi));
5045 break;
5046
5047 default:
5048 assert(false && "internally inconsistent");
David Neto4d02a532017-09-17 12:57:44 -04005049 }
David Neto22f144c2017-06-12 14:26:21 -04005050 }
David Neto3fbb4072017-10-16 11:28:14 -04005051
David Neto862b7d82018-06-14 18:48:37 -04005052 } else if (callee_name.equals("_Z8popcounti") ||
5053 callee_name.equals("_Z8popcountj") ||
5054 callee_name.equals("_Z8popcountDv2_i") ||
5055 callee_name.equals("_Z8popcountDv3_i") ||
5056 callee_name.equals("_Z8popcountDv4_i") ||
5057 callee_name.equals("_Z8popcountDv2_j") ||
5058 callee_name.equals("_Z8popcountDv3_j") ||
5059 callee_name.equals("_Z8popcountDv4_j")) {
David Neto22f144c2017-06-12 14:26:21 -04005060 //
5061 // Generate OpBitCount
5062 //
5063 // Ops[0] = Result Type ID
5064 // Ops[1] = Base ID
David Neto257c3892018-04-11 13:19:45 -04005065 SPIRVOperandList Ops;
5066 Ops << MkId(lookupType(Call->getType()))
5067 << MkId(VMap[Call->getOperand(0)]);
David Neto22f144c2017-06-12 14:26:21 -04005068
5069 SPIRVInstList.insert(
David Neto87846742018-04-11 17:36:22 -04005070 InsertPoint, new SPIRVInstruction(spv::OpBitCount,
David Neto22f144c2017-06-12 14:26:21 -04005071 std::get<2>(*DeferredInst), Ops));
David Netoab03f432017-11-03 17:00:44 -04005072
David Neto862b7d82018-06-14 18:48:37 -04005073 } else if (callee_name.startswith(kCompositeConstructFunctionPrefix)) {
David Netoab03f432017-11-03 17:00:44 -04005074
5075 // Generate an OpCompositeConstruct
5076 SPIRVOperandList Ops;
5077
5078 // The result type.
David Neto257c3892018-04-11 13:19:45 -04005079 Ops << MkId(lookupType(Call->getType()));
David Netoab03f432017-11-03 17:00:44 -04005080
5081 for (Use &use : Call->arg_operands()) {
David Neto257c3892018-04-11 13:19:45 -04005082 Ops << MkId(VMap[use.get()]);
David Netoab03f432017-11-03 17:00:44 -04005083 }
5084
5085 SPIRVInstList.insert(
David Neto87846742018-04-11 17:36:22 -04005086 InsertPoint, new SPIRVInstruction(spv::OpCompositeConstruct,
5087 std::get<2>(*DeferredInst), Ops));
David Netoab03f432017-11-03 17:00:44 -04005088
Alan Baker202c8c72018-08-13 13:47:44 -04005089 } else if (callee_name.startswith(clspv::ResourceAccessorFunction())) {
5090
5091 // We have already mapped the call's result value to an ID.
5092 // Don't generate any code now.
5093
5094 } else if (callee_name.startswith(clspv::WorkgroupAccessorFunction())) {
David Neto862b7d82018-06-14 18:48:37 -04005095
5096 // We have already mapped the call's result value to an ID.
5097 // Don't generate any code now.
5098
David Neto22f144c2017-06-12 14:26:21 -04005099 } else {
5100 //
5101 // Generate OpFunctionCall.
5102 //
5103
5104 // Ops[0] = Result Type ID
5105 // Ops[1] = Callee Function ID
5106 // Ops[2] ... Ops[n] = Argument 0, ... , Argument n
5107 SPIRVOperandList Ops;
5108
David Neto862b7d82018-06-14 18:48:37 -04005109 Ops << MkId(lookupType(Call->getType()));
David Neto22f144c2017-06-12 14:26:21 -04005110
5111 uint32_t CalleeID = VMap[Callee];
David Neto43568eb2017-10-13 18:25:25 -04005112 if (CalleeID == 0) {
5113 errs() << "Can't translate function call. Missing builtin? "
David Neto862b7d82018-06-14 18:48:37 -04005114 << callee_name << " in: " << *Call << "\n";
David Neto43568eb2017-10-13 18:25:25 -04005115 // TODO(dneto): Can we error out? Enabling this llvm_unreachable
5116 // causes an infinite loop. Instead, go ahead and generate
5117 // the bad function call. A validator will catch the 0-Id.
5118 // llvm_unreachable("Can't translate function call");
5119 }
David Neto22f144c2017-06-12 14:26:21 -04005120
David Neto257c3892018-04-11 13:19:45 -04005121 Ops << MkId(CalleeID);
David Neto22f144c2017-06-12 14:26:21 -04005122
David Neto22f144c2017-06-12 14:26:21 -04005123 FunctionType *CalleeFTy = cast<FunctionType>(Call->getFunctionType());
5124 for (unsigned i = 0; i < CalleeFTy->getNumParams(); i++) {
David Neto257c3892018-04-11 13:19:45 -04005125 Ops << MkId(VMap[Call->getOperand(i)]);
David Neto22f144c2017-06-12 14:26:21 -04005126 }
5127
David Neto87846742018-04-11 17:36:22 -04005128 auto *CallInst = new SPIRVInstruction(spv::OpFunctionCall,
5129 std::get<2>(*DeferredInst), Ops);
David Neto22f144c2017-06-12 14:26:21 -04005130 SPIRVInstList.insert(InsertPoint, CallInst);
5131 }
5132 }
5133 }
5134}
5135
David Neto1a1a0582017-07-07 12:01:44 -04005136void SPIRVProducerPass::HandleDeferredDecorations(const DataLayout &DL) {
Alan Baker202c8c72018-08-13 13:47:44 -04005137 if (getTypesNeedingArrayStride().empty() && LocalArgSpecIds.empty()) {
David Neto1a1a0582017-07-07 12:01:44 -04005138 return;
David Netoc6f3ab22018-04-06 18:02:31 -04005139 }
David Neto1a1a0582017-07-07 12:01:44 -04005140
5141 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
David Neto1a1a0582017-07-07 12:01:44 -04005142
5143 // Find an iterator pointing just past the last decoration.
5144 bool seen_decorations = false;
5145 auto DecoInsertPoint =
5146 std::find_if(SPIRVInstList.begin(), SPIRVInstList.end(),
5147 [&seen_decorations](SPIRVInstruction *Inst) -> bool {
5148 const bool is_decoration =
5149 Inst->getOpcode() == spv::OpDecorate ||
5150 Inst->getOpcode() == spv::OpMemberDecorate;
5151 if (is_decoration) {
5152 seen_decorations = true;
5153 return false;
5154 } else {
5155 return seen_decorations;
5156 }
5157 });
5158
David Netoc6f3ab22018-04-06 18:02:31 -04005159 // Insert ArrayStride decorations on pointer types, due to OpPtrAccessChain
5160 // instructions we generated earlier.
David Neto85082642018-03-24 06:55:20 -07005161 for (auto *type : getTypesNeedingArrayStride()) {
5162 Type *elemTy = nullptr;
5163 if (auto *ptrTy = dyn_cast<PointerType>(type)) {
5164 elemTy = ptrTy->getElementType();
5165 } else if (auto* arrayTy = dyn_cast<ArrayType>(type)) {
5166 elemTy = arrayTy->getArrayElementType();
5167 } else if (auto* seqTy = dyn_cast<SequentialType>(type)) {
5168 elemTy = seqTy->getSequentialElementType();
5169 } else {
5170 errs() << "Unhandled strided type " << *type << "\n";
5171 llvm_unreachable("Unhandled strided type");
5172 }
David Neto1a1a0582017-07-07 12:01:44 -04005173
5174 // Ops[0] = Target ID
5175 // Ops[1] = Decoration (ArrayStride)
5176 // Ops[2] = Stride number (Literal Number)
5177 SPIRVOperandList Ops;
5178
David Neto85082642018-03-24 06:55:20 -07005179 // Same as DL.getIndexedOffsetInType( elemTy, { 1 } );
Neil Henning39672102017-09-29 14:33:13 +01005180 const uint32_t stride = static_cast<uint32_t>(DL.getTypeAllocSize(elemTy));
David Neto257c3892018-04-11 13:19:45 -04005181
5182 Ops << MkId(lookupType(type)) << MkNum(spv::DecorationArrayStride)
5183 << MkNum(stride);
David Neto1a1a0582017-07-07 12:01:44 -04005184
David Neto87846742018-04-11 17:36:22 -04005185 auto *DecoInst = new SPIRVInstruction(spv::OpDecorate, Ops);
David Neto1a1a0582017-07-07 12:01:44 -04005186 SPIRVInstList.insert(DecoInsertPoint, DecoInst);
5187 }
David Netoc6f3ab22018-04-06 18:02:31 -04005188
5189 // Emit SpecId decorations targeting the array size value.
Alan Baker202c8c72018-08-13 13:47:44 -04005190 for (auto spec_id = clspv::FirstLocalSpecId(); spec_id < max_local_spec_id_;
5191 ++spec_id) {
5192 LocalArgInfo& arg_info = LocalSpecIdInfoMap[spec_id];
David Netoc6f3ab22018-04-06 18:02:31 -04005193 SPIRVOperandList Ops;
5194 Ops << MkId(arg_info.array_size_id) << MkNum(spv::DecorationSpecId)
5195 << MkNum(arg_info.spec_id);
5196 SPIRVInstList.insert(DecoInsertPoint,
David Neto87846742018-04-11 17:36:22 -04005197 new SPIRVInstruction(spv::OpDecorate, Ops));
David Netoc6f3ab22018-04-06 18:02:31 -04005198 }
David Neto1a1a0582017-07-07 12:01:44 -04005199}
5200
David Neto22f144c2017-06-12 14:26:21 -04005201glsl::ExtInst SPIRVProducerPass::getExtInstEnum(StringRef Name) {
5202 return StringSwitch<glsl::ExtInst>(Name)
5203 .Case("_Z3absi", glsl::ExtInst::ExtInstSAbs)
5204 .Case("_Z3absDv2_i", glsl::ExtInst::ExtInstSAbs)
5205 .Case("_Z3absDv3_i", glsl::ExtInst::ExtInstSAbs)
5206 .Case("_Z3absDv4_i", glsl::ExtInst::ExtInstSAbs)
5207 .Case("_Z5clampiii", glsl::ExtInst::ExtInstSClamp)
5208 .Case("_Z5clampDv2_iS_S_", glsl::ExtInst::ExtInstSClamp)
5209 .Case("_Z5clampDv3_iS_S_", glsl::ExtInst::ExtInstSClamp)
5210 .Case("_Z5clampDv4_iS_S_", glsl::ExtInst::ExtInstSClamp)
5211 .Case("_Z5clampjjj", glsl::ExtInst::ExtInstUClamp)
5212 .Case("_Z5clampDv2_jS_S_", glsl::ExtInst::ExtInstUClamp)
5213 .Case("_Z5clampDv3_jS_S_", glsl::ExtInst::ExtInstUClamp)
5214 .Case("_Z5clampDv4_jS_S_", glsl::ExtInst::ExtInstUClamp)
5215 .Case("_Z5clampfff", glsl::ExtInst::ExtInstFClamp)
5216 .Case("_Z5clampDv2_fS_S_", glsl::ExtInst::ExtInstFClamp)
5217 .Case("_Z5clampDv3_fS_S_", glsl::ExtInst::ExtInstFClamp)
5218 .Case("_Z5clampDv4_fS_S_", glsl::ExtInst::ExtInstFClamp)
David Neto22f144c2017-06-12 14:26:21 -04005219 .Case("_Z3maxii", glsl::ExtInst::ExtInstSMax)
5220 .Case("_Z3maxDv2_iS_", glsl::ExtInst::ExtInstSMax)
5221 .Case("_Z3maxDv3_iS_", glsl::ExtInst::ExtInstSMax)
5222 .Case("_Z3maxDv4_iS_", glsl::ExtInst::ExtInstSMax)
5223 .Case("_Z3maxjj", glsl::ExtInst::ExtInstUMax)
5224 .Case("_Z3maxDv2_jS_", glsl::ExtInst::ExtInstUMax)
5225 .Case("_Z3maxDv3_jS_", glsl::ExtInst::ExtInstUMax)
5226 .Case("_Z3maxDv4_jS_", glsl::ExtInst::ExtInstUMax)
5227 .Case("_Z3maxff", glsl::ExtInst::ExtInstFMax)
5228 .Case("_Z3maxDv2_fS_", glsl::ExtInst::ExtInstFMax)
5229 .Case("_Z3maxDv3_fS_", glsl::ExtInst::ExtInstFMax)
5230 .Case("_Z3maxDv4_fS_", glsl::ExtInst::ExtInstFMax)
5231 .StartsWith("_Z4fmax", glsl::ExtInst::ExtInstFMax)
5232 .Case("_Z3minii", glsl::ExtInst::ExtInstSMin)
5233 .Case("_Z3minDv2_iS_", glsl::ExtInst::ExtInstSMin)
5234 .Case("_Z3minDv3_iS_", glsl::ExtInst::ExtInstSMin)
5235 .Case("_Z3minDv4_iS_", glsl::ExtInst::ExtInstSMin)
5236 .Case("_Z3minjj", glsl::ExtInst::ExtInstUMin)
5237 .Case("_Z3minDv2_jS_", glsl::ExtInst::ExtInstUMin)
5238 .Case("_Z3minDv3_jS_", glsl::ExtInst::ExtInstUMin)
5239 .Case("_Z3minDv4_jS_", glsl::ExtInst::ExtInstUMin)
5240 .Case("_Z3minff", glsl::ExtInst::ExtInstFMin)
5241 .Case("_Z3minDv2_fS_", glsl::ExtInst::ExtInstFMin)
5242 .Case("_Z3minDv3_fS_", glsl::ExtInst::ExtInstFMin)
5243 .Case("_Z3minDv4_fS_", glsl::ExtInst::ExtInstFMin)
5244 .StartsWith("_Z4fmin", glsl::ExtInst::ExtInstFMin)
5245 .StartsWith("_Z7degrees", glsl::ExtInst::ExtInstDegrees)
5246 .StartsWith("_Z7radians", glsl::ExtInst::ExtInstRadians)
5247 .StartsWith("_Z3mix", glsl::ExtInst::ExtInstFMix)
5248 .StartsWith("_Z4acos", glsl::ExtInst::ExtInstAcos)
5249 .StartsWith("_Z5acosh", glsl::ExtInst::ExtInstAcosh)
5250 .StartsWith("_Z4asin", glsl::ExtInst::ExtInstAsin)
5251 .StartsWith("_Z5asinh", glsl::ExtInst::ExtInstAsinh)
5252 .StartsWith("_Z4atan", glsl::ExtInst::ExtInstAtan)
5253 .StartsWith("_Z5atan2", glsl::ExtInst::ExtInstAtan2)
5254 .StartsWith("_Z5atanh", glsl::ExtInst::ExtInstAtanh)
5255 .StartsWith("_Z4ceil", glsl::ExtInst::ExtInstCeil)
5256 .StartsWith("_Z3sin", glsl::ExtInst::ExtInstSin)
5257 .StartsWith("_Z4sinh", glsl::ExtInst::ExtInstSinh)
5258 .StartsWith("_Z8half_sin", glsl::ExtInst::ExtInstSin)
5259 .StartsWith("_Z10native_sin", glsl::ExtInst::ExtInstSin)
5260 .StartsWith("_Z3cos", glsl::ExtInst::ExtInstCos)
5261 .StartsWith("_Z4cosh", glsl::ExtInst::ExtInstCosh)
5262 .StartsWith("_Z8half_cos", glsl::ExtInst::ExtInstCos)
5263 .StartsWith("_Z10native_cos", glsl::ExtInst::ExtInstCos)
5264 .StartsWith("_Z3tan", glsl::ExtInst::ExtInstTan)
5265 .StartsWith("_Z4tanh", glsl::ExtInst::ExtInstTanh)
5266 .StartsWith("_Z8half_tan", glsl::ExtInst::ExtInstTan)
5267 .StartsWith("_Z10native_tan", glsl::ExtInst::ExtInstTan)
5268 .StartsWith("_Z3exp", glsl::ExtInst::ExtInstExp)
5269 .StartsWith("_Z8half_exp", glsl::ExtInst::ExtInstExp)
5270 .StartsWith("_Z10native_exp", glsl::ExtInst::ExtInstExp)
5271 .StartsWith("_Z4exp2", glsl::ExtInst::ExtInstExp2)
5272 .StartsWith("_Z9half_exp2", glsl::ExtInst::ExtInstExp2)
5273 .StartsWith("_Z11native_exp2", glsl::ExtInst::ExtInstExp2)
5274 .StartsWith("_Z3log", glsl::ExtInst::ExtInstLog)
5275 .StartsWith("_Z8half_log", glsl::ExtInst::ExtInstLog)
5276 .StartsWith("_Z10native_log", glsl::ExtInst::ExtInstLog)
5277 .StartsWith("_Z4log2", glsl::ExtInst::ExtInstLog2)
5278 .StartsWith("_Z9half_log2", glsl::ExtInst::ExtInstLog2)
5279 .StartsWith("_Z11native_log2", glsl::ExtInst::ExtInstLog2)
5280 .StartsWith("_Z4fabs", glsl::ExtInst::ExtInstFAbs)
5281 .StartsWith("_Z5floor", glsl::ExtInst::ExtInstFloor)
5282 .StartsWith("_Z5ldexp", glsl::ExtInst::ExtInstLdexp)
5283 .StartsWith("_Z3pow", glsl::ExtInst::ExtInstPow)
5284 .StartsWith("_Z4powr", glsl::ExtInst::ExtInstPow)
5285 .StartsWith("_Z9half_powr", glsl::ExtInst::ExtInstPow)
5286 .StartsWith("_Z11native_powr", glsl::ExtInst::ExtInstPow)
5287 .StartsWith("_Z5round", glsl::ExtInst::ExtInstRound)
5288 .StartsWith("_Z4sqrt", glsl::ExtInst::ExtInstSqrt)
5289 .StartsWith("_Z9half_sqrt", glsl::ExtInst::ExtInstSqrt)
5290 .StartsWith("_Z11native_sqrt", glsl::ExtInst::ExtInstSqrt)
5291 .StartsWith("_Z5rsqrt", glsl::ExtInst::ExtInstInverseSqrt)
5292 .StartsWith("_Z10half_rsqrt", glsl::ExtInst::ExtInstInverseSqrt)
5293 .StartsWith("_Z12native_rsqrt", glsl::ExtInst::ExtInstInverseSqrt)
5294 .StartsWith("_Z5trunc", glsl::ExtInst::ExtInstTrunc)
5295 .StartsWith("_Z5frexp", glsl::ExtInst::ExtInstFrexp)
5296 .StartsWith("_Z4sign", glsl::ExtInst::ExtInstFSign)
5297 .StartsWith("_Z6length", glsl::ExtInst::ExtInstLength)
5298 .StartsWith("_Z8distance", glsl::ExtInst::ExtInstDistance)
David Netoe9a03512017-10-16 10:08:27 -04005299 .StartsWith("_Z4step", glsl::ExtInst::ExtInstStep)
David Neto22f144c2017-06-12 14:26:21 -04005300 .Case("_Z5crossDv3_fS_", glsl::ExtInst::ExtInstCross)
5301 .StartsWith("_Z9normalize", glsl::ExtInst::ExtInstNormalize)
5302 .StartsWith("llvm.fmuladd.", glsl::ExtInst::ExtInstFma)
5303 .Case("spirv.unpack.v2f16", glsl::ExtInst::ExtInstUnpackHalf2x16)
5304 .Case("spirv.pack.v2f16", glsl::ExtInst::ExtInstPackHalf2x16)
David Neto62653202017-10-16 19:05:18 -04005305 .Case("clspv.fract.f", glsl::ExtInst::ExtInstFract)
5306 .Case("clspv.fract.v2f", glsl::ExtInst::ExtInstFract)
5307 .Case("clspv.fract.v3f", glsl::ExtInst::ExtInstFract)
5308 .Case("clspv.fract.v4f", glsl::ExtInst::ExtInstFract)
David Neto3fbb4072017-10-16 11:28:14 -04005309 .Default(kGlslExtInstBad);
5310}
5311
5312glsl::ExtInst SPIRVProducerPass::getIndirectExtInstEnum(StringRef Name) {
5313 // Check indirect cases.
5314 return StringSwitch<glsl::ExtInst>(Name)
5315 .StartsWith("_Z3clz", glsl::ExtInst::ExtInstFindUMsb)
5316 // Use exact match on float arg because these need a multiply
5317 // of a constant of the right floating point type.
5318 .Case("_Z6acospif", glsl::ExtInst::ExtInstAcos)
5319 .Case("_Z6acospiDv2_f", glsl::ExtInst::ExtInstAcos)
5320 .Case("_Z6acospiDv3_f", glsl::ExtInst::ExtInstAcos)
5321 .Case("_Z6acospiDv4_f", glsl::ExtInst::ExtInstAcos)
5322 .Case("_Z6asinpif", glsl::ExtInst::ExtInstAsin)
5323 .Case("_Z6asinpiDv2_f", glsl::ExtInst::ExtInstAsin)
5324 .Case("_Z6asinpiDv3_f", glsl::ExtInst::ExtInstAsin)
5325 .Case("_Z6asinpiDv4_f", glsl::ExtInst::ExtInstAsin)
5326 .Case("_Z7atan2piff", glsl::ExtInst::ExtInstAtan2)
5327 .Case("_Z7atan2piDv2_fS_", glsl::ExtInst::ExtInstAtan2)
5328 .Case("_Z7atan2piDv3_fS_", glsl::ExtInst::ExtInstAtan2)
5329 .Case("_Z7atan2piDv4_fS_", glsl::ExtInst::ExtInstAtan2)
5330 .Default(kGlslExtInstBad);
5331}
5332
5333glsl::ExtInst SPIRVProducerPass::getDirectOrIndirectExtInstEnum(StringRef Name) {
5334 auto direct = getExtInstEnum(Name);
5335 if (direct != kGlslExtInstBad)
5336 return direct;
5337 return getIndirectExtInstEnum(Name);
David Neto22f144c2017-06-12 14:26:21 -04005338}
5339
5340void SPIRVProducerPass::PrintResID(SPIRVInstruction *Inst) {
5341 out << "%" << Inst->getResultID();
5342}
5343
5344void SPIRVProducerPass::PrintOpcode(SPIRVInstruction *Inst) {
5345 spv::Op Opcode = static_cast<spv::Op>(Inst->getOpcode());
5346 out << "\t" << spv::getOpName(Opcode);
5347}
5348
5349void SPIRVProducerPass::PrintOperand(SPIRVOperand *Op) {
5350 SPIRVOperandType OpTy = Op->getType();
5351 switch (OpTy) {
5352 default: {
5353 llvm_unreachable("Unsupported SPIRV Operand Type???");
5354 break;
5355 }
5356 case SPIRVOperandType::NUMBERID: {
5357 out << "%" << Op->getNumID();
5358 break;
5359 }
5360 case SPIRVOperandType::LITERAL_STRING: {
5361 out << "\"" << Op->getLiteralStr() << "\"";
5362 break;
5363 }
5364 case SPIRVOperandType::LITERAL_INTEGER: {
5365 // TODO: Handle LiteralNum carefully.
5366 for (auto Word : Op->getLiteralNum()) {
5367 out << Word;
5368 }
5369 break;
5370 }
5371 case SPIRVOperandType::LITERAL_FLOAT: {
5372 // TODO: Handle LiteralNum carefully.
5373 for (auto Word : Op->getLiteralNum()) {
5374 APFloat APF = APFloat(APFloat::IEEEsingle(), APInt(32, Word));
5375 SmallString<8> Str;
5376 APF.toString(Str, 6, 2);
5377 out << Str;
5378 }
5379 break;
5380 }
5381 }
5382}
5383
5384void SPIRVProducerPass::PrintCapability(SPIRVOperand *Op) {
5385 spv::Capability Cap = static_cast<spv::Capability>(Op->getNumID());
5386 out << spv::getCapabilityName(Cap);
5387}
5388
5389void SPIRVProducerPass::PrintExtInst(SPIRVOperand *Op) {
5390 auto LiteralNum = Op->getLiteralNum();
5391 glsl::ExtInst Ext = static_cast<glsl::ExtInst>(LiteralNum[0]);
5392 out << glsl::getExtInstName(Ext);
5393}
5394
5395void SPIRVProducerPass::PrintAddrModel(SPIRVOperand *Op) {
5396 spv::AddressingModel AddrModel =
5397 static_cast<spv::AddressingModel>(Op->getNumID());
5398 out << spv::getAddressingModelName(AddrModel);
5399}
5400
5401void SPIRVProducerPass::PrintMemModel(SPIRVOperand *Op) {
5402 spv::MemoryModel MemModel = static_cast<spv::MemoryModel>(Op->getNumID());
5403 out << spv::getMemoryModelName(MemModel);
5404}
5405
5406void SPIRVProducerPass::PrintExecModel(SPIRVOperand *Op) {
5407 spv::ExecutionModel ExecModel =
5408 static_cast<spv::ExecutionModel>(Op->getNumID());
5409 out << spv::getExecutionModelName(ExecModel);
5410}
5411
5412void SPIRVProducerPass::PrintExecMode(SPIRVOperand *Op) {
5413 spv::ExecutionMode ExecMode = static_cast<spv::ExecutionMode>(Op->getNumID());
5414 out << spv::getExecutionModeName(ExecMode);
5415}
5416
5417void SPIRVProducerPass::PrintSourceLanguage(SPIRVOperand *Op) {
5418 spv::SourceLanguage SourceLang = static_cast<spv::SourceLanguage>(Op->getNumID());
5419 out << spv::getSourceLanguageName(SourceLang);
5420}
5421
5422void SPIRVProducerPass::PrintFuncCtrl(SPIRVOperand *Op) {
5423 spv::FunctionControlMask FuncCtrl =
5424 static_cast<spv::FunctionControlMask>(Op->getNumID());
5425 out << spv::getFunctionControlName(FuncCtrl);
5426}
5427
5428void SPIRVProducerPass::PrintStorageClass(SPIRVOperand *Op) {
5429 spv::StorageClass StClass = static_cast<spv::StorageClass>(Op->getNumID());
5430 out << getStorageClassName(StClass);
5431}
5432
5433void SPIRVProducerPass::PrintDecoration(SPIRVOperand *Op) {
5434 spv::Decoration Deco = static_cast<spv::Decoration>(Op->getNumID());
5435 out << getDecorationName(Deco);
5436}
5437
5438void SPIRVProducerPass::PrintBuiltIn(SPIRVOperand *Op) {
5439 spv::BuiltIn BIn = static_cast<spv::BuiltIn>(Op->getNumID());
5440 out << getBuiltInName(BIn);
5441}
5442
5443void SPIRVProducerPass::PrintSelectionControl(SPIRVOperand *Op) {
5444 spv::SelectionControlMask BIn =
5445 static_cast<spv::SelectionControlMask>(Op->getNumID());
5446 out << getSelectionControlName(BIn);
5447}
5448
5449void SPIRVProducerPass::PrintLoopControl(SPIRVOperand *Op) {
5450 spv::LoopControlMask BIn = static_cast<spv::LoopControlMask>(Op->getNumID());
5451 out << getLoopControlName(BIn);
5452}
5453
5454void SPIRVProducerPass::PrintDimensionality(SPIRVOperand *Op) {
5455 spv::Dim DIM = static_cast<spv::Dim>(Op->getNumID());
5456 out << getDimName(DIM);
5457}
5458
5459void SPIRVProducerPass::PrintImageFormat(SPIRVOperand *Op) {
5460 spv::ImageFormat Format = static_cast<spv::ImageFormat>(Op->getNumID());
5461 out << getImageFormatName(Format);
5462}
5463
5464void SPIRVProducerPass::PrintMemoryAccess(SPIRVOperand *Op) {
5465 out << spv::getMemoryAccessName(
5466 static_cast<spv::MemoryAccessMask>(Op->getNumID()));
5467}
5468
5469void SPIRVProducerPass::PrintImageOperandsType(SPIRVOperand *Op) {
5470 auto LiteralNum = Op->getLiteralNum();
5471 spv::ImageOperandsMask Type =
5472 static_cast<spv::ImageOperandsMask>(LiteralNum[0]);
5473 out << getImageOperandsName(Type);
5474}
5475
5476void SPIRVProducerPass::WriteSPIRVAssembly() {
5477 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
5478
5479 for (auto Inst : SPIRVInstList) {
5480 SPIRVOperandList Ops = Inst->getOperands();
5481 spv::Op Opcode = static_cast<spv::Op>(Inst->getOpcode());
5482
5483 switch (Opcode) {
5484 default: {
5485 llvm_unreachable("Unsupported SPIRV instruction");
5486 break;
5487 }
5488 case spv::OpCapability: {
5489 // Ops[0] = Capability
5490 PrintOpcode(Inst);
5491 out << " ";
5492 PrintCapability(Ops[0]);
5493 out << "\n";
5494 break;
5495 }
5496 case spv::OpMemoryModel: {
5497 // Ops[0] = Addressing Model
5498 // Ops[1] = Memory Model
5499 PrintOpcode(Inst);
5500 out << " ";
5501 PrintAddrModel(Ops[0]);
5502 out << " ";
5503 PrintMemModel(Ops[1]);
5504 out << "\n";
5505 break;
5506 }
5507 case spv::OpEntryPoint: {
5508 // Ops[0] = Execution Model
5509 // Ops[1] = EntryPoint ID
5510 // Ops[2] = Name (Literal String)
5511 // Ops[3] ... Ops[n] = Interface ID
5512 PrintOpcode(Inst);
5513 out << " ";
5514 PrintExecModel(Ops[0]);
5515 for (uint32_t i = 1; i < Ops.size(); i++) {
5516 out << " ";
5517 PrintOperand(Ops[i]);
5518 }
5519 out << "\n";
5520 break;
5521 }
5522 case spv::OpExecutionMode: {
5523 // Ops[0] = Entry Point ID
5524 // Ops[1] = Execution Mode
5525 // Ops[2] ... Ops[n] = Optional literals according to Execution Mode
5526 PrintOpcode(Inst);
5527 out << " ";
5528 PrintOperand(Ops[0]);
5529 out << " ";
5530 PrintExecMode(Ops[1]);
5531 for (uint32_t i = 2; i < Ops.size(); i++) {
5532 out << " ";
5533 PrintOperand(Ops[i]);
5534 }
5535 out << "\n";
5536 break;
5537 }
5538 case spv::OpSource: {
5539 // Ops[0] = SourceLanguage ID
5540 // Ops[1] = Version (LiteralNum)
5541 PrintOpcode(Inst);
5542 out << " ";
5543 PrintSourceLanguage(Ops[0]);
5544 out << " ";
5545 PrintOperand(Ops[1]);
5546 out << "\n";
5547 break;
5548 }
5549 case spv::OpDecorate: {
5550 // Ops[0] = Target ID
5551 // Ops[1] = Decoration (Block or BufferBlock)
5552 // Ops[2] ... Ops[n] = Optional literals according to Decoration
5553 PrintOpcode(Inst);
5554 out << " ";
5555 PrintOperand(Ops[0]);
5556 out << " ";
5557 PrintDecoration(Ops[1]);
5558 // Handle BuiltIn OpDecorate specially.
5559 if (Ops[1]->getNumID() == spv::DecorationBuiltIn) {
5560 out << " ";
5561 PrintBuiltIn(Ops[2]);
5562 } else {
5563 for (uint32_t i = 2; i < Ops.size(); i++) {
5564 out << " ";
5565 PrintOperand(Ops[i]);
5566 }
5567 }
5568 out << "\n";
5569 break;
5570 }
5571 case spv::OpMemberDecorate: {
5572 // Ops[0] = Structure Type ID
5573 // Ops[1] = Member Index(Literal Number)
5574 // Ops[2] = Decoration
5575 // Ops[3] ... Ops[n] = Optional literals according to Decoration
5576 PrintOpcode(Inst);
5577 out << " ";
5578 PrintOperand(Ops[0]);
5579 out << " ";
5580 PrintOperand(Ops[1]);
5581 out << " ";
5582 PrintDecoration(Ops[2]);
5583 for (uint32_t i = 3; i < Ops.size(); i++) {
5584 out << " ";
5585 PrintOperand(Ops[i]);
5586 }
5587 out << "\n";
5588 break;
5589 }
5590 case spv::OpTypePointer: {
5591 // Ops[0] = Storage Class
5592 // Ops[1] = Element Type ID
5593 PrintResID(Inst);
5594 out << " = ";
5595 PrintOpcode(Inst);
5596 out << " ";
5597 PrintStorageClass(Ops[0]);
5598 out << " ";
5599 PrintOperand(Ops[1]);
5600 out << "\n";
5601 break;
5602 }
5603 case spv::OpTypeImage: {
5604 // Ops[0] = Sampled Type ID
5605 // Ops[1] = Dim ID
5606 // Ops[2] = Depth (Literal Number)
5607 // Ops[3] = Arrayed (Literal Number)
5608 // Ops[4] = MS (Literal Number)
5609 // Ops[5] = Sampled (Literal Number)
5610 // Ops[6] = Image Format ID
5611 PrintResID(Inst);
5612 out << " = ";
5613 PrintOpcode(Inst);
5614 out << " ";
5615 PrintOperand(Ops[0]);
5616 out << " ";
5617 PrintDimensionality(Ops[1]);
5618 out << " ";
5619 PrintOperand(Ops[2]);
5620 out << " ";
5621 PrintOperand(Ops[3]);
5622 out << " ";
5623 PrintOperand(Ops[4]);
5624 out << " ";
5625 PrintOperand(Ops[5]);
5626 out << " ";
5627 PrintImageFormat(Ops[6]);
5628 out << "\n";
5629 break;
5630 }
5631 case spv::OpFunction: {
5632 // Ops[0] : Result Type ID
5633 // Ops[1] : Function Control
5634 // Ops[2] : Function Type ID
5635 PrintResID(Inst);
5636 out << " = ";
5637 PrintOpcode(Inst);
5638 out << " ";
5639 PrintOperand(Ops[0]);
5640 out << " ";
5641 PrintFuncCtrl(Ops[1]);
5642 out << " ";
5643 PrintOperand(Ops[2]);
5644 out << "\n";
5645 break;
5646 }
5647 case spv::OpSelectionMerge: {
5648 // Ops[0] = Merge Block ID
5649 // Ops[1] = Selection Control
5650 PrintOpcode(Inst);
5651 out << " ";
5652 PrintOperand(Ops[0]);
5653 out << " ";
5654 PrintSelectionControl(Ops[1]);
5655 out << "\n";
5656 break;
5657 }
5658 case spv::OpLoopMerge: {
5659 // Ops[0] = Merge Block ID
5660 // Ops[1] = Continue Target ID
5661 // Ops[2] = Selection Control
5662 PrintOpcode(Inst);
5663 out << " ";
5664 PrintOperand(Ops[0]);
5665 out << " ";
5666 PrintOperand(Ops[1]);
5667 out << " ";
5668 PrintLoopControl(Ops[2]);
5669 out << "\n";
5670 break;
5671 }
5672 case spv::OpImageSampleExplicitLod: {
5673 // Ops[0] = Result Type ID
5674 // Ops[1] = Sampled Image ID
5675 // Ops[2] = Coordinate ID
5676 // Ops[3] = Image Operands Type ID
5677 // Ops[4] ... Ops[n] = Operands ID
5678 PrintResID(Inst);
5679 out << " = ";
5680 PrintOpcode(Inst);
5681 for (uint32_t i = 0; i < 3; i++) {
5682 out << " ";
5683 PrintOperand(Ops[i]);
5684 }
5685 out << " ";
5686 PrintImageOperandsType(Ops[3]);
5687 for (uint32_t i = 4; i < Ops.size(); i++) {
5688 out << " ";
5689 PrintOperand(Ops[i]);
5690 }
5691 out << "\n";
5692 break;
5693 }
5694 case spv::OpVariable: {
5695 // Ops[0] : Result Type ID
5696 // Ops[1] : Storage Class
5697 // Ops[2] ... Ops[n] = Initializer IDs
5698 PrintResID(Inst);
5699 out << " = ";
5700 PrintOpcode(Inst);
5701 out << " ";
5702 PrintOperand(Ops[0]);
5703 out << " ";
5704 PrintStorageClass(Ops[1]);
5705 for (uint32_t i = 2; i < Ops.size(); i++) {
5706 out << " ";
5707 PrintOperand(Ops[i]);
5708 }
5709 out << "\n";
5710 break;
5711 }
5712 case spv::OpExtInst: {
5713 // Ops[0] = Result Type ID
5714 // Ops[1] = Set ID (OpExtInstImport ID)
5715 // Ops[2] = Instruction Number (Literal Number)
5716 // Ops[3] ... Ops[n] = Operand 1, ... , Operand n
5717 PrintResID(Inst);
5718 out << " = ";
5719 PrintOpcode(Inst);
5720 out << " ";
5721 PrintOperand(Ops[0]);
5722 out << " ";
5723 PrintOperand(Ops[1]);
5724 out << " ";
5725 PrintExtInst(Ops[2]);
5726 for (uint32_t i = 3; i < Ops.size(); i++) {
5727 out << " ";
5728 PrintOperand(Ops[i]);
5729 }
5730 out << "\n";
5731 break;
5732 }
5733 case spv::OpCopyMemory: {
5734 // Ops[0] = Addressing Model
5735 // Ops[1] = Memory Model
5736 PrintOpcode(Inst);
5737 out << " ";
5738 PrintOperand(Ops[0]);
5739 out << " ";
5740 PrintOperand(Ops[1]);
5741 out << " ";
5742 PrintMemoryAccess(Ops[2]);
5743 out << " ";
5744 PrintOperand(Ops[3]);
5745 out << "\n";
5746 break;
5747 }
5748 case spv::OpExtension:
5749 case spv::OpControlBarrier:
5750 case spv::OpMemoryBarrier:
5751 case spv::OpBranch:
5752 case spv::OpBranchConditional:
5753 case spv::OpStore:
5754 case spv::OpImageWrite:
5755 case spv::OpReturnValue:
5756 case spv::OpReturn:
5757 case spv::OpFunctionEnd: {
5758 PrintOpcode(Inst);
5759 for (uint32_t i = 0; i < Ops.size(); i++) {
5760 out << " ";
5761 PrintOperand(Ops[i]);
5762 }
5763 out << "\n";
5764 break;
5765 }
5766 case spv::OpExtInstImport:
5767 case spv::OpTypeRuntimeArray:
5768 case spv::OpTypeStruct:
5769 case spv::OpTypeSampler:
5770 case spv::OpTypeSampledImage:
5771 case spv::OpTypeInt:
5772 case spv::OpTypeFloat:
5773 case spv::OpTypeArray:
5774 case spv::OpTypeVector:
5775 case spv::OpTypeBool:
5776 case spv::OpTypeVoid:
5777 case spv::OpTypeFunction:
5778 case spv::OpFunctionParameter:
5779 case spv::OpLabel:
5780 case spv::OpPhi:
5781 case spv::OpLoad:
5782 case spv::OpSelect:
5783 case spv::OpAccessChain:
5784 case spv::OpPtrAccessChain:
5785 case spv::OpInBoundsAccessChain:
5786 case spv::OpUConvert:
5787 case spv::OpSConvert:
5788 case spv::OpConvertFToU:
5789 case spv::OpConvertFToS:
5790 case spv::OpConvertUToF:
5791 case spv::OpConvertSToF:
5792 case spv::OpFConvert:
5793 case spv::OpConvertPtrToU:
5794 case spv::OpConvertUToPtr:
5795 case spv::OpBitcast:
5796 case spv::OpIAdd:
5797 case spv::OpFAdd:
5798 case spv::OpISub:
5799 case spv::OpFSub:
5800 case spv::OpIMul:
5801 case spv::OpFMul:
5802 case spv::OpUDiv:
5803 case spv::OpSDiv:
5804 case spv::OpFDiv:
5805 case spv::OpUMod:
5806 case spv::OpSRem:
5807 case spv::OpFRem:
5808 case spv::OpBitwiseOr:
5809 case spv::OpBitwiseXor:
5810 case spv::OpBitwiseAnd:
David Netoa394f392017-08-26 20:45:29 -04005811 case spv::OpNot:
David Neto22f144c2017-06-12 14:26:21 -04005812 case spv::OpShiftLeftLogical:
5813 case spv::OpShiftRightLogical:
5814 case spv::OpShiftRightArithmetic:
5815 case spv::OpBitCount:
David Netoab03f432017-11-03 17:00:44 -04005816 case spv::OpCompositeConstruct:
David Neto22f144c2017-06-12 14:26:21 -04005817 case spv::OpCompositeExtract:
5818 case spv::OpVectorExtractDynamic:
5819 case spv::OpCompositeInsert:
David Neto0a2f98d2017-09-15 19:38:40 -04005820 case spv::OpCopyObject:
David Neto22f144c2017-06-12 14:26:21 -04005821 case spv::OpVectorInsertDynamic:
5822 case spv::OpVectorShuffle:
5823 case spv::OpIEqual:
5824 case spv::OpINotEqual:
5825 case spv::OpUGreaterThan:
5826 case spv::OpUGreaterThanEqual:
5827 case spv::OpULessThan:
5828 case spv::OpULessThanEqual:
5829 case spv::OpSGreaterThan:
5830 case spv::OpSGreaterThanEqual:
5831 case spv::OpSLessThan:
5832 case spv::OpSLessThanEqual:
5833 case spv::OpFOrdEqual:
5834 case spv::OpFOrdGreaterThan:
5835 case spv::OpFOrdGreaterThanEqual:
5836 case spv::OpFOrdLessThan:
5837 case spv::OpFOrdLessThanEqual:
5838 case spv::OpFOrdNotEqual:
5839 case spv::OpFUnordEqual:
5840 case spv::OpFUnordGreaterThan:
5841 case spv::OpFUnordGreaterThanEqual:
5842 case spv::OpFUnordLessThan:
5843 case spv::OpFUnordLessThanEqual:
5844 case spv::OpFUnordNotEqual:
5845 case spv::OpSampledImage:
5846 case spv::OpFunctionCall:
5847 case spv::OpConstantTrue:
5848 case spv::OpConstantFalse:
5849 case spv::OpConstant:
5850 case spv::OpSpecConstant:
5851 case spv::OpConstantComposite:
5852 case spv::OpSpecConstantComposite:
5853 case spv::OpConstantNull:
5854 case spv::OpLogicalOr:
5855 case spv::OpLogicalAnd:
5856 case spv::OpLogicalNot:
5857 case spv::OpLogicalNotEqual:
5858 case spv::OpUndef:
5859 case spv::OpIsInf:
5860 case spv::OpIsNan:
5861 case spv::OpAny:
5862 case spv::OpAll:
David Neto5c22a252018-03-15 16:07:41 -04005863 case spv::OpImageQuerySize:
David Neto22f144c2017-06-12 14:26:21 -04005864 case spv::OpAtomicIAdd:
5865 case spv::OpAtomicISub:
5866 case spv::OpAtomicExchange:
5867 case spv::OpAtomicIIncrement:
5868 case spv::OpAtomicIDecrement:
5869 case spv::OpAtomicCompareExchange:
5870 case spv::OpAtomicUMin:
5871 case spv::OpAtomicSMin:
5872 case spv::OpAtomicUMax:
5873 case spv::OpAtomicSMax:
5874 case spv::OpAtomicAnd:
5875 case spv::OpAtomicOr:
5876 case spv::OpAtomicXor:
5877 case spv::OpDot: {
5878 PrintResID(Inst);
5879 out << " = ";
5880 PrintOpcode(Inst);
5881 for (uint32_t i = 0; i < Ops.size(); i++) {
5882 out << " ";
5883 PrintOperand(Ops[i]);
5884 }
5885 out << "\n";
5886 break;
5887 }
5888 }
5889 }
5890}
5891
5892void SPIRVProducerPass::WriteOneWord(uint32_t Word) {
David Neto0676e6f2017-07-11 18:47:44 -04005893 binaryOut->write(reinterpret_cast<const char *>(&Word), sizeof(uint32_t));
David Neto22f144c2017-06-12 14:26:21 -04005894}
5895
5896void SPIRVProducerPass::WriteResultID(SPIRVInstruction *Inst) {
5897 WriteOneWord(Inst->getResultID());
5898}
5899
5900void SPIRVProducerPass::WriteWordCountAndOpcode(SPIRVInstruction *Inst) {
5901 // High 16 bit : Word Count
5902 // Low 16 bit : Opcode
5903 uint32_t Word = Inst->getOpcode();
David Netoee2660d2018-06-28 16:31:29 -04005904 const uint32_t count = Inst->getWordCount();
5905 if (count > 65535) {
5906 errs() << "Word count limit of 65535 exceeded: " << count << "\n";
5907 llvm_unreachable("Word count too high");
5908 }
David Neto22f144c2017-06-12 14:26:21 -04005909 Word |= Inst->getWordCount() << 16;
5910 WriteOneWord(Word);
5911}
5912
5913void SPIRVProducerPass::WriteOperand(SPIRVOperand *Op) {
5914 SPIRVOperandType OpTy = Op->getType();
5915 switch (OpTy) {
5916 default: {
5917 llvm_unreachable("Unsupported SPIRV Operand Type???");
5918 break;
5919 }
5920 case SPIRVOperandType::NUMBERID: {
5921 WriteOneWord(Op->getNumID());
5922 break;
5923 }
5924 case SPIRVOperandType::LITERAL_STRING: {
5925 std::string Str = Op->getLiteralStr();
5926 const char *Data = Str.c_str();
5927 size_t WordSize = Str.size() / 4;
5928 for (unsigned Idx = 0; Idx < WordSize; Idx++) {
5929 WriteOneWord(*reinterpret_cast<const uint32_t *>(&Data[4 * Idx]));
5930 }
5931
5932 uint32_t Remainder = Str.size() % 4;
5933 uint32_t LastWord = 0;
5934 if (Remainder) {
5935 for (unsigned Idx = 0; Idx < Remainder; Idx++) {
5936 LastWord |= Data[4 * WordSize + Idx] << 8 * Idx;
5937 }
5938 }
5939
5940 WriteOneWord(LastWord);
5941 break;
5942 }
5943 case SPIRVOperandType::LITERAL_INTEGER:
5944 case SPIRVOperandType::LITERAL_FLOAT: {
5945 auto LiteralNum = Op->getLiteralNum();
5946 // TODO: Handle LiteranNum carefully.
5947 for (auto Word : LiteralNum) {
5948 WriteOneWord(Word);
5949 }
5950 break;
5951 }
5952 }
5953}
5954
5955void SPIRVProducerPass::WriteSPIRVBinary() {
5956 SPIRVInstructionList &SPIRVInstList = getSPIRVInstList();
5957
5958 for (auto Inst : SPIRVInstList) {
David Netoc6f3ab22018-04-06 18:02:31 -04005959 SPIRVOperandList Ops{Inst->getOperands()};
David Neto22f144c2017-06-12 14:26:21 -04005960 spv::Op Opcode = static_cast<spv::Op>(Inst->getOpcode());
5961
5962 switch (Opcode) {
5963 default: {
David Neto5c22a252018-03-15 16:07:41 -04005964 errs() << "Unsupported SPIR-V instruction opcode " << int(Opcode) << "\n";
David Neto22f144c2017-06-12 14:26:21 -04005965 llvm_unreachable("Unsupported SPIRV instruction");
5966 break;
5967 }
5968 case spv::OpCapability:
5969 case spv::OpExtension:
5970 case spv::OpMemoryModel:
5971 case spv::OpEntryPoint:
5972 case spv::OpExecutionMode:
5973 case spv::OpSource:
5974 case spv::OpDecorate:
5975 case spv::OpMemberDecorate:
5976 case spv::OpBranch:
5977 case spv::OpBranchConditional:
5978 case spv::OpSelectionMerge:
5979 case spv::OpLoopMerge:
5980 case spv::OpStore:
5981 case spv::OpImageWrite:
5982 case spv::OpReturnValue:
5983 case spv::OpControlBarrier:
5984 case spv::OpMemoryBarrier:
5985 case spv::OpReturn:
5986 case spv::OpFunctionEnd:
5987 case spv::OpCopyMemory: {
5988 WriteWordCountAndOpcode(Inst);
5989 for (uint32_t i = 0; i < Ops.size(); i++) {
5990 WriteOperand(Ops[i]);
5991 }
5992 break;
5993 }
5994 case spv::OpTypeBool:
5995 case spv::OpTypeVoid:
5996 case spv::OpTypeSampler:
5997 case spv::OpLabel:
5998 case spv::OpExtInstImport:
5999 case spv::OpTypePointer:
6000 case spv::OpTypeRuntimeArray:
6001 case spv::OpTypeStruct:
6002 case spv::OpTypeImage:
6003 case spv::OpTypeSampledImage:
6004 case spv::OpTypeInt:
6005 case spv::OpTypeFloat:
6006 case spv::OpTypeArray:
6007 case spv::OpTypeVector:
6008 case spv::OpTypeFunction: {
6009 WriteWordCountAndOpcode(Inst);
6010 WriteResultID(Inst);
6011 for (uint32_t i = 0; i < Ops.size(); i++) {
6012 WriteOperand(Ops[i]);
6013 }
6014 break;
6015 }
6016 case spv::OpFunction:
6017 case spv::OpFunctionParameter:
6018 case spv::OpAccessChain:
6019 case spv::OpPtrAccessChain:
6020 case spv::OpInBoundsAccessChain:
6021 case spv::OpUConvert:
6022 case spv::OpSConvert:
6023 case spv::OpConvertFToU:
6024 case spv::OpConvertFToS:
6025 case spv::OpConvertUToF:
6026 case spv::OpConvertSToF:
6027 case spv::OpFConvert:
6028 case spv::OpConvertPtrToU:
6029 case spv::OpConvertUToPtr:
6030 case spv::OpBitcast:
6031 case spv::OpIAdd:
6032 case spv::OpFAdd:
6033 case spv::OpISub:
6034 case spv::OpFSub:
6035 case spv::OpIMul:
6036 case spv::OpFMul:
6037 case spv::OpUDiv:
6038 case spv::OpSDiv:
6039 case spv::OpFDiv:
6040 case spv::OpUMod:
6041 case spv::OpSRem:
6042 case spv::OpFRem:
6043 case spv::OpBitwiseOr:
6044 case spv::OpBitwiseXor:
6045 case spv::OpBitwiseAnd:
David Netoa394f392017-08-26 20:45:29 -04006046 case spv::OpNot:
David Neto22f144c2017-06-12 14:26:21 -04006047 case spv::OpShiftLeftLogical:
6048 case spv::OpShiftRightLogical:
6049 case spv::OpShiftRightArithmetic:
6050 case spv::OpBitCount:
David Netoab03f432017-11-03 17:00:44 -04006051 case spv::OpCompositeConstruct:
David Neto22f144c2017-06-12 14:26:21 -04006052 case spv::OpCompositeExtract:
6053 case spv::OpVectorExtractDynamic:
6054 case spv::OpCompositeInsert:
David Neto0a2f98d2017-09-15 19:38:40 -04006055 case spv::OpCopyObject:
David Neto22f144c2017-06-12 14:26:21 -04006056 case spv::OpVectorInsertDynamic:
6057 case spv::OpVectorShuffle:
6058 case spv::OpIEqual:
6059 case spv::OpINotEqual:
6060 case spv::OpUGreaterThan:
6061 case spv::OpUGreaterThanEqual:
6062 case spv::OpULessThan:
6063 case spv::OpULessThanEqual:
6064 case spv::OpSGreaterThan:
6065 case spv::OpSGreaterThanEqual:
6066 case spv::OpSLessThan:
6067 case spv::OpSLessThanEqual:
6068 case spv::OpFOrdEqual:
6069 case spv::OpFOrdGreaterThan:
6070 case spv::OpFOrdGreaterThanEqual:
6071 case spv::OpFOrdLessThan:
6072 case spv::OpFOrdLessThanEqual:
6073 case spv::OpFOrdNotEqual:
6074 case spv::OpFUnordEqual:
6075 case spv::OpFUnordGreaterThan:
6076 case spv::OpFUnordGreaterThanEqual:
6077 case spv::OpFUnordLessThan:
6078 case spv::OpFUnordLessThanEqual:
6079 case spv::OpFUnordNotEqual:
6080 case spv::OpExtInst:
6081 case spv::OpIsInf:
6082 case spv::OpIsNan:
6083 case spv::OpAny:
6084 case spv::OpAll:
6085 case spv::OpUndef:
6086 case spv::OpConstantNull:
6087 case spv::OpLogicalOr:
6088 case spv::OpLogicalAnd:
6089 case spv::OpLogicalNot:
6090 case spv::OpLogicalNotEqual:
6091 case spv::OpConstantComposite:
6092 case spv::OpSpecConstantComposite:
6093 case spv::OpConstantTrue:
6094 case spv::OpConstantFalse:
6095 case spv::OpConstant:
6096 case spv::OpSpecConstant:
6097 case spv::OpVariable:
6098 case spv::OpFunctionCall:
6099 case spv::OpSampledImage:
6100 case spv::OpImageSampleExplicitLod:
David Neto5c22a252018-03-15 16:07:41 -04006101 case spv::OpImageQuerySize:
David Neto22f144c2017-06-12 14:26:21 -04006102 case spv::OpSelect:
6103 case spv::OpPhi:
6104 case spv::OpLoad:
6105 case spv::OpAtomicIAdd:
6106 case spv::OpAtomicISub:
6107 case spv::OpAtomicExchange:
6108 case spv::OpAtomicIIncrement:
6109 case spv::OpAtomicIDecrement:
6110 case spv::OpAtomicCompareExchange:
6111 case spv::OpAtomicUMin:
6112 case spv::OpAtomicSMin:
6113 case spv::OpAtomicUMax:
6114 case spv::OpAtomicSMax:
6115 case spv::OpAtomicAnd:
6116 case spv::OpAtomicOr:
6117 case spv::OpAtomicXor:
6118 case spv::OpDot: {
6119 WriteWordCountAndOpcode(Inst);
6120 WriteOperand(Ops[0]);
6121 WriteResultID(Inst);
6122 for (uint32_t i = 1; i < Ops.size(); i++) {
6123 WriteOperand(Ops[i]);
6124 }
6125 break;
6126 }
6127 }
6128 }
6129}