blob: 9fed69127a707c6a1b6f90f222c61272f20ac494 [file] [log] [blame]
drh9a324642003-09-06 20:12:01 +00001/*
2** 2003 September 6
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This file contains code used for creating, destroying, and populating
drh7abda852014-09-19 16:02:06 +000013** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
drh9a324642003-09-06 20:12:01 +000014*/
15#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000016#include "vdbeInt.h"
17
drh9a324642003-09-06 20:12:01 +000018/*
19** Create a new virtual database engine.
20*/
drh9ac79622013-12-18 15:11:47 +000021Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
drh9a324642003-09-06 20:12:01 +000023 Vdbe *p;
drh17435752007-08-16 04:30:38 +000024 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
drh9a324642003-09-06 20:12:01 +000025 if( p==0 ) return 0;
26 p->db = db;
27 if( db->pVdbe ){
28 db->pVdbe->pPrev = p;
29 }
30 p->pNext = db->pVdbe;
31 p->pPrev = 0;
32 db->pVdbe = p;
33 p->magic = VDBE_MAGIC_INIT;
drh9ac79622013-12-18 15:11:47 +000034 p->pParse = pParse;
drh73d5b8f2013-12-23 19:09:07 +000035 assert( pParse->aLabel==0 );
36 assert( pParse->nLabel==0 );
37 assert( pParse->nOpAlloc==0 );
drh9a324642003-09-06 20:12:01 +000038 return p;
39}
40
41/*
drh22c17b82015-05-15 04:13:15 +000042** Change the error string stored in Vdbe.zErrMsg
43*/
44void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
45 va_list ap;
46 sqlite3DbFree(p->db, p->zErrMsg);
47 va_start(ap, zFormat);
48 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
49 va_end(ap);
50}
51
52/*
drhb900aaf2006-11-09 00:24:53 +000053** Remember the SQL string for a prepared statement.
54*/
danielk19776ab3a2e2009-02-19 14:39:25 +000055void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
dan1d2ce4f2009-10-19 18:11:09 +000056 assert( isPrepareV2==1 || isPrepareV2==0 );
drhb900aaf2006-11-09 00:24:53 +000057 if( p==0 ) return;
danac455932012-11-26 19:50:41 +000058#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
danielk19776ab3a2e2009-02-19 14:39:25 +000059 if( !isPrepareV2 ) return;
60#endif
drhb900aaf2006-11-09 00:24:53 +000061 assert( p->zSql==0 );
drh17435752007-08-16 04:30:38 +000062 p->zSql = sqlite3DbStrNDup(p->db, z, n);
shanef639c402009-11-03 19:42:30 +000063 p->isPrepareV2 = (u8)isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000064}
65
66/*
67** Return the SQL associated with a prepared statement
68*/
danielk1977d0e2a852007-11-14 06:48:48 +000069const char *sqlite3_sql(sqlite3_stmt *pStmt){
danielk19776ab3a2e2009-02-19 14:39:25 +000070 Vdbe *p = (Vdbe *)pStmt;
drhef41dfe2015-09-02 17:55:12 +000071 return p ? p->zSql : 0;
drhb900aaf2006-11-09 00:24:53 +000072}
73
74/*
drhc5155252007-01-08 21:07:17 +000075** Swap all content between two VDBE structures.
drhb900aaf2006-11-09 00:24:53 +000076*/
drhc5155252007-01-08 21:07:17 +000077void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
78 Vdbe tmp, *pTmp;
79 char *zTmp;
drhc5155252007-01-08 21:07:17 +000080 tmp = *pA;
81 *pA = *pB;
82 *pB = tmp;
83 pTmp = pA->pNext;
84 pA->pNext = pB->pNext;
85 pB->pNext = pTmp;
86 pTmp = pA->pPrev;
87 pA->pPrev = pB->pPrev;
88 pB->pPrev = pTmp;
89 zTmp = pA->zSql;
90 pA->zSql = pB->zSql;
91 pB->zSql = zTmp;
danielk19776ab3a2e2009-02-19 14:39:25 +000092 pB->isPrepareV2 = pA->isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000093}
94
drh9a324642003-09-06 20:12:01 +000095/*
dan76ccd892014-08-12 13:38:52 +000096** Resize the Vdbe.aOp array so that it is at least nOp elements larger
drh81e069e2014-08-12 14:29:20 +000097** than its current size. nOp is guaranteed to be less than or equal
98** to 1024/sizeof(Op).
danielk1977ace3eb22006-01-26 10:35:04 +000099**
danielk197700e13612008-11-17 19:18:54 +0000100** If an out-of-memory error occurs while resizing the array, return
dan76ccd892014-08-12 13:38:52 +0000101** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
danielk197700e13612008-11-17 19:18:54 +0000102** unchanged (this is so that any opcodes already allocated can be
103** correctly deallocated along with the rest of the Vdbe).
drh76ff3a02004-09-24 22:32:30 +0000104*/
dan76ccd892014-08-12 13:38:52 +0000105static int growOpArray(Vdbe *v, int nOp){
drha4e5d582007-10-20 15:41:57 +0000106 VdbeOp *pNew;
drh73d5b8f2013-12-23 19:09:07 +0000107 Parse *p = v->pParse;
dan76ccd892014-08-12 13:38:52 +0000108
drh81e069e2014-08-12 14:29:20 +0000109 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
110 ** more frequent reallocs and hence provide more opportunities for
111 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
112 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
113 ** by the minimum* amount required until the size reaches 512. Normal
114 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
115 ** size of the op array or add 1KB of space, whichever is smaller. */
dan76ccd892014-08-12 13:38:52 +0000116#ifdef SQLITE_TEST_REALLOC_STRESS
117 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
118#else
danielk197700e13612008-11-17 19:18:54 +0000119 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
dan76ccd892014-08-12 13:38:52 +0000120 UNUSED_PARAMETER(nOp);
121#endif
122
drh81e069e2014-08-12 14:29:20 +0000123 assert( nOp<=(1024/sizeof(Op)) );
dan76ccd892014-08-12 13:38:52 +0000124 assert( nNew>=(p->nOpAlloc+nOp) );
drh73d5b8f2013-12-23 19:09:07 +0000125 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
drha4e5d582007-10-20 15:41:57 +0000126 if( pNew ){
drhb45f65d2009-03-01 19:42:11 +0000127 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
drh73d5b8f2013-12-23 19:09:07 +0000128 v->aOp = pNew;
drh76ff3a02004-09-24 22:32:30 +0000129 }
danielk197700e13612008-11-17 19:18:54 +0000130 return (pNew ? SQLITE_OK : SQLITE_NOMEM);
drh76ff3a02004-09-24 22:32:30 +0000131}
132
drh313619f2013-10-31 20:34:06 +0000133#ifdef SQLITE_DEBUG
134/* This routine is just a convenient place to set a breakpoint that will
135** fire after each opcode is inserted and displayed using
136** "PRAGMA vdbe_addoptrace=on".
137*/
138static void test_addop_breakpoint(void){
139 static int n = 0;
140 n++;
141}
142#endif
143
drh76ff3a02004-09-24 22:32:30 +0000144/*
drh9a324642003-09-06 20:12:01 +0000145** Add a new instruction to the list of instructions current in the
146** VDBE. Return the address of the new instruction.
147**
148** Parameters:
149**
150** p Pointer to the VDBE
151**
152** op The opcode for this instruction
153**
drh66a51672008-01-03 00:01:23 +0000154** p1, p2, p3 Operands
drh9a324642003-09-06 20:12:01 +0000155**
danielk19774adee202004-05-08 08:23:19 +0000156** Use the sqlite3VdbeResolveLabel() function to fix an address and
drh66a51672008-01-03 00:01:23 +0000157** the sqlite3VdbeChangeP4() function to change the value of the P4
drh9a324642003-09-06 20:12:01 +0000158** operand.
159*/
drh66a51672008-01-03 00:01:23 +0000160int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
drh9a324642003-09-06 20:12:01 +0000161 int i;
drh701a0ae2004-02-22 20:05:00 +0000162 VdbeOp *pOp;
drh9a324642003-09-06 20:12:01 +0000163
164 i = p->nOp;
drh9a324642003-09-06 20:12:01 +0000165 assert( p->magic==VDBE_MAGIC_INIT );
drh8df32842008-12-09 02:51:23 +0000166 assert( op>0 && op<0xff );
drh73d5b8f2013-12-23 19:09:07 +0000167 if( p->pParse->nOpAlloc<=i ){
dan76ccd892014-08-12 13:38:52 +0000168 if( growOpArray(p, 1) ){
drhc42ed162009-06-26 14:04:51 +0000169 return 1;
drhfd2d26b2006-03-15 22:44:36 +0000170 }
drh9a324642003-09-06 20:12:01 +0000171 }
danielk197701256832007-04-18 14:24:32 +0000172 p->nOp++;
drh701a0ae2004-02-22 20:05:00 +0000173 pOp = &p->aOp[i];
drh8df32842008-12-09 02:51:23 +0000174 pOp->opcode = (u8)op;
drh26c9b5e2008-04-11 14:56:53 +0000175 pOp->p5 = 0;
drh701a0ae2004-02-22 20:05:00 +0000176 pOp->p1 = p1;
drh701a0ae2004-02-22 20:05:00 +0000177 pOp->p2 = p2;
drh66a51672008-01-03 00:01:23 +0000178 pOp->p3 = p3;
179 pOp->p4.p = 0;
180 pOp->p4type = P4_NOTUSED;
drhc7379ce2013-10-30 02:28:23 +0000181#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh26c9b5e2008-04-11 14:56:53 +0000182 pOp->zComment = 0;
drhc7379ce2013-10-30 02:28:23 +0000183#endif
184#ifdef SQLITE_DEBUG
drhe0962052013-01-29 19:14:31 +0000185 if( p->db->flags & SQLITE_VdbeAddopTrace ){
drh9ac79622013-12-18 15:11:47 +0000186 int jj, kk;
187 Parse *pParse = p->pParse;
188 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
189 struct yColCache *x = pParse->aColCache + jj;
190 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
191 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
192 kk++;
193 }
194 if( kk ) printf("\n");
drhe0962052013-01-29 19:14:31 +0000195 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
drh313619f2013-10-31 20:34:06 +0000196 test_addop_breakpoint();
drhe0962052013-01-29 19:14:31 +0000197 }
drh9a324642003-09-06 20:12:01 +0000198#endif
drh26c9b5e2008-04-11 14:56:53 +0000199#ifdef VDBE_PROFILE
200 pOp->cycles = 0;
201 pOp->cnt = 0;
202#endif
drh688852a2014-02-17 22:40:43 +0000203#ifdef SQLITE_VDBE_COVERAGE
204 pOp->iSrcLine = 0;
205#endif
drh9a324642003-09-06 20:12:01 +0000206 return i;
207}
drh66a51672008-01-03 00:01:23 +0000208int sqlite3VdbeAddOp0(Vdbe *p, int op){
209 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
210}
211int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
212 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
213}
214int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
215 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
drh701a0ae2004-02-22 20:05:00 +0000216}
drh076e85f2015-09-03 13:46:12 +0000217
218/* Generate code for an unconditional jump to instruction iDest
219*/
220int sqlite3VdbeGoto(Vdbe *p, int iDest){
drh2991ba02015-09-02 18:19:00 +0000221 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
222}
drh701a0ae2004-02-22 20:05:00 +0000223
drh076e85f2015-09-03 13:46:12 +0000224/* Generate code to cause the string zStr to be loaded into
225** register iDest
226*/
227int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
228 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
229}
230
231/*
232** Generate code that initializes multiple registers to string or integer
233** constants. The registers begin with iDest and increase consecutively.
234** One register is initialized for each characgter in zTypes[]. For each
235** "s" character in zTypes[], the register is a string if the argument is
236** not NULL, or OP_Null if the value is a null pointer. For each "i" character
237** in zTypes[], the register is initialized to an integer.
238*/
239void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
240 va_list ap;
241 int i;
242 char c;
243 va_start(ap, zTypes);
244 for(i=0; (c = zTypes[i])!=0; i++){
245 if( c=='s' ){
246 const char *z = va_arg(ap, const char*);
247 int addr = sqlite3VdbeAddOp2(p, z==0 ? OP_Null : OP_String8, 0, iDest++);
248 if( z ) sqlite3VdbeChangeP4(p, addr, z, 0);
249 }else{
250 assert( c=='i' );
251 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++);
252 }
253 }
254 va_end(ap);
255}
drh66a51672008-01-03 00:01:23 +0000256
drh701a0ae2004-02-22 20:05:00 +0000257/*
drh66a51672008-01-03 00:01:23 +0000258** Add an opcode that includes the p4 value as a pointer.
drhd4e70eb2008-01-02 00:34:36 +0000259*/
drh66a51672008-01-03 00:01:23 +0000260int sqlite3VdbeAddOp4(
drhd4e70eb2008-01-02 00:34:36 +0000261 Vdbe *p, /* Add the opcode to this VM */
262 int op, /* The new opcode */
drh66a51672008-01-03 00:01:23 +0000263 int p1, /* The P1 operand */
264 int p2, /* The P2 operand */
265 int p3, /* The P3 operand */
266 const char *zP4, /* The P4 operand */
267 int p4type /* P4 operand type */
drhd4e70eb2008-01-02 00:34:36 +0000268){
drh66a51672008-01-03 00:01:23 +0000269 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
270 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
drhd4e70eb2008-01-02 00:34:36 +0000271 return addr;
272}
273
274/*
drh7cc023c2015-09-03 04:28:25 +0000275** Add an opcode that includes the p4 value with a P4_INT64 or
276** P4_REAL type.
drh97bae792015-06-05 15:59:57 +0000277*/
278int sqlite3VdbeAddOp4Dup8(
279 Vdbe *p, /* Add the opcode to this VM */
280 int op, /* The new opcode */
281 int p1, /* The P1 operand */
282 int p2, /* The P2 operand */
283 int p3, /* The P3 operand */
284 const u8 *zP4, /* The P4 operand */
285 int p4type /* P4 operand type */
286){
287 char *p4copy = sqlite3DbMallocRaw(sqlite3VdbeDb(p), 8);
288 if( p4copy ) memcpy(p4copy, zP4, 8);
289 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
290}
291
292/*
drh5d9c9da2011-06-03 20:11:17 +0000293** Add an OP_ParseSchema opcode. This routine is broken out from
drhe4c88c02012-01-04 12:57:45 +0000294** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
295** as having been used.
drh5d9c9da2011-06-03 20:11:17 +0000296**
297** The zWhere string must have been obtained from sqlite3_malloc().
298** This routine will take ownership of the allocated memory.
299*/
300void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
301 int j;
302 int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
303 sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
304 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
305}
306
307/*
drh8cff69d2009-11-12 19:59:44 +0000308** Add an opcode that includes the p4 value as an integer.
309*/
310int sqlite3VdbeAddOp4Int(
311 Vdbe *p, /* Add the opcode to this VM */
312 int op, /* The new opcode */
313 int p1, /* The P1 operand */
314 int p2, /* The P2 operand */
315 int p3, /* The P3 operand */
316 int p4 /* The P4 operand as an integer */
317){
318 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
319 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
320 return addr;
321}
322
323/*
drh9a324642003-09-06 20:12:01 +0000324** Create a new symbolic label for an instruction that has yet to be
325** coded. The symbolic label is really just a negative number. The
326** label can be used as the P2 value of an operation. Later, when
327** the label is resolved to a specific address, the VDBE will scan
328** through its operation list and change all values of P2 which match
329** the label into the resolved address.
330**
331** The VDBE knows that a P2 value is a label because labels are
332** always negative and P2 values are suppose to be non-negative.
333** Hence, a negative P2 value is a label that has yet to be resolved.
danielk1977b5548a82004-06-26 13:51:33 +0000334**
335** Zero is returned if a malloc() fails.
drh9a324642003-09-06 20:12:01 +0000336*/
drh73d5b8f2013-12-23 19:09:07 +0000337int sqlite3VdbeMakeLabel(Vdbe *v){
338 Parse *p = v->pParse;
drhc35f3d52012-02-01 19:03:38 +0000339 int i = p->nLabel++;
drh73d5b8f2013-12-23 19:09:07 +0000340 assert( v->magic==VDBE_MAGIC_INIT );
drhc35f3d52012-02-01 19:03:38 +0000341 if( (i & (i-1))==0 ){
342 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
343 (i*2+1)*sizeof(p->aLabel[0]));
drh9a324642003-09-06 20:12:01 +0000344 }
drh76ff3a02004-09-24 22:32:30 +0000345 if( p->aLabel ){
346 p->aLabel[i] = -1;
drh9a324642003-09-06 20:12:01 +0000347 }
drh9a324642003-09-06 20:12:01 +0000348 return -1-i;
349}
350
351/*
352** Resolve label "x" to be the address of the next instruction to
353** be inserted. The parameter "x" must have been obtained from
danielk19774adee202004-05-08 08:23:19 +0000354** a prior call to sqlite3VdbeMakeLabel().
drh9a324642003-09-06 20:12:01 +0000355*/
drh73d5b8f2013-12-23 19:09:07 +0000356void sqlite3VdbeResolveLabel(Vdbe *v, int x){
357 Parse *p = v->pParse;
drh76ff3a02004-09-24 22:32:30 +0000358 int j = -1-x;
drh73d5b8f2013-12-23 19:09:07 +0000359 assert( v->magic==VDBE_MAGIC_INIT );
drhb2b9d3d2013-08-01 01:14:43 +0000360 assert( j<p->nLabel );
drhef41dfe2015-09-02 17:55:12 +0000361 assert( j>=0 );
362 if( p->aLabel ){
drh73d5b8f2013-12-23 19:09:07 +0000363 p->aLabel[j] = v->nOp;
drh9a324642003-09-06 20:12:01 +0000364 }
drh61019c72014-01-04 16:49:02 +0000365 p->iFixedOp = v->nOp - 1;
drh9a324642003-09-06 20:12:01 +0000366}
367
drh4611d922010-02-25 14:47:01 +0000368/*
369** Mark the VDBE as one that can only be run one time.
370*/
371void sqlite3VdbeRunOnlyOnce(Vdbe *p){
372 p->runOnlyOnce = 1;
373}
374
drhff738bc2009-09-24 00:09:58 +0000375#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
dan144926d2009-09-09 11:37:20 +0000376
377/*
378** The following type and function are used to iterate through all opcodes
379** in a Vdbe main program and each of the sub-programs (triggers) it may
380** invoke directly or indirectly. It should be used as follows:
381**
382** Op *pOp;
383** VdbeOpIter sIter;
384**
385** memset(&sIter, 0, sizeof(sIter));
386** sIter.v = v; // v is of type Vdbe*
387** while( (pOp = opIterNext(&sIter)) ){
388** // Do something with pOp
389** }
390** sqlite3DbFree(v->db, sIter.apSub);
391**
392*/
393typedef struct VdbeOpIter VdbeOpIter;
394struct VdbeOpIter {
395 Vdbe *v; /* Vdbe to iterate through the opcodes of */
396 SubProgram **apSub; /* Array of subprograms */
397 int nSub; /* Number of entries in apSub */
398 int iAddr; /* Address of next instruction to return */
399 int iSub; /* 0 = main program, 1 = first sub-program etc. */
400};
401static Op *opIterNext(VdbeOpIter *p){
402 Vdbe *v = p->v;
403 Op *pRet = 0;
404 Op *aOp;
405 int nOp;
406
407 if( p->iSub<=p->nSub ){
408
409 if( p->iSub==0 ){
410 aOp = v->aOp;
411 nOp = v->nOp;
412 }else{
413 aOp = p->apSub[p->iSub-1]->aOp;
414 nOp = p->apSub[p->iSub-1]->nOp;
415 }
416 assert( p->iAddr<nOp );
417
418 pRet = &aOp[p->iAddr];
419 p->iAddr++;
420 if( p->iAddr==nOp ){
421 p->iSub++;
422 p->iAddr = 0;
423 }
424
425 if( pRet->p4type==P4_SUBPROGRAM ){
426 int nByte = (p->nSub+1)*sizeof(SubProgram*);
427 int j;
428 for(j=0; j<p->nSub; j++){
429 if( p->apSub[j]==pRet->p4.pProgram ) break;
430 }
431 if( j==p->nSub ){
432 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
433 if( !p->apSub ){
434 pRet = 0;
435 }else{
436 p->apSub[p->nSub++] = pRet->p4.pProgram;
437 }
438 }
439 }
440 }
441
442 return pRet;
443}
444
445/*
danf3677212009-09-10 16:14:50 +0000446** Check if the program stored in the VM associated with pParse may
drhff738bc2009-09-24 00:09:58 +0000447** throw an ABORT exception (causing the statement, but not entire transaction
dan144926d2009-09-09 11:37:20 +0000448** to be rolled back). This condition is true if the main program or any
449** sub-programs contains any of the following:
450**
451** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
452** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
453** * OP_Destroy
454** * OP_VUpdate
455** * OP_VRename
dan32b09f22009-09-23 17:29:59 +0000456** * OP_FkCounter with P2==0 (immediate foreign key constraint)
drh0dd5cda2015-06-16 16:39:01 +0000457** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...)
dan144926d2009-09-09 11:37:20 +0000458**
danf3677212009-09-10 16:14:50 +0000459** Then check that the value of Parse.mayAbort is true if an
460** ABORT may be thrown, or false otherwise. Return true if it does
461** match, or false otherwise. This function is intended to be used as
462** part of an assert statement in the compiler. Similar to:
463**
464** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
dan144926d2009-09-09 11:37:20 +0000465*/
danf3677212009-09-10 16:14:50 +0000466int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
467 int hasAbort = 0;
dan04668832014-12-16 20:13:30 +0000468 int hasFkCounter = 0;
drh0dd5cda2015-06-16 16:39:01 +0000469 int hasCreateTable = 0;
470 int hasInitCoroutine = 0;
dan144926d2009-09-09 11:37:20 +0000471 Op *pOp;
472 VdbeOpIter sIter;
473 memset(&sIter, 0, sizeof(sIter));
474 sIter.v = v;
475
476 while( (pOp = opIterNext(&sIter))!=0 ){
477 int opcode = pOp->opcode;
478 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
479 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
drhd91c1a12013-02-09 13:58:25 +0000480 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
dan144926d2009-09-09 11:37:20 +0000481 ){
danf3677212009-09-10 16:14:50 +0000482 hasAbort = 1;
dan144926d2009-09-09 11:37:20 +0000483 break;
484 }
drh0dd5cda2015-06-16 16:39:01 +0000485 if( opcode==OP_CreateTable ) hasCreateTable = 1;
486 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
dan04668832014-12-16 20:13:30 +0000487#ifndef SQLITE_OMIT_FOREIGN_KEY
488 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
489 hasFkCounter = 1;
490 }
491#endif
dan144926d2009-09-09 11:37:20 +0000492 }
dan144926d2009-09-09 11:37:20 +0000493 sqlite3DbFree(v->db, sIter.apSub);
danf3677212009-09-10 16:14:50 +0000494
mistachkin48864df2013-03-21 21:20:32 +0000495 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
danf3677212009-09-10 16:14:50 +0000496 ** If malloc failed, then the while() loop above may not have iterated
497 ** through all opcodes and hasAbort may be set incorrectly. Return
498 ** true for this case to prevent the assert() in the callers frame
499 ** from failing. */
drh0dd5cda2015-06-16 16:39:01 +0000500 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
501 || (hasCreateTable && hasInitCoroutine) );
dan144926d2009-09-09 11:37:20 +0000502}
drhff738bc2009-09-24 00:09:58 +0000503#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
dan144926d2009-09-09 11:37:20 +0000504
drh9a324642003-09-06 20:12:01 +0000505/*
drhef41dfe2015-09-02 17:55:12 +0000506** This routine is called after all opcodes have been inserted. It loops
507** through all the opcodes and fixes up some details.
drh76ff3a02004-09-24 22:32:30 +0000508**
drhef41dfe2015-09-02 17:55:12 +0000509** (1) For each jump instruction with a negative P2 value (a label)
510** resolve the P2 value to an actual address.
danielk1977634f2982005-03-28 08:44:07 +0000511**
drhef41dfe2015-09-02 17:55:12 +0000512** (2) Compute the maximum number of arguments used by any SQL function
513** and store that value in *pMaxFuncArgs.
drha6c2ed92009-11-14 23:22:23 +0000514**
drhef41dfe2015-09-02 17:55:12 +0000515** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
516** indicate what the prepared statement actually does.
517**
518** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
519**
520** (5) Reclaim the memory allocated for storing labels.
drh76ff3a02004-09-24 22:32:30 +0000521*/
drh9cbf3422008-01-17 16:22:13 +0000522static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
drh76ff3a02004-09-24 22:32:30 +0000523 int i;
dan165921a2009-08-28 18:53:45 +0000524 int nMaxArgs = *pMaxFuncArgs;
drh76ff3a02004-09-24 22:32:30 +0000525 Op *pOp;
drh73d5b8f2013-12-23 19:09:07 +0000526 Parse *pParse = p->pParse;
527 int *aLabel = pParse->aLabel;
drhad4a4b82008-11-05 16:37:34 +0000528 p->readOnly = 1;
drh1713afb2013-06-28 01:24:57 +0000529 p->bIsReader = 0;
drh76ff3a02004-09-24 22:32:30 +0000530 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
danielk1977634f2982005-03-28 08:44:07 +0000531 u8 opcode = pOp->opcode;
532
drh8c8a8c42013-08-06 07:45:08 +0000533 /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
534 ** cases from this switch! */
535 switch( opcode ){
drh8c8a8c42013-08-06 07:45:08 +0000536 case OP_Transaction: {
537 if( pOp->p2!=0 ) p->readOnly = 0;
538 /* fall thru */
539 }
540 case OP_AutoCommit:
541 case OP_Savepoint: {
542 p->bIsReader = 1;
543 break;
544 }
dand9031542013-07-05 16:54:30 +0000545#ifndef SQLITE_OMIT_WAL
drh8c8a8c42013-08-06 07:45:08 +0000546 case OP_Checkpoint:
drh9e92a472013-06-27 17:40:30 +0000547#endif
drh8c8a8c42013-08-06 07:45:08 +0000548 case OP_Vacuum:
549 case OP_JournalMode: {
550 p->readOnly = 0;
551 p->bIsReader = 1;
552 break;
553 }
danielk1977182c4ba2007-06-27 15:53:34 +0000554#ifndef SQLITE_OMIT_VIRTUALTABLE
drh8c8a8c42013-08-06 07:45:08 +0000555 case OP_VUpdate: {
556 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
557 break;
558 }
559 case OP_VFilter: {
560 int n;
561 assert( p->nOp - i >= 3 );
562 assert( pOp[-1].opcode==OP_Integer );
563 n = pOp[-1].p1;
564 if( n>nMaxArgs ) nMaxArgs = n;
565 break;
566 }
danielk1977182c4ba2007-06-27 15:53:34 +0000567#endif
drh8c8a8c42013-08-06 07:45:08 +0000568 case OP_Next:
drhf93cd942013-11-21 03:12:25 +0000569 case OP_NextIfOpen:
drh8c8a8c42013-08-06 07:45:08 +0000570 case OP_SorterNext: {
571 pOp->p4.xAdvance = sqlite3BtreeNext;
572 pOp->p4type = P4_ADVANCE;
573 break;
574 }
drhf93cd942013-11-21 03:12:25 +0000575 case OP_Prev:
576 case OP_PrevIfOpen: {
drh8c8a8c42013-08-06 07:45:08 +0000577 pOp->p4.xAdvance = sqlite3BtreePrevious;
578 pOp->p4type = P4_ADVANCE;
579 break;
580 }
danielk1977bc04f852005-03-29 08:26:13 +0000581 }
danielk1977634f2982005-03-28 08:44:07 +0000582
drh8c8a8c42013-08-06 07:45:08 +0000583 pOp->opflags = sqlite3OpcodeProperty[opcode];
drha6c2ed92009-11-14 23:22:23 +0000584 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
drh73d5b8f2013-12-23 19:09:07 +0000585 assert( -1-pOp->p2<pParse->nLabel );
drhd2981512008-01-04 19:33:49 +0000586 pOp->p2 = aLabel[-1-pOp->p2];
587 }
drh76ff3a02004-09-24 22:32:30 +0000588 }
drh73d5b8f2013-12-23 19:09:07 +0000589 sqlite3DbFree(p->db, pParse->aLabel);
590 pParse->aLabel = 0;
591 pParse->nLabel = 0;
danielk1977bc04f852005-03-29 08:26:13 +0000592 *pMaxFuncArgs = nMaxArgs;
drha7ab6d82014-07-21 15:44:39 +0000593 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
drh76ff3a02004-09-24 22:32:30 +0000594}
595
596/*
drh9a324642003-09-06 20:12:01 +0000597** Return the address of the next instruction to be inserted.
598*/
danielk19774adee202004-05-08 08:23:19 +0000599int sqlite3VdbeCurrentAddr(Vdbe *p){
drh9a324642003-09-06 20:12:01 +0000600 assert( p->magic==VDBE_MAGIC_INIT );
601 return p->nOp;
602}
603
dan65a7cd12009-09-01 12:16:01 +0000604/*
605** This function returns a pointer to the array of opcodes associated with
606** the Vdbe passed as the first argument. It is the callers responsibility
607** to arrange for the returned array to be eventually freed using the
608** vdbeFreeOpArray() function.
609**
610** Before returning, *pnOp is set to the number of entries in the returned
611** array. Also, *pnMaxArg is set to the larger of its current value and
612** the number of entries in the Vdbe.apArg[] array required to execute the
613** returned program.
614*/
dan165921a2009-08-28 18:53:45 +0000615VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
616 VdbeOp *aOp = p->aOp;
dan523a0872009-08-31 05:23:32 +0000617 assert( aOp && !p->db->mallocFailed );
dan65a7cd12009-09-01 12:16:01 +0000618
619 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
drha7ab6d82014-07-21 15:44:39 +0000620 assert( DbMaskAllZero(p->btreeMask) );
dan65a7cd12009-09-01 12:16:01 +0000621
dan165921a2009-08-28 18:53:45 +0000622 resolveP2Values(p, pnMaxArg);
623 *pnOp = p->nOp;
624 p->aOp = 0;
625 return aOp;
626}
627
drh9a324642003-09-06 20:12:01 +0000628/*
629** Add a whole list of operations to the operation stack. Return the
630** address of the first operation added.
631*/
drh688852a2014-02-17 22:40:43 +0000632int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){
drhef41dfe2015-09-02 17:55:12 +0000633 int addr, i;
634 VdbeOp *pOut;
635 assert( nOp>0 );
drh9a324642003-09-06 20:12:01 +0000636 assert( p->magic==VDBE_MAGIC_INIT );
dan76ccd892014-08-12 13:38:52 +0000637 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
drh76ff3a02004-09-24 22:32:30 +0000638 return 0;
drh9a324642003-09-06 20:12:01 +0000639 }
640 addr = p->nOp;
drhef41dfe2015-09-02 17:55:12 +0000641 pOut = &p->aOp[addr];
642 for(i=0; i<nOp; i++, aOp++, pOut++){
643 int p2 = aOp->p2;
644 pOut->opcode = aOp->opcode;
645 pOut->p1 = aOp->p1;
646 if( p2<0 ){
647 assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP );
648 pOut->p2 = addr + ADDR(p2);
649 }else{
650 pOut->p2 = p2;
651 }
652 pOut->p3 = aOp->p3;
653 pOut->p4type = P4_NOTUSED;
654 pOut->p4.p = 0;
655 pOut->p5 = 0;
drhc7379ce2013-10-30 02:28:23 +0000656#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drhef41dfe2015-09-02 17:55:12 +0000657 pOut->zComment = 0;
drhc7379ce2013-10-30 02:28:23 +0000658#endif
drh688852a2014-02-17 22:40:43 +0000659#ifdef SQLITE_VDBE_COVERAGE
drhef41dfe2015-09-02 17:55:12 +0000660 pOut->iSrcLine = iLineno+i;
drh688852a2014-02-17 22:40:43 +0000661#else
drhef41dfe2015-09-02 17:55:12 +0000662 (void)iLineno;
drh688852a2014-02-17 22:40:43 +0000663#endif
drhc7379ce2013-10-30 02:28:23 +0000664#ifdef SQLITE_DEBUG
drhef41dfe2015-09-02 17:55:12 +0000665 if( p->db->flags & SQLITE_VdbeAddopTrace ){
666 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
drh9a324642003-09-06 20:12:01 +0000667 }
drhef41dfe2015-09-02 17:55:12 +0000668#endif
drh9a324642003-09-06 20:12:01 +0000669 }
drhef41dfe2015-09-02 17:55:12 +0000670 p->nOp += nOp;
drh9a324642003-09-06 20:12:01 +0000671 return addr;
672}
673
dan6f9702e2014-11-01 20:38:06 +0000674#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
675/*
676** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
677*/
dan037b5322014-11-03 11:25:32 +0000678void sqlite3VdbeScanStatus(
dan6f9702e2014-11-01 20:38:06 +0000679 Vdbe *p, /* VM to add scanstatus() to */
680 int addrExplain, /* Address of OP_Explain (or 0) */
681 int addrLoop, /* Address of loop counter */
682 int addrVisit, /* Address of rows visited counter */
drh518140e2014-11-06 03:55:10 +0000683 LogEst nEst, /* Estimated number of output rows */
dan6f9702e2014-11-01 20:38:06 +0000684 const char *zName /* Name of table or index being scanned */
685){
dan037b5322014-11-03 11:25:32 +0000686 int nByte = (p->nScan+1) * sizeof(ScanStatus);
687 ScanStatus *aNew;
688 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
dan6f9702e2014-11-01 20:38:06 +0000689 if( aNew ){
dan037b5322014-11-03 11:25:32 +0000690 ScanStatus *pNew = &aNew[p->nScan++];
dan6f9702e2014-11-01 20:38:06 +0000691 pNew->addrExplain = addrExplain;
692 pNew->addrLoop = addrLoop;
693 pNew->addrVisit = addrVisit;
694 pNew->nEst = nEst;
695 pNew->zName = sqlite3DbStrDup(p->db, zName);
696 p->aScan = aNew;
697 }
698}
699#endif
700
701
drh9a324642003-09-06 20:12:01 +0000702/*
drh0ff287f2015-09-02 18:40:33 +0000703** Change the value of the opcode, or P1, P2, P3, or P5 operands
704** for a specific instruction.
drh9a324642003-09-06 20:12:01 +0000705*/
drh0ff287f2015-09-02 18:40:33 +0000706void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
707 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
708}
drh88caeac2011-08-24 15:12:08 +0000709void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000710 sqlite3VdbeGetOp(p,addr)->p1 = val;
drh9a324642003-09-06 20:12:01 +0000711}
drh88caeac2011-08-24 15:12:08 +0000712void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000713 sqlite3VdbeGetOp(p,addr)->p2 = val;
drh9a324642003-09-06 20:12:01 +0000714}
drh88caeac2011-08-24 15:12:08 +0000715void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000716 sqlite3VdbeGetOp(p,addr)->p3 = val;
danielk1977207872a2008-01-03 07:54:23 +0000717}
drh0ff287f2015-09-02 18:40:33 +0000718void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){
719 sqlite3VdbeGetOp(p,-1)->p5 = p5;
danielk19771f4aa332008-01-03 09:51:55 +0000720}
721
722/*
drhf8875402006-03-17 13:56:34 +0000723** Change the P2 operand of instruction addr so that it points to
drhd654be82005-09-20 17:42:23 +0000724** the address of the next instruction to be coded.
725*/
726void sqlite3VdbeJumpHere(Vdbe *p, int addr){
drh61019c72014-01-04 16:49:02 +0000727 p->pParse->iFixedOp = p->nOp - 1;
drh0ff287f2015-09-02 18:40:33 +0000728 sqlite3VdbeChangeP2(p, addr, p->nOp);
drhd654be82005-09-20 17:42:23 +0000729}
drhb38ad992005-09-16 00:27:01 +0000730
drhb7f6f682006-07-08 17:06:43 +0000731
732/*
733** If the input FuncDef structure is ephemeral, then free it. If
734** the FuncDef is not ephermal, then do nothing.
735*/
drh633e6d52008-07-28 19:34:53 +0000736static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
drhd36e1042013-09-06 13:10:12 +0000737 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
drh633e6d52008-07-28 19:34:53 +0000738 sqlite3DbFree(db, pDef);
drhb7f6f682006-07-08 17:06:43 +0000739 }
740}
741
dand46def72010-07-24 11:28:28 +0000742static void vdbeFreeOpArray(sqlite3 *, Op *, int);
743
drhb38ad992005-09-16 00:27:01 +0000744/*
drh66a51672008-01-03 00:01:23 +0000745** Delete a P4 value if necessary.
drhb38ad992005-09-16 00:27:01 +0000746*/
drh633e6d52008-07-28 19:34:53 +0000747static void freeP4(sqlite3 *db, int p4type, void *p4){
drh0acb7e42008-06-25 00:12:41 +0000748 if( p4 ){
dand46def72010-07-24 11:28:28 +0000749 assert( db );
drh66a51672008-01-03 00:01:23 +0000750 switch( p4type ){
drh9c7c9132015-06-26 18:16:52 +0000751 case P4_FUNCCTX: {
752 freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc);
753 /* Fall through into the next case */
754 }
drh66a51672008-01-03 00:01:23 +0000755 case P4_REAL:
756 case P4_INT64:
drh66a51672008-01-03 00:01:23 +0000757 case P4_DYNAMIC:
drh2ec2fb22013-11-06 19:59:23 +0000758 case P4_INTARRAY: {
drh633e6d52008-07-28 19:34:53 +0000759 sqlite3DbFree(db, p4);
drhac1733d2005-09-17 17:58:22 +0000760 break;
761 }
drh2ec2fb22013-11-06 19:59:23 +0000762 case P4_KEYINFO: {
763 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
764 break;
765 }
drhb9755982010-07-24 16:34:37 +0000766 case P4_MPRINTF: {
drh7043db92010-07-26 12:38:12 +0000767 if( db->pnBytesFreed==0 ) sqlite3_free(p4);
drhb9755982010-07-24 16:34:37 +0000768 break;
769 }
drh66a51672008-01-03 00:01:23 +0000770 case P4_FUNCDEF: {
drh633e6d52008-07-28 19:34:53 +0000771 freeEphemeralFunction(db, (FuncDef*)p4);
drhb7f6f682006-07-08 17:06:43 +0000772 break;
773 }
drh66a51672008-01-03 00:01:23 +0000774 case P4_MEM: {
drhc176c272010-07-26 13:57:59 +0000775 if( db->pnBytesFreed==0 ){
776 sqlite3ValueFree((sqlite3_value*)p4);
777 }else{
drhf37c68e2010-07-26 14:20:06 +0000778 Mem *p = (Mem*)p4;
drh17bcb102014-09-18 21:25:33 +0000779 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
drhf37c68e2010-07-26 14:20:06 +0000780 sqlite3DbFree(db, p);
drhc176c272010-07-26 13:57:59 +0000781 }
drhac1733d2005-09-17 17:58:22 +0000782 break;
783 }
danielk1977595a5232009-07-24 17:58:53 +0000784 case P4_VTAB : {
dand46def72010-07-24 11:28:28 +0000785 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
danielk1977595a5232009-07-24 17:58:53 +0000786 break;
787 }
drhb38ad992005-09-16 00:27:01 +0000788 }
789 }
790}
791
dan65a7cd12009-09-01 12:16:01 +0000792/*
793** Free the space allocated for aOp and any p4 values allocated for the
794** opcodes contained within. If aOp is not NULL it is assumed to contain
795** nOp entries.
796*/
dan165921a2009-08-28 18:53:45 +0000797static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
798 if( aOp ){
799 Op *pOp;
800 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
801 freeP4(db, pOp->p4type, pOp->p4.p);
drhc7379ce2013-10-30 02:28:23 +0000802#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
dan165921a2009-08-28 18:53:45 +0000803 sqlite3DbFree(db, pOp->zComment);
804#endif
805 }
806 }
807 sqlite3DbFree(db, aOp);
808}
809
dan65a7cd12009-09-01 12:16:01 +0000810/*
dand19c9332010-07-26 12:05:17 +0000811** Link the SubProgram object passed as the second argument into the linked
812** list at Vdbe.pSubProgram. This list is used to delete all sub-program
813** objects when the VM is no longer required.
dan65a7cd12009-09-01 12:16:01 +0000814*/
dand19c9332010-07-26 12:05:17 +0000815void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
816 p->pNext = pVdbe->pProgram;
817 pVdbe->pProgram = p;
dan165921a2009-08-28 18:53:45 +0000818}
819
drh9a324642003-09-06 20:12:01 +0000820/*
drh48f2d3b2011-09-16 01:34:43 +0000821** Change the opcode at addr into OP_Noop
drhf8875402006-03-17 13:56:34 +0000822*/
drh48f2d3b2011-09-16 01:34:43 +0000823void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
dan76ccd892014-08-12 13:38:52 +0000824 if( addr<p->nOp ){
danielk197792d4d7a2007-05-04 12:05:56 +0000825 VdbeOp *pOp = &p->aOp[addr];
drh633e6d52008-07-28 19:34:53 +0000826 sqlite3 *db = p->db;
drh48f2d3b2011-09-16 01:34:43 +0000827 freeP4(db, pOp->p4type, pOp->p4.p);
828 memset(pOp, 0, sizeof(pOp[0]));
829 pOp->opcode = OP_Noop;
drh313619f2013-10-31 20:34:06 +0000830 if( addr==p->nOp-1 ) p->nOp--;
drhf8875402006-03-17 13:56:34 +0000831 }
832}
833
834/*
drh39c4b822014-09-29 15:42:01 +0000835** If the last opcode is "op" and it is not a jump destination,
836** then remove it. Return true if and only if an opcode was removed.
drh762c1c42014-01-02 19:35:30 +0000837*/
drh61019c72014-01-04 16:49:02 +0000838int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
839 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
840 sqlite3VdbeChangeToNoop(p, p->nOp-1);
841 return 1;
842 }else{
843 return 0;
844 }
drh762c1c42014-01-02 19:35:30 +0000845}
846
847/*
drh66a51672008-01-03 00:01:23 +0000848** Change the value of the P4 operand for a specific instruction.
drh9a324642003-09-06 20:12:01 +0000849** This routine is useful when a large program is loaded from a
danielk19774adee202004-05-08 08:23:19 +0000850** static array using sqlite3VdbeAddOpList but we want to make a
drh9a324642003-09-06 20:12:01 +0000851** few minor changes to the program.
852**
drh66a51672008-01-03 00:01:23 +0000853** If n>=0 then the P4 operand is dynamic, meaning that a copy of
drh17435752007-08-16 04:30:38 +0000854** the string is made into memory obtained from sqlite3_malloc().
drh66a51672008-01-03 00:01:23 +0000855** A value of n==0 means copy bytes of zP4 up to and including the
856** first null byte. If n>0 then copy n+1 bytes of zP4.
danielk19771f55c052005-05-19 08:42:59 +0000857**
drh66a51672008-01-03 00:01:23 +0000858** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
danielk19771f55c052005-05-19 08:42:59 +0000859** to a string or structure that is guaranteed to exist for the lifetime of
860** the Vdbe. In these cases we can just copy the pointer.
drh9a324642003-09-06 20:12:01 +0000861**
drh66a51672008-01-03 00:01:23 +0000862** If addr<0 then change P4 on the most recently inserted instruction.
drh9a324642003-09-06 20:12:01 +0000863*/
drh66a51672008-01-03 00:01:23 +0000864void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
drh9a324642003-09-06 20:12:01 +0000865 Op *pOp;
drh633e6d52008-07-28 19:34:53 +0000866 sqlite3 *db;
drh91fd4d42008-01-19 20:11:25 +0000867 assert( p!=0 );
drh633e6d52008-07-28 19:34:53 +0000868 db = p->db;
drh91fd4d42008-01-19 20:11:25 +0000869 assert( p->magic==VDBE_MAGIC_INIT );
drh633e6d52008-07-28 19:34:53 +0000870 if( p->aOp==0 || db->mallocFailed ){
drh2ec2fb22013-11-06 19:59:23 +0000871 if( n!=P4_VTAB ){
drh633e6d52008-07-28 19:34:53 +0000872 freeP4(db, n, (void*)*(char**)&zP4);
danielk1977261919c2005-12-06 12:52:59 +0000873 }
danielk1977d5d56522005-03-16 12:15:20 +0000874 return;
875 }
drh7b746032009-06-26 12:15:22 +0000876 assert( p->nOp>0 );
drh91fd4d42008-01-19 20:11:25 +0000877 assert( addr<p->nOp );
878 if( addr<0 ){
drh9a324642003-09-06 20:12:01 +0000879 addr = p->nOp - 1;
drh9a324642003-09-06 20:12:01 +0000880 }
881 pOp = &p->aOp[addr];
drh079a3072014-03-19 14:10:55 +0000882 assert( pOp->p4type==P4_NOTUSED
883 || pOp->p4type==P4_INT32
884 || pOp->p4type==P4_KEYINFO );
drh633e6d52008-07-28 19:34:53 +0000885 freeP4(db, pOp->p4type, pOp->p4.p);
drh66a51672008-01-03 00:01:23 +0000886 pOp->p4.p = 0;
drh98757152008-01-09 23:04:12 +0000887 if( n==P4_INT32 ){
mlcreech12d40822008-03-06 07:35:21 +0000888 /* Note: this cast is safe, because the origin data point was an int
889 ** that was cast to a (const char *). */
shane1fc41292008-07-08 22:28:48 +0000890 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
drh8df32842008-12-09 02:51:23 +0000891 pOp->p4type = P4_INT32;
drh98757152008-01-09 23:04:12 +0000892 }else if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +0000893 pOp->p4.p = 0;
894 pOp->p4type = P4_NOTUSED;
895 }else if( n==P4_KEYINFO ){
danielk19772dca4ac2008-01-03 11:50:29 +0000896 pOp->p4.p = (void*)zP4;
drh66a51672008-01-03 00:01:23 +0000897 pOp->p4type = P4_KEYINFO;
danielk1977595a5232009-07-24 17:58:53 +0000898 }else if( n==P4_VTAB ){
899 pOp->p4.p = (void*)zP4;
900 pOp->p4type = P4_VTAB;
901 sqlite3VtabLock((VTable *)zP4);
902 assert( ((VTable *)zP4)->db==p->db );
drh9a324642003-09-06 20:12:01 +0000903 }else if( n<0 ){
danielk19772dca4ac2008-01-03 11:50:29 +0000904 pOp->p4.p = (void*)zP4;
drh8df32842008-12-09 02:51:23 +0000905 pOp->p4type = (signed char)n;
drh9a324642003-09-06 20:12:01 +0000906 }else{
drhea678832008-12-10 19:26:22 +0000907 if( n==0 ) n = sqlite3Strlen30(zP4);
danielk19772dca4ac2008-01-03 11:50:29 +0000908 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
drh66a51672008-01-03 00:01:23 +0000909 pOp->p4type = P4_DYNAMIC;
drh9a324642003-09-06 20:12:01 +0000910 }
911}
912
drh2ec2fb22013-11-06 19:59:23 +0000913/*
914** Set the P4 on the most recently added opcode to the KeyInfo for the
915** index given.
916*/
917void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
918 Vdbe *v = pParse->pVdbe;
919 assert( v!=0 );
920 assert( pIdx!=0 );
921 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
922 P4_KEYINFO);
923}
924
drhc7379ce2013-10-30 02:28:23 +0000925#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drhad6d9462004-09-19 02:15:24 +0000926/*
mistachkind5578432012-08-25 10:01:29 +0000927** Change the comment on the most recently coded instruction. Or
drh16ee60f2008-06-20 18:13:25 +0000928** insert a No-op and add the comment to that new instruction. This
929** makes the code easier to read during debugging. None of this happens
930** in a production build.
drhad6d9462004-09-19 02:15:24 +0000931*/
drhb07028f2011-10-14 21:49:18 +0000932static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
danielk197701256832007-04-18 14:24:32 +0000933 assert( p->nOp>0 || p->aOp==0 );
drhd4e70eb2008-01-02 00:34:36 +0000934 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
danielk1977dba01372008-01-05 18:44:29 +0000935 if( p->nOp ){
drhb07028f2011-10-14 21:49:18 +0000936 assert( p->aOp );
937 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
938 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
939 }
940}
941void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
942 va_list ap;
943 if( p ){
danielk1977dba01372008-01-05 18:44:29 +0000944 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +0000945 vdbeVComment(p, zFormat, ap);
danielk1977dba01372008-01-05 18:44:29 +0000946 va_end(ap);
947 }
drhad6d9462004-09-19 02:15:24 +0000948}
drh16ee60f2008-06-20 18:13:25 +0000949void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
950 va_list ap;
drhb07028f2011-10-14 21:49:18 +0000951 if( p ){
952 sqlite3VdbeAddOp0(p, OP_Noop);
drh16ee60f2008-06-20 18:13:25 +0000953 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +0000954 vdbeVComment(p, zFormat, ap);
drh16ee60f2008-06-20 18:13:25 +0000955 va_end(ap);
956 }
957}
958#endif /* NDEBUG */
drhad6d9462004-09-19 02:15:24 +0000959
drh688852a2014-02-17 22:40:43 +0000960#ifdef SQLITE_VDBE_COVERAGE
961/*
962** Set the value if the iSrcLine field for the previously coded instruction.
963*/
964void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
965 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
966}
967#endif /* SQLITE_VDBE_COVERAGE */
968
drh9a324642003-09-06 20:12:01 +0000969/*
drh20411ea2009-05-29 19:00:12 +0000970** Return the opcode for a given address. If the address is -1, then
971** return the most recently inserted opcode.
972**
973** If a memory allocation error has occurred prior to the calling of this
974** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
drhf83dc1e2010-06-03 12:09:52 +0000975** is readable but not writable, though it is cast to a writable value.
976** The return of a dummy opcode allows the call to continue functioning
peter.d.reid60ec9142014-09-06 16:39:46 +0000977** after an OOM fault without having to check to see if the return from
drhf83dc1e2010-06-03 12:09:52 +0000978** this routine is a valid pointer. But because the dummy.opcode is 0,
979** dummy will never be written to. This is verified by code inspection and
980** by running with Valgrind.
drh9a324642003-09-06 20:12:01 +0000981*/
danielk19774adee202004-05-08 08:23:19 +0000982VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
drha0b75da2010-07-02 18:44:37 +0000983 /* C89 specifies that the constant "dummy" will be initialized to all
984 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
mistachkin0fe5f952011-09-14 18:19:08 +0000985 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
drh9a324642003-09-06 20:12:01 +0000986 assert( p->magic==VDBE_MAGIC_INIT );
drh37b89a02009-06-19 00:33:31 +0000987 if( addr<0 ){
drh37b89a02009-06-19 00:33:31 +0000988 addr = p->nOp - 1;
989 }
drh17435752007-08-16 04:30:38 +0000990 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
drh20411ea2009-05-29 19:00:12 +0000991 if( p->db->mallocFailed ){
drhf83dc1e2010-06-03 12:09:52 +0000992 return (VdbeOp*)&dummy;
drh20411ea2009-05-29 19:00:12 +0000993 }else{
994 return &p->aOp[addr];
995 }
drh9a324642003-09-06 20:12:01 +0000996}
997
drhc7379ce2013-10-30 02:28:23 +0000998#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
drh81316f82013-10-29 20:40:47 +0000999/*
drhf63552b2013-10-30 00:25:03 +00001000** Return an integer value for one of the parameters to the opcode pOp
1001** determined by character c.
1002*/
1003static int translateP(char c, const Op *pOp){
1004 if( c=='1' ) return pOp->p1;
1005 if( c=='2' ) return pOp->p2;
1006 if( c=='3' ) return pOp->p3;
1007 if( c=='4' ) return pOp->p4.i;
1008 return pOp->p5;
1009}
1010
drh81316f82013-10-29 20:40:47 +00001011/*
drh4eded602013-12-20 15:59:20 +00001012** Compute a string for the "comment" field of a VDBE opcode listing.
1013**
1014** The Synopsis: field in comments in the vdbe.c source file gets converted
1015** to an extra string that is appended to the sqlite3OpcodeName(). In the
1016** absence of other comments, this synopsis becomes the comment on the opcode.
1017** Some translation occurs:
1018**
1019** "PX" -> "r[X]"
1020** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1021** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1022** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
drh81316f82013-10-29 20:40:47 +00001023*/
drhf63552b2013-10-30 00:25:03 +00001024static int displayComment(
1025 const Op *pOp, /* The opcode to be commented */
1026 const char *zP4, /* Previously obtained value for P4 */
1027 char *zTemp, /* Write result here */
1028 int nTemp /* Space available in zTemp[] */
1029){
drh81316f82013-10-29 20:40:47 +00001030 const char *zOpName;
1031 const char *zSynopsis;
1032 int nOpName;
1033 int ii, jj;
1034 zOpName = sqlite3OpcodeName(pOp->opcode);
1035 nOpName = sqlite3Strlen30(zOpName);
1036 if( zOpName[nOpName+1] ){
1037 int seenCom = 0;
drhf63552b2013-10-30 00:25:03 +00001038 char c;
drh81316f82013-10-29 20:40:47 +00001039 zSynopsis = zOpName += nOpName + 1;
drhf63552b2013-10-30 00:25:03 +00001040 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1041 if( c=='P' ){
1042 c = zSynopsis[++ii];
1043 if( c=='4' ){
1044 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1045 }else if( c=='X' ){
1046 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1047 seenCom = 1;
drh81316f82013-10-29 20:40:47 +00001048 }else{
drhf63552b2013-10-30 00:25:03 +00001049 int v1 = translateP(c, pOp);
1050 int v2;
1051 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1052 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1053 ii += 3;
1054 jj += sqlite3Strlen30(zTemp+jj);
1055 v2 = translateP(zSynopsis[ii], pOp);
drh4eded602013-12-20 15:59:20 +00001056 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1057 ii += 2;
1058 v2++;
1059 }
1060 if( v2>1 ){
1061 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1062 }
drhf63552b2013-10-30 00:25:03 +00001063 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1064 ii += 4;
1065 }
drh81316f82013-10-29 20:40:47 +00001066 }
1067 jj += sqlite3Strlen30(zTemp+jj);
1068 }else{
drhf63552b2013-10-30 00:25:03 +00001069 zTemp[jj++] = c;
drh81316f82013-10-29 20:40:47 +00001070 }
1071 }
1072 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1073 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1074 jj += sqlite3Strlen30(zTemp+jj);
1075 }
1076 if( jj<nTemp ) zTemp[jj] = 0;
1077 }else if( pOp->zComment ){
1078 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1079 jj = sqlite3Strlen30(zTemp);
1080 }else{
1081 zTemp[0] = 0;
1082 jj = 0;
1083 }
1084 return jj;
1085}
1086#endif /* SQLITE_DEBUG */
1087
1088
drhb7f91642004-10-31 02:22:47 +00001089#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
1090 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
drh9a324642003-09-06 20:12:01 +00001091/*
drh66a51672008-01-03 00:01:23 +00001092** Compute a string that describes the P4 parameter for an opcode.
drhd3d39e92004-05-20 22:16:29 +00001093** Use zTemp for any required temporary buffer space.
1094*/
drh66a51672008-01-03 00:01:23 +00001095static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1096 char *zP4 = zTemp;
drhd3d39e92004-05-20 22:16:29 +00001097 assert( nTemp>=20 );
drh66a51672008-01-03 00:01:23 +00001098 switch( pOp->p4type ){
1099 case P4_KEYINFO: {
drhd3d39e92004-05-20 22:16:29 +00001100 int i, j;
danielk19772dca4ac2008-01-03 11:50:29 +00001101 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
drhe1a022e2012-09-17 17:16:53 +00001102 assert( pKeyInfo->aSortOrder!=0 );
drh5b843aa2013-10-30 13:46:01 +00001103 sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField);
drhea678832008-12-10 19:26:22 +00001104 i = sqlite3Strlen30(zTemp);
drhd3d39e92004-05-20 22:16:29 +00001105 for(j=0; j<pKeyInfo->nField; j++){
1106 CollSeq *pColl = pKeyInfo->aColl[j];
drh261d8a52012-12-08 21:36:26 +00001107 const char *zColl = pColl ? pColl->zName : "nil";
1108 int n = sqlite3Strlen30(zColl);
drh5b843aa2013-10-30 13:46:01 +00001109 if( n==6 && memcmp(zColl,"BINARY",6)==0 ){
1110 zColl = "B";
1111 n = 1;
1112 }
drhd5a74c82015-08-15 16:32:50 +00001113 if( i+n>nTemp-7 ){
drh261d8a52012-12-08 21:36:26 +00001114 memcpy(&zTemp[i],",...",4);
drhd5a74c82015-08-15 16:32:50 +00001115 i += 4;
drh261d8a52012-12-08 21:36:26 +00001116 break;
drhd3d39e92004-05-20 22:16:29 +00001117 }
drh261d8a52012-12-08 21:36:26 +00001118 zTemp[i++] = ',';
1119 if( pKeyInfo->aSortOrder[j] ){
1120 zTemp[i++] = '-';
1121 }
1122 memcpy(&zTemp[i], zColl, n+1);
1123 i += n;
drhd3d39e92004-05-20 22:16:29 +00001124 }
1125 zTemp[i++] = ')';
1126 zTemp[i] = 0;
1127 assert( i<nTemp );
drhd3d39e92004-05-20 22:16:29 +00001128 break;
1129 }
drh66a51672008-01-03 00:01:23 +00001130 case P4_COLLSEQ: {
danielk19772dca4ac2008-01-03 11:50:29 +00001131 CollSeq *pColl = pOp->p4.pColl;
drh5e6790c2013-11-12 20:18:14 +00001132 sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
drhd3d39e92004-05-20 22:16:29 +00001133 break;
1134 }
drh66a51672008-01-03 00:01:23 +00001135 case P4_FUNCDEF: {
danielk19772dca4ac2008-01-03 11:50:29 +00001136 FuncDef *pDef = pOp->p4.pFunc;
drha967e882006-06-13 01:04:52 +00001137 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
drhf9b596e2004-05-26 16:54:42 +00001138 break;
1139 }
drhe2d9e7c2015-06-26 18:47:53 +00001140#ifdef SQLITE_DEBUG
drh9c7c9132015-06-26 18:16:52 +00001141 case P4_FUNCCTX: {
1142 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1143 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
1144 break;
1145 }
drhe2d9e7c2015-06-26 18:47:53 +00001146#endif
drh66a51672008-01-03 00:01:23 +00001147 case P4_INT64: {
danielk19772dca4ac2008-01-03 11:50:29 +00001148 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
drhd4e70eb2008-01-02 00:34:36 +00001149 break;
1150 }
drh66a51672008-01-03 00:01:23 +00001151 case P4_INT32: {
1152 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
drh598f1342007-10-23 15:39:45 +00001153 break;
1154 }
drh66a51672008-01-03 00:01:23 +00001155 case P4_REAL: {
danielk19772dca4ac2008-01-03 11:50:29 +00001156 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
drhd4e70eb2008-01-02 00:34:36 +00001157 break;
1158 }
drh66a51672008-01-03 00:01:23 +00001159 case P4_MEM: {
danielk19772dca4ac2008-01-03 11:50:29 +00001160 Mem *pMem = pOp->p4.pMem;
drhd4e70eb2008-01-02 00:34:36 +00001161 if( pMem->flags & MEM_Str ){
drh66a51672008-01-03 00:01:23 +00001162 zP4 = pMem->z;
drhd4e70eb2008-01-02 00:34:36 +00001163 }else if( pMem->flags & MEM_Int ){
1164 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
1165 }else if( pMem->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +00001166 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
drhb8475df2011-12-09 16:21:19 +00001167 }else if( pMem->flags & MEM_Null ){
1168 sqlite3_snprintf(nTemp, zTemp, "NULL");
drh56016892009-08-25 14:24:04 +00001169 }else{
1170 assert( pMem->flags & MEM_Blob );
1171 zP4 = "(blob)";
drhd4e70eb2008-01-02 00:34:36 +00001172 }
drh598f1342007-10-23 15:39:45 +00001173 break;
1174 }
drha967e882006-06-13 01:04:52 +00001175#ifndef SQLITE_OMIT_VIRTUALTABLE
drh66a51672008-01-03 00:01:23 +00001176 case P4_VTAB: {
danielk1977595a5232009-07-24 17:58:53 +00001177 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
drh466fd812015-03-24 14:57:02 +00001178 sqlite3_snprintf(nTemp, zTemp, "vtab:%p", pVtab);
drha967e882006-06-13 01:04:52 +00001179 break;
1180 }
1181#endif
drh0acb7e42008-06-25 00:12:41 +00001182 case P4_INTARRAY: {
1183 sqlite3_snprintf(nTemp, zTemp, "intarray");
1184 break;
1185 }
dan165921a2009-08-28 18:53:45 +00001186 case P4_SUBPROGRAM: {
1187 sqlite3_snprintf(nTemp, zTemp, "program");
1188 break;
1189 }
drh4a6f3aa2011-08-28 00:19:26 +00001190 case P4_ADVANCE: {
1191 zTemp[0] = 0;
1192 break;
1193 }
drhd3d39e92004-05-20 22:16:29 +00001194 default: {
danielk19772dca4ac2008-01-03 11:50:29 +00001195 zP4 = pOp->p4.z;
drh949f9cd2008-01-12 21:35:57 +00001196 if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +00001197 zP4 = zTemp;
drhd4e70eb2008-01-02 00:34:36 +00001198 zTemp[0] = 0;
drhd3d39e92004-05-20 22:16:29 +00001199 }
1200 }
1201 }
drh66a51672008-01-03 00:01:23 +00001202 assert( zP4!=0 );
drh66a51672008-01-03 00:01:23 +00001203 return zP4;
drhd3d39e92004-05-20 22:16:29 +00001204}
drhb7f91642004-10-31 02:22:47 +00001205#endif
drhd3d39e92004-05-20 22:16:29 +00001206
drh900b31e2007-08-28 02:27:51 +00001207/*
drhd0679ed2007-08-28 22:24:34 +00001208** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
drh3ebaee92010-05-06 21:37:22 +00001209**
drhbdaec522011-04-04 00:14:43 +00001210** The prepared statements need to know in advance the complete set of
drhe4c88c02012-01-04 12:57:45 +00001211** attached databases that will be use. A mask of these databases
1212** is maintained in p->btreeMask. The p->lockMask value is the subset of
1213** p->btreeMask of databases that will require a lock.
drh900b31e2007-08-28 02:27:51 +00001214*/
drhfb982642007-08-30 01:19:59 +00001215void sqlite3VdbeUsesBtree(Vdbe *p, int i){
drhfcd71b62011-04-05 22:08:24 +00001216 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
danielk197700e13612008-11-17 19:18:54 +00001217 assert( i<(int)sizeof(p->btreeMask)*8 );
drha7ab6d82014-07-21 15:44:39 +00001218 DbMaskSet(p->btreeMask, i);
drhdc5b0472011-04-06 22:05:53 +00001219 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
drha7ab6d82014-07-21 15:44:39 +00001220 DbMaskSet(p->lockMask, i);
drhdc5b0472011-04-06 22:05:53 +00001221 }
drh900b31e2007-08-28 02:27:51 +00001222}
1223
drhe54e0512011-04-05 17:31:56 +00001224#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +00001225/*
1226** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1227** this routine obtains the mutex associated with each BtShared structure
1228** that may be accessed by the VM passed as an argument. In doing so it also
1229** sets the BtShared.db member of each of the BtShared structures, ensuring
1230** that the correct busy-handler callback is invoked if required.
1231**
1232** If SQLite is not threadsafe but does support shared-cache mode, then
1233** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1234** of all of BtShared structures accessible via the database handle
1235** associated with the VM.
1236**
1237** If SQLite is not threadsafe and does not support shared-cache mode, this
1238** function is a no-op.
1239**
1240** The p->btreeMask field is a bitmask of all btrees that the prepared
1241** statement p will ever use. Let N be the number of bits in p->btreeMask
1242** corresponding to btrees that use shared cache. Then the runtime of
1243** this routine is N*N. But as N is rarely more than 1, this should not
1244** be a problem.
1245*/
1246void sqlite3VdbeEnter(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001247 int i;
drhdc5b0472011-04-06 22:05:53 +00001248 sqlite3 *db;
1249 Db *aDb;
1250 int nDb;
drha7ab6d82014-07-21 15:44:39 +00001251 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
drhdc5b0472011-04-06 22:05:53 +00001252 db = p->db;
1253 aDb = db->aDb;
1254 nDb = db->nDb;
drha7ab6d82014-07-21 15:44:39 +00001255 for(i=0; i<nDb; i++){
1256 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001257 sqlite3BtreeEnter(aDb[i].pBt);
1258 }
1259 }
drhbdaec522011-04-04 00:14:43 +00001260}
drhe54e0512011-04-05 17:31:56 +00001261#endif
drhbdaec522011-04-04 00:14:43 +00001262
drhe54e0512011-04-05 17:31:56 +00001263#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +00001264/*
1265** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1266*/
drhf1aabd62015-06-17 01:31:28 +00001267static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001268 int i;
drhdc5b0472011-04-06 22:05:53 +00001269 sqlite3 *db;
1270 Db *aDb;
1271 int nDb;
drhdc5b0472011-04-06 22:05:53 +00001272 db = p->db;
1273 aDb = db->aDb;
1274 nDb = db->nDb;
drha7ab6d82014-07-21 15:44:39 +00001275 for(i=0; i<nDb; i++){
1276 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001277 sqlite3BtreeLeave(aDb[i].pBt);
1278 }
1279 }
drhbdaec522011-04-04 00:14:43 +00001280}
drhf1aabd62015-06-17 01:31:28 +00001281void sqlite3VdbeLeave(Vdbe *p){
1282 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1283 vdbeLeave(p);
1284}
drhbdaec522011-04-04 00:14:43 +00001285#endif
drhd3d39e92004-05-20 22:16:29 +00001286
danielk19778b60e0f2005-01-12 09:10:39 +00001287#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
drh9a324642003-09-06 20:12:01 +00001288/*
1289** Print a single opcode. This routine is used for debugging only.
1290*/
danielk19774adee202004-05-08 08:23:19 +00001291void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
drh66a51672008-01-03 00:01:23 +00001292 char *zP4;
drhd3d39e92004-05-20 22:16:29 +00001293 char zPtr[50];
drh81316f82013-10-29 20:40:47 +00001294 char zCom[100];
drh26198bb2013-10-31 11:15:09 +00001295 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
drh9a324642003-09-06 20:12:01 +00001296 if( pOut==0 ) pOut = stdout;
drh66a51672008-01-03 00:01:23 +00001297 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
drhc7379ce2013-10-30 02:28:23 +00001298#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh81316f82013-10-29 20:40:47 +00001299 displayComment(pOp, zP4, zCom, sizeof(zCom));
1300#else
drh2926f962014-02-17 01:13:28 +00001301 zCom[0] = 0;
drh81316f82013-10-29 20:40:47 +00001302#endif
drh4eded602013-12-20 15:59:20 +00001303 /* NB: The sqlite3OpcodeName() function is implemented by code created
1304 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1305 ** information from the vdbe.c source text */
danielk197711641c12008-01-03 08:18:30 +00001306 fprintf(pOut, zFormat1, pc,
drh1db639c2008-01-17 02:36:28 +00001307 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
drh81316f82013-10-29 20:40:47 +00001308 zCom
drh1db639c2008-01-17 02:36:28 +00001309 );
drh9a324642003-09-06 20:12:01 +00001310 fflush(pOut);
1311}
1312#endif
1313
1314/*
drh76ff3a02004-09-24 22:32:30 +00001315** Release an array of N Mem elements
1316*/
drhc890fec2008-08-01 20:10:08 +00001317static void releaseMemArray(Mem *p, int N){
danielk1977a7a8e142008-02-13 18:25:27 +00001318 if( p && N ){
drh069c23c2014-09-19 16:13:12 +00001319 Mem *pEnd = &p[N];
danielk1977a7a8e142008-02-13 18:25:27 +00001320 sqlite3 *db = p->db;
drh8df32842008-12-09 02:51:23 +00001321 u8 malloc_failed = db->mallocFailed;
dand46def72010-07-24 11:28:28 +00001322 if( db->pnBytesFreed ){
drh069c23c2014-09-19 16:13:12 +00001323 do{
drh17bcb102014-09-18 21:25:33 +00001324 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
drh069c23c2014-09-19 16:13:12 +00001325 }while( (++p)<pEnd );
drhc176c272010-07-26 13:57:59 +00001326 return;
1327 }
drh069c23c2014-09-19 16:13:12 +00001328 do{
danielk1977e972e032008-09-19 18:32:26 +00001329 assert( (&p[1])==pEnd || p[0].db==p[1].db );
drh75fd0542014-03-01 16:24:44 +00001330 assert( sqlite3VdbeCheckMemInvariants(p) );
danielk1977e972e032008-09-19 18:32:26 +00001331
1332 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1333 ** that takes advantage of the fact that the memory cell value is
1334 ** being set to NULL after releasing any dynamic resources.
1335 **
1336 ** The justification for duplicating code is that according to
1337 ** callgrind, this causes a certain test case to hit the CPU 4.7
1338 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1339 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1340 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1341 ** with no indexes using a single prepared INSERT statement, bind()
1342 ** and reset(). Inserts are grouped into a transaction.
1343 */
drhb6e8fd12014-03-06 01:56:33 +00001344 testcase( p->flags & MEM_Agg );
1345 testcase( p->flags & MEM_Dyn );
1346 testcase( p->flags & MEM_Frame );
1347 testcase( p->flags & MEM_RowSet );
dan165921a2009-08-28 18:53:45 +00001348 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
danielk1977e972e032008-09-19 18:32:26 +00001349 sqlite3VdbeMemRelease(p);
drh17bcb102014-09-18 21:25:33 +00001350 }else if( p->szMalloc ){
danielk1977e972e032008-09-19 18:32:26 +00001351 sqlite3DbFree(db, p->zMalloc);
drh17bcb102014-09-18 21:25:33 +00001352 p->szMalloc = 0;
danielk1977e972e032008-09-19 18:32:26 +00001353 }
1354
drha5750cf2014-02-07 13:20:31 +00001355 p->flags = MEM_Undefined;
drh069c23c2014-09-19 16:13:12 +00001356 }while( (++p)<pEnd );
danielk1977a7a8e142008-02-13 18:25:27 +00001357 db->mallocFailed = malloc_failed;
drh76ff3a02004-09-24 22:32:30 +00001358 }
1359}
1360
dan65a7cd12009-09-01 12:16:01 +00001361/*
1362** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1363** allocated by the OP_Program opcode in sqlite3VdbeExec().
1364*/
dan165921a2009-08-28 18:53:45 +00001365void sqlite3VdbeFrameDelete(VdbeFrame *p){
1366 int i;
1367 Mem *aMem = VdbeFrameMem(p);
1368 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1369 for(i=0; i<p->nChildCsr; i++){
1370 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1371 }
1372 releaseMemArray(aMem, p->nChildMem);
1373 sqlite3DbFree(p->v->db, p);
1374}
1375
drhb7f91642004-10-31 02:22:47 +00001376#ifndef SQLITE_OMIT_EXPLAIN
drh76ff3a02004-09-24 22:32:30 +00001377/*
drh9a324642003-09-06 20:12:01 +00001378** Give a listing of the program in the virtual machine.
1379**
danielk19774adee202004-05-08 08:23:19 +00001380** The interface is the same as sqlite3VdbeExec(). But instead of
drh9a324642003-09-06 20:12:01 +00001381** running the code, it invokes the callback once for each instruction.
1382** This feature is used to implement "EXPLAIN".
drh9cbf3422008-01-17 16:22:13 +00001383**
1384** When p->explain==1, each instruction is listed. When
1385** p->explain==2, only OP_Explain instructions are listed and these
1386** are shown in a different format. p->explain==2 is used to implement
1387** EXPLAIN QUERY PLAN.
drh5cfa5842009-12-31 20:35:08 +00001388**
1389** When p->explain==1, first the main program is listed, then each of
1390** the trigger subprograms are listed one by one.
drh9a324642003-09-06 20:12:01 +00001391*/
danielk19774adee202004-05-08 08:23:19 +00001392int sqlite3VdbeList(
drh9a324642003-09-06 20:12:01 +00001393 Vdbe *p /* The VDBE */
1394){
drh5cfa5842009-12-31 20:35:08 +00001395 int nRow; /* Stop when row count reaches this */
dan165921a2009-08-28 18:53:45 +00001396 int nSub = 0; /* Number of sub-vdbes seen so far */
1397 SubProgram **apSub = 0; /* Array of sub-vdbes */
drh5cfa5842009-12-31 20:35:08 +00001398 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1399 sqlite3 *db = p->db; /* The database connection */
1400 int i; /* Loop counter */
1401 int rc = SQLITE_OK; /* Return code */
drh9734e6e2011-10-07 18:24:25 +00001402 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
drh9a324642003-09-06 20:12:01 +00001403
drh9a324642003-09-06 20:12:01 +00001404 assert( p->explain );
drh5f82e3c2009-07-06 00:44:08 +00001405 assert( p->magic==VDBE_MAGIC_RUN );
danielk19776c359f02008-11-21 16:58:03 +00001406 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
danielk197718f41892004-05-22 07:27:46 +00001407
drh9cbf3422008-01-17 16:22:13 +00001408 /* Even though this opcode does not use dynamic strings for
1409 ** the result, result columns may become dynamic if the user calls
drh4f26d6c2004-05-26 23:25:30 +00001410 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
danielk197718f41892004-05-22 07:27:46 +00001411 */
dan165921a2009-08-28 18:53:45 +00001412 releaseMemArray(pMem, 8);
drh9734e6e2011-10-07 18:24:25 +00001413 p->pResultSet = 0;
danielk197718f41892004-05-22 07:27:46 +00001414
danielk19776c359f02008-11-21 16:58:03 +00001415 if( p->rc==SQLITE_NOMEM ){
1416 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1417 ** sqlite3_column_text16() failed. */
1418 db->mallocFailed = 1;
1419 return SQLITE_ERROR;
1420 }
1421
drh5cfa5842009-12-31 20:35:08 +00001422 /* When the number of output rows reaches nRow, that means the
1423 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1424 ** nRow is the sum of the number of rows in the main program, plus
1425 ** the sum of the number of rows in all trigger subprograms encountered
1426 ** so far. The nRow value will increase as new trigger subprograms are
1427 ** encountered, but p->pc will eventually catch up to nRow.
1428 */
dan165921a2009-08-28 18:53:45 +00001429 nRow = p->nOp;
1430 if( p->explain==1 ){
drh5cfa5842009-12-31 20:35:08 +00001431 /* The first 8 memory cells are used for the result set. So we will
1432 ** commandeer the 9th cell to use as storage for an array of pointers
1433 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1434 ** cells. */
1435 assert( p->nMem>9 );
dan165921a2009-08-28 18:53:45 +00001436 pSub = &p->aMem[9];
1437 if( pSub->flags&MEM_Blob ){
drh5cfa5842009-12-31 20:35:08 +00001438 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1439 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
dan165921a2009-08-28 18:53:45 +00001440 nSub = pSub->n/sizeof(Vdbe*);
1441 apSub = (SubProgram **)pSub->z;
1442 }
1443 for(i=0; i<nSub; i++){
1444 nRow += apSub[i]->nOp;
1445 }
1446 }
1447
drhecc92422005-09-10 16:46:12 +00001448 do{
1449 i = p->pc++;
dan165921a2009-08-28 18:53:45 +00001450 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1451 if( i>=nRow ){
drh826fb5a2004-02-14 23:59:57 +00001452 p->rc = SQLITE_OK;
1453 rc = SQLITE_DONE;
drh881feaa2006-07-26 01:39:30 +00001454 }else if( db->u1.isInterrupted ){
drhc5cdca62005-01-11 16:54:14 +00001455 p->rc = SQLITE_INTERRUPT;
drh826fb5a2004-02-14 23:59:57 +00001456 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00001457 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
drh826fb5a2004-02-14 23:59:57 +00001458 }else{
drh81316f82013-10-29 20:40:47 +00001459 char *zP4;
dan165921a2009-08-28 18:53:45 +00001460 Op *pOp;
1461 if( i<p->nOp ){
drh5cfa5842009-12-31 20:35:08 +00001462 /* The output line number is small enough that we are still in the
1463 ** main program. */
dan165921a2009-08-28 18:53:45 +00001464 pOp = &p->aOp[i];
1465 }else{
drh5cfa5842009-12-31 20:35:08 +00001466 /* We are currently listing subprograms. Figure out which one and
1467 ** pick up the appropriate opcode. */
dan165921a2009-08-28 18:53:45 +00001468 int j;
1469 i -= p->nOp;
1470 for(j=0; i>=apSub[j]->nOp; j++){
1471 i -= apSub[j]->nOp;
1472 }
1473 pOp = &apSub[j]->aOp[i];
1474 }
danielk19770d78bae2008-01-03 07:09:48 +00001475 if( p->explain==1 ){
1476 pMem->flags = MEM_Int;
danielk19770d78bae2008-01-03 07:09:48 +00001477 pMem->u.i = i; /* Program counter */
1478 pMem++;
1479
1480 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001481 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
danielk19770d78bae2008-01-03 07:09:48 +00001482 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001483 pMem->n = sqlite3Strlen30(pMem->z);
danielk19770d78bae2008-01-03 07:09:48 +00001484 pMem->enc = SQLITE_UTF8;
1485 pMem++;
dan165921a2009-08-28 18:53:45 +00001486
drh5cfa5842009-12-31 20:35:08 +00001487 /* When an OP_Program opcode is encounter (the only opcode that has
1488 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1489 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1490 ** has not already been seen.
1491 */
dan165921a2009-08-28 18:53:45 +00001492 if( pOp->p4type==P4_SUBPROGRAM ){
1493 int nByte = (nSub+1)*sizeof(SubProgram*);
1494 int j;
1495 for(j=0; j<nSub; j++){
1496 if( apSub[j]==pOp->p4.pProgram ) break;
1497 }
dan2b9ee772012-03-31 09:59:44 +00001498 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
dan165921a2009-08-28 18:53:45 +00001499 apSub = (SubProgram **)pSub->z;
1500 apSub[nSub++] = pOp->p4.pProgram;
1501 pSub->flags |= MEM_Blob;
1502 pSub->n = nSub*sizeof(SubProgram*);
1503 }
1504 }
danielk19770d78bae2008-01-03 07:09:48 +00001505 }
drheb2e1762004-05-27 01:53:56 +00001506
1507 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001508 pMem->u.i = pOp->p1; /* P1 */
drheb2e1762004-05-27 01:53:56 +00001509 pMem++;
1510
1511 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001512 pMem->u.i = pOp->p2; /* P2 */
drheb2e1762004-05-27 01:53:56 +00001513 pMem++;
1514
dan2ce22452010-11-08 19:01:16 +00001515 pMem->flags = MEM_Int;
1516 pMem->u.i = pOp->p3; /* P3 */
dan2ce22452010-11-08 19:01:16 +00001517 pMem++;
danielk19770d78bae2008-01-03 07:09:48 +00001518
drh322f2852014-09-19 00:43:39 +00001519 if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */
danielk1977357864e2009-03-25 15:43:08 +00001520 assert( p->db->mallocFailed );
1521 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001522 }
drhc91b2fd2014-03-01 18:13:23 +00001523 pMem->flags = MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001524 zP4 = displayP4(pOp, pMem->z, 32);
1525 if( zP4!=pMem->z ){
1526 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
danielk1977a7a8e142008-02-13 18:25:27 +00001527 }else{
1528 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001529 pMem->n = sqlite3Strlen30(pMem->z);
danielk1977a7a8e142008-02-13 18:25:27 +00001530 pMem->enc = SQLITE_UTF8;
1531 }
danielk19770d78bae2008-01-03 07:09:48 +00001532 pMem++;
drheb2e1762004-05-27 01:53:56 +00001533
danielk19770d78bae2008-01-03 07:09:48 +00001534 if( p->explain==1 ){
drh322f2852014-09-19 00:43:39 +00001535 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
danielk1977357864e2009-03-25 15:43:08 +00001536 assert( p->db->mallocFailed );
1537 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001538 }
drhc91b2fd2014-03-01 18:13:23 +00001539 pMem->flags = MEM_Str|MEM_Term;
drh85e5f0d2008-02-19 18:28:13 +00001540 pMem->n = 2;
1541 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
danielk19770d78bae2008-01-03 07:09:48 +00001542 pMem->enc = SQLITE_UTF8;
1543 pMem++;
1544
drhc7379ce2013-10-30 02:28:23 +00001545#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh322f2852014-09-19 00:43:39 +00001546 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
drh81316f82013-10-29 20:40:47 +00001547 assert( p->db->mallocFailed );
1548 return SQLITE_ERROR;
drh52391cb2008-02-14 23:44:13 +00001549 }
drhc91b2fd2014-03-01 18:13:23 +00001550 pMem->flags = MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001551 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
drh81316f82013-10-29 20:40:47 +00001552 pMem->enc = SQLITE_UTF8;
1553#else
1554 pMem->flags = MEM_Null; /* Comment */
drh81316f82013-10-29 20:40:47 +00001555#endif
danielk19770d78bae2008-01-03 07:09:48 +00001556 }
1557
dan2ce22452010-11-08 19:01:16 +00001558 p->nResColumn = 8 - 4*(p->explain-1);
drh9734e6e2011-10-07 18:24:25 +00001559 p->pResultSet = &p->aMem[1];
drh826fb5a2004-02-14 23:59:57 +00001560 p->rc = SQLITE_OK;
1561 rc = SQLITE_ROW;
drh9a324642003-09-06 20:12:01 +00001562 }
drh826fb5a2004-02-14 23:59:57 +00001563 return rc;
drh9a324642003-09-06 20:12:01 +00001564}
drhb7f91642004-10-31 02:22:47 +00001565#endif /* SQLITE_OMIT_EXPLAIN */
drh9a324642003-09-06 20:12:01 +00001566
drh7c4ac0c2007-04-05 11:25:58 +00001567#ifdef SQLITE_DEBUG
drh9a324642003-09-06 20:12:01 +00001568/*
drh3f7d4e42004-07-24 14:35:58 +00001569** Print the SQL that was used to generate a VDBE program.
1570*/
1571void sqlite3VdbePrintSql(Vdbe *p){
drh84e55a82013-11-13 17:58:23 +00001572 const char *z = 0;
1573 if( p->zSql ){
1574 z = p->zSql;
1575 }else if( p->nOp>=1 ){
1576 const VdbeOp *pOp = &p->aOp[0];
drhaceb31b2014-02-08 01:40:27 +00001577 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
drh84e55a82013-11-13 17:58:23 +00001578 z = pOp->p4.z;
1579 while( sqlite3Isspace(*z) ) z++;
1580 }
drh3f7d4e42004-07-24 14:35:58 +00001581 }
drh84e55a82013-11-13 17:58:23 +00001582 if( z ) printf("SQL: [%s]\n", z);
drh3f7d4e42004-07-24 14:35:58 +00001583}
drh7c4ac0c2007-04-05 11:25:58 +00001584#endif
drh3f7d4e42004-07-24 14:35:58 +00001585
drh602c2372007-03-01 00:29:13 +00001586#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1587/*
1588** Print an IOTRACE message showing SQL content.
1589*/
1590void sqlite3VdbeIOTraceSql(Vdbe *p){
1591 int nOp = p->nOp;
1592 VdbeOp *pOp;
mlcreech3a00f902008-03-04 17:45:01 +00001593 if( sqlite3IoTrace==0 ) return;
drh602c2372007-03-01 00:29:13 +00001594 if( nOp<1 ) return;
drh949f9cd2008-01-12 21:35:57 +00001595 pOp = &p->aOp[0];
drhaceb31b2014-02-08 01:40:27 +00001596 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
drh602c2372007-03-01 00:29:13 +00001597 int i, j;
drh00a18e42007-08-13 11:10:34 +00001598 char z[1000];
drh949f9cd2008-01-12 21:35:57 +00001599 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
danielk197778ca0e72009-01-20 16:53:39 +00001600 for(i=0; sqlite3Isspace(z[i]); i++){}
drh602c2372007-03-01 00:29:13 +00001601 for(j=0; z[i]; i++){
danielk197778ca0e72009-01-20 16:53:39 +00001602 if( sqlite3Isspace(z[i]) ){
drh602c2372007-03-01 00:29:13 +00001603 if( z[i-1]!=' ' ){
1604 z[j++] = ' ';
1605 }
1606 }else{
1607 z[j++] = z[i];
1608 }
1609 }
1610 z[j] = 0;
mlcreech3a00f902008-03-04 17:45:01 +00001611 sqlite3IoTrace("SQL %s\n", z);
drh602c2372007-03-01 00:29:13 +00001612 }
1613}
1614#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1615
drhb2771ce2009-02-20 01:28:59 +00001616/*
drh4800b2e2009-12-08 15:35:22 +00001617** Allocate space from a fixed size buffer and return a pointer to
1618** that space. If insufficient space is available, return NULL.
1619**
1620** The pBuf parameter is the initial value of a pointer which will
1621** receive the new memory. pBuf is normally NULL. If pBuf is not
1622** NULL, it means that memory space has already been allocated and that
1623** this routine should not allocate any new memory. When pBuf is not
1624** NULL simply return pBuf. Only allocate new memory space when pBuf
1625** is NULL.
drhb2771ce2009-02-20 01:28:59 +00001626**
1627** nByte is the number of bytes of space needed.
1628**
drh19875c82009-12-08 19:58:19 +00001629** *ppFrom points to available space and pEnd points to the end of the
1630** available space. When space is allocated, *ppFrom is advanced past
1631** the end of the allocated space.
drhb2771ce2009-02-20 01:28:59 +00001632**
1633** *pnByte is a counter of the number of bytes of space that have failed
1634** to allocate. If there is insufficient space in *ppFrom to satisfy the
danielk1977d336e222009-02-20 10:58:41 +00001635** request, then increment *pnByte by the amount of the request.
drhb2771ce2009-02-20 01:28:59 +00001636*/
drh4800b2e2009-12-08 15:35:22 +00001637static void *allocSpace(
1638 void *pBuf, /* Where return pointer will be stored */
drhb2771ce2009-02-20 01:28:59 +00001639 int nByte, /* Number of bytes to allocate */
1640 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
danielk1977d336e222009-02-20 10:58:41 +00001641 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
drhb2771ce2009-02-20 01:28:59 +00001642 int *pnByte /* If allocation cannot be made, increment *pnByte */
1643){
drhea598cb2009-04-05 12:22:08 +00001644 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
drh4800b2e2009-12-08 15:35:22 +00001645 if( pBuf ) return pBuf;
1646 nByte = ROUND8(nByte);
1647 if( &(*ppFrom)[nByte] <= pEnd ){
1648 pBuf = (void*)*ppFrom;
1649 *ppFrom += nByte;
1650 }else{
1651 *pnByte += nByte;
drhb2771ce2009-02-20 01:28:59 +00001652 }
drh4800b2e2009-12-08 15:35:22 +00001653 return pBuf;
drhb2771ce2009-02-20 01:28:59 +00001654}
drh602c2372007-03-01 00:29:13 +00001655
drh3f7d4e42004-07-24 14:35:58 +00001656/*
drh124c0b42011-06-01 18:15:55 +00001657** Rewind the VDBE back to the beginning in preparation for
1658** running it.
drh9a324642003-09-06 20:12:01 +00001659*/
drh124c0b42011-06-01 18:15:55 +00001660void sqlite3VdbeRewind(Vdbe *p){
1661#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1662 int i;
1663#endif
drh9a324642003-09-06 20:12:01 +00001664 assert( p!=0 );
drh9a324642003-09-06 20:12:01 +00001665 assert( p->magic==VDBE_MAGIC_INIT );
1666
drhc16a03b2004-09-15 13:38:10 +00001667 /* There should be at least one opcode.
drh9a324642003-09-06 20:12:01 +00001668 */
drhc16a03b2004-09-15 13:38:10 +00001669 assert( p->nOp>0 );
drh9a324642003-09-06 20:12:01 +00001670
danielk197700e13612008-11-17 19:18:54 +00001671 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
danielk1977634f2982005-03-28 08:44:07 +00001672 p->magic = VDBE_MAGIC_RUN;
1673
drh124c0b42011-06-01 18:15:55 +00001674#ifdef SQLITE_DEBUG
1675 for(i=1; i<p->nMem; i++){
1676 assert( p->aMem[i].db==p->db );
1677 }
1678#endif
1679 p->pc = -1;
1680 p->rc = SQLITE_OK;
1681 p->errorAction = OE_Abort;
1682 p->magic = VDBE_MAGIC_RUN;
1683 p->nChange = 0;
1684 p->cacheCtr = 1;
1685 p->minWriteFileFormat = 255;
1686 p->iStatement = 0;
1687 p->nFkConstraint = 0;
1688#ifdef VDBE_PROFILE
1689 for(i=0; i<p->nOp; i++){
1690 p->aOp[i].cnt = 0;
1691 p->aOp[i].cycles = 0;
1692 }
1693#endif
1694}
1695
1696/*
1697** Prepare a virtual machine for execution for the first time after
1698** creating the virtual machine. This involves things such
drh7abda852014-09-19 16:02:06 +00001699** as allocating registers and initializing the program counter.
drh124c0b42011-06-01 18:15:55 +00001700** After the VDBE has be prepped, it can be executed by one or more
1701** calls to sqlite3VdbeExec().
1702**
peter.d.reid60ec9142014-09-06 16:39:46 +00001703** This function may be called exactly once on each virtual machine.
drh124c0b42011-06-01 18:15:55 +00001704** After this routine is called the VM has been "packaged" and is ready
peter.d.reid60ec9142014-09-06 16:39:46 +00001705** to run. After this routine is called, further calls to
drh124c0b42011-06-01 18:15:55 +00001706** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1707** the Vdbe from the Parse object that helped generate it so that the
1708** the Vdbe becomes an independent entity and the Parse object can be
1709** destroyed.
1710**
1711** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1712** to its initial state after it has been run.
1713*/
1714void sqlite3VdbeMakeReady(
1715 Vdbe *p, /* The VDBE */
1716 Parse *pParse /* Parsing context */
1717){
1718 sqlite3 *db; /* The database connection */
1719 int nVar; /* Number of parameters */
1720 int nMem; /* Number of VM memory registers */
1721 int nCursor; /* Number of cursors required */
1722 int nArg; /* Number of arguments in subprograms */
dan1d8cb212011-12-09 13:24:16 +00001723 int nOnce; /* Number of OP_Once instructions */
drh124c0b42011-06-01 18:15:55 +00001724 int n; /* Loop counter */
1725 u8 *zCsr; /* Memory available for allocation */
1726 u8 *zEnd; /* First byte past allocated memory */
1727 int nByte; /* How much extra memory is needed */
1728
1729 assert( p!=0 );
1730 assert( p->nOp>0 );
1731 assert( pParse!=0 );
1732 assert( p->magic==VDBE_MAGIC_INIT );
drh73d5b8f2013-12-23 19:09:07 +00001733 assert( pParse==p->pParse );
drh124c0b42011-06-01 18:15:55 +00001734 db = p->db;
1735 assert( db->mallocFailed==0 );
1736 nVar = pParse->nVar;
1737 nMem = pParse->nMem;
1738 nCursor = pParse->nTab;
1739 nArg = pParse->nMaxArg;
dan1d8cb212011-12-09 13:24:16 +00001740 nOnce = pParse->nOnce;
drh20e226d2012-01-01 13:58:53 +00001741 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
drh124c0b42011-06-01 18:15:55 +00001742
danielk1977cd3e8f72008-03-25 09:47:35 +00001743 /* For each cursor required, also allocate a memory cell. Memory
1744 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1745 ** the vdbe program. Instead they are used to allocate space for
drhdfe88ec2008-11-03 20:55:06 +00001746 ** VdbeCursor/BtCursor structures. The blob of memory associated with
danielk1977cd3e8f72008-03-25 09:47:35 +00001747 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1748 ** stores the blob of memory associated with cursor 1, etc.
1749 **
1750 ** See also: allocateCursor().
1751 */
1752 nMem += nCursor;
1753
danielk19776ab3a2e2009-02-19 14:39:25 +00001754 /* Allocate space for memory registers, SQL variables, VDBE cursors and
drh124c0b42011-06-01 18:15:55 +00001755 ** an array to marshal SQL function arguments in.
drh9a324642003-09-06 20:12:01 +00001756 */
drh73d5b8f2013-12-23 19:09:07 +00001757 zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */
1758 zEnd = (u8*)&p->aOp[pParse->nOpAlloc]; /* First byte past end of zCsr[] */
drh19875c82009-12-08 19:58:19 +00001759
drh124c0b42011-06-01 18:15:55 +00001760 resolveP2Values(p, &nArg);
1761 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1762 if( pParse->explain && nMem<10 ){
1763 nMem = 10;
1764 }
1765 memset(zCsr, 0, zEnd-zCsr);
1766 zCsr += (zCsr - (u8*)0)&7;
1767 assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
drhaab910c2011-06-27 00:01:22 +00001768 p->expired = 0;
drh124c0b42011-06-01 18:15:55 +00001769
1770 /* Memory for registers, parameters, cursor, etc, is allocated in two
1771 ** passes. On the first pass, we try to reuse unused space at the
1772 ** end of the opcode array. If we are unable to satisfy all memory
1773 ** requirements by reusing the opcode array tail, then the second
1774 ** pass will fill in the rest using a fresh allocation.
1775 **
1776 ** This two-pass approach that reuses as much memory as possible from
1777 ** the leftover space at the end of the opcode array can significantly
1778 ** reduce the amount of memory held by a prepared statement.
1779 */
1780 do {
1781 nByte = 0;
1782 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
1783 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
1784 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
1785 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
1786 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
1787 &zCsr, zEnd, &nByte);
drhb8475df2011-12-09 16:21:19 +00001788 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
dane2f771b2014-11-03 15:33:17 +00001789#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00001790 p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), &zCsr, zEnd, &nByte);
dane2f771b2014-11-03 15:33:17 +00001791#endif
drh124c0b42011-06-01 18:15:55 +00001792 if( nByte ){
1793 p->pFree = sqlite3DbMallocZero(db, nByte);
drh0f7eb612006-08-08 13:51:43 +00001794 }
drh124c0b42011-06-01 18:15:55 +00001795 zCsr = p->pFree;
1796 zEnd = &zCsr[nByte];
1797 }while( nByte && !db->mallocFailed );
drhb2771ce2009-02-20 01:28:59 +00001798
drhd2a56232013-01-28 19:00:20 +00001799 p->nCursor = nCursor;
dan1d8cb212011-12-09 13:24:16 +00001800 p->nOnceFlag = nOnce;
drh124c0b42011-06-01 18:15:55 +00001801 if( p->aVar ){
1802 p->nVar = (ynVar)nVar;
1803 for(n=0; n<nVar; n++){
1804 p->aVar[n].flags = MEM_Null;
1805 p->aVar[n].db = db;
danielk197754db47e2004-05-19 10:36:43 +00001806 }
drh82a48512003-09-06 22:45:20 +00001807 }
drh9b5444a2014-12-02 13:46:53 +00001808 if( p->azVar && pParse->nzVar>0 ){
drh124c0b42011-06-01 18:15:55 +00001809 p->nzVar = pParse->nzVar;
1810 memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
1811 memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
danielk1977b3bce662005-01-29 08:32:43 +00001812 }
drh124c0b42011-06-01 18:15:55 +00001813 if( p->aMem ){
1814 p->aMem--; /* aMem[] goes from 1..nMem */
1815 p->nMem = nMem; /* not from 0..nMem-1 */
1816 for(n=1; n<=nMem; n++){
drha5750cf2014-02-07 13:20:31 +00001817 p->aMem[n].flags = MEM_Undefined;
drh124c0b42011-06-01 18:15:55 +00001818 p->aMem[n].db = db;
drhcf64d8b2003-12-31 17:57:10 +00001819 }
drh9a324642003-09-06 20:12:01 +00001820 }
drh124c0b42011-06-01 18:15:55 +00001821 p->explain = pParse->explain;
1822 sqlite3VdbeRewind(p);
drh9a324642003-09-06 20:12:01 +00001823}
1824
drh9a324642003-09-06 20:12:01 +00001825/*
danielk1977cd3e8f72008-03-25 09:47:35 +00001826** Close a VDBE cursor and release all the resources that cursor
1827** happens to hold.
drh9a324642003-09-06 20:12:01 +00001828*/
drhdfe88ec2008-11-03 20:55:06 +00001829void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
drh4774b132004-06-12 20:12:51 +00001830 if( pCx==0 ){
1831 return;
1832 }
dana20fde62011-07-12 14:28:05 +00001833 sqlite3VdbeSorterClose(p->db, pCx);
drh9a324642003-09-06 20:12:01 +00001834 if( pCx->pBt ){
danielk19774adee202004-05-08 08:23:19 +00001835 sqlite3BtreeClose(pCx->pBt);
drh34004ce2008-07-11 16:15:17 +00001836 /* The pCx->pCursor will be close automatically, if it exists, by
1837 ** the call above. */
1838 }else if( pCx->pCursor ){
1839 sqlite3BtreeCloseCursor(pCx->pCursor);
drh9a324642003-09-06 20:12:01 +00001840 }
drh9eff6162006-06-12 21:59:13 +00001841#ifndef SQLITE_OMIT_VIRTUALTABLE
drhf526dca2014-10-13 17:42:05 +00001842 else if( pCx->pVtabCursor ){
drh9eff6162006-06-12 21:59:13 +00001843 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
drh5cc10232013-11-21 01:04:02 +00001844 const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;
drha68d6282015-03-24 13:32:53 +00001845 assert( pVtabCursor->pVtab->nRef>0 );
1846 pVtabCursor->pVtab->nRef--;
drh9eff6162006-06-12 21:59:13 +00001847 pModule->xClose(pVtabCursor);
1848 }
1849#endif
drh9a324642003-09-06 20:12:01 +00001850}
1851
dan65a7cd12009-09-01 12:16:01 +00001852/*
drhab4e7f32015-04-16 18:11:50 +00001853** Close all cursors in the current frame.
1854*/
1855static void closeCursorsInFrame(Vdbe *p){
1856 if( p->apCsr ){
1857 int i;
1858 for(i=0; i<p->nCursor; i++){
1859 VdbeCursor *pC = p->apCsr[i];
1860 if( pC ){
1861 sqlite3VdbeFreeCursor(p, pC);
1862 p->apCsr[i] = 0;
1863 }
1864 }
1865 }
1866}
1867
1868/*
dan65a7cd12009-09-01 12:16:01 +00001869** Copy the values stored in the VdbeFrame structure to its Vdbe. This
1870** is used, for example, when a trigger sub-program is halted to restore
1871** control to the main program.
1872*/
dan165921a2009-08-28 18:53:45 +00001873int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
1874 Vdbe *v = pFrame->v;
drhab4e7f32015-04-16 18:11:50 +00001875 closeCursorsInFrame(v);
dane2f771b2014-11-03 15:33:17 +00001876#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00001877 v->anExec = pFrame->anExec;
dane2f771b2014-11-03 15:33:17 +00001878#endif
dan1d8cb212011-12-09 13:24:16 +00001879 v->aOnceFlag = pFrame->aOnceFlag;
1880 v->nOnceFlag = pFrame->nOnceFlag;
dan165921a2009-08-28 18:53:45 +00001881 v->aOp = pFrame->aOp;
1882 v->nOp = pFrame->nOp;
1883 v->aMem = pFrame->aMem;
1884 v->nMem = pFrame->nMem;
1885 v->apCsr = pFrame->apCsr;
1886 v->nCursor = pFrame->nCursor;
dan76d462e2009-08-30 11:42:51 +00001887 v->db->lastRowid = pFrame->lastRowid;
1888 v->nChange = pFrame->nChange;
danc3da6672014-10-28 18:24:16 +00001889 v->db->nChange = pFrame->nDbChange;
dan165921a2009-08-28 18:53:45 +00001890 return pFrame->pc;
1891}
1892
drh9a324642003-09-06 20:12:01 +00001893/*
drh5f82e3c2009-07-06 00:44:08 +00001894** Close all cursors.
dan165921a2009-08-28 18:53:45 +00001895**
1896** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
1897** cell array. This is necessary as the memory cell array may contain
1898** pointers to VdbeFrame objects, which may in turn contain pointers to
1899** open cursors.
drh9a324642003-09-06 20:12:01 +00001900*/
drh5f82e3c2009-07-06 00:44:08 +00001901static void closeAllCursors(Vdbe *p){
dan165921a2009-08-28 18:53:45 +00001902 if( p->pFrame ){
drh23272752011-03-06 21:54:33 +00001903 VdbeFrame *pFrame;
dan165921a2009-08-28 18:53:45 +00001904 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
1905 sqlite3VdbeFrameRestore(pFrame);
drhf526dca2014-10-13 17:42:05 +00001906 p->pFrame = 0;
1907 p->nFrame = 0;
dan165921a2009-08-28 18:53:45 +00001908 }
drhf526dca2014-10-13 17:42:05 +00001909 assert( p->nFrame==0 );
drhab4e7f32015-04-16 18:11:50 +00001910 closeCursorsInFrame(p);
dan523a0872009-08-31 05:23:32 +00001911 if( p->aMem ){
1912 releaseMemArray(&p->aMem[1], p->nMem);
1913 }
dan27106572010-12-01 08:04:47 +00001914 while( p->pDelFrame ){
1915 VdbeFrame *pDel = p->pDelFrame;
1916 p->pDelFrame = pDel->pParent;
1917 sqlite3VdbeFrameDelete(pDel);
1918 }
dan0c547792013-07-18 17:12:08 +00001919
1920 /* Delete any auxdata allocations made by the VM */
drhf526dca2014-10-13 17:42:05 +00001921 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0);
dan0c547792013-07-18 17:12:08 +00001922 assert( p->pAuxData==0 );
drh9a324642003-09-06 20:12:01 +00001923}
1924
1925/*
drh7abda852014-09-19 16:02:06 +00001926** Clean up the VM after a single run.
drh9a324642003-09-06 20:12:01 +00001927*/
drhc890fec2008-08-01 20:10:08 +00001928static void Cleanup(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00001929 sqlite3 *db = p->db;
dan165921a2009-08-28 18:53:45 +00001930
1931#ifdef SQLITE_DEBUG
1932 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
1933 ** Vdbe.aMem[] arrays have already been cleaned up. */
1934 int i;
drhb8475df2011-12-09 16:21:19 +00001935 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
1936 if( p->aMem ){
drha5750cf2014-02-07 13:20:31 +00001937 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
drhb8475df2011-12-09 16:21:19 +00001938 }
dan165921a2009-08-28 18:53:45 +00001939#endif
1940
drh633e6d52008-07-28 19:34:53 +00001941 sqlite3DbFree(db, p->zErrMsg);
drh9a324642003-09-06 20:12:01 +00001942 p->zErrMsg = 0;
drhd4e70eb2008-01-02 00:34:36 +00001943 p->pResultSet = 0;
drh9a324642003-09-06 20:12:01 +00001944}
1945
1946/*
danielk197722322fd2004-05-25 23:35:17 +00001947** Set the number of result columns that will be returned by this SQL
1948** statement. This is now set at compile time, rather than during
1949** execution of the vdbe program so that sqlite3_column_count() can
1950** be called on an SQL statement before sqlite3_step().
1951*/
1952void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
drh76ff3a02004-09-24 22:32:30 +00001953 Mem *pColName;
1954 int n;
drh633e6d52008-07-28 19:34:53 +00001955 sqlite3 *db = p->db;
drh4a50aac2007-08-23 02:47:53 +00001956
drhc890fec2008-08-01 20:10:08 +00001957 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
drh633e6d52008-07-28 19:34:53 +00001958 sqlite3DbFree(db, p->aColName);
danielk1977955de522006-02-10 02:27:42 +00001959 n = nResColumn*COLNAME_N;
shane36840fd2009-06-26 16:32:13 +00001960 p->nResColumn = (u16)nResColumn;
drh633e6d52008-07-28 19:34:53 +00001961 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
drh76ff3a02004-09-24 22:32:30 +00001962 if( p->aColName==0 ) return;
1963 while( n-- > 0 ){
drh4a50aac2007-08-23 02:47:53 +00001964 pColName->flags = MEM_Null;
drh153c62c2007-08-24 03:51:33 +00001965 pColName->db = p->db;
drh4a50aac2007-08-23 02:47:53 +00001966 pColName++;
drh76ff3a02004-09-24 22:32:30 +00001967 }
danielk197722322fd2004-05-25 23:35:17 +00001968}
1969
1970/*
danielk19773cf86062004-05-26 10:11:05 +00001971** Set the name of the idx'th column to be returned by the SQL statement.
1972** zName must be a pointer to a nul terminated string.
1973**
1974** This call must be made after a call to sqlite3VdbeSetNumCols().
1975**
danielk197710fb7492008-10-31 10:53:22 +00001976** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
1977** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
1978** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
danielk19773cf86062004-05-26 10:11:05 +00001979*/
danielk197710fb7492008-10-31 10:53:22 +00001980int sqlite3VdbeSetColName(
1981 Vdbe *p, /* Vdbe being configured */
1982 int idx, /* Index of column zName applies to */
1983 int var, /* One of the COLNAME_* constants */
1984 const char *zName, /* Pointer to buffer containing name */
1985 void (*xDel)(void*) /* Memory management strategy for zName */
1986){
danielk19773cf86062004-05-26 10:11:05 +00001987 int rc;
1988 Mem *pColName;
danielk1977955de522006-02-10 02:27:42 +00001989 assert( idx<p->nResColumn );
1990 assert( var<COLNAME_N );
danielk197710fb7492008-10-31 10:53:22 +00001991 if( p->db->mallocFailed ){
1992 assert( !zName || xDel!=SQLITE_DYNAMIC );
1993 return SQLITE_NOMEM;
1994 }
drh76ff3a02004-09-24 22:32:30 +00001995 assert( p->aColName!=0 );
danielk1977955de522006-02-10 02:27:42 +00001996 pColName = &(p->aColName[idx+var*p->nResColumn]);
danielk197710fb7492008-10-31 10:53:22 +00001997 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
drh0793f1b2008-11-05 17:41:19 +00001998 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
danielk19773cf86062004-05-26 10:11:05 +00001999 return rc;
2000}
2001
danielk197713adf8a2004-06-03 16:08:41 +00002002/*
2003** A read or write transaction may or may not be active on database handle
2004** db. If a transaction is active, commit it. If there is a
2005** write-transaction spanning more than one database file, this routine
2006** takes care of the master journal trickery.
2007*/
danielk19773e3a84d2008-08-01 17:37:40 +00002008static int vdbeCommit(sqlite3 *db, Vdbe *p){
danielk197713adf8a2004-06-03 16:08:41 +00002009 int i;
2010 int nTrans = 0; /* Number of databases with an active write-transaction */
2011 int rc = SQLITE_OK;
2012 int needXcommit = 0;
2013
shane36840fd2009-06-26 16:32:13 +00002014#ifdef SQLITE_OMIT_VIRTUALTABLE
2015 /* With this option, sqlite3VtabSync() is defined to be simply
2016 ** SQLITE_OK so p is not used.
2017 */
2018 UNUSED_PARAMETER(p);
2019#endif
2020
danielk19775bd270b2006-07-25 15:14:52 +00002021 /* Before doing anything else, call the xSync() callback for any
2022 ** virtual module tables written in this transaction. This has to
2023 ** be done before determining whether a master journal file is
2024 ** required, as an xSync() callback may add an attached database
2025 ** to the transaction.
2026 */
dan016f7812013-08-21 17:35:48 +00002027 rc = sqlite3VtabSync(db, p);
danielk19775bd270b2006-07-25 15:14:52 +00002028
2029 /* This loop determines (a) if the commit hook should be invoked and
2030 ** (b) how many database files have open write transactions, not
2031 ** including the temp database. (b) is important because if more than
2032 ** one database file has an open write transaction, a master journal
2033 ** file is required for an atomic commit.
2034 */
drhabfb62f2010-07-30 11:20:35 +00002035 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002036 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002037 if( sqlite3BtreeIsInTrans(pBt) ){
danielk197713adf8a2004-06-03 16:08:41 +00002038 needXcommit = 1;
2039 if( i!=1 ) nTrans++;
dan6b9bb592012-10-05 19:43:02 +00002040 sqlite3BtreeEnter(pBt);
drhabfb62f2010-07-30 11:20:35 +00002041 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
dan6b9bb592012-10-05 19:43:02 +00002042 sqlite3BtreeLeave(pBt);
danielk197713adf8a2004-06-03 16:08:41 +00002043 }
2044 }
drhabfb62f2010-07-30 11:20:35 +00002045 if( rc!=SQLITE_OK ){
2046 return rc;
2047 }
danielk197713adf8a2004-06-03 16:08:41 +00002048
2049 /* If there are any write-transactions at all, invoke the commit hook */
2050 if( needXcommit && db->xCommitCallback ){
drh92f02c32004-09-02 14:57:08 +00002051 rc = db->xCommitCallback(db->pCommitArg);
drh92f02c32004-09-02 14:57:08 +00002052 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00002053 return SQLITE_CONSTRAINT_COMMITHOOK;
danielk197713adf8a2004-06-03 16:08:41 +00002054 }
2055 }
2056
danielk197740b38dc2004-06-26 08:38:24 +00002057 /* The simple case - no more than one database file (not counting the
2058 ** TEMP database) has a transaction active. There is no need for the
drh2ac3ee92004-06-07 16:27:46 +00002059 ** master-journal.
drhc9e06862004-06-09 20:03:08 +00002060 **
danielk197740b38dc2004-06-26 08:38:24 +00002061 ** If the return value of sqlite3BtreeGetFilename() is a zero length
danielk197717b90b52008-06-06 11:11:25 +00002062 ** string, it means the main database is :memory: or a temp file. In
2063 ** that case we do not support atomic multi-file commits, so use the
2064 ** simple case then too.
danielk197713adf8a2004-06-03 16:08:41 +00002065 */
drhea678832008-12-10 19:26:22 +00002066 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2067 || nTrans<=1
2068 ){
danielk197704103022009-02-03 16:51:24 +00002069 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002070 Btree *pBt = db->aDb[i].pBt;
2071 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00002072 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
drh2ac3ee92004-06-07 16:27:46 +00002073 }
2074 }
2075
drh80e35f42007-03-30 14:06:34 +00002076 /* Do the commit only if all databases successfully complete phase 1.
2077 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2078 ** IO error while deleting or truncating a journal file. It is unlikely,
2079 ** but could happen. In this case abandon processing and return the error.
danielk1977979f38e2007-03-27 16:19:51 +00002080 */
2081 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2082 Btree *pBt = db->aDb[i].pBt;
2083 if( pBt ){
dan60939d02011-03-29 15:40:55 +00002084 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
danielk197713adf8a2004-06-03 16:08:41 +00002085 }
danielk1977979f38e2007-03-27 16:19:51 +00002086 }
2087 if( rc==SQLITE_OK ){
danielk1977f9e7dda2006-06-16 16:08:53 +00002088 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00002089 }
2090 }
2091
2092 /* The complex case - There is a multi-file write-transaction active.
2093 ** This requires a master journal file to ensure the transaction is
peter.d.reid60ec9142014-09-06 16:39:46 +00002094 ** committed atomically.
danielk197713adf8a2004-06-03 16:08:41 +00002095 */
danielk197744ee5bf2005-05-27 09:41:12 +00002096#ifndef SQLITE_OMIT_DISKIO
danielk197713adf8a2004-06-03 16:08:41 +00002097 else{
danielk1977b4b47412007-08-17 15:53:36 +00002098 sqlite3_vfs *pVfs = db->pVfs;
drh2c8997b2005-08-27 16:36:48 +00002099 int needSync = 0;
danielk197713adf8a2004-06-03 16:08:41 +00002100 char *zMaster = 0; /* File-name for the master journal */
2101 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
danielk1977b4b47412007-08-17 15:53:36 +00002102 sqlite3_file *pMaster = 0;
danielk197762079062007-08-15 17:08:46 +00002103 i64 offset = 0;
danielk1977861f7452008-06-05 11:39:11 +00002104 int res;
drhf5808602011-12-16 00:33:04 +00002105 int retryCount = 0;
drh5c531a42011-12-16 01:21:31 +00002106 int nMainFile;
danielk197713adf8a2004-06-03 16:08:41 +00002107
2108 /* Select a master journal file name */
drh5c531a42011-12-16 01:21:31 +00002109 nMainFile = sqlite3Strlen30(zMainFile);
drh52bcde02012-01-03 14:50:45 +00002110 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
drh5c531a42011-12-16 01:21:31 +00002111 if( zMaster==0 ) return SQLITE_NOMEM;
danielk197713adf8a2004-06-03 16:08:41 +00002112 do {
drhdc5ea5c2008-12-10 17:19:59 +00002113 u32 iRandom;
drh84968c02011-12-16 15:11:39 +00002114 if( retryCount ){
2115 if( retryCount>100 ){
2116 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2117 sqlite3OsDelete(pVfs, zMaster, 0);
2118 break;
2119 }else if( retryCount==1 ){
2120 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2121 }
danielk197713adf8a2004-06-03 16:08:41 +00002122 }
drh84968c02011-12-16 15:11:39 +00002123 retryCount++;
danielk197713adf8a2004-06-03 16:08:41 +00002124 sqlite3_randomness(sizeof(iRandom), &iRandom);
drh5c531a42011-12-16 01:21:31 +00002125 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
drhf5808602011-12-16 00:33:04 +00002126 (iRandom>>8)&0xffffff, iRandom&0xff);
drhf5808602011-12-16 00:33:04 +00002127 /* The antipenultimate character of the master journal name must
2128 ** be "9" to avoid name collisions when using 8+3 filenames. */
drh5c531a42011-12-16 01:21:31 +00002129 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
drh81cc5162011-05-17 20:36:21 +00002130 sqlite3FileSuffix3(zMainFile, zMaster);
danielk1977861f7452008-06-05 11:39:11 +00002131 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2132 }while( rc==SQLITE_OK && res );
2133 if( rc==SQLITE_OK ){
drh19db9352008-03-27 22:42:51 +00002134 /* Open the master journal. */
2135 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2136 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2137 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2138 );
2139 }
danielk197713adf8a2004-06-03 16:08:41 +00002140 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00002141 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002142 return rc;
2143 }
2144
2145 /* Write the name of each database file in the transaction into the new
2146 ** master journal file. If an error occurs at this point close
2147 ** and delete the master journal file. All the individual journal files
2148 ** still have 'null' as the master journal pointer, so they will roll
danielk1977aca790a2005-01-13 11:07:52 +00002149 ** back independently if a failure occurs.
danielk197713adf8a2004-06-03 16:08:41 +00002150 */
danielk19771e536952007-08-16 10:09:01 +00002151 for(i=0; i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002152 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002153 if( sqlite3BtreeIsInTrans(pBt) ){
danielk19775865e3d2004-06-14 06:03:57 +00002154 char const *zFile = sqlite3BtreeGetJournalname(pBt);
drh8c96a6e2010-08-31 01:09:15 +00002155 if( zFile==0 ){
drhb290e1c2009-12-08 13:36:55 +00002156 continue; /* Ignore TEMP and :memory: databases */
2157 }
drh8c96a6e2010-08-31 01:09:15 +00002158 assert( zFile[0]!=0 );
drh2c8997b2005-08-27 16:36:48 +00002159 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
2160 needSync = 1;
2161 }
drhea678832008-12-10 19:26:22 +00002162 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2163 offset += sqlite3Strlen30(zFile)+1;
danielk197713adf8a2004-06-03 16:08:41 +00002164 if( rc!=SQLITE_OK ){
danielk1977fee2d252007-08-18 10:59:19 +00002165 sqlite3OsCloseFree(pMaster);
2166 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00002167 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002168 return rc;
2169 }
2170 }
2171 }
2172
danielk19779663b8f2007-08-24 11:52:28 +00002173 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2174 ** flag is set this is not required.
2175 */
danielk1977bea2a942009-01-20 17:06:27 +00002176 if( needSync
2177 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2178 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2179 ){
danielk1977fee2d252007-08-18 10:59:19 +00002180 sqlite3OsCloseFree(pMaster);
2181 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00002182 sqlite3DbFree(db, zMaster);
danielk19775865e3d2004-06-14 06:03:57 +00002183 return rc;
2184 }
drhc9e06862004-06-09 20:03:08 +00002185
danielk197713adf8a2004-06-03 16:08:41 +00002186 /* Sync all the db files involved in the transaction. The same call
2187 ** sets the master journal pointer in each individual journal. If
2188 ** an error occurs here, do not delete the master journal file.
2189 **
drh80e35f42007-03-30 14:06:34 +00002190 ** If the error occurs during the first call to
2191 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2192 ** master journal file will be orphaned. But we cannot delete it,
2193 ** in case the master journal file name was written into the journal
shanebe217792009-03-05 04:20:31 +00002194 ** file before the failure occurred.
danielk197713adf8a2004-06-03 16:08:41 +00002195 */
danielk19775bd270b2006-07-25 15:14:52 +00002196 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002197 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002198 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00002199 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002200 }
2201 }
danielk1977fee2d252007-08-18 10:59:19 +00002202 sqlite3OsCloseFree(pMaster);
drhabfb62f2010-07-30 11:20:35 +00002203 assert( rc!=SQLITE_BUSY );
danielk19775bd270b2006-07-25 15:14:52 +00002204 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00002205 sqlite3DbFree(db, zMaster);
danielk19775bd270b2006-07-25 15:14:52 +00002206 return rc;
2207 }
danielk197713adf8a2004-06-03 16:08:41 +00002208
danielk1977962398d2004-06-14 09:35:16 +00002209 /* Delete the master journal file. This commits the transaction. After
2210 ** doing this the directory is synced again before any individual
2211 ** transaction files are deleted.
2212 */
drh75a4d7c2015-03-16 16:44:55 +00002213 rc = sqlite3OsDelete(pVfs, zMaster, needSync);
drh633e6d52008-07-28 19:34:53 +00002214 sqlite3DbFree(db, zMaster);
drhc416ba92007-03-30 18:42:55 +00002215 zMaster = 0;
drh29a01382006-08-13 19:04:18 +00002216 if( rc ){
2217 return rc;
2218 }
danielk197713adf8a2004-06-03 16:08:41 +00002219
2220 /* All files and directories have already been synced, so the following
drh80e35f42007-03-30 14:06:34 +00002221 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2222 ** deleting or truncating journals. If something goes wrong while
2223 ** this is happening we don't really care. The integrity of the
2224 ** transaction is already guaranteed, but some stray 'cold' journals
2225 ** may be lying around. Returning an error code won't help matters.
danielk197713adf8a2004-06-03 16:08:41 +00002226 */
danielk1977979f38e2007-03-27 16:19:51 +00002227 disable_simulated_io_errors();
danielk19772d1d86f2008-06-20 14:59:51 +00002228 sqlite3BeginBenignMalloc();
danielk197713adf8a2004-06-03 16:08:41 +00002229 for(i=0; i<db->nDb; i++){
2230 Btree *pBt = db->aDb[i].pBt;
2231 if( pBt ){
dan60939d02011-03-29 15:40:55 +00002232 sqlite3BtreeCommitPhaseTwo(pBt, 1);
danielk197713adf8a2004-06-03 16:08:41 +00002233 }
2234 }
danielk19772d1d86f2008-06-20 14:59:51 +00002235 sqlite3EndBenignMalloc();
danielk1977979f38e2007-03-27 16:19:51 +00002236 enable_simulated_io_errors();
2237
danielk1977f9e7dda2006-06-16 16:08:53 +00002238 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00002239 }
danielk197744ee5bf2005-05-27 09:41:12 +00002240#endif
danielk1977026d2702004-06-14 13:14:59 +00002241
drh2ac3ee92004-06-07 16:27:46 +00002242 return rc;
danielk197713adf8a2004-06-03 16:08:41 +00002243}
2244
danielk19771d850a72004-05-31 08:26:49 +00002245/*
drh4f7d3a52013-06-27 23:54:02 +00002246** This routine checks that the sqlite3.nVdbeActive count variable
danielk19771d850a72004-05-31 08:26:49 +00002247** matches the number of vdbe's in the list sqlite3.pVdbe that are
2248** currently active. An assertion fails if the two counts do not match.
drh92f02c32004-09-02 14:57:08 +00002249** This is an internal self-check only - it is not an essential processing
2250** step.
danielk19771d850a72004-05-31 08:26:49 +00002251**
2252** This is a no-op if NDEBUG is defined.
2253*/
2254#ifndef NDEBUG
drh9bb575f2004-09-06 17:24:11 +00002255static void checkActiveVdbeCnt(sqlite3 *db){
danielk19771d850a72004-05-31 08:26:49 +00002256 Vdbe *p;
2257 int cnt = 0;
drhad4a4b82008-11-05 16:37:34 +00002258 int nWrite = 0;
drh4f7d3a52013-06-27 23:54:02 +00002259 int nRead = 0;
danielk19771d850a72004-05-31 08:26:49 +00002260 p = db->pVdbe;
2261 while( p ){
dan857745c2014-07-19 17:57:10 +00002262 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
danielk19771d850a72004-05-31 08:26:49 +00002263 cnt++;
drhad4a4b82008-11-05 16:37:34 +00002264 if( p->readOnly==0 ) nWrite++;
drh1713afb2013-06-28 01:24:57 +00002265 if( p->bIsReader ) nRead++;
danielk19771d850a72004-05-31 08:26:49 +00002266 }
2267 p = p->pNext;
2268 }
drh4f7d3a52013-06-27 23:54:02 +00002269 assert( cnt==db->nVdbeActive );
2270 assert( nWrite==db->nVdbeWrite );
2271 assert( nRead==db->nVdbeRead );
danielk19771d850a72004-05-31 08:26:49 +00002272}
2273#else
2274#define checkActiveVdbeCnt(x)
2275#endif
2276
danielk19773cf86062004-05-26 10:11:05 +00002277/*
danielk1977bd434552009-03-18 10:33:00 +00002278** If the Vdbe passed as the first argument opened a statement-transaction,
2279** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2280** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2281** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
drhf7b54962013-05-28 12:11:54 +00002282** statement transaction is committed.
danielk1977bd434552009-03-18 10:33:00 +00002283**
2284** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2285** Otherwise SQLITE_OK.
2286*/
2287int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
danielk1977c926b6a2009-03-20 14:42:11 +00002288 sqlite3 *const db = p->db;
danielk1977bd434552009-03-18 10:33:00 +00002289 int rc = SQLITE_OK;
danielk1977ecaecf92009-07-08 08:05:35 +00002290
danielk1977e4948172009-07-17 17:25:43 +00002291 /* If p->iStatement is greater than zero, then this Vdbe opened a
2292 ** statement transaction that should be closed here. The only exception
mistachkin48864df2013-03-21 21:20:32 +00002293 ** is that an IO error may have occurred, causing an emergency rollback.
danielk1977e4948172009-07-17 17:25:43 +00002294 ** In this case (db->nStatement==0), and there is nothing to do.
2295 */
2296 if( db->nStatement && p->iStatement ){
danielk1977bd434552009-03-18 10:33:00 +00002297 int i;
2298 const int iSavepoint = p->iStatement-1;
danielk1977bd434552009-03-18 10:33:00 +00002299
2300 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2301 assert( db->nStatement>0 );
2302 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2303
2304 for(i=0; i<db->nDb; i++){
2305 int rc2 = SQLITE_OK;
2306 Btree *pBt = db->aDb[i].pBt;
2307 if( pBt ){
2308 if( eOp==SAVEPOINT_ROLLBACK ){
2309 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2310 }
2311 if( rc2==SQLITE_OK ){
2312 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2313 }
2314 if( rc==SQLITE_OK ){
2315 rc = rc2;
2316 }
2317 }
2318 }
2319 db->nStatement--;
2320 p->iStatement = 0;
dan1da40a32009-09-19 17:00:31 +00002321
dana311b802011-04-26 19:21:34 +00002322 if( rc==SQLITE_OK ){
2323 if( eOp==SAVEPOINT_ROLLBACK ){
2324 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2325 }
2326 if( rc==SQLITE_OK ){
2327 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2328 }
2329 }
2330
dan1da40a32009-09-19 17:00:31 +00002331 /* If the statement transaction is being rolled back, also restore the
2332 ** database handles deferred constraint counter to the value it had when
2333 ** the statement transaction was opened. */
2334 if( eOp==SAVEPOINT_ROLLBACK ){
2335 db->nDeferredCons = p->nStmtDefCons;
drh648e2642013-07-11 15:03:32 +00002336 db->nDeferredImmCons = p->nStmtDefImmCons;
dan1da40a32009-09-19 17:00:31 +00002337 }
danielk1977bd434552009-03-18 10:33:00 +00002338 }
2339 return rc;
2340}
2341
2342/*
dan1da40a32009-09-19 17:00:31 +00002343** This function is called when a transaction opened by the database
2344** handle associated with the VM passed as an argument is about to be
2345** committed. If there are outstanding deferred foreign key constraint
2346** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2347**
2348** If there are outstanding FK violations and this function returns
drhd91c1a12013-02-09 13:58:25 +00002349** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2350** and write an error message to it. Then return SQLITE_ERROR.
dan1da40a32009-09-19 17:00:31 +00002351*/
2352#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00002353int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
dan1da40a32009-09-19 17:00:31 +00002354 sqlite3 *db = p->db;
drh648e2642013-07-11 15:03:32 +00002355 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2356 || (!deferred && p->nFkConstraint>0)
2357 ){
drhd91c1a12013-02-09 13:58:25 +00002358 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan32b09f22009-09-23 17:29:59 +00002359 p->errorAction = OE_Abort;
drh22c17b82015-05-15 04:13:15 +00002360 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
dan1da40a32009-09-19 17:00:31 +00002361 return SQLITE_ERROR;
2362 }
2363 return SQLITE_OK;
2364}
2365#endif
2366
2367/*
drh92f02c32004-09-02 14:57:08 +00002368** This routine is called the when a VDBE tries to halt. If the VDBE
2369** has made changes and is in autocommit mode, then commit those
2370** changes. If a rollback is needed, then do the rollback.
drh9a324642003-09-06 20:12:01 +00002371**
drh92f02c32004-09-02 14:57:08 +00002372** This routine is the only way to move the state of a VM from
drhff0587c2007-08-29 17:43:19 +00002373** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2374** call this on a VM that is in the SQLITE_MAGIC_HALT state.
drh92f02c32004-09-02 14:57:08 +00002375**
2376** Return an error code. If the commit could not complete because of
2377** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2378** means the close did not happen and needs to be repeated.
drh9a324642003-09-06 20:12:01 +00002379*/
drhff0587c2007-08-29 17:43:19 +00002380int sqlite3VdbeHalt(Vdbe *p){
danielk1977bd434552009-03-18 10:33:00 +00002381 int rc; /* Used to store transient return codes */
drh9bb575f2004-09-06 17:24:11 +00002382 sqlite3 *db = p->db;
danielk197707cb5602006-01-20 10:55:05 +00002383
2384 /* This function contains the logic that determines if a statement or
2385 ** transaction will be committed or rolled back as a result of the
2386 ** execution of this virtual machine.
2387 **
drh71b890a2007-10-03 15:30:52 +00002388 ** If any of the following errors occur:
danielk197707cb5602006-01-20 10:55:05 +00002389 **
drh71b890a2007-10-03 15:30:52 +00002390 ** SQLITE_NOMEM
2391 ** SQLITE_IOERR
2392 ** SQLITE_FULL
2393 ** SQLITE_INTERRUPT
danielk197707cb5602006-01-20 10:55:05 +00002394 **
drh71b890a2007-10-03 15:30:52 +00002395 ** Then the internal cache might have been left in an inconsistent
2396 ** state. We need to rollback the statement transaction, if there is
2397 ** one, or the complete transaction if there is no statement transaction.
danielk197707cb5602006-01-20 10:55:05 +00002398 */
drh9a324642003-09-06 20:12:01 +00002399
drh17435752007-08-16 04:30:38 +00002400 if( p->db->mallocFailed ){
danielk1977261919c2005-12-06 12:52:59 +00002401 p->rc = SQLITE_NOMEM;
2402 }
drh6e856bc2011-12-09 18:06:44 +00002403 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
drh5f82e3c2009-07-06 00:44:08 +00002404 closeAllCursors(p);
drh92f02c32004-09-02 14:57:08 +00002405 if( p->magic!=VDBE_MAGIC_RUN ){
drh92f02c32004-09-02 14:57:08 +00002406 return SQLITE_OK;
drh9a324642003-09-06 20:12:01 +00002407 }
danielk19771d850a72004-05-31 08:26:49 +00002408 checkActiveVdbeCnt(db);
danielk1977261919c2005-12-06 12:52:59 +00002409
danc0537fe2013-06-28 19:41:43 +00002410 /* No commit or rollback needed if the program never started or if the
2411 ** SQL statement does not read or write a database file. */
2412 if( p->pc>=0 && p->bIsReader ){
drhaac2f552006-09-23 21:44:23 +00002413 int mrc; /* Primary error code from p->rc */
danielk1977bd434552009-03-18 10:33:00 +00002414 int eStatementOp = 0;
2415 int isSpecialError; /* Set to true if a 'special' error */
drhff0587c2007-08-29 17:43:19 +00002416
2417 /* Lock all btrees used by the statement */
drhbdaec522011-04-04 00:14:43 +00002418 sqlite3VdbeEnter(p);
drhff0587c2007-08-29 17:43:19 +00002419
drh71b890a2007-10-03 15:30:52 +00002420 /* Check for one of the special errors */
drhaac2f552006-09-23 21:44:23 +00002421 mrc = p->rc & 0xff;
drh71b890a2007-10-03 15:30:52 +00002422 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
drh77658e22007-12-04 16:54:52 +00002423 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
danielk197707cb5602006-01-20 10:55:05 +00002424 if( isSpecialError ){
dan5653e4d2010-08-12 11:25:47 +00002425 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2426 ** no rollback is necessary. Otherwise, at least a savepoint
2427 ** transaction must be rolled back to restore the database to a
2428 ** consistent state.
2429 **
2430 ** Even if the statement is read-only, it is important to perform
2431 ** a statement or transaction rollback operation. If the error
mistachkin48864df2013-03-21 21:20:32 +00002432 ** occurred while writing to the journal, sub-journal or database
dan5653e4d2010-08-12 11:25:47 +00002433 ** file as part of an effort to free up cache space (see function
2434 ** pagerStress() in pager.c), the rollback is required to restore
2435 ** the pager to a consistent state.
danielk197707cb5602006-01-20 10:55:05 +00002436 */
drhad4a4b82008-11-05 16:37:34 +00002437 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
drhfa3be902009-07-07 02:44:07 +00002438 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
danielk1977bd434552009-03-18 10:33:00 +00002439 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002440 }else{
2441 /* We are forced to roll back the active transaction. Before doing
2442 ** so, abort any other statements this handle currently has active.
2443 */
drh21021a52012-02-13 17:01:51 +00002444 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002445 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002446 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002447 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002448 }
danielk1977261919c2005-12-06 12:52:59 +00002449 }
2450 }
dan32b09f22009-09-23 17:29:59 +00002451
2452 /* Check for immediate foreign key violations. */
2453 if( p->rc==SQLITE_OK ){
2454 sqlite3VdbeCheckFk(p, 0);
2455 }
danielk197707cb5602006-01-20 10:55:05 +00002456
danielk1977bd434552009-03-18 10:33:00 +00002457 /* If the auto-commit flag is set and this is the only active writer
2458 ** VM, then we do either a commit or rollback of the current transaction.
danielk197707cb5602006-01-20 10:55:05 +00002459 **
2460 ** Note: This block also runs if one of the special errors handled
drhad4a4b82008-11-05 16:37:34 +00002461 ** above has occurred.
danielk197707cb5602006-01-20 10:55:05 +00002462 */
danielk1977093e0f62008-11-13 18:00:14 +00002463 if( !sqlite3VtabInSync(db)
2464 && db->autoCommit
drh4f7d3a52013-06-27 23:54:02 +00002465 && db->nVdbeWrite==(p->readOnly==0)
danielk1977093e0f62008-11-13 18:00:14 +00002466 ){
danielk197707cb5602006-01-20 10:55:05 +00002467 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
dan19611b12011-01-24 16:00:58 +00002468 rc = sqlite3VdbeCheckFk(p, 1);
2469 if( rc!=SQLITE_OK ){
drhe9ce5852011-02-11 22:54:28 +00002470 if( NEVER(p->readOnly) ){
drhbdaec522011-04-04 00:14:43 +00002471 sqlite3VdbeLeave(p);
dan19611b12011-01-24 16:00:58 +00002472 return SQLITE_ERROR;
2473 }
drhd91c1a12013-02-09 13:58:25 +00002474 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan19611b12011-01-24 16:00:58 +00002475 }else{
2476 /* The auto-commit flag is true, the vdbe program was successful
2477 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2478 ** key constraints to hold up the transaction. This means a commit
2479 ** is required. */
2480 rc = vdbeCommit(db, p);
dan1da40a32009-09-19 17:00:31 +00002481 }
dan19611b12011-01-24 16:00:58 +00002482 if( rc==SQLITE_BUSY && p->readOnly ){
drhbdaec522011-04-04 00:14:43 +00002483 sqlite3VdbeLeave(p);
danielk197707cb5602006-01-20 10:55:05 +00002484 return SQLITE_BUSY;
2485 }else if( rc!=SQLITE_OK ){
2486 p->rc = rc;
drh0f198a72012-02-13 16:43:16 +00002487 sqlite3RollbackAll(db, SQLITE_OK);
danc3da6672014-10-28 18:24:16 +00002488 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002489 }else{
dan1da40a32009-09-19 17:00:31 +00002490 db->nDeferredCons = 0;
drh648e2642013-07-11 15:03:32 +00002491 db->nDeferredImmCons = 0;
2492 db->flags &= ~SQLITE_DeferFKs;
danielk197707cb5602006-01-20 10:55:05 +00002493 sqlite3CommitInternalChanges(db);
2494 }
2495 }else{
drh0f198a72012-02-13 16:43:16 +00002496 sqlite3RollbackAll(db, SQLITE_OK);
danc3da6672014-10-28 18:24:16 +00002497 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002498 }
danielk1977bd434552009-03-18 10:33:00 +00002499 db->nStatement = 0;
2500 }else if( eStatementOp==0 ){
danielk197707cb5602006-01-20 10:55:05 +00002501 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
danielk1977bd434552009-03-18 10:33:00 +00002502 eStatementOp = SAVEPOINT_RELEASE;
danielk197707cb5602006-01-20 10:55:05 +00002503 }else if( p->errorAction==OE_Abort ){
danielk1977bd434552009-03-18 10:33:00 +00002504 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002505 }else{
drh21021a52012-02-13 17:01:51 +00002506 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002507 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002508 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002509 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002510 }
danielk19771d850a72004-05-31 08:26:49 +00002511 }
danielk197707cb5602006-01-20 10:55:05 +00002512
danielk1977bd434552009-03-18 10:33:00 +00002513 /* If eStatementOp is non-zero, then a statement transaction needs to
2514 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2515 ** do so. If this operation returns an error, and the current statement
drh35173242010-03-08 21:40:13 +00002516 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2517 ** current statement error code.
danielk197707cb5602006-01-20 10:55:05 +00002518 */
danielk1977bd434552009-03-18 10:33:00 +00002519 if( eStatementOp ){
2520 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
dan40ad9d22010-06-03 09:17:38 +00002521 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00002522 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
dan40ad9d22010-06-03 09:17:38 +00002523 p->rc = rc;
2524 sqlite3DbFree(db, p->zErrMsg);
2525 p->zErrMsg = 0;
2526 }
drh21021a52012-02-13 17:01:51 +00002527 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
dan40ad9d22010-06-03 09:17:38 +00002528 sqlite3CloseSavepoints(db);
2529 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002530 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002531 }
danielk197777d83ba2004-05-31 10:08:14 +00002532 }
danielk197707cb5602006-01-20 10:55:05 +00002533
danielk1977bd434552009-03-18 10:33:00 +00002534 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2535 ** has been rolled back, update the database connection change-counter.
danielk197707cb5602006-01-20 10:55:05 +00002536 */
drh6be240e2009-07-14 02:33:02 +00002537 if( p->changeCntOn ){
danielk1977bd434552009-03-18 10:33:00 +00002538 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
danielk197707cb5602006-01-20 10:55:05 +00002539 sqlite3VdbeSetChanges(db, p->nChange);
2540 }else{
2541 sqlite3VdbeSetChanges(db, 0);
2542 }
2543 p->nChange = 0;
danielk1977b28af712004-06-21 06:50:26 +00002544 }
drhff0587c2007-08-29 17:43:19 +00002545
2546 /* Release the locks */
drhbdaec522011-04-04 00:14:43 +00002547 sqlite3VdbeLeave(p);
drh9a324642003-09-06 20:12:01 +00002548 }
danielk19771d850a72004-05-31 08:26:49 +00002549
danielk197765fd59f2006-06-24 11:51:33 +00002550 /* We have successfully halted and closed the VM. Record this fact. */
2551 if( p->pc>=0 ){
drh4f7d3a52013-06-27 23:54:02 +00002552 db->nVdbeActive--;
2553 if( !p->readOnly ) db->nVdbeWrite--;
drh1713afb2013-06-28 01:24:57 +00002554 if( p->bIsReader ) db->nVdbeRead--;
drh4f7d3a52013-06-27 23:54:02 +00002555 assert( db->nVdbeActive>=db->nVdbeRead );
2556 assert( db->nVdbeRead>=db->nVdbeWrite );
2557 assert( db->nVdbeWrite>=0 );
drh9a324642003-09-06 20:12:01 +00002558 }
drh92f02c32004-09-02 14:57:08 +00002559 p->magic = VDBE_MAGIC_HALT;
2560 checkActiveVdbeCnt(db);
drhff0587c2007-08-29 17:43:19 +00002561 if( p->db->mallocFailed ){
2562 p->rc = SQLITE_NOMEM;
2563 }
danielk19771d850a72004-05-31 08:26:49 +00002564
danielk1977404ca072009-03-16 13:19:36 +00002565 /* If the auto-commit flag is set to true, then any locks that were held
2566 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2567 ** to invoke any required unlock-notify callbacks.
2568 */
2569 if( db->autoCommit ){
2570 sqlite3ConnectionUnlocked(db);
2571 }
2572
drh4f7d3a52013-06-27 23:54:02 +00002573 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
dan19611b12011-01-24 16:00:58 +00002574 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
drh92f02c32004-09-02 14:57:08 +00002575}
drh4cf7c7f2007-08-28 23:28:07 +00002576
drh92f02c32004-09-02 14:57:08 +00002577
2578/*
drh3c23a882007-01-09 14:01:13 +00002579** Each VDBE holds the result of the most recent sqlite3_step() call
2580** in p->rc. This routine sets that result back to SQLITE_OK.
2581*/
2582void sqlite3VdbeResetStepResult(Vdbe *p){
2583 p->rc = SQLITE_OK;
2584}
2585
2586/*
dan029ead62011-10-27 15:19:58 +00002587** Copy the error code and error message belonging to the VDBE passed
2588** as the first argument to its database handle (so that they will be
2589** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2590**
2591** This function does not clear the VDBE error code or message, just
2592** copies them to the database handle.
2593*/
2594int sqlite3VdbeTransferError(Vdbe *p){
2595 sqlite3 *db = p->db;
2596 int rc = p->rc;
2597 if( p->zErrMsg ){
drh81bdd6d2011-10-29 01:33:24 +00002598 u8 mallocFailed = db->mallocFailed;
dan029ead62011-10-27 15:19:58 +00002599 sqlite3BeginBenignMalloc();
drha3cc0072013-12-13 16:23:55 +00002600 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
dan029ead62011-10-27 15:19:58 +00002601 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2602 sqlite3EndBenignMalloc();
drh81bdd6d2011-10-29 01:33:24 +00002603 db->mallocFailed = mallocFailed;
dan029ead62011-10-27 15:19:58 +00002604 db->errCode = rc;
2605 }else{
drh13f40da2014-08-22 18:00:11 +00002606 sqlite3Error(db, rc);
dan029ead62011-10-27 15:19:58 +00002607 }
2608 return rc;
2609}
2610
danac455932012-11-26 19:50:41 +00002611#ifdef SQLITE_ENABLE_SQLLOG
2612/*
2613** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2614** invoke it.
2615*/
2616static void vdbeInvokeSqllog(Vdbe *v){
2617 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2618 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2619 assert( v->db->init.busy==0 );
2620 if( zExpanded ){
2621 sqlite3GlobalConfig.xSqllog(
2622 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2623 );
2624 sqlite3DbFree(v->db, zExpanded);
2625 }
2626 }
2627}
2628#else
2629# define vdbeInvokeSqllog(x)
2630#endif
2631
dan029ead62011-10-27 15:19:58 +00002632/*
drh92f02c32004-09-02 14:57:08 +00002633** Clean up a VDBE after execution but do not delete the VDBE just yet.
2634** Write any error messages into *pzErrMsg. Return the result code.
2635**
2636** After this routine is run, the VDBE should be ready to be executed
2637** again.
2638**
2639** To look at it another way, this routine resets the state of the
2640** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2641** VDBE_MAGIC_INIT.
2642*/
drhc890fec2008-08-01 20:10:08 +00002643int sqlite3VdbeReset(Vdbe *p){
drh4ac285a2006-09-15 07:28:50 +00002644 sqlite3 *db;
drh4ac285a2006-09-15 07:28:50 +00002645 db = p->db;
drh92f02c32004-09-02 14:57:08 +00002646
2647 /* If the VM did not run to completion or if it encountered an
2648 ** error, then it might not have been halted properly. So halt
2649 ** it now.
2650 */
2651 sqlite3VdbeHalt(p);
2652
drhfb7e7652005-01-24 00:28:42 +00002653 /* If the VDBE has be run even partially, then transfer the error code
2654 ** and error message from the VDBE into the main database structure. But
2655 ** if the VDBE has just been set to run but has not actually executed any
2656 ** instructions yet, leave the main database error information unchanged.
drh92f02c32004-09-02 14:57:08 +00002657 */
drhfb7e7652005-01-24 00:28:42 +00002658 if( p->pc>=0 ){
danac455932012-11-26 19:50:41 +00002659 vdbeInvokeSqllog(p);
dan029ead62011-10-27 15:19:58 +00002660 sqlite3VdbeTransferError(p);
2661 sqlite3DbFree(db, p->zErrMsg);
2662 p->zErrMsg = 0;
drh4611d922010-02-25 14:47:01 +00002663 if( p->runOnlyOnce ) p->expired = 1;
danielk1977a21c6b62005-01-24 10:25:59 +00002664 }else if( p->rc && p->expired ){
2665 /* The expired flag was set on the VDBE before the first call
2666 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2667 ** called), set the database error in this case as well.
2668 */
drh13f40da2014-08-22 18:00:11 +00002669 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
drh633e6d52008-07-28 19:34:53 +00002670 sqlite3DbFree(db, p->zErrMsg);
danielk19778e556522007-11-13 10:30:24 +00002671 p->zErrMsg = 0;
drh92f02c32004-09-02 14:57:08 +00002672 }
2673
2674 /* Reclaim all memory used by the VDBE
2675 */
drhc890fec2008-08-01 20:10:08 +00002676 Cleanup(p);
drh92f02c32004-09-02 14:57:08 +00002677
2678 /* Save profiling information from this VDBE run.
2679 */
drh9a324642003-09-06 20:12:01 +00002680#ifdef VDBE_PROFILE
2681 {
2682 FILE *out = fopen("vdbe_profile.out", "a");
2683 if( out ){
2684 int i;
2685 fprintf(out, "---- ");
2686 for(i=0; i<p->nOp; i++){
2687 fprintf(out, "%02x", p->aOp[i].opcode);
2688 }
2689 fprintf(out, "\n");
drh2926f962014-02-17 01:13:28 +00002690 if( p->zSql ){
2691 char c, pc = 0;
2692 fprintf(out, "-- ");
2693 for(i=0; (c = p->zSql[i])!=0; i++){
2694 if( pc=='\n' ) fprintf(out, "-- ");
2695 putc(c, out);
2696 pc = c;
2697 }
2698 if( pc!='\n' ) fprintf(out, "\n");
2699 }
drh9a324642003-09-06 20:12:01 +00002700 for(i=0; i<p->nOp; i++){
drh15ab9412014-02-24 14:24:01 +00002701 char zHdr[100];
2702 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
drh9a324642003-09-06 20:12:01 +00002703 p->aOp[i].cnt,
2704 p->aOp[i].cycles,
2705 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2706 );
drh15ab9412014-02-24 14:24:01 +00002707 fprintf(out, "%s", zHdr);
danielk19774adee202004-05-08 08:23:19 +00002708 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
drh9a324642003-09-06 20:12:01 +00002709 }
2710 fclose(out);
2711 }
2712 }
2713#endif
drh7fa20922013-09-17 23:36:33 +00002714 p->iCurrentTime = 0;
drh9a324642003-09-06 20:12:01 +00002715 p->magic = VDBE_MAGIC_INIT;
drh4ac285a2006-09-15 07:28:50 +00002716 return p->rc & db->errMask;
drh9a324642003-09-06 20:12:01 +00002717}
drh92f02c32004-09-02 14:57:08 +00002718
drh9a324642003-09-06 20:12:01 +00002719/*
2720** Clean up and delete a VDBE after execution. Return an integer which is
2721** the result code. Write any error message text into *pzErrMsg.
2722*/
danielk19779e6db7d2004-06-21 08:18:51 +00002723int sqlite3VdbeFinalize(Vdbe *p){
danielk1977b5548a82004-06-26 13:51:33 +00002724 int rc = SQLITE_OK;
danielk1977b5548a82004-06-26 13:51:33 +00002725 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
drhc890fec2008-08-01 20:10:08 +00002726 rc = sqlite3VdbeReset(p);
drh4ac285a2006-09-15 07:28:50 +00002727 assert( (rc & p->db->errMask)==rc );
drh9a324642003-09-06 20:12:01 +00002728 }
danielk19774adee202004-05-08 08:23:19 +00002729 sqlite3VdbeDelete(p);
drh9a324642003-09-06 20:12:01 +00002730 return rc;
2731}
2732
2733/*
dan0c547792013-07-18 17:12:08 +00002734** If parameter iOp is less than zero, then invoke the destructor for
2735** all auxiliary data pointers currently cached by the VM passed as
2736** the first argument.
2737**
2738** Or, if iOp is greater than or equal to zero, then the destructor is
2739** only invoked for those auxiliary data pointers created by the user
2740** function invoked by the OP_Function opcode at instruction iOp of
2741** VM pVdbe, and only then if:
2742**
2743** * the associated function parameter is the 32nd or later (counting
2744** from left to right), or
2745**
2746** * the corresponding bit in argument mask is clear (where the first
peter.d.reid60ec9142014-09-06 16:39:46 +00002747** function parameter corresponds to bit 0 etc.).
drhf92c7ff2004-06-19 15:40:23 +00002748*/
dan0c547792013-07-18 17:12:08 +00002749void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
2750 AuxData **pp = &pVdbe->pAuxData;
2751 while( *pp ){
2752 AuxData *pAux = *pp;
2753 if( (iOp<0)
drh693e6712014-01-24 22:58:00 +00002754 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
dan0c547792013-07-18 17:12:08 +00002755 ){
drh693e6712014-01-24 22:58:00 +00002756 testcase( pAux->iArg==31 );
drhf92c7ff2004-06-19 15:40:23 +00002757 if( pAux->xDelete ){
2758 pAux->xDelete(pAux->pAux);
2759 }
dan0c547792013-07-18 17:12:08 +00002760 *pp = pAux->pNext;
2761 sqlite3DbFree(pVdbe->db, pAux);
2762 }else{
2763 pp= &pAux->pNext;
drhf92c7ff2004-06-19 15:40:23 +00002764 }
2765 }
2766}
2767
2768/*
drhcb103b92012-10-26 00:11:23 +00002769** Free all memory associated with the Vdbe passed as the second argument,
2770** except for object itself, which is preserved.
2771**
dand46def72010-07-24 11:28:28 +00002772** The difference between this function and sqlite3VdbeDelete() is that
2773** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
drhcb103b92012-10-26 00:11:23 +00002774** the database connection and frees the object itself.
dand46def72010-07-24 11:28:28 +00002775*/
drhcb103b92012-10-26 00:11:23 +00002776void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
dand19c9332010-07-26 12:05:17 +00002777 SubProgram *pSub, *pNext;
drh124c0b42011-06-01 18:15:55 +00002778 int i;
dand46def72010-07-24 11:28:28 +00002779 assert( p->db==0 || p->db==db );
2780 releaseMemArray(p->aVar, p->nVar);
2781 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
dand19c9332010-07-26 12:05:17 +00002782 for(pSub=p->pProgram; pSub; pSub=pNext){
2783 pNext = pSub->pNext;
2784 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2785 sqlite3DbFree(db, pSub);
2786 }
drh124c0b42011-06-01 18:15:55 +00002787 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
dand46def72010-07-24 11:28:28 +00002788 vdbeFreeOpArray(db, p->aOp, p->nOp);
dand46def72010-07-24 11:28:28 +00002789 sqlite3DbFree(db, p->aColName);
2790 sqlite3DbFree(db, p->zSql);
2791 sqlite3DbFree(db, p->pFree);
dan6f9702e2014-11-01 20:38:06 +00002792#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan6f9702e2014-11-01 20:38:06 +00002793 for(i=0; i<p->nScan; i++){
2794 sqlite3DbFree(db, p->aScan[i].zName);
2795 }
2796 sqlite3DbFree(db, p->aScan);
2797#endif
dand46def72010-07-24 11:28:28 +00002798}
2799
2800/*
drh9a324642003-09-06 20:12:01 +00002801** Delete an entire VDBE.
2802*/
danielk19774adee202004-05-08 08:23:19 +00002803void sqlite3VdbeDelete(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00002804 sqlite3 *db;
2805
drhfa3be902009-07-07 02:44:07 +00002806 if( NEVER(p==0) ) return;
drh633e6d52008-07-28 19:34:53 +00002807 db = p->db;
drh4245c402012-06-02 14:32:21 +00002808 assert( sqlite3_mutex_held(db->mutex) );
drhcb103b92012-10-26 00:11:23 +00002809 sqlite3VdbeClearObject(db, p);
drh9a324642003-09-06 20:12:01 +00002810 if( p->pPrev ){
2811 p->pPrev->pNext = p->pNext;
2812 }else{
drh633e6d52008-07-28 19:34:53 +00002813 assert( db->pVdbe==p );
2814 db->pVdbe = p->pNext;
drh9a324642003-09-06 20:12:01 +00002815 }
2816 if( p->pNext ){
2817 p->pNext->pPrev = p->pPrev;
2818 }
drh9a324642003-09-06 20:12:01 +00002819 p->magic = VDBE_MAGIC_DEAD;
drh87f5c5f2010-01-20 01:20:56 +00002820 p->db = 0;
drhcb103b92012-10-26 00:11:23 +00002821 sqlite3DbFree(db, p);
drh9a324642003-09-06 20:12:01 +00002822}
drha11846b2004-01-07 18:52:56 +00002823
2824/*
drh6848dad2014-08-22 23:33:03 +00002825** The cursor "p" has a pending seek operation that has not yet been
2826** carried out. Seek the cursor now. If an error occurs, return
2827** the appropriate error code.
2828*/
2829static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
2830 int res, rc;
2831#ifdef SQLITE_TEST
2832 extern int sqlite3_search_count;
2833#endif
2834 assert( p->deferredMoveto );
2835 assert( p->isTable );
2836 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
2837 if( rc ) return rc;
drh6848dad2014-08-22 23:33:03 +00002838 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
drh6848dad2014-08-22 23:33:03 +00002839#ifdef SQLITE_TEST
2840 sqlite3_search_count++;
2841#endif
2842 p->deferredMoveto = 0;
2843 p->cacheStatus = CACHE_STALE;
2844 return SQLITE_OK;
2845}
2846
2847/*
2848** Something has moved cursor "p" out of place. Maybe the row it was
2849** pointed to was deleted out from under it. Or maybe the btree was
2850** rebalanced. Whatever the cause, try to restore "p" to the place it
peter.d.reid60ec9142014-09-06 16:39:46 +00002851** is supposed to be pointing. If the row was deleted out from under the
drh6848dad2014-08-22 23:33:03 +00002852** cursor, set the cursor to point to a NULL row.
2853*/
2854static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
2855 int isDifferentRow, rc;
2856 assert( p->pCursor!=0 );
2857 assert( sqlite3BtreeCursorHasMoved(p->pCursor) );
2858 rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow);
2859 p->cacheStatus = CACHE_STALE;
2860 if( isDifferentRow ) p->nullRow = 1;
2861 return rc;
2862}
2863
2864/*
drhc22284f2014-10-13 16:02:20 +00002865** Check to ensure that the cursor is valid. Restore the cursor
2866** if need be. Return any I/O error from the restore operation.
2867*/
2868int sqlite3VdbeCursorRestore(VdbeCursor *p){
2869 if( sqlite3BtreeCursorHasMoved(p->pCursor) ){
2870 return handleMovedCursor(p);
2871 }
2872 return SQLITE_OK;
2873}
2874
2875/*
drh9a65f2c2009-06-22 19:05:40 +00002876** Make sure the cursor p is ready to read or write the row to which it
2877** was last positioned. Return an error code if an OOM fault or I/O error
2878** prevents us from positioning the cursor to its correct position.
2879**
drha11846b2004-01-07 18:52:56 +00002880** If a MoveTo operation is pending on the given cursor, then do that
drh9a65f2c2009-06-22 19:05:40 +00002881** MoveTo now. If no move is pending, check to see if the row has been
2882** deleted out from under the cursor and if it has, mark the row as
2883** a NULL row.
2884**
2885** If the cursor is already pointing to the correct row and that row has
2886** not been deleted out from under the cursor, then this routine is a no-op.
drha11846b2004-01-07 18:52:56 +00002887*/
drhdfe88ec2008-11-03 20:55:06 +00002888int sqlite3VdbeCursorMoveto(VdbeCursor *p){
drha11846b2004-01-07 18:52:56 +00002889 if( p->deferredMoveto ){
drh6848dad2014-08-22 23:33:03 +00002890 return handleDeferredMoveto(p);
2891 }
drhc22284f2014-10-13 16:02:20 +00002892 if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){
drh6848dad2014-08-22 23:33:03 +00002893 return handleMovedCursor(p);
drha11846b2004-01-07 18:52:56 +00002894 }
2895 return SQLITE_OK;
2896}
danielk19774adee202004-05-08 08:23:19 +00002897
drhab9f7f12004-05-08 10:56:11 +00002898/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002899** The following functions:
danielk197790e4d952004-05-10 10:05:53 +00002900**
danielk1977cfcdaef2004-05-12 07:33:33 +00002901** sqlite3VdbeSerialType()
2902** sqlite3VdbeSerialTypeLen()
danielk197790e4d952004-05-10 10:05:53 +00002903** sqlite3VdbeSerialLen()
shane92003092008-07-31 01:43:13 +00002904** sqlite3VdbeSerialPut()
2905** sqlite3VdbeSerialGet()
danielk197790e4d952004-05-10 10:05:53 +00002906**
2907** encapsulate the code that serializes values for storage in SQLite
danielk1977cfcdaef2004-05-12 07:33:33 +00002908** data and index records. Each serialized value consists of a
2909** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
2910** integer, stored as a varint.
danielk197790e4d952004-05-10 10:05:53 +00002911**
danielk1977cfcdaef2004-05-12 07:33:33 +00002912** In an SQLite index record, the serial type is stored directly before
2913** the blob of data that it corresponds to. In a table record, all serial
2914** types are stored at the start of the record, and the blobs of data at
2915** the end. Hence these functions allow the caller to handle the
mistachkin48864df2013-03-21 21:20:32 +00002916** serial-type and data blob separately.
danielk1977cfcdaef2004-05-12 07:33:33 +00002917**
2918** The following table describes the various storage classes for data:
2919**
2920** serial type bytes of data type
danielk197790e4d952004-05-10 10:05:53 +00002921** -------------- --------------- ---------------
drha19b7752004-05-30 21:14:58 +00002922** 0 0 NULL
danielk197790e4d952004-05-10 10:05:53 +00002923** 1 1 signed integer
2924** 2 2 signed integer
drha19b7752004-05-30 21:14:58 +00002925** 3 3 signed integer
2926** 4 4 signed integer
2927** 5 6 signed integer
2928** 6 8 signed integer
2929** 7 8 IEEE float
drhd946db02005-12-29 19:23:06 +00002930** 8 0 Integer constant 0
2931** 9 0 Integer constant 1
2932** 10,11 reserved for expansion
danielk197790e4d952004-05-10 10:05:53 +00002933** N>=12 and even (N-12)/2 BLOB
2934** N>=13 and odd (N-13)/2 text
2935**
drh35a59652006-01-02 18:24:40 +00002936** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
2937** of SQLite will not understand those serial types.
danielk197790e4d952004-05-10 10:05:53 +00002938*/
2939
2940/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002941** Return the serial-type for the value stored in pMem.
danielk1977192ac1d2004-05-10 07:17:30 +00002942*/
drhd946db02005-12-29 19:23:06 +00002943u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
danielk1977cfcdaef2004-05-12 07:33:33 +00002944 int flags = pMem->flags;
drheac5bd72014-07-25 21:35:39 +00002945 u32 n;
danielk1977cfcdaef2004-05-12 07:33:33 +00002946
2947 if( flags&MEM_Null ){
drha19b7752004-05-30 21:14:58 +00002948 return 0;
danielk197790e4d952004-05-10 10:05:53 +00002949 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002950 if( flags&MEM_Int ){
drhfe2093d2005-01-20 22:48:47 +00002951 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
drh5284a052008-05-08 15:18:10 +00002952# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
drh3c024d62007-03-30 11:23:45 +00002953 i64 i = pMem->u.i;
drhd946db02005-12-29 19:23:06 +00002954 u64 u;
drhcfd654b2011-03-05 13:54:15 +00002955 if( i<0 ){
drh1b40e632014-11-20 02:58:10 +00002956 u = ~i;
drhcfd654b2011-03-05 13:54:15 +00002957 }else{
2958 u = i;
2959 }
drh56690b32012-09-17 15:36:31 +00002960 if( u<=127 ){
2961 return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
2962 }
drh5742b632005-01-26 17:47:02 +00002963 if( u<=32767 ) return 2;
2964 if( u<=8388607 ) return 3;
2965 if( u<=2147483647 ) return 4;
2966 if( u<=MAX_6BYTE ) return 5;
drha19b7752004-05-30 21:14:58 +00002967 return 6;
danielk197790e4d952004-05-10 10:05:53 +00002968 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002969 if( flags&MEM_Real ){
drha19b7752004-05-30 21:14:58 +00002970 return 7;
danielk197790e4d952004-05-10 10:05:53 +00002971 }
danielk1977e4359752008-11-03 09:39:45 +00002972 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
drheac5bd72014-07-25 21:35:39 +00002973 assert( pMem->n>=0 );
2974 n = (u32)pMem->n;
drhfdf972a2007-05-02 13:30:27 +00002975 if( flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00002976 n += pMem->u.nZero;
danielk197790e4d952004-05-10 10:05:53 +00002977 }
drhfdf972a2007-05-02 13:30:27 +00002978 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
danielk1977192ac1d2004-05-10 07:17:30 +00002979}
2980
2981/*
drhc5ef7152015-06-28 02:58:51 +00002982** The sizes for serial types less than 12
2983*/
2984static const u8 sqlite3SmallTypeSizes[] = {
2985 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0
2986};
2987
2988/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002989** Return the length of the data corresponding to the supplied serial-type.
danielk1977192ac1d2004-05-10 07:17:30 +00002990*/
drh35cd6432009-06-05 14:17:21 +00002991u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
drha19b7752004-05-30 21:14:58 +00002992 if( serial_type>=12 ){
drh51846b52004-05-28 16:00:21 +00002993 return (serial_type-12)/2;
2994 }else{
drhc5ef7152015-06-28 02:58:51 +00002995 return sqlite3SmallTypeSizes[serial_type];
drh51846b52004-05-28 16:00:21 +00002996 }
danielk1977192ac1d2004-05-10 07:17:30 +00002997}
2998
2999/*
drh110daac2007-05-04 11:59:31 +00003000** If we are on an architecture with mixed-endian floating
drh7a4f5022007-05-23 07:20:08 +00003001** points (ex: ARM7) then swap the lower 4 bytes with the
drh110daac2007-05-04 11:59:31 +00003002** upper 4 bytes. Return the result.
3003**
drh7a4f5022007-05-23 07:20:08 +00003004** For most architectures, this is a no-op.
3005**
3006** (later): It is reported to me that the mixed-endian problem
3007** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3008** that early versions of GCC stored the two words of a 64-bit
3009** float in the wrong order. And that error has been propagated
3010** ever since. The blame is not necessarily with GCC, though.
3011** GCC might have just copying the problem from a prior compiler.
3012** I am also told that newer versions of GCC that follow a different
3013** ABI get the byte order right.
3014**
3015** Developers using SQLite on an ARM7 should compile and run their
3016** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3017** enabled, some asserts below will ensure that the byte order of
3018** floating point values is correct.
drh60d09a72007-08-30 15:05:08 +00003019**
3020** (2007-08-30) Frank van Vugt has studied this problem closely
3021** and has send his findings to the SQLite developers. Frank
3022** writes that some Linux kernels offer floating point hardware
3023** emulation that uses only 32-bit mantissas instead of a full
3024** 48-bits as required by the IEEE standard. (This is the
3025** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3026** byte swapping becomes very complicated. To avoid problems,
3027** the necessary byte swapping is carried out using a 64-bit integer
3028** rather than a 64-bit float. Frank assures us that the code here
3029** works for him. We, the developers, have no way to independently
3030** verify this, but Frank seems to know what he is talking about
3031** so we trust him.
drh110daac2007-05-04 11:59:31 +00003032*/
3033#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
drh60d09a72007-08-30 15:05:08 +00003034static u64 floatSwap(u64 in){
drh110daac2007-05-04 11:59:31 +00003035 union {
drh60d09a72007-08-30 15:05:08 +00003036 u64 r;
drh110daac2007-05-04 11:59:31 +00003037 u32 i[2];
3038 } u;
3039 u32 t;
3040
3041 u.r = in;
3042 t = u.i[0];
3043 u.i[0] = u.i[1];
3044 u.i[1] = t;
3045 return u.r;
3046}
3047# define swapMixedEndianFloat(X) X = floatSwap(X)
3048#else
3049# define swapMixedEndianFloat(X)
3050#endif
3051
3052/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003053** Write the serialized data blob for the value stored in pMem into
3054** buf. It is assumed that the caller has allocated sufficient space.
3055** Return the number of bytes written.
drhfdf972a2007-05-02 13:30:27 +00003056**
drh038b7bc2013-12-09 23:17:22 +00003057** nBuf is the amount of space left in buf[]. The caller is responsible
3058** for allocating enough space to buf[] to hold the entire field, exclusive
3059** of the pMem->u.nZero bytes for a MEM_Zero value.
drhfdf972a2007-05-02 13:30:27 +00003060**
3061** Return the number of bytes actually written into buf[]. The number
3062** of bytes in the zero-filled tail is included in the return value only
3063** if those bytes were zeroed in buf[].
danielk1977cfcdaef2004-05-12 07:33:33 +00003064*/
drha9ab4812013-12-11 11:00:44 +00003065u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
drh35cd6432009-06-05 14:17:21 +00003066 u32 len;
danielk1977183f9f72004-05-13 05:20:26 +00003067
drh1483e142004-05-21 21:12:42 +00003068 /* Integer and Real */
drhd946db02005-12-29 19:23:06 +00003069 if( serial_type<=7 && serial_type>0 ){
drh1483e142004-05-21 21:12:42 +00003070 u64 v;
drh35cd6432009-06-05 14:17:21 +00003071 u32 i;
drha19b7752004-05-30 21:14:58 +00003072 if( serial_type==7 ){
drh74eaba42014-09-18 17:52:15 +00003073 assert( sizeof(v)==sizeof(pMem->u.r) );
3074 memcpy(&v, &pMem->u.r, sizeof(v));
drh60d09a72007-08-30 15:05:08 +00003075 swapMixedEndianFloat(v);
drh1483e142004-05-21 21:12:42 +00003076 }else{
drh3c024d62007-03-30 11:23:45 +00003077 v = pMem->u.i;
danielk1977cfcdaef2004-05-12 07:33:33 +00003078 }
drhc5ef7152015-06-28 02:58:51 +00003079 len = i = sqlite3SmallTypeSizes[serial_type];
drh3f5b1992014-08-22 13:22:32 +00003080 assert( i>0 );
3081 do{
3082 buf[--i] = (u8)(v&0xFF);
drh1483e142004-05-21 21:12:42 +00003083 v >>= 8;
drh3f5b1992014-08-22 13:22:32 +00003084 }while( i );
drh1483e142004-05-21 21:12:42 +00003085 return len;
danielk1977cfcdaef2004-05-12 07:33:33 +00003086 }
drhd946db02005-12-29 19:23:06 +00003087
danielk1977cfcdaef2004-05-12 07:33:33 +00003088 /* String or blob */
drhd946db02005-12-29 19:23:06 +00003089 if( serial_type>=12 ){
drh8df32842008-12-09 02:51:23 +00003090 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
shane75ac1de2009-06-09 18:58:52 +00003091 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
drhfdf972a2007-05-02 13:30:27 +00003092 len = pMem->n;
drhd946db02005-12-29 19:23:06 +00003093 memcpy(buf, pMem->z, len);
3094 return len;
3095 }
3096
3097 /* NULL or constants 0 or 1 */
3098 return 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00003099}
3100
drhf926d1e2014-03-04 04:04:33 +00003101/* Input "x" is a sequence of unsigned characters that represent a
3102** big-endian integer. Return the equivalent native integer
3103*/
3104#define ONE_BYTE_INT(x) ((i8)(x)[0])
3105#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3106#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3107#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
drh8932bec2014-08-22 14:56:13 +00003108#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
drhf926d1e2014-03-04 04:04:33 +00003109
danielk1977cfcdaef2004-05-12 07:33:33 +00003110/*
3111** Deserialize the data blob pointed to by buf as serial type serial_type
3112** and store the result in pMem. Return the number of bytes read.
drh14a924a2014-08-22 14:34:05 +00003113**
3114** This function is implemented as two separate routines for performance.
3115** The few cases that require local variables are broken out into a separate
3116** routine so that in most cases the overhead of moving the stack pointer
3117** is avoided.
danielk1977cfcdaef2004-05-12 07:33:33 +00003118*/
drh14a924a2014-08-22 14:34:05 +00003119static u32 SQLITE_NOINLINE serialGet(
danielk197793d46752004-05-23 13:30:58 +00003120 const unsigned char *buf, /* Buffer to deserialize from */
drh25aa1b42004-05-28 01:39:01 +00003121 u32 serial_type, /* Serial type to deserialize */
3122 Mem *pMem /* Memory cell to write value into */
danielk1977b1bc9532004-05-22 03:05:33 +00003123){
drh8932bec2014-08-22 14:56:13 +00003124 u64 x = FOUR_BYTE_UINT(buf);
3125 u32 y = FOUR_BYTE_UINT(buf+4);
3126 x = (x<<32) + y;
drh14a924a2014-08-22 14:34:05 +00003127 if( serial_type==6 ){
drh654858d2014-11-20 02:18:14 +00003128 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3129 ** twos-complement integer. */
drh14a924a2014-08-22 14:34:05 +00003130 pMem->u.i = *(i64*)&x;
3131 pMem->flags = MEM_Int;
3132 testcase( pMem->u.i<0 );
3133 }else{
drh654858d2014-11-20 02:18:14 +00003134 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3135 ** floating point number. */
drh14a924a2014-08-22 14:34:05 +00003136#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3137 /* Verify that integers and floating point values use the same
3138 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3139 ** defined that 64-bit floating point values really are mixed
3140 ** endian.
3141 */
3142 static const u64 t1 = ((u64)0x3ff00000)<<32;
3143 static const double r1 = 1.0;
3144 u64 t2 = t1;
3145 swapMixedEndianFloat(t2);
3146 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3147#endif
drh74eaba42014-09-18 17:52:15 +00003148 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
drh14a924a2014-08-22 14:34:05 +00003149 swapMixedEndianFloat(x);
drh74eaba42014-09-18 17:52:15 +00003150 memcpy(&pMem->u.r, &x, sizeof(x));
3151 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
drh14a924a2014-08-22 14:34:05 +00003152 }
3153 return 8;
3154}
danielk1977b1bc9532004-05-22 03:05:33 +00003155u32 sqlite3VdbeSerialGet(
3156 const unsigned char *buf, /* Buffer to deserialize from */
3157 u32 serial_type, /* Serial type to deserialize */
3158 Mem *pMem /* Memory cell to write value into */
3159){
drh3c685822005-05-21 18:32:18 +00003160 switch( serial_type ){
drh3c685822005-05-21 18:32:18 +00003161 case 10: /* Reserved for future use */
3162 case 11: /* Reserved for future use */
drh654858d2014-11-20 02:18:14 +00003163 case 0: { /* Null */
3164 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
drh3c685822005-05-21 18:32:18 +00003165 pMem->flags = MEM_Null;
3166 break;
3167 }
drh654858d2014-11-20 02:18:14 +00003168 case 1: {
3169 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3170 ** integer. */
drhf926d1e2014-03-04 04:04:33 +00003171 pMem->u.i = ONE_BYTE_INT(buf);
drh1483e142004-05-21 21:12:42 +00003172 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003173 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003174 return 1;
drh1483e142004-05-21 21:12:42 +00003175 }
drh3c685822005-05-21 18:32:18 +00003176 case 2: { /* 2-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003177 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3178 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003179 pMem->u.i = TWO_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003180 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003181 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003182 return 2;
3183 }
3184 case 3: { /* 3-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003185 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3186 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003187 pMem->u.i = THREE_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003188 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003189 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003190 return 3;
3191 }
3192 case 4: { /* 4-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003193 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3194 ** twos-complement integer. */
drh8932bec2014-08-22 14:56:13 +00003195 pMem->u.i = FOUR_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003196 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003197 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003198 return 4;
3199 }
3200 case 5: { /* 6-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003201 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3202 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003203 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003204 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003205 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003206 return 6;
3207 }
drh91124b32005-08-18 18:15:05 +00003208 case 6: /* 8-byte signed integer */
drh3c685822005-05-21 18:32:18 +00003209 case 7: { /* IEEE floating point */
drh8932bec2014-08-22 14:56:13 +00003210 /* These use local variables, so do them in a separate routine
3211 ** to avoid having to move the frame pointer in the common case */
drh14a924a2014-08-22 14:34:05 +00003212 return serialGet(buf,serial_type,pMem);
drh3c685822005-05-21 18:32:18 +00003213 }
drhd946db02005-12-29 19:23:06 +00003214 case 8: /* Integer 0 */
3215 case 9: { /* Integer 1 */
drh654858d2014-11-20 02:18:14 +00003216 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3217 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
drh3c024d62007-03-30 11:23:45 +00003218 pMem->u.i = serial_type-8;
drhd946db02005-12-29 19:23:06 +00003219 pMem->flags = MEM_Int;
3220 return 0;
3221 }
drh3c685822005-05-21 18:32:18 +00003222 default: {
drh654858d2014-11-20 02:18:14 +00003223 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3224 ** length.
3225 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3226 ** (N-13)/2 bytes in length. */
drhc138daf2013-11-19 13:55:34 +00003227 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
drh3c685822005-05-21 18:32:18 +00003228 pMem->z = (char *)buf;
drh14a924a2014-08-22 14:34:05 +00003229 pMem->n = (serial_type-12)/2;
drhc138daf2013-11-19 13:55:34 +00003230 pMem->flags = aFlag[serial_type&1];
drh14a924a2014-08-22 14:34:05 +00003231 return pMem->n;
drh696b32f2004-05-30 01:51:52 +00003232 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003233 }
drh3c685822005-05-21 18:32:18 +00003234 return 0;
danielk1977192ac1d2004-05-10 07:17:30 +00003235}
drh1e968a02008-03-25 00:22:21 +00003236/*
dan03e9cfc2011-09-05 14:20:27 +00003237** This routine is used to allocate sufficient space for an UnpackedRecord
3238** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3239** the first argument is a pointer to KeyInfo structure pKeyInfo.
drh1e968a02008-03-25 00:22:21 +00003240**
dan03e9cfc2011-09-05 14:20:27 +00003241** The space is either allocated using sqlite3DbMallocRaw() or from within
3242** the unaligned buffer passed via the second and third arguments (presumably
3243** stack space). If the former, then *ppFree is set to a pointer that should
3244** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3245** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3246** before returning.
drh1e968a02008-03-25 00:22:21 +00003247**
dan03e9cfc2011-09-05 14:20:27 +00003248** If an OOM error occurs, NULL is returned.
3249*/
3250UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3251 KeyInfo *pKeyInfo, /* Description of the record */
3252 char *pSpace, /* Unaligned space available */
3253 int szSpace, /* Size of pSpace[] in bytes */
3254 char **ppFree /* OUT: Caller should free this pointer */
drh1e968a02008-03-25 00:22:21 +00003255){
dan03e9cfc2011-09-05 14:20:27 +00003256 UnpackedRecord *p; /* Unpacked record to return */
3257 int nOff; /* Increment pSpace by nOff to align it */
3258 int nByte; /* Number of bytes required for *p */
3259
3260 /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
shane80167bf2009-04-10 15:42:36 +00003261 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
3262 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
3263 */
3264 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
drh8c5d1522009-04-10 00:56:28 +00003265 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
dan42acb3e2011-09-05 20:16:38 +00003266 if( nByte>szSpace+nOff ){
dan03e9cfc2011-09-05 14:20:27 +00003267 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3268 *ppFree = (char *)p;
dan42acb3e2011-09-05 20:16:38 +00003269 if( !p ) return 0;
drh1e968a02008-03-25 00:22:21 +00003270 }else{
dan42acb3e2011-09-05 20:16:38 +00003271 p = (UnpackedRecord*)&pSpace[nOff];
dan03e9cfc2011-09-05 14:20:27 +00003272 *ppFree = 0;
drh1e968a02008-03-25 00:22:21 +00003273 }
dan42acb3e2011-09-05 20:16:38 +00003274
3275 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
drhe1a022e2012-09-17 17:16:53 +00003276 assert( pKeyInfo->aSortOrder!=0 );
drh1e968a02008-03-25 00:22:21 +00003277 p->pKeyInfo = pKeyInfo;
3278 p->nField = pKeyInfo->nField + 1;
dan03e9cfc2011-09-05 14:20:27 +00003279 return p;
3280}
3281
3282/*
3283** Given the nKey-byte encoding of a record in pKey[], populate the
3284** UnpackedRecord structure indicated by the fourth argument with the
3285** contents of the decoded record.
3286*/
3287void sqlite3VdbeRecordUnpack(
3288 KeyInfo *pKeyInfo, /* Information about the record format */
3289 int nKey, /* Size of the binary record */
3290 const void *pKey, /* The binary record */
3291 UnpackedRecord *p /* Populate this structure before returning. */
3292){
3293 const unsigned char *aKey = (const unsigned char *)pKey;
3294 int d;
3295 u32 idx; /* Offset in aKey[] to read from */
3296 u16 u; /* Unsigned loop counter */
3297 u32 szHdr;
dan42acb3e2011-09-05 20:16:38 +00003298 Mem *pMem = p->aMem;
dan03e9cfc2011-09-05 14:20:27 +00003299
dan1fed5da2014-02-25 21:01:25 +00003300 p->default_rc = 0;
drh8c5d1522009-04-10 00:56:28 +00003301 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
shane3f8d5cf2008-04-24 19:15:09 +00003302 idx = getVarint32(aKey, szHdr);
drh1e968a02008-03-25 00:22:21 +00003303 d = szHdr;
shane0b8d2762008-07-22 05:18:00 +00003304 u = 0;
drh7f4b19f2014-09-16 13:30:05 +00003305 while( idx<szHdr && d<=nKey ){
drh1e968a02008-03-25 00:22:21 +00003306 u32 serial_type;
3307
danielk197700e13612008-11-17 19:18:54 +00003308 idx += getVarint32(&aKey[idx], serial_type);
drh1e968a02008-03-25 00:22:21 +00003309 pMem->enc = pKeyInfo->enc;
3310 pMem->db = pKeyInfo->db;
drhc3f1d5f2011-05-30 23:42:16 +00003311 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
drh17bcb102014-09-18 21:25:33 +00003312 pMem->szMalloc = 0;
drh1e968a02008-03-25 00:22:21 +00003313 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
drhe14006d2008-03-25 17:23:32 +00003314 pMem++;
drh7f4b19f2014-09-16 13:30:05 +00003315 if( (++u)>=p->nField ) break;
drh1e968a02008-03-25 00:22:21 +00003316 }
drh7d10d5a2008-08-20 16:35:10 +00003317 assert( u<=pKeyInfo->nField + 1 );
shane0b8d2762008-07-22 05:18:00 +00003318 p->nField = u;
drh1e968a02008-03-25 00:22:21 +00003319}
3320
dan3833e932014-03-01 19:44:56 +00003321#if SQLITE_DEBUG
dan3b9330f2014-02-27 20:44:18 +00003322/*
dan3833e932014-03-01 19:44:56 +00003323** This function compares two index or table record keys in the same way
3324** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3325** this function deserializes and compares values using the
3326** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3327** in assert() statements to ensure that the optimized code in
3328** sqlite3VdbeRecordCompare() returns results with these two primitives.
drh79211e12014-05-02 17:33:16 +00003329**
3330** Return true if the result of comparison is equivalent to desiredResult.
3331** Return false if there is a disagreement.
dan3b9330f2014-02-27 20:44:18 +00003332*/
dan3833e932014-03-01 19:44:56 +00003333static int vdbeRecordCompareDebug(
dan1fed5da2014-02-25 21:01:25 +00003334 int nKey1, const void *pKey1, /* Left key */
drh79211e12014-05-02 17:33:16 +00003335 const UnpackedRecord *pPKey2, /* Right key */
3336 int desiredResult /* Correct answer */
dan1fed5da2014-02-25 21:01:25 +00003337){
dan3b9330f2014-02-27 20:44:18 +00003338 u32 d1; /* Offset into aKey[] of next data element */
3339 u32 idx1; /* Offset into aKey[] of next header element */
3340 u32 szHdr1; /* Number of bytes in header */
3341 int i = 0;
3342 int rc = 0;
3343 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3344 KeyInfo *pKeyInfo;
3345 Mem mem1;
dan1fed5da2014-02-25 21:01:25 +00003346
dan3b9330f2014-02-27 20:44:18 +00003347 pKeyInfo = pPKey2->pKeyInfo;
drh84de6902014-05-02 18:46:52 +00003348 if( pKeyInfo->db==0 ) return 1;
dan3b9330f2014-02-27 20:44:18 +00003349 mem1.enc = pKeyInfo->enc;
3350 mem1.db = pKeyInfo->db;
3351 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
drh17bcb102014-09-18 21:25:33 +00003352 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
dan1fed5da2014-02-25 21:01:25 +00003353
dan3b9330f2014-02-27 20:44:18 +00003354 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3355 ** We could initialize it, as shown here, to silence those complaints.
3356 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3357 ** the unnecessary initialization has a measurable negative performance
3358 ** impact, since this routine is a very high runner. And so, we choose
3359 ** to ignore the compiler warnings and leave this variable uninitialized.
3360 */
3361 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
3362
3363 idx1 = getVarint32(aKey1, szHdr1);
drh46981362015-07-08 12:25:38 +00003364 if( szHdr1>98307 ) return SQLITE_CORRUPT;
dan3b9330f2014-02-27 20:44:18 +00003365 d1 = szHdr1;
3366 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
3367 assert( pKeyInfo->aSortOrder!=0 );
3368 assert( pKeyInfo->nField>0 );
3369 assert( idx1<=szHdr1 || CORRUPT_DB );
3370 do{
3371 u32 serial_type1;
dan1fed5da2014-02-25 21:01:25 +00003372
dan3b9330f2014-02-27 20:44:18 +00003373 /* Read the serial types for the next element in each key. */
3374 idx1 += getVarint32( aKey1+idx1, serial_type1 );
dan1fed5da2014-02-25 21:01:25 +00003375
dan3b9330f2014-02-27 20:44:18 +00003376 /* Verify that there is enough key space remaining to avoid
3377 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3378 ** always be greater than or equal to the amount of required key space.
3379 ** Use that approximation to avoid the more expensive call to
3380 ** sqlite3VdbeSerialTypeLen() in the common case.
3381 */
3382 if( d1+serial_type1+2>(u32)nKey1
3383 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3384 ){
3385 break;
dan1fed5da2014-02-25 21:01:25 +00003386 }
dan1fed5da2014-02-25 21:01:25 +00003387
dan3b9330f2014-02-27 20:44:18 +00003388 /* Extract the values to be compared.
3389 */
3390 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
dan1fed5da2014-02-25 21:01:25 +00003391
dan3b9330f2014-02-27 20:44:18 +00003392 /* Do the comparison
3393 */
3394 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3395 if( rc!=0 ){
drh17bcb102014-09-18 21:25:33 +00003396 assert( mem1.szMalloc==0 ); /* See comment below */
dan3b9330f2014-02-27 20:44:18 +00003397 if( pKeyInfo->aSortOrder[i] ){
3398 rc = -rc; /* Invert the result for DESC sort order. */
dan1fed5da2014-02-25 21:01:25 +00003399 }
drh79211e12014-05-02 17:33:16 +00003400 goto debugCompareEnd;
dan1fed5da2014-02-25 21:01:25 +00003401 }
dan3b9330f2014-02-27 20:44:18 +00003402 i++;
3403 }while( idx1<szHdr1 && i<pPKey2->nField );
dan1fed5da2014-02-25 21:01:25 +00003404
dan3b9330f2014-02-27 20:44:18 +00003405 /* No memory allocation is ever used on mem1. Prove this using
3406 ** the following assert(). If the assert() fails, it indicates a
3407 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3408 */
drh17bcb102014-09-18 21:25:33 +00003409 assert( mem1.szMalloc==0 );
dan3b9330f2014-02-27 20:44:18 +00003410
3411 /* rc==0 here means that one of the keys ran out of fields and
peter.d.reid60ec9142014-09-06 16:39:46 +00003412 ** all the fields up to that point were equal. Return the default_rc
dan3b9330f2014-02-27 20:44:18 +00003413 ** value. */
drh79211e12014-05-02 17:33:16 +00003414 rc = pPKey2->default_rc;
3415
3416debugCompareEnd:
3417 if( desiredResult==0 && rc==0 ) return 1;
3418 if( desiredResult<0 && rc<0 ) return 1;
3419 if( desiredResult>0 && rc>0 ) return 1;
3420 if( CORRUPT_DB ) return 1;
3421 if( pKeyInfo->db->mallocFailed ) return 1;
3422 return 0;
dan1fed5da2014-02-25 21:01:25 +00003423}
dan3833e932014-03-01 19:44:56 +00003424#endif
dan1fed5da2014-02-25 21:01:25 +00003425
drhe1bb8022015-01-19 19:48:52 +00003426#if SQLITE_DEBUG
3427/*
3428** Count the number of fields (a.k.a. columns) in the record given by
3429** pKey,nKey. The verify that this count is less than or equal to the
3430** limit given by pKeyInfo->nField + pKeyInfo->nXField.
3431**
3432** If this constraint is not satisfied, it means that the high-speed
3433** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3434** not work correctly. If this assert() ever fires, it probably means
3435** that the KeyInfo.nField or KeyInfo.nXField values were computed
3436** incorrectly.
3437*/
3438static void vdbeAssertFieldCountWithinLimits(
3439 int nKey, const void *pKey, /* The record to verify */
3440 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
3441){
3442 int nField = 0;
3443 u32 szHdr;
3444 u32 idx;
3445 u32 notUsed;
3446 const unsigned char *aKey = (const unsigned char*)pKey;
3447
3448 if( CORRUPT_DB ) return;
3449 idx = getVarint32(aKey, szHdr);
mistachkin1b3ee492015-01-21 00:51:08 +00003450 assert( nKey>=0 );
3451 assert( szHdr<=(u32)nKey );
drhe1bb8022015-01-19 19:48:52 +00003452 while( idx<szHdr ){
3453 idx += getVarint32(aKey+idx, notUsed);
3454 nField++;
3455 }
3456 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField );
3457}
drh1af3c642015-01-19 20:57:19 +00003458#else
3459# define vdbeAssertFieldCountWithinLimits(A,B,C)
drhe1bb8022015-01-19 19:48:52 +00003460#endif
3461
dan3833e932014-03-01 19:44:56 +00003462/*
3463** Both *pMem1 and *pMem2 contain string values. Compare the two values
3464** using the collation sequence pColl. As usual, return a negative , zero
3465** or positive value if *pMem1 is less than, equal to or greater than
3466** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3467*/
dan1fed5da2014-02-25 21:01:25 +00003468static int vdbeCompareMemString(
dan3833e932014-03-01 19:44:56 +00003469 const Mem *pMem1,
3470 const Mem *pMem2,
dan38fdead2014-04-01 10:19:02 +00003471 const CollSeq *pColl,
3472 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
dan1fed5da2014-02-25 21:01:25 +00003473){
3474 if( pMem1->enc==pColl->enc ){
3475 /* The strings are already in the correct encoding. Call the
3476 ** comparison function directly */
3477 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3478 }else{
3479 int rc;
3480 const void *v1, *v2;
3481 int n1, n2;
3482 Mem c1;
3483 Mem c2;
drh17bcb102014-09-18 21:25:33 +00003484 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3485 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
dan1fed5da2014-02-25 21:01:25 +00003486 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3487 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3488 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3489 n1 = v1==0 ? 0 : c1.n;
3490 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3491 n2 = v2==0 ? 0 : c2.n;
3492 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
3493 sqlite3VdbeMemRelease(&c1);
3494 sqlite3VdbeMemRelease(&c2);
dan38fdead2014-04-01 10:19:02 +00003495 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
dan1fed5da2014-02-25 21:01:25 +00003496 return rc;
3497 }
3498}
3499
3500/*
drh982ff722014-09-16 03:24:43 +00003501** Compare two blobs. Return negative, zero, or positive if the first
3502** is less than, equal to, or greater than the second, respectively.
3503** If one blob is a prefix of the other, then the shorter is the lessor.
3504*/
3505static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3506 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
3507 if( c ) return c;
3508 return pB1->n - pB2->n;
3509}
3510
3511
3512/*
dan1fed5da2014-02-25 21:01:25 +00003513** Compare the values contained by the two memory cells, returning
3514** negative, zero or positive if pMem1 is less than, equal to, or greater
3515** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3516** and reals) sorted numerically, followed by text ordered by the collating
3517** sequence pColl and finally blob's ordered by memcmp().
3518**
3519** Two NULL values are considered equal by this function.
3520*/
3521int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
dan1fed5da2014-02-25 21:01:25 +00003522 int f1, f2;
3523 int combined_flags;
3524
3525 f1 = pMem1->flags;
3526 f2 = pMem2->flags;
3527 combined_flags = f1|f2;
3528 assert( (combined_flags & MEM_RowSet)==0 );
3529
3530 /* If one value is NULL, it is less than the other. If both values
3531 ** are NULL, return 0.
3532 */
3533 if( combined_flags&MEM_Null ){
3534 return (f2&MEM_Null) - (f1&MEM_Null);
3535 }
3536
3537 /* If one value is a number and the other is not, the number is less.
3538 ** If both are numbers, compare as reals if one is a real, or as integers
3539 ** if both values are integers.
3540 */
3541 if( combined_flags&(MEM_Int|MEM_Real) ){
3542 double r1, r2;
3543 if( (f1 & f2 & MEM_Int)!=0 ){
3544 if( pMem1->u.i < pMem2->u.i ) return -1;
3545 if( pMem1->u.i > pMem2->u.i ) return 1;
3546 return 0;
3547 }
3548 if( (f1&MEM_Real)!=0 ){
drh74eaba42014-09-18 17:52:15 +00003549 r1 = pMem1->u.r;
dan1fed5da2014-02-25 21:01:25 +00003550 }else if( (f1&MEM_Int)!=0 ){
3551 r1 = (double)pMem1->u.i;
3552 }else{
3553 return 1;
3554 }
3555 if( (f2&MEM_Real)!=0 ){
drh74eaba42014-09-18 17:52:15 +00003556 r2 = pMem2->u.r;
dan1fed5da2014-02-25 21:01:25 +00003557 }else if( (f2&MEM_Int)!=0 ){
3558 r2 = (double)pMem2->u.i;
3559 }else{
3560 return -1;
3561 }
3562 if( r1<r2 ) return -1;
3563 if( r1>r2 ) return 1;
3564 return 0;
3565 }
3566
3567 /* If one value is a string and the other is a blob, the string is less.
3568 ** If both are strings, compare using the collating functions.
3569 */
3570 if( combined_flags&MEM_Str ){
3571 if( (f1 & MEM_Str)==0 ){
3572 return 1;
3573 }
3574 if( (f2 & MEM_Str)==0 ){
3575 return -1;
3576 }
3577
3578 assert( pMem1->enc==pMem2->enc );
3579 assert( pMem1->enc==SQLITE_UTF8 ||
3580 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3581
3582 /* The collation sequence must be defined at this point, even if
3583 ** the user deletes the collation sequence after the vdbe program is
3584 ** compiled (this was not always the case).
3585 */
3586 assert( !pColl || pColl->xCmp );
3587
3588 if( pColl ){
dan38fdead2014-04-01 10:19:02 +00003589 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
dan1fed5da2014-02-25 21:01:25 +00003590 }
3591 /* If a NULL pointer was passed as the collate function, fall through
3592 ** to the blob case and use memcmp(). */
3593 }
3594
3595 /* Both values must be blobs. Compare using memcmp(). */
drh982ff722014-09-16 03:24:43 +00003596 return sqlite3BlobCompare(pMem1, pMem2);
dan1fed5da2014-02-25 21:01:25 +00003597}
3598
3599
dan3833e932014-03-01 19:44:56 +00003600/*
3601** The first argument passed to this function is a serial-type that
3602** corresponds to an integer - all values between 1 and 9 inclusive
3603** except 7. The second points to a buffer containing an integer value
3604** serialized according to serial_type. This function deserializes
3605** and returns the value.
3606*/
dan3b9330f2014-02-27 20:44:18 +00003607static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
drhf926d1e2014-03-04 04:04:33 +00003608 u32 y;
dan3833e932014-03-01 19:44:56 +00003609 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
dan3b9330f2014-02-27 20:44:18 +00003610 switch( serial_type ){
dan3833e932014-03-01 19:44:56 +00003611 case 0:
dan3b9330f2014-02-27 20:44:18 +00003612 case 1:
drhb6e8fd12014-03-06 01:56:33 +00003613 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003614 return ONE_BYTE_INT(aKey);
dan3b9330f2014-02-27 20:44:18 +00003615 case 2:
drhb6e8fd12014-03-06 01:56:33 +00003616 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003617 return TWO_BYTE_INT(aKey);
dan3b9330f2014-02-27 20:44:18 +00003618 case 3:
drhb6e8fd12014-03-06 01:56:33 +00003619 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003620 return THREE_BYTE_INT(aKey);
3621 case 4: {
drhb6e8fd12014-03-06 01:56:33 +00003622 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003623 y = FOUR_BYTE_UINT(aKey);
3624 return (i64)*(int*)&y;
3625 }
dan3b9330f2014-02-27 20:44:18 +00003626 case 5: {
drhb6e8fd12014-03-06 01:56:33 +00003627 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003628 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
drhaf5b2af2013-08-05 15:32:09 +00003629 }
dan3b9330f2014-02-27 20:44:18 +00003630 case 6: {
drhf926d1e2014-03-04 04:04:33 +00003631 u64 x = FOUR_BYTE_UINT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003632 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003633 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3634 return (i64)*(i64*)&x;
drh1e968a02008-03-25 00:22:21 +00003635 }
dan3b9330f2014-02-27 20:44:18 +00003636 }
drh407414c2009-07-14 14:15:27 +00003637
dan3b9330f2014-02-27 20:44:18 +00003638 return (serial_type - 8);
drh1e968a02008-03-25 00:22:21 +00003639}
danielk1977eb015e02004-05-18 01:31:14 +00003640
dan3833e932014-03-01 19:44:56 +00003641/*
3642** This function compares the two table rows or index records
3643** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
3644** or positive integer if key1 is less than, equal to or
3645** greater than key2. The {nKey1, pKey1} key must be a blob
peter.d.reid60ec9142014-09-06 16:39:46 +00003646** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
dan3833e932014-03-01 19:44:56 +00003647** key must be a parsed key such as obtained from
3648** sqlite3VdbeParseRecord.
3649**
3650** If argument bSkip is non-zero, it is assumed that the caller has already
3651** determined that the first fields of the keys are equal.
3652**
3653** Key1 and Key2 do not have to contain the same number of fields. If all
3654** fields that appear in both keys are equal, then pPKey2->default_rc is
3655** returned.
drha1f7c0a2014-03-28 03:12:48 +00003656**
dan38fdead2014-04-01 10:19:02 +00003657** If database corruption is discovered, set pPKey2->errCode to
3658** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3659** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3660** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
dan3833e932014-03-01 19:44:56 +00003661*/
dan7004f3f2015-03-30 12:06:26 +00003662int sqlite3VdbeRecordCompareWithSkip(
dan3833e932014-03-01 19:44:56 +00003663 int nKey1, const void *pKey1, /* Left key */
drha1f7c0a2014-03-28 03:12:48 +00003664 UnpackedRecord *pPKey2, /* Right key */
dan3833e932014-03-01 19:44:56 +00003665 int bSkip /* If true, skip the first field */
dan1fed5da2014-02-25 21:01:25 +00003666){
dan3833e932014-03-01 19:44:56 +00003667 u32 d1; /* Offset into aKey[] of next data element */
3668 int i; /* Index of next field to compare */
mistachkinffe6bc22014-03-04 11:16:20 +00003669 u32 szHdr1; /* Size of record header in bytes */
dan3833e932014-03-01 19:44:56 +00003670 u32 idx1; /* Offset of first type in header */
3671 int rc = 0; /* Return value */
3672 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
dan1fed5da2014-02-25 21:01:25 +00003673 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3674 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3675 Mem mem1;
3676
dan3833e932014-03-01 19:44:56 +00003677 /* If bSkip is true, then the caller has already determined that the first
3678 ** two elements in the keys are equal. Fix the various stack variables so
dan3b9330f2014-02-27 20:44:18 +00003679 ** that this routine begins comparing at the second field. */
dan3833e932014-03-01 19:44:56 +00003680 if( bSkip ){
dan3b9330f2014-02-27 20:44:18 +00003681 u32 s1;
dan3b9330f2014-02-27 20:44:18 +00003682 idx1 = 1 + getVarint32(&aKey1[1], s1);
dan3833e932014-03-01 19:44:56 +00003683 szHdr1 = aKey1[0];
3684 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
dan3b9330f2014-02-27 20:44:18 +00003685 i = 1;
3686 pRhs++;
dan3833e932014-03-01 19:44:56 +00003687 }else{
3688 idx1 = getVarint32(aKey1, szHdr1);
3689 d1 = szHdr1;
drha1f7c0a2014-03-28 03:12:48 +00003690 if( d1>(unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003691 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003692 return 0; /* Corruption */
3693 }
dan3833e932014-03-01 19:44:56 +00003694 i = 0;
dan3b9330f2014-02-27 20:44:18 +00003695 }
3696
drh17bcb102014-09-18 21:25:33 +00003697 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
dan1fed5da2014-02-25 21:01:25 +00003698 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
3699 || CORRUPT_DB );
3700 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
3701 assert( pPKey2->pKeyInfo->nField>0 );
3702 assert( idx1<=szHdr1 || CORRUPT_DB );
3703 do{
dan1fed5da2014-02-25 21:01:25 +00003704 u32 serial_type;
3705
3706 /* RHS is an integer */
3707 if( pRhs->flags & MEM_Int ){
3708 serial_type = aKey1[idx1];
drhb6e8fd12014-03-06 01:56:33 +00003709 testcase( serial_type==12 );
danb95e1192015-05-26 20:31:20 +00003710 if( serial_type>=10 ){
dan1fed5da2014-02-25 21:01:25 +00003711 rc = +1;
3712 }else if( serial_type==0 ){
3713 rc = -1;
dan3b9330f2014-02-27 20:44:18 +00003714 }else if( serial_type==7 ){
3715 double rhs = (double)pRhs->u.i;
dan1fed5da2014-02-25 21:01:25 +00003716 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
drh74eaba42014-09-18 17:52:15 +00003717 if( mem1.u.r<rhs ){
dan3b9330f2014-02-27 20:44:18 +00003718 rc = -1;
drh74eaba42014-09-18 17:52:15 +00003719 }else if( mem1.u.r>rhs ){
dan3b9330f2014-02-27 20:44:18 +00003720 rc = +1;
3721 }
3722 }else{
3723 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
3724 i64 rhs = pRhs->u.i;
3725 if( lhs<rhs ){
3726 rc = -1;
3727 }else if( lhs>rhs ){
3728 rc = +1;
dan1fed5da2014-02-25 21:01:25 +00003729 }
3730 }
3731 }
3732
3733 /* RHS is real */
3734 else if( pRhs->flags & MEM_Real ){
3735 serial_type = aKey1[idx1];
dancc7aa1f2015-05-26 20:07:32 +00003736 if( serial_type>=10 ){
3737 /* Serial types 12 or greater are strings and blobs (greater than
3738 ** numbers). Types 10 and 11 are currently "reserved for future
3739 ** use", so it doesn't really matter what the results of comparing
3740 ** them to numberic values are. */
dan1fed5da2014-02-25 21:01:25 +00003741 rc = +1;
3742 }else if( serial_type==0 ){
3743 rc = -1;
3744 }else{
drh74eaba42014-09-18 17:52:15 +00003745 double rhs = pRhs->u.r;
dan1fed5da2014-02-25 21:01:25 +00003746 double lhs;
3747 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3748 if( serial_type==7 ){
drh74eaba42014-09-18 17:52:15 +00003749 lhs = mem1.u.r;
dan1fed5da2014-02-25 21:01:25 +00003750 }else{
drh295aedf2014-03-03 18:25:24 +00003751 lhs = (double)mem1.u.i;
dan1fed5da2014-02-25 21:01:25 +00003752 }
3753 if( lhs<rhs ){
3754 rc = -1;
3755 }else if( lhs>rhs ){
3756 rc = +1;
3757 }
3758 }
3759 }
3760
3761 /* RHS is a string */
3762 else if( pRhs->flags & MEM_Str ){
3763 getVarint32(&aKey1[idx1], serial_type);
drhb6e8fd12014-03-06 01:56:33 +00003764 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00003765 if( serial_type<12 ){
3766 rc = -1;
3767 }else if( !(serial_type & 0x01) ){
3768 rc = +1;
3769 }else{
3770 mem1.n = (serial_type - 12) / 2;
drhb6e8fd12014-03-06 01:56:33 +00003771 testcase( (d1+mem1.n)==(unsigned)nKey1 );
3772 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
drh295aedf2014-03-03 18:25:24 +00003773 if( (d1+mem1.n) > (unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003774 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003775 return 0; /* Corruption */
dan1fed5da2014-02-25 21:01:25 +00003776 }else if( pKeyInfo->aColl[i] ){
3777 mem1.enc = pKeyInfo->enc;
3778 mem1.db = pKeyInfo->db;
3779 mem1.flags = MEM_Str;
drhfcb44a82014-03-03 15:13:27 +00003780 mem1.z = (char*)&aKey1[d1];
dan38fdead2014-04-01 10:19:02 +00003781 rc = vdbeCompareMemString(
3782 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
3783 );
dan1fed5da2014-02-25 21:01:25 +00003784 }else{
3785 int nCmp = MIN(mem1.n, pRhs->n);
3786 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3787 if( rc==0 ) rc = mem1.n - pRhs->n;
3788 }
3789 }
3790 }
3791
3792 /* RHS is a blob */
3793 else if( pRhs->flags & MEM_Blob ){
3794 getVarint32(&aKey1[idx1], serial_type);
drhb6e8fd12014-03-06 01:56:33 +00003795 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00003796 if( serial_type<12 || (serial_type & 0x01) ){
3797 rc = -1;
3798 }else{
3799 int nStr = (serial_type - 12) / 2;
drhb6e8fd12014-03-06 01:56:33 +00003800 testcase( (d1+nStr)==(unsigned)nKey1 );
3801 testcase( (d1+nStr+1)==(unsigned)nKey1 );
drh295aedf2014-03-03 18:25:24 +00003802 if( (d1+nStr) > (unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003803 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003804 return 0; /* Corruption */
dan1fed5da2014-02-25 21:01:25 +00003805 }else{
3806 int nCmp = MIN(nStr, pRhs->n);
3807 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3808 if( rc==0 ) rc = nStr - pRhs->n;
3809 }
3810 }
3811 }
3812
3813 /* RHS is null */
3814 else{
3815 serial_type = aKey1[idx1];
3816 rc = (serial_type!=0);
3817 }
3818
3819 if( rc!=0 ){
dan1fed5da2014-02-25 21:01:25 +00003820 if( pKeyInfo->aSortOrder[i] ){
3821 rc = -rc;
dan1fed5da2014-02-25 21:01:25 +00003822 }
drh79211e12014-05-02 17:33:16 +00003823 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
drh17bcb102014-09-18 21:25:33 +00003824 assert( mem1.szMalloc==0 ); /* See comment below */
dan1fed5da2014-02-25 21:01:25 +00003825 return rc;
3826 }
3827
3828 i++;
dan3b9330f2014-02-27 20:44:18 +00003829 pRhs++;
dan1fed5da2014-02-25 21:01:25 +00003830 d1 += sqlite3VdbeSerialTypeLen(serial_type);
3831 idx1 += sqlite3VarintLen(serial_type);
drh295aedf2014-03-03 18:25:24 +00003832 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
dan1fed5da2014-02-25 21:01:25 +00003833
3834 /* No memory allocation is ever used on mem1. Prove this using
3835 ** the following assert(). If the assert() fails, it indicates a
dan3833e932014-03-01 19:44:56 +00003836 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
drh17bcb102014-09-18 21:25:33 +00003837 assert( mem1.szMalloc==0 );
dan1fed5da2014-02-25 21:01:25 +00003838
3839 /* rc==0 here means that one or both of the keys ran out of fields and
peter.d.reid60ec9142014-09-06 16:39:46 +00003840 ** all the fields up to that point were equal. Return the default_rc
dan1fed5da2014-02-25 21:01:25 +00003841 ** value. */
dan3833e932014-03-01 19:44:56 +00003842 assert( CORRUPT_DB
drh66141812014-06-30 20:25:03 +00003843 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
dan6696ba32014-06-28 19:06:49 +00003844 || pKeyInfo->db->mallocFailed
dan3833e932014-03-01 19:44:56 +00003845 );
dan1fed5da2014-02-25 21:01:25 +00003846 return pPKey2->default_rc;
3847}
drh75179de2014-09-16 14:37:35 +00003848int sqlite3VdbeRecordCompare(
3849 int nKey1, const void *pKey1, /* Left key */
3850 UnpackedRecord *pPKey2 /* Right key */
3851){
dan7004f3f2015-03-30 12:06:26 +00003852 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
drh75179de2014-09-16 14:37:35 +00003853}
3854
dan1fed5da2014-02-25 21:01:25 +00003855
dan3833e932014-03-01 19:44:56 +00003856/*
3857** This function is an optimized version of sqlite3VdbeRecordCompare()
3858** that (a) the first field of pPKey2 is an integer, and (b) the
3859** size-of-header varint at the start of (pKey1/nKey1) fits in a single
3860** byte (i.e. is less than 128).
drhe2ac5062014-03-26 12:02:38 +00003861**
3862** To avoid concerns about buffer overreads, this routine is only used
3863** on schemas where the maximum valid header size is 63 bytes or less.
dan3833e932014-03-01 19:44:56 +00003864*/
dan3b9330f2014-02-27 20:44:18 +00003865static int vdbeRecordCompareInt(
3866 int nKey1, const void *pKey1, /* Left key */
drh75179de2014-09-16 14:37:35 +00003867 UnpackedRecord *pPKey2 /* Right key */
dan3b9330f2014-02-27 20:44:18 +00003868){
dan9b8afef2014-03-03 20:48:50 +00003869 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
dan3b9330f2014-02-27 20:44:18 +00003870 int serial_type = ((const u8*)pKey1)[1];
3871 int res;
drhf926d1e2014-03-04 04:04:33 +00003872 u32 y;
3873 u64 x;
dan3b9330f2014-02-27 20:44:18 +00003874 i64 v = pPKey2->aMem[0].u.i;
3875 i64 lhs;
3876
drhe1bb8022015-01-19 19:48:52 +00003877 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
drhe2ac5062014-03-26 12:02:38 +00003878 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
dan3833e932014-03-01 19:44:56 +00003879 switch( serial_type ){
drhf926d1e2014-03-04 04:04:33 +00003880 case 1: { /* 1-byte signed integer */
3881 lhs = ONE_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003882 testcase( lhs<0 );
dan3b9330f2014-02-27 20:44:18 +00003883 break;
3884 }
drhf926d1e2014-03-04 04:04:33 +00003885 case 2: { /* 2-byte signed integer */
3886 lhs = TWO_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003887 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00003888 break;
3889 }
3890 case 3: { /* 3-byte signed integer */
3891 lhs = THREE_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003892 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00003893 break;
3894 }
3895 case 4: { /* 4-byte signed integer */
3896 y = FOUR_BYTE_UINT(aKey);
3897 lhs = (i64)*(int*)&y;
drhb6e8fd12014-03-06 01:56:33 +00003898 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00003899 break;
3900 }
3901 case 5: { /* 6-byte signed integer */
3902 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003903 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00003904 break;
3905 }
3906 case 6: { /* 8-byte signed integer */
3907 x = FOUR_BYTE_UINT(aKey);
3908 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3909 lhs = *(i64*)&x;
drhb6e8fd12014-03-06 01:56:33 +00003910 testcase( lhs<0 );
dan3b9330f2014-02-27 20:44:18 +00003911 break;
3912 }
dan3b9330f2014-02-27 20:44:18 +00003913 case 8:
3914 lhs = 0;
3915 break;
dan3b9330f2014-02-27 20:44:18 +00003916 case 9:
3917 lhs = 1;
3918 break;
3919
dan063d4a02014-02-28 09:48:30 +00003920 /* This case could be removed without changing the results of running
3921 ** this code. Including it causes gcc to generate a faster switch
3922 ** statement (since the range of switch targets now starts at zero and
dan597515d2014-02-28 18:39:51 +00003923 ** is contiguous) but does not cause any duplicate code to be generated
dan063d4a02014-02-28 09:48:30 +00003924 ** (as gcc is clever enough to combine the two like cases). Other
3925 ** compilers might be similar. */
3926 case 0: case 7:
drh75179de2014-09-16 14:37:35 +00003927 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
dan063d4a02014-02-28 09:48:30 +00003928
dan3b9330f2014-02-27 20:44:18 +00003929 default:
drh75179de2014-09-16 14:37:35 +00003930 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
dan3b9330f2014-02-27 20:44:18 +00003931 }
3932
3933 if( v>lhs ){
3934 res = pPKey2->r1;
3935 }else if( v<lhs ){
3936 res = pPKey2->r2;
3937 }else if( pPKey2->nField>1 ){
dan063d4a02014-02-28 09:48:30 +00003938 /* The first fields of the two keys are equal. Compare the trailing
3939 ** fields. */
dan7004f3f2015-03-30 12:06:26 +00003940 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
dan3b9330f2014-02-27 20:44:18 +00003941 }else{
dan063d4a02014-02-28 09:48:30 +00003942 /* The first fields of the two keys are equal and there are no trailing
3943 ** fields. Return pPKey2->default_rc in this case. */
dan3b9330f2014-02-27 20:44:18 +00003944 res = pPKey2->default_rc;
3945 }
3946
drh79211e12014-05-02 17:33:16 +00003947 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
dan3b9330f2014-02-27 20:44:18 +00003948 return res;
3949}
3950
dan3833e932014-03-01 19:44:56 +00003951/*
3952** This function is an optimized version of sqlite3VdbeRecordCompare()
3953** that (a) the first field of pPKey2 is a string, that (b) the first field
3954** uses the collation sequence BINARY and (c) that the size-of-header varint
3955** at the start of (pKey1/nKey1) fits in a single byte.
3956*/
dan3b9330f2014-02-27 20:44:18 +00003957static int vdbeRecordCompareString(
3958 int nKey1, const void *pKey1, /* Left key */
drh75179de2014-09-16 14:37:35 +00003959 UnpackedRecord *pPKey2 /* Right key */
dan3b9330f2014-02-27 20:44:18 +00003960){
3961 const u8 *aKey1 = (const u8*)pKey1;
3962 int serial_type;
3963 int res;
3964
drhe1bb8022015-01-19 19:48:52 +00003965 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
dan3b9330f2014-02-27 20:44:18 +00003966 getVarint32(&aKey1[1], serial_type);
dan3b9330f2014-02-27 20:44:18 +00003967 if( serial_type<12 ){
3968 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
3969 }else if( !(serial_type & 0x01) ){
3970 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
3971 }else{
3972 int nCmp;
3973 int nStr;
dan3833e932014-03-01 19:44:56 +00003974 int szHdr = aKey1[0];
dan3b9330f2014-02-27 20:44:18 +00003975
3976 nStr = (serial_type-12) / 2;
drha1f7c0a2014-03-28 03:12:48 +00003977 if( (szHdr + nStr) > nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003978 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003979 return 0; /* Corruption */
3980 }
dan3b9330f2014-02-27 20:44:18 +00003981 nCmp = MIN( pPKey2->aMem[0].n, nStr );
dan3833e932014-03-01 19:44:56 +00003982 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
dan3b9330f2014-02-27 20:44:18 +00003983
3984 if( res==0 ){
3985 res = nStr - pPKey2->aMem[0].n;
3986 if( res==0 ){
3987 if( pPKey2->nField>1 ){
dan7004f3f2015-03-30 12:06:26 +00003988 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
dan3b9330f2014-02-27 20:44:18 +00003989 }else{
3990 res = pPKey2->default_rc;
3991 }
3992 }else if( res>0 ){
3993 res = pPKey2->r2;
3994 }else{
3995 res = pPKey2->r1;
3996 }
3997 }else if( res>0 ){
3998 res = pPKey2->r2;
3999 }else{
4000 res = pPKey2->r1;
4001 }
4002 }
4003
drh66141812014-06-30 20:25:03 +00004004 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
dan3b9330f2014-02-27 20:44:18 +00004005 || CORRUPT_DB
dan6696ba32014-06-28 19:06:49 +00004006 || pPKey2->pKeyInfo->db->mallocFailed
dan3b9330f2014-02-27 20:44:18 +00004007 );
4008 return res;
4009}
4010
dan3833e932014-03-01 19:44:56 +00004011/*
4012** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4013** suitable for comparing serialized records to the unpacked record passed
4014** as the only argument.
4015*/
dan1fed5da2014-02-25 21:01:25 +00004016RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
dan9b8afef2014-03-03 20:48:50 +00004017 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4018 ** that the size-of-header varint that occurs at the start of each record
4019 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4020 ** also assumes that it is safe to overread a buffer by at least the
4021 ** maximum possible legal header size plus 8 bytes. Because there is
4022 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4023 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4024 ** limit the size of the header to 64 bytes in cases where the first field
4025 ** is an integer.
4026 **
4027 ** The easiest way to enforce this limit is to consider only records with
4028 ** 13 fields or less. If the first field is an integer, the maximum legal
4029 ** header size is (12*5 + 1 + 1) bytes. */
4030 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
dan1fed5da2014-02-25 21:01:25 +00004031 int flags = p->aMem[0].flags;
dan3b9330f2014-02-27 20:44:18 +00004032 if( p->pKeyInfo->aSortOrder[0] ){
4033 p->r1 = 1;
4034 p->r2 = -1;
4035 }else{
4036 p->r1 = -1;
4037 p->r2 = 1;
4038 }
dan1fed5da2014-02-25 21:01:25 +00004039 if( (flags & MEM_Int) ){
4040 return vdbeRecordCompareInt;
dan3b9330f2014-02-27 20:44:18 +00004041 }
drhb6e8fd12014-03-06 01:56:33 +00004042 testcase( flags & MEM_Real );
4043 testcase( flags & MEM_Null );
4044 testcase( flags & MEM_Blob );
4045 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4046 assert( flags & MEM_Str );
dan1fed5da2014-02-25 21:01:25 +00004047 return vdbeRecordCompareString;
4048 }
4049 }
dan3b9330f2014-02-27 20:44:18 +00004050
dan3833e932014-03-01 19:44:56 +00004051 return sqlite3VdbeRecordCompare;
dan3b9330f2014-02-27 20:44:18 +00004052}
dan1fed5da2014-02-25 21:01:25 +00004053
danielk1977eb015e02004-05-18 01:31:14 +00004054/*
drh7a224de2004-06-02 01:22:02 +00004055** pCur points at an index entry created using the OP_MakeRecord opcode.
4056** Read the rowid (the last field in the record) and store it in *rowid.
4057** Return SQLITE_OK if everything works, or an error code otherwise.
drh88a003e2008-12-11 16:17:03 +00004058**
4059** pCur might be pointing to text obtained from a corrupt database file.
4060** So the content cannot be trusted. Do appropriate checks on the content.
danielk1977183f9f72004-05-13 05:20:26 +00004061*/
drhd3b74202014-09-17 16:41:15 +00004062int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
drh61fc5952007-04-01 23:49:51 +00004063 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00004064 int rc;
drhd5788202004-05-28 08:21:05 +00004065 u32 szHdr; /* Size of the header */
4066 u32 typeRowid; /* Serial type of the rowid */
4067 u32 lenRowid; /* Size of the rowid */
4068 Mem m, v;
danielk1977183f9f72004-05-13 05:20:26 +00004069
drh88a003e2008-12-11 16:17:03 +00004070 /* Get the size of the index entry. Only indices entries of less
drh7b746032009-06-26 12:15:22 +00004071 ** than 2GiB are support - anything large must be database corruption.
4072 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
drhc27ae612009-07-14 18:35:44 +00004073 ** this code can safely assume that nCellKey is 32-bits
4074 */
drhea8ffdf2009-07-22 00:35:23 +00004075 assert( sqlite3BtreeCursorIsValid(pCur) );
drhb07028f2011-10-14 21:49:18 +00004076 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
drhc27ae612009-07-14 18:35:44 +00004077 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
drh7b746032009-06-26 12:15:22 +00004078 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
drh88a003e2008-12-11 16:17:03 +00004079
4080 /* Read in the complete content of the index entry */
drhd3b74202014-09-17 16:41:15 +00004081 sqlite3VdbeMemInit(&m, db, 0);
drh501932c2013-11-21 21:59:53 +00004082 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
drhd5788202004-05-28 08:21:05 +00004083 if( rc ){
danielk1977183f9f72004-05-13 05:20:26 +00004084 return rc;
4085 }
drh88a003e2008-12-11 16:17:03 +00004086
4087 /* The index entry must begin with a header size */
shane3f8d5cf2008-04-24 19:15:09 +00004088 (void)getVarint32((u8*)m.z, szHdr);
drh7b746032009-06-26 12:15:22 +00004089 testcase( szHdr==3 );
drh88a003e2008-12-11 16:17:03 +00004090 testcase( szHdr==m.n );
drh7b746032009-06-26 12:15:22 +00004091 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
drh88a003e2008-12-11 16:17:03 +00004092 goto idx_rowid_corruption;
4093 }
4094
4095 /* The last field of the index should be an integer - the ROWID.
4096 ** Verify that the last entry really is an integer. */
shane3f8d5cf2008-04-24 19:15:09 +00004097 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
drh88a003e2008-12-11 16:17:03 +00004098 testcase( typeRowid==1 );
4099 testcase( typeRowid==2 );
4100 testcase( typeRowid==3 );
4101 testcase( typeRowid==4 );
4102 testcase( typeRowid==5 );
4103 testcase( typeRowid==6 );
4104 testcase( typeRowid==8 );
4105 testcase( typeRowid==9 );
4106 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4107 goto idx_rowid_corruption;
4108 }
drhc5ef7152015-06-28 02:58:51 +00004109 lenRowid = sqlite3SmallTypeSizes[typeRowid];
drheeb844a2009-08-08 18:01:07 +00004110 testcase( (u32)m.n==szHdr+lenRowid );
4111 if( unlikely((u32)m.n<szHdr+lenRowid) ){
drh88a003e2008-12-11 16:17:03 +00004112 goto idx_rowid_corruption;
4113 }
4114
4115 /* Fetch the integer off the end of the index record */
drh2646da72005-12-09 20:02:05 +00004116 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
drh3c024d62007-03-30 11:23:45 +00004117 *rowid = v.u.i;
danielk1977d8123362004-06-12 09:25:12 +00004118 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00004119 return SQLITE_OK;
drh88a003e2008-12-11 16:17:03 +00004120
4121 /* Jump here if database corruption is detected after m has been
4122 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4123idx_rowid_corruption:
drh17bcb102014-09-18 21:25:33 +00004124 testcase( m.szMalloc!=0 );
drh88a003e2008-12-11 16:17:03 +00004125 sqlite3VdbeMemRelease(&m);
4126 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00004127}
4128
drh7cf6e4d2004-05-19 14:56:55 +00004129/*
drh5f82e3c2009-07-06 00:44:08 +00004130** Compare the key of the index entry that cursor pC is pointing to against
4131** the key string in pUnpacked. Write into *pRes a number
drh7cf6e4d2004-05-19 14:56:55 +00004132** that is negative, zero, or positive if pC is less than, equal to,
drh5f82e3c2009-07-06 00:44:08 +00004133** or greater than pUnpacked. Return SQLITE_OK on success.
drhd3d39e92004-05-20 22:16:29 +00004134**
drh5f82e3c2009-07-06 00:44:08 +00004135** pUnpacked is either created without a rowid or is truncated so that it
drhd5788202004-05-28 08:21:05 +00004136** omits the rowid at the end. The rowid at the end of the index entry
drhec1fc802008-08-13 14:07:40 +00004137** is ignored as well. Hence, this routine only compares the prefixes
4138** of the keys prior to the final rowid, not the entire key.
drh7cf6e4d2004-05-19 14:56:55 +00004139*/
danielk1977183f9f72004-05-13 05:20:26 +00004140int sqlite3VdbeIdxKeyCompare(
drhd3b74202014-09-17 16:41:15 +00004141 sqlite3 *db, /* Database connection */
drh295aedf2014-03-03 18:25:24 +00004142 VdbeCursor *pC, /* The cursor to compare against */
drha1f7c0a2014-03-28 03:12:48 +00004143 UnpackedRecord *pUnpacked, /* Unpacked version of key */
drh295aedf2014-03-03 18:25:24 +00004144 int *res /* Write the comparison result here */
danielk1977183f9f72004-05-13 05:20:26 +00004145){
drh61fc5952007-04-01 23:49:51 +00004146 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00004147 int rc;
danielk19773d1bfea2004-05-14 11:00:53 +00004148 BtCursor *pCur = pC->pCursor;
drhd5788202004-05-28 08:21:05 +00004149 Mem m;
danielk1977183f9f72004-05-13 05:20:26 +00004150
drhea8ffdf2009-07-22 00:35:23 +00004151 assert( sqlite3BtreeCursorIsValid(pCur) );
drhb07028f2011-10-14 21:49:18 +00004152 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
drhc27ae612009-07-14 18:35:44 +00004153 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
drh56689692014-03-03 19:29:28 +00004154 /* nCellKey will always be between 0 and 0xffffffff because of the way
drh407414c2009-07-14 14:15:27 +00004155 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
drhc27ae612009-07-14 18:35:44 +00004156 if( nCellKey<=0 || nCellKey>0x7fffffff ){
danielk1977183f9f72004-05-13 05:20:26 +00004157 *res = 0;
drh9978c972010-02-23 17:36:32 +00004158 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00004159 }
drhd3b74202014-09-17 16:41:15 +00004160 sqlite3VdbeMemInit(&m, db, 0);
drh501932c2013-11-21 21:59:53 +00004161 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
drhec1fc802008-08-13 14:07:40 +00004162 if( rc ){
drhd5788202004-05-28 08:21:05 +00004163 return rc;
danielk1977183f9f72004-05-13 05:20:26 +00004164 }
drh75179de2014-09-16 14:37:35 +00004165 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
danielk1977d8123362004-06-12 09:25:12 +00004166 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00004167 return SQLITE_OK;
4168}
danielk1977b28af712004-06-21 06:50:26 +00004169
4170/*
4171** This routine sets the value to be returned by subsequent calls to
4172** sqlite3_changes() on the database handle 'db'.
4173*/
4174void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
drhb21c8cd2007-08-21 19:33:56 +00004175 assert( sqlite3_mutex_held(db->mutex) );
danielk1977b28af712004-06-21 06:50:26 +00004176 db->nChange = nChange;
4177 db->nTotalChange += nChange;
4178}
4179
4180/*
4181** Set a flag in the vdbe to update the change counter when it is finalised
4182** or reset.
4183*/
drh4794f732004-11-05 17:17:50 +00004184void sqlite3VdbeCountChanges(Vdbe *v){
4185 v->changeCntOn = 1;
danielk1977b28af712004-06-21 06:50:26 +00004186}
drhd89bd002005-01-22 03:03:54 +00004187
4188/*
4189** Mark every prepared statement associated with a database connection
4190** as expired.
4191**
4192** An expired statement means that recompilation of the statement is
4193** recommend. Statements expire when things happen that make their
4194** programs obsolete. Removing user-defined functions or collating
4195** sequences, or changing an authorization function are the types of
4196** things that make prepared statements obsolete.
4197*/
4198void sqlite3ExpirePreparedStatements(sqlite3 *db){
4199 Vdbe *p;
4200 for(p = db->pVdbe; p; p=p->pNext){
4201 p->expired = 1;
4202 }
4203}
danielk1977aee18ef2005-03-09 12:26:50 +00004204
4205/*
4206** Return the database associated with the Vdbe.
4207*/
4208sqlite3 *sqlite3VdbeDb(Vdbe *v){
4209 return v->db;
4210}
dan937d0de2009-10-15 18:35:38 +00004211
4212/*
4213** Return a pointer to an sqlite3_value structure containing the value bound
4214** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4215** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4216** constants) to the value before returning it.
4217**
4218** The returned value must be freed by the caller using sqlite3ValueFree().
4219*/
drhcf0fd4a2013-08-01 12:21:58 +00004220sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
dan937d0de2009-10-15 18:35:38 +00004221 assert( iVar>0 );
4222 if( v ){
4223 Mem *pMem = &v->aVar[iVar-1];
4224 if( 0==(pMem->flags & MEM_Null) ){
4225 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4226 if( pRet ){
4227 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4228 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
dan937d0de2009-10-15 18:35:38 +00004229 }
4230 return pRet;
4231 }
4232 }
4233 return 0;
4234}
4235
4236/*
4237** Configure SQL variable iVar so that binding a new value to it signals
4238** to sqlite3_reoptimize() that re-preparing the statement may result
4239** in a better query plan.
4240*/
dan1d2ce4f2009-10-19 18:11:09 +00004241void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
dan937d0de2009-10-15 18:35:38 +00004242 assert( iVar>0 );
4243 if( iVar>32 ){
dan1d2ce4f2009-10-19 18:11:09 +00004244 v->expmask = 0xffffffff;
dan937d0de2009-10-15 18:35:38 +00004245 }else{
dan1d2ce4f2009-10-19 18:11:09 +00004246 v->expmask |= ((u32)1 << (iVar-1));
dan937d0de2009-10-15 18:35:38 +00004247 }
4248}
dan016f7812013-08-21 17:35:48 +00004249
4250#ifndef SQLITE_OMIT_VIRTUALTABLE
4251/*
4252** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4253** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4254** in memory obtained from sqlite3DbMalloc).
4255*/
4256void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4257 sqlite3 *db = p->db;
4258 sqlite3DbFree(db, p->zErrMsg);
4259 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4260 sqlite3_free(pVtab->zErrMsg);
4261 pVtab->zErrMsg = 0;
4262}
4263#endif /* SQLITE_OMIT_VIRTUALTABLE */