blob: dda52ad0fc3763d37d4306241142b0694cf79382 [file] [log] [blame]
drh9a324642003-09-06 20:12:01 +00001/*
2** 2003 September 6
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This file contains code used for creating, destroying, and populating
drh7abda852014-09-19 16:02:06 +000013** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
drh9a324642003-09-06 20:12:01 +000014*/
15#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000016#include "vdbeInt.h"
17
drh9a324642003-09-06 20:12:01 +000018/*
19** Create a new virtual database engine.
20*/
drh9ac79622013-12-18 15:11:47 +000021Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
drh9a324642003-09-06 20:12:01 +000023 Vdbe *p;
drh17435752007-08-16 04:30:38 +000024 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
drh9a324642003-09-06 20:12:01 +000025 if( p==0 ) return 0;
26 p->db = db;
27 if( db->pVdbe ){
28 db->pVdbe->pPrev = p;
29 }
30 p->pNext = db->pVdbe;
31 p->pPrev = 0;
32 db->pVdbe = p;
33 p->magic = VDBE_MAGIC_INIT;
drh9ac79622013-12-18 15:11:47 +000034 p->pParse = pParse;
drh73d5b8f2013-12-23 19:09:07 +000035 assert( pParse->aLabel==0 );
36 assert( pParse->nLabel==0 );
37 assert( pParse->nOpAlloc==0 );
drh9a324642003-09-06 20:12:01 +000038 return p;
39}
40
41/*
drh22c17b82015-05-15 04:13:15 +000042** Change the error string stored in Vdbe.zErrMsg
43*/
44void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
45 va_list ap;
46 sqlite3DbFree(p->db, p->zErrMsg);
47 va_start(ap, zFormat);
48 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
49 va_end(ap);
50}
51
52/*
drhb900aaf2006-11-09 00:24:53 +000053** Remember the SQL string for a prepared statement.
54*/
danielk19776ab3a2e2009-02-19 14:39:25 +000055void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
dan1d2ce4f2009-10-19 18:11:09 +000056 assert( isPrepareV2==1 || isPrepareV2==0 );
drhb900aaf2006-11-09 00:24:53 +000057 if( p==0 ) return;
danac455932012-11-26 19:50:41 +000058#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
danielk19776ab3a2e2009-02-19 14:39:25 +000059 if( !isPrepareV2 ) return;
60#endif
drhb900aaf2006-11-09 00:24:53 +000061 assert( p->zSql==0 );
drh17435752007-08-16 04:30:38 +000062 p->zSql = sqlite3DbStrNDup(p->db, z, n);
shanef639c402009-11-03 19:42:30 +000063 p->isPrepareV2 = (u8)isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000064}
65
66/*
67** Return the SQL associated with a prepared statement
68*/
danielk1977d0e2a852007-11-14 06:48:48 +000069const char *sqlite3_sql(sqlite3_stmt *pStmt){
danielk19776ab3a2e2009-02-19 14:39:25 +000070 Vdbe *p = (Vdbe *)pStmt;
drh87f5c5f2010-01-20 01:20:56 +000071 return (p && p->isPrepareV2) ? p->zSql : 0;
drhb900aaf2006-11-09 00:24:53 +000072}
73
74/*
drhc5155252007-01-08 21:07:17 +000075** Swap all content between two VDBE structures.
drhb900aaf2006-11-09 00:24:53 +000076*/
drhc5155252007-01-08 21:07:17 +000077void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
78 Vdbe tmp, *pTmp;
79 char *zTmp;
drhc5155252007-01-08 21:07:17 +000080 tmp = *pA;
81 *pA = *pB;
82 *pB = tmp;
83 pTmp = pA->pNext;
84 pA->pNext = pB->pNext;
85 pB->pNext = pTmp;
86 pTmp = pA->pPrev;
87 pA->pPrev = pB->pPrev;
88 pB->pPrev = pTmp;
89 zTmp = pA->zSql;
90 pA->zSql = pB->zSql;
91 pB->zSql = zTmp;
danielk19776ab3a2e2009-02-19 14:39:25 +000092 pB->isPrepareV2 = pA->isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000093}
94
drh9a324642003-09-06 20:12:01 +000095/*
dan76ccd892014-08-12 13:38:52 +000096** Resize the Vdbe.aOp array so that it is at least nOp elements larger
drh81e069e2014-08-12 14:29:20 +000097** than its current size. nOp is guaranteed to be less than or equal
98** to 1024/sizeof(Op).
danielk1977ace3eb22006-01-26 10:35:04 +000099**
danielk197700e13612008-11-17 19:18:54 +0000100** If an out-of-memory error occurs while resizing the array, return
dan76ccd892014-08-12 13:38:52 +0000101** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
danielk197700e13612008-11-17 19:18:54 +0000102** unchanged (this is so that any opcodes already allocated can be
103** correctly deallocated along with the rest of the Vdbe).
drh76ff3a02004-09-24 22:32:30 +0000104*/
dan76ccd892014-08-12 13:38:52 +0000105static int growOpArray(Vdbe *v, int nOp){
drha4e5d582007-10-20 15:41:57 +0000106 VdbeOp *pNew;
drh73d5b8f2013-12-23 19:09:07 +0000107 Parse *p = v->pParse;
dan76ccd892014-08-12 13:38:52 +0000108
drh81e069e2014-08-12 14:29:20 +0000109 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
110 ** more frequent reallocs and hence provide more opportunities for
111 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
112 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
113 ** by the minimum* amount required until the size reaches 512. Normal
114 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
115 ** size of the op array or add 1KB of space, whichever is smaller. */
dan76ccd892014-08-12 13:38:52 +0000116#ifdef SQLITE_TEST_REALLOC_STRESS
117 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
118#else
danielk197700e13612008-11-17 19:18:54 +0000119 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
dan76ccd892014-08-12 13:38:52 +0000120 UNUSED_PARAMETER(nOp);
121#endif
122
drh81e069e2014-08-12 14:29:20 +0000123 assert( nOp<=(1024/sizeof(Op)) );
dan76ccd892014-08-12 13:38:52 +0000124 assert( nNew>=(p->nOpAlloc+nOp) );
drh73d5b8f2013-12-23 19:09:07 +0000125 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
drha4e5d582007-10-20 15:41:57 +0000126 if( pNew ){
drhb45f65d2009-03-01 19:42:11 +0000127 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
drh73d5b8f2013-12-23 19:09:07 +0000128 v->aOp = pNew;
drh76ff3a02004-09-24 22:32:30 +0000129 }
danielk197700e13612008-11-17 19:18:54 +0000130 return (pNew ? SQLITE_OK : SQLITE_NOMEM);
drh76ff3a02004-09-24 22:32:30 +0000131}
132
drh313619f2013-10-31 20:34:06 +0000133#ifdef SQLITE_DEBUG
134/* This routine is just a convenient place to set a breakpoint that will
135** fire after each opcode is inserted and displayed using
136** "PRAGMA vdbe_addoptrace=on".
137*/
138static void test_addop_breakpoint(void){
139 static int n = 0;
140 n++;
141}
142#endif
143
drh76ff3a02004-09-24 22:32:30 +0000144/*
drh9a324642003-09-06 20:12:01 +0000145** Add a new instruction to the list of instructions current in the
146** VDBE. Return the address of the new instruction.
147**
148** Parameters:
149**
150** p Pointer to the VDBE
151**
152** op The opcode for this instruction
153**
drh66a51672008-01-03 00:01:23 +0000154** p1, p2, p3 Operands
drh9a324642003-09-06 20:12:01 +0000155**
danielk19774adee202004-05-08 08:23:19 +0000156** Use the sqlite3VdbeResolveLabel() function to fix an address and
drh66a51672008-01-03 00:01:23 +0000157** the sqlite3VdbeChangeP4() function to change the value of the P4
drh9a324642003-09-06 20:12:01 +0000158** operand.
159*/
drh66a51672008-01-03 00:01:23 +0000160int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
drh9a324642003-09-06 20:12:01 +0000161 int i;
drh701a0ae2004-02-22 20:05:00 +0000162 VdbeOp *pOp;
drh9a324642003-09-06 20:12:01 +0000163
164 i = p->nOp;
drh9a324642003-09-06 20:12:01 +0000165 assert( p->magic==VDBE_MAGIC_INIT );
drh8df32842008-12-09 02:51:23 +0000166 assert( op>0 && op<0xff );
drh73d5b8f2013-12-23 19:09:07 +0000167 if( p->pParse->nOpAlloc<=i ){
dan76ccd892014-08-12 13:38:52 +0000168 if( growOpArray(p, 1) ){
drhc42ed162009-06-26 14:04:51 +0000169 return 1;
drhfd2d26b2006-03-15 22:44:36 +0000170 }
drh9a324642003-09-06 20:12:01 +0000171 }
danielk197701256832007-04-18 14:24:32 +0000172 p->nOp++;
drh701a0ae2004-02-22 20:05:00 +0000173 pOp = &p->aOp[i];
drh8df32842008-12-09 02:51:23 +0000174 pOp->opcode = (u8)op;
drh26c9b5e2008-04-11 14:56:53 +0000175 pOp->p5 = 0;
drh701a0ae2004-02-22 20:05:00 +0000176 pOp->p1 = p1;
drh701a0ae2004-02-22 20:05:00 +0000177 pOp->p2 = p2;
drh66a51672008-01-03 00:01:23 +0000178 pOp->p3 = p3;
179 pOp->p4.p = 0;
180 pOp->p4type = P4_NOTUSED;
drhc7379ce2013-10-30 02:28:23 +0000181#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh26c9b5e2008-04-11 14:56:53 +0000182 pOp->zComment = 0;
drhc7379ce2013-10-30 02:28:23 +0000183#endif
184#ifdef SQLITE_DEBUG
drhe0962052013-01-29 19:14:31 +0000185 if( p->db->flags & SQLITE_VdbeAddopTrace ){
drh9ac79622013-12-18 15:11:47 +0000186 int jj, kk;
187 Parse *pParse = p->pParse;
188 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
189 struct yColCache *x = pParse->aColCache + jj;
190 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
191 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
192 kk++;
193 }
194 if( kk ) printf("\n");
drhe0962052013-01-29 19:14:31 +0000195 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
drh313619f2013-10-31 20:34:06 +0000196 test_addop_breakpoint();
drhe0962052013-01-29 19:14:31 +0000197 }
drh9a324642003-09-06 20:12:01 +0000198#endif
drh26c9b5e2008-04-11 14:56:53 +0000199#ifdef VDBE_PROFILE
200 pOp->cycles = 0;
201 pOp->cnt = 0;
202#endif
drh688852a2014-02-17 22:40:43 +0000203#ifdef SQLITE_VDBE_COVERAGE
204 pOp->iSrcLine = 0;
205#endif
drh9a324642003-09-06 20:12:01 +0000206 return i;
207}
drh66a51672008-01-03 00:01:23 +0000208int sqlite3VdbeAddOp0(Vdbe *p, int op){
209 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
210}
211int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
212 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
213}
214int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
215 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
drh701a0ae2004-02-22 20:05:00 +0000216}
217
drh66a51672008-01-03 00:01:23 +0000218
drh701a0ae2004-02-22 20:05:00 +0000219/*
drh66a51672008-01-03 00:01:23 +0000220** Add an opcode that includes the p4 value as a pointer.
drhd4e70eb2008-01-02 00:34:36 +0000221*/
drh66a51672008-01-03 00:01:23 +0000222int sqlite3VdbeAddOp4(
drhd4e70eb2008-01-02 00:34:36 +0000223 Vdbe *p, /* Add the opcode to this VM */
224 int op, /* The new opcode */
drh66a51672008-01-03 00:01:23 +0000225 int p1, /* The P1 operand */
226 int p2, /* The P2 operand */
227 int p3, /* The P3 operand */
228 const char *zP4, /* The P4 operand */
229 int p4type /* P4 operand type */
drhd4e70eb2008-01-02 00:34:36 +0000230){
drh66a51672008-01-03 00:01:23 +0000231 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
232 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
drhd4e70eb2008-01-02 00:34:36 +0000233 return addr;
234}
235
236/*
drh5d9c9da2011-06-03 20:11:17 +0000237** Add an OP_ParseSchema opcode. This routine is broken out from
drhe4c88c02012-01-04 12:57:45 +0000238** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
239** as having been used.
drh5d9c9da2011-06-03 20:11:17 +0000240**
241** The zWhere string must have been obtained from sqlite3_malloc().
242** This routine will take ownership of the allocated memory.
243*/
244void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
245 int j;
246 int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
247 sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
248 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
249}
250
251/*
drh8cff69d2009-11-12 19:59:44 +0000252** Add an opcode that includes the p4 value as an integer.
253*/
254int sqlite3VdbeAddOp4Int(
255 Vdbe *p, /* Add the opcode to this VM */
256 int op, /* The new opcode */
257 int p1, /* The P1 operand */
258 int p2, /* The P2 operand */
259 int p3, /* The P3 operand */
260 int p4 /* The P4 operand as an integer */
261){
262 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
263 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
264 return addr;
265}
266
267/*
drh9a324642003-09-06 20:12:01 +0000268** Create a new symbolic label for an instruction that has yet to be
269** coded. The symbolic label is really just a negative number. The
270** label can be used as the P2 value of an operation. Later, when
271** the label is resolved to a specific address, the VDBE will scan
272** through its operation list and change all values of P2 which match
273** the label into the resolved address.
274**
275** The VDBE knows that a P2 value is a label because labels are
276** always negative and P2 values are suppose to be non-negative.
277** Hence, a negative P2 value is a label that has yet to be resolved.
danielk1977b5548a82004-06-26 13:51:33 +0000278**
279** Zero is returned if a malloc() fails.
drh9a324642003-09-06 20:12:01 +0000280*/
drh73d5b8f2013-12-23 19:09:07 +0000281int sqlite3VdbeMakeLabel(Vdbe *v){
282 Parse *p = v->pParse;
drhc35f3d52012-02-01 19:03:38 +0000283 int i = p->nLabel++;
drh73d5b8f2013-12-23 19:09:07 +0000284 assert( v->magic==VDBE_MAGIC_INIT );
drhc35f3d52012-02-01 19:03:38 +0000285 if( (i & (i-1))==0 ){
286 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
287 (i*2+1)*sizeof(p->aLabel[0]));
drh9a324642003-09-06 20:12:01 +0000288 }
drh76ff3a02004-09-24 22:32:30 +0000289 if( p->aLabel ){
290 p->aLabel[i] = -1;
drh9a324642003-09-06 20:12:01 +0000291 }
drh9a324642003-09-06 20:12:01 +0000292 return -1-i;
293}
294
295/*
296** Resolve label "x" to be the address of the next instruction to
297** be inserted. The parameter "x" must have been obtained from
danielk19774adee202004-05-08 08:23:19 +0000298** a prior call to sqlite3VdbeMakeLabel().
drh9a324642003-09-06 20:12:01 +0000299*/
drh73d5b8f2013-12-23 19:09:07 +0000300void sqlite3VdbeResolveLabel(Vdbe *v, int x){
301 Parse *p = v->pParse;
drh76ff3a02004-09-24 22:32:30 +0000302 int j = -1-x;
drh73d5b8f2013-12-23 19:09:07 +0000303 assert( v->magic==VDBE_MAGIC_INIT );
drhb2b9d3d2013-08-01 01:14:43 +0000304 assert( j<p->nLabel );
drhd2490902014-04-13 19:28:15 +0000305 if( ALWAYS(j>=0) && p->aLabel ){
drh73d5b8f2013-12-23 19:09:07 +0000306 p->aLabel[j] = v->nOp;
drh9a324642003-09-06 20:12:01 +0000307 }
drh61019c72014-01-04 16:49:02 +0000308 p->iFixedOp = v->nOp - 1;
drh9a324642003-09-06 20:12:01 +0000309}
310
drh4611d922010-02-25 14:47:01 +0000311/*
312** Mark the VDBE as one that can only be run one time.
313*/
314void sqlite3VdbeRunOnlyOnce(Vdbe *p){
315 p->runOnlyOnce = 1;
316}
317
drhff738bc2009-09-24 00:09:58 +0000318#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
dan144926d2009-09-09 11:37:20 +0000319
320/*
321** The following type and function are used to iterate through all opcodes
322** in a Vdbe main program and each of the sub-programs (triggers) it may
323** invoke directly or indirectly. It should be used as follows:
324**
325** Op *pOp;
326** VdbeOpIter sIter;
327**
328** memset(&sIter, 0, sizeof(sIter));
329** sIter.v = v; // v is of type Vdbe*
330** while( (pOp = opIterNext(&sIter)) ){
331** // Do something with pOp
332** }
333** sqlite3DbFree(v->db, sIter.apSub);
334**
335*/
336typedef struct VdbeOpIter VdbeOpIter;
337struct VdbeOpIter {
338 Vdbe *v; /* Vdbe to iterate through the opcodes of */
339 SubProgram **apSub; /* Array of subprograms */
340 int nSub; /* Number of entries in apSub */
341 int iAddr; /* Address of next instruction to return */
342 int iSub; /* 0 = main program, 1 = first sub-program etc. */
343};
344static Op *opIterNext(VdbeOpIter *p){
345 Vdbe *v = p->v;
346 Op *pRet = 0;
347 Op *aOp;
348 int nOp;
349
350 if( p->iSub<=p->nSub ){
351
352 if( p->iSub==0 ){
353 aOp = v->aOp;
354 nOp = v->nOp;
355 }else{
356 aOp = p->apSub[p->iSub-1]->aOp;
357 nOp = p->apSub[p->iSub-1]->nOp;
358 }
359 assert( p->iAddr<nOp );
360
361 pRet = &aOp[p->iAddr];
362 p->iAddr++;
363 if( p->iAddr==nOp ){
364 p->iSub++;
365 p->iAddr = 0;
366 }
367
368 if( pRet->p4type==P4_SUBPROGRAM ){
369 int nByte = (p->nSub+1)*sizeof(SubProgram*);
370 int j;
371 for(j=0; j<p->nSub; j++){
372 if( p->apSub[j]==pRet->p4.pProgram ) break;
373 }
374 if( j==p->nSub ){
375 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
376 if( !p->apSub ){
377 pRet = 0;
378 }else{
379 p->apSub[p->nSub++] = pRet->p4.pProgram;
380 }
381 }
382 }
383 }
384
385 return pRet;
386}
387
388/*
danf3677212009-09-10 16:14:50 +0000389** Check if the program stored in the VM associated with pParse may
drhff738bc2009-09-24 00:09:58 +0000390** throw an ABORT exception (causing the statement, but not entire transaction
dan144926d2009-09-09 11:37:20 +0000391** to be rolled back). This condition is true if the main program or any
392** sub-programs contains any of the following:
393**
394** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
395** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
396** * OP_Destroy
397** * OP_VUpdate
398** * OP_VRename
dan32b09f22009-09-23 17:29:59 +0000399** * OP_FkCounter with P2==0 (immediate foreign key constraint)
dan144926d2009-09-09 11:37:20 +0000400**
danf3677212009-09-10 16:14:50 +0000401** Then check that the value of Parse.mayAbort is true if an
402** ABORT may be thrown, or false otherwise. Return true if it does
403** match, or false otherwise. This function is intended to be used as
404** part of an assert statement in the compiler. Similar to:
405**
406** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
dan144926d2009-09-09 11:37:20 +0000407*/
danf3677212009-09-10 16:14:50 +0000408int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
409 int hasAbort = 0;
dan04668832014-12-16 20:13:30 +0000410 int hasFkCounter = 0;
dan144926d2009-09-09 11:37:20 +0000411 Op *pOp;
412 VdbeOpIter sIter;
413 memset(&sIter, 0, sizeof(sIter));
414 sIter.v = v;
415
416 while( (pOp = opIterNext(&sIter))!=0 ){
417 int opcode = pOp->opcode;
418 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
419 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
drhd91c1a12013-02-09 13:58:25 +0000420 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
dan144926d2009-09-09 11:37:20 +0000421 ){
danf3677212009-09-10 16:14:50 +0000422 hasAbort = 1;
dan144926d2009-09-09 11:37:20 +0000423 break;
424 }
dan04668832014-12-16 20:13:30 +0000425#ifndef SQLITE_OMIT_FOREIGN_KEY
426 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
427 hasFkCounter = 1;
428 }
429#endif
dan144926d2009-09-09 11:37:20 +0000430 }
dan144926d2009-09-09 11:37:20 +0000431 sqlite3DbFree(v->db, sIter.apSub);
danf3677212009-09-10 16:14:50 +0000432
mistachkin48864df2013-03-21 21:20:32 +0000433 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
danf3677212009-09-10 16:14:50 +0000434 ** If malloc failed, then the while() loop above may not have iterated
435 ** through all opcodes and hasAbort may be set incorrectly. Return
436 ** true for this case to prevent the assert() in the callers frame
437 ** from failing. */
dan04668832014-12-16 20:13:30 +0000438 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter );
dan144926d2009-09-09 11:37:20 +0000439}
drhff738bc2009-09-24 00:09:58 +0000440#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
dan144926d2009-09-09 11:37:20 +0000441
drh9a324642003-09-06 20:12:01 +0000442/*
drh9cbf3422008-01-17 16:22:13 +0000443** Loop through the program looking for P2 values that are negative
444** on jump instructions. Each such value is a label. Resolve the
445** label by setting the P2 value to its correct non-zero value.
drh76ff3a02004-09-24 22:32:30 +0000446**
447** This routine is called once after all opcodes have been inserted.
danielk1977634f2982005-03-28 08:44:07 +0000448**
drh13449892005-09-07 21:22:45 +0000449** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
danielk1977399918f2006-06-14 13:03:23 +0000450** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
danielk1977634f2982005-03-28 08:44:07 +0000451** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
drha6c2ed92009-11-14 23:22:23 +0000452**
453** The Op.opflags field is set on all opcodes.
drh76ff3a02004-09-24 22:32:30 +0000454*/
drh9cbf3422008-01-17 16:22:13 +0000455static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
drh76ff3a02004-09-24 22:32:30 +0000456 int i;
dan165921a2009-08-28 18:53:45 +0000457 int nMaxArgs = *pMaxFuncArgs;
drh76ff3a02004-09-24 22:32:30 +0000458 Op *pOp;
drh73d5b8f2013-12-23 19:09:07 +0000459 Parse *pParse = p->pParse;
460 int *aLabel = pParse->aLabel;
drhad4a4b82008-11-05 16:37:34 +0000461 p->readOnly = 1;
drh1713afb2013-06-28 01:24:57 +0000462 p->bIsReader = 0;
drh76ff3a02004-09-24 22:32:30 +0000463 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
danielk1977634f2982005-03-28 08:44:07 +0000464 u8 opcode = pOp->opcode;
465
drh8c8a8c42013-08-06 07:45:08 +0000466 /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
467 ** cases from this switch! */
468 switch( opcode ){
469 case OP_Function:
470 case OP_AggStep: {
471 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
472 break;
473 }
474 case OP_Transaction: {
475 if( pOp->p2!=0 ) p->readOnly = 0;
476 /* fall thru */
477 }
478 case OP_AutoCommit:
479 case OP_Savepoint: {
480 p->bIsReader = 1;
481 break;
482 }
dand9031542013-07-05 16:54:30 +0000483#ifndef SQLITE_OMIT_WAL
drh8c8a8c42013-08-06 07:45:08 +0000484 case OP_Checkpoint:
drh9e92a472013-06-27 17:40:30 +0000485#endif
drh8c8a8c42013-08-06 07:45:08 +0000486 case OP_Vacuum:
487 case OP_JournalMode: {
488 p->readOnly = 0;
489 p->bIsReader = 1;
490 break;
491 }
danielk1977182c4ba2007-06-27 15:53:34 +0000492#ifndef SQLITE_OMIT_VIRTUALTABLE
drh8c8a8c42013-08-06 07:45:08 +0000493 case OP_VUpdate: {
494 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
495 break;
496 }
497 case OP_VFilter: {
498 int n;
499 assert( p->nOp - i >= 3 );
500 assert( pOp[-1].opcode==OP_Integer );
501 n = pOp[-1].p1;
502 if( n>nMaxArgs ) nMaxArgs = n;
503 break;
504 }
danielk1977182c4ba2007-06-27 15:53:34 +0000505#endif
drh8c8a8c42013-08-06 07:45:08 +0000506 case OP_Next:
drhf93cd942013-11-21 03:12:25 +0000507 case OP_NextIfOpen:
drh8c8a8c42013-08-06 07:45:08 +0000508 case OP_SorterNext: {
509 pOp->p4.xAdvance = sqlite3BtreeNext;
510 pOp->p4type = P4_ADVANCE;
511 break;
512 }
drhf93cd942013-11-21 03:12:25 +0000513 case OP_Prev:
514 case OP_PrevIfOpen: {
drh8c8a8c42013-08-06 07:45:08 +0000515 pOp->p4.xAdvance = sqlite3BtreePrevious;
516 pOp->p4type = P4_ADVANCE;
517 break;
518 }
danielk1977bc04f852005-03-29 08:26:13 +0000519 }
danielk1977634f2982005-03-28 08:44:07 +0000520
drh8c8a8c42013-08-06 07:45:08 +0000521 pOp->opflags = sqlite3OpcodeProperty[opcode];
drha6c2ed92009-11-14 23:22:23 +0000522 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
drh73d5b8f2013-12-23 19:09:07 +0000523 assert( -1-pOp->p2<pParse->nLabel );
drhd2981512008-01-04 19:33:49 +0000524 pOp->p2 = aLabel[-1-pOp->p2];
525 }
drh76ff3a02004-09-24 22:32:30 +0000526 }
drh73d5b8f2013-12-23 19:09:07 +0000527 sqlite3DbFree(p->db, pParse->aLabel);
528 pParse->aLabel = 0;
529 pParse->nLabel = 0;
danielk1977bc04f852005-03-29 08:26:13 +0000530 *pMaxFuncArgs = nMaxArgs;
drha7ab6d82014-07-21 15:44:39 +0000531 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
drh76ff3a02004-09-24 22:32:30 +0000532}
533
534/*
drh9a324642003-09-06 20:12:01 +0000535** Return the address of the next instruction to be inserted.
536*/
danielk19774adee202004-05-08 08:23:19 +0000537int sqlite3VdbeCurrentAddr(Vdbe *p){
drh9a324642003-09-06 20:12:01 +0000538 assert( p->magic==VDBE_MAGIC_INIT );
539 return p->nOp;
540}
541
dan65a7cd12009-09-01 12:16:01 +0000542/*
543** This function returns a pointer to the array of opcodes associated with
544** the Vdbe passed as the first argument. It is the callers responsibility
545** to arrange for the returned array to be eventually freed using the
546** vdbeFreeOpArray() function.
547**
548** Before returning, *pnOp is set to the number of entries in the returned
549** array. Also, *pnMaxArg is set to the larger of its current value and
550** the number of entries in the Vdbe.apArg[] array required to execute the
551** returned program.
552*/
dan165921a2009-08-28 18:53:45 +0000553VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
554 VdbeOp *aOp = p->aOp;
dan523a0872009-08-31 05:23:32 +0000555 assert( aOp && !p->db->mallocFailed );
dan65a7cd12009-09-01 12:16:01 +0000556
557 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
drha7ab6d82014-07-21 15:44:39 +0000558 assert( DbMaskAllZero(p->btreeMask) );
dan65a7cd12009-09-01 12:16:01 +0000559
dan165921a2009-08-28 18:53:45 +0000560 resolveP2Values(p, pnMaxArg);
561 *pnOp = p->nOp;
562 p->aOp = 0;
563 return aOp;
564}
565
drh9a324642003-09-06 20:12:01 +0000566/*
567** Add a whole list of operations to the operation stack. Return the
568** address of the first operation added.
569*/
drh688852a2014-02-17 22:40:43 +0000570int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){
drh9a324642003-09-06 20:12:01 +0000571 int addr;
572 assert( p->magic==VDBE_MAGIC_INIT );
dan76ccd892014-08-12 13:38:52 +0000573 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
drh76ff3a02004-09-24 22:32:30 +0000574 return 0;
drh9a324642003-09-06 20:12:01 +0000575 }
576 addr = p->nOp;
drh7b746032009-06-26 12:15:22 +0000577 if( ALWAYS(nOp>0) ){
drh9a324642003-09-06 20:12:01 +0000578 int i;
drh905793e2004-02-21 13:31:09 +0000579 VdbeOpList const *pIn = aOp;
580 for(i=0; i<nOp; i++, pIn++){
581 int p2 = pIn->p2;
582 VdbeOp *pOut = &p->aOp[i+addr];
583 pOut->opcode = pIn->opcode;
584 pOut->p1 = pIn->p1;
drh4308e342013-11-11 16:55:52 +0000585 if( p2<0 ){
586 assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP );
drh8558cde2008-01-05 05:20:10 +0000587 pOut->p2 = addr + ADDR(p2);
588 }else{
589 pOut->p2 = p2;
590 }
drh24003452008-01-03 01:28:59 +0000591 pOut->p3 = pIn->p3;
592 pOut->p4type = P4_NOTUSED;
593 pOut->p4.p = 0;
594 pOut->p5 = 0;
drhc7379ce2013-10-30 02:28:23 +0000595#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh26c9b5e2008-04-11 14:56:53 +0000596 pOut->zComment = 0;
drhc7379ce2013-10-30 02:28:23 +0000597#endif
drh688852a2014-02-17 22:40:43 +0000598#ifdef SQLITE_VDBE_COVERAGE
599 pOut->iSrcLine = iLineno+i;
600#else
601 (void)iLineno;
602#endif
drhc7379ce2013-10-30 02:28:23 +0000603#ifdef SQLITE_DEBUG
drhe0962052013-01-29 19:14:31 +0000604 if( p->db->flags & SQLITE_VdbeAddopTrace ){
danielk19774adee202004-05-08 08:23:19 +0000605 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
drh9a324642003-09-06 20:12:01 +0000606 }
607#endif
608 }
609 p->nOp += nOp;
610 }
611 return addr;
612}
613
dan6f9702e2014-11-01 20:38:06 +0000614#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
615/*
616** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
617*/
dan037b5322014-11-03 11:25:32 +0000618void sqlite3VdbeScanStatus(
dan6f9702e2014-11-01 20:38:06 +0000619 Vdbe *p, /* VM to add scanstatus() to */
620 int addrExplain, /* Address of OP_Explain (or 0) */
621 int addrLoop, /* Address of loop counter */
622 int addrVisit, /* Address of rows visited counter */
drh518140e2014-11-06 03:55:10 +0000623 LogEst nEst, /* Estimated number of output rows */
dan6f9702e2014-11-01 20:38:06 +0000624 const char *zName /* Name of table or index being scanned */
625){
dan037b5322014-11-03 11:25:32 +0000626 int nByte = (p->nScan+1) * sizeof(ScanStatus);
627 ScanStatus *aNew;
628 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
dan6f9702e2014-11-01 20:38:06 +0000629 if( aNew ){
dan037b5322014-11-03 11:25:32 +0000630 ScanStatus *pNew = &aNew[p->nScan++];
dan6f9702e2014-11-01 20:38:06 +0000631 pNew->addrExplain = addrExplain;
632 pNew->addrLoop = addrLoop;
633 pNew->addrVisit = addrVisit;
634 pNew->nEst = nEst;
635 pNew->zName = sqlite3DbStrDup(p->db, zName);
636 p->aScan = aNew;
637 }
638}
639#endif
640
641
drh9a324642003-09-06 20:12:01 +0000642/*
643** Change the value of the P1 operand for a specific instruction.
644** This routine is useful when a large program is loaded from a
danielk19774adee202004-05-08 08:23:19 +0000645** static array using sqlite3VdbeAddOpList but we want to make a
drh9a324642003-09-06 20:12:01 +0000646** few minor changes to the program.
647*/
drh88caeac2011-08-24 15:12:08 +0000648void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
drh7b746032009-06-26 12:15:22 +0000649 assert( p!=0 );
drh88caeac2011-08-24 15:12:08 +0000650 if( ((u32)p->nOp)>addr ){
drh9a324642003-09-06 20:12:01 +0000651 p->aOp[addr].p1 = val;
652 }
653}
654
655/*
656** Change the value of the P2 operand for a specific instruction.
657** This routine is useful for setting a jump destination.
658*/
drh88caeac2011-08-24 15:12:08 +0000659void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
drh7b746032009-06-26 12:15:22 +0000660 assert( p!=0 );
drh88caeac2011-08-24 15:12:08 +0000661 if( ((u32)p->nOp)>addr ){
drh9a324642003-09-06 20:12:01 +0000662 p->aOp[addr].p2 = val;
663 }
664}
665
drhd654be82005-09-20 17:42:23 +0000666/*
danielk19771f4aa332008-01-03 09:51:55 +0000667** Change the value of the P3 operand for a specific instruction.
danielk1977207872a2008-01-03 07:54:23 +0000668*/
drh88caeac2011-08-24 15:12:08 +0000669void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
drh7b746032009-06-26 12:15:22 +0000670 assert( p!=0 );
drh88caeac2011-08-24 15:12:08 +0000671 if( ((u32)p->nOp)>addr ){
danielk1977207872a2008-01-03 07:54:23 +0000672 p->aOp[addr].p3 = val;
673 }
674}
675
676/*
drh35573352008-01-08 23:54:25 +0000677** Change the value of the P5 operand for the most recently
678** added operation.
danielk19771f4aa332008-01-03 09:51:55 +0000679*/
drh35573352008-01-08 23:54:25 +0000680void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
drh7b746032009-06-26 12:15:22 +0000681 assert( p!=0 );
682 if( p->aOp ){
drh35573352008-01-08 23:54:25 +0000683 assert( p->nOp>0 );
684 p->aOp[p->nOp-1].p5 = val;
danielk19771f4aa332008-01-03 09:51:55 +0000685 }
686}
687
688/*
drhf8875402006-03-17 13:56:34 +0000689** Change the P2 operand of instruction addr so that it points to
drhd654be82005-09-20 17:42:23 +0000690** the address of the next instruction to be coded.
691*/
692void sqlite3VdbeJumpHere(Vdbe *p, int addr){
drh61019c72014-01-04 16:49:02 +0000693 sqlite3VdbeChangeP2(p, addr, p->nOp);
694 p->pParse->iFixedOp = p->nOp - 1;
drhd654be82005-09-20 17:42:23 +0000695}
drhb38ad992005-09-16 00:27:01 +0000696
drhb7f6f682006-07-08 17:06:43 +0000697
698/*
699** If the input FuncDef structure is ephemeral, then free it. If
700** the FuncDef is not ephermal, then do nothing.
701*/
drh633e6d52008-07-28 19:34:53 +0000702static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
drhd36e1042013-09-06 13:10:12 +0000703 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
drh633e6d52008-07-28 19:34:53 +0000704 sqlite3DbFree(db, pDef);
drhb7f6f682006-07-08 17:06:43 +0000705 }
706}
707
dand46def72010-07-24 11:28:28 +0000708static void vdbeFreeOpArray(sqlite3 *, Op *, int);
709
drhb38ad992005-09-16 00:27:01 +0000710/*
drh66a51672008-01-03 00:01:23 +0000711** Delete a P4 value if necessary.
drhb38ad992005-09-16 00:27:01 +0000712*/
drh633e6d52008-07-28 19:34:53 +0000713static void freeP4(sqlite3 *db, int p4type, void *p4){
drh0acb7e42008-06-25 00:12:41 +0000714 if( p4 ){
dand46def72010-07-24 11:28:28 +0000715 assert( db );
drh66a51672008-01-03 00:01:23 +0000716 switch( p4type ){
717 case P4_REAL:
718 case P4_INT64:
drh66a51672008-01-03 00:01:23 +0000719 case P4_DYNAMIC:
drh2ec2fb22013-11-06 19:59:23 +0000720 case P4_INTARRAY: {
drh633e6d52008-07-28 19:34:53 +0000721 sqlite3DbFree(db, p4);
drhac1733d2005-09-17 17:58:22 +0000722 break;
723 }
drh2ec2fb22013-11-06 19:59:23 +0000724 case P4_KEYINFO: {
725 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
726 break;
727 }
drhb9755982010-07-24 16:34:37 +0000728 case P4_MPRINTF: {
drh7043db92010-07-26 12:38:12 +0000729 if( db->pnBytesFreed==0 ) sqlite3_free(p4);
drhb9755982010-07-24 16:34:37 +0000730 break;
731 }
drh66a51672008-01-03 00:01:23 +0000732 case P4_FUNCDEF: {
drh633e6d52008-07-28 19:34:53 +0000733 freeEphemeralFunction(db, (FuncDef*)p4);
drhb7f6f682006-07-08 17:06:43 +0000734 break;
735 }
drh66a51672008-01-03 00:01:23 +0000736 case P4_MEM: {
drhc176c272010-07-26 13:57:59 +0000737 if( db->pnBytesFreed==0 ){
738 sqlite3ValueFree((sqlite3_value*)p4);
739 }else{
drhf37c68e2010-07-26 14:20:06 +0000740 Mem *p = (Mem*)p4;
drh17bcb102014-09-18 21:25:33 +0000741 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
drhf37c68e2010-07-26 14:20:06 +0000742 sqlite3DbFree(db, p);
drhc176c272010-07-26 13:57:59 +0000743 }
drhac1733d2005-09-17 17:58:22 +0000744 break;
745 }
danielk1977595a5232009-07-24 17:58:53 +0000746 case P4_VTAB : {
dand46def72010-07-24 11:28:28 +0000747 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
danielk1977595a5232009-07-24 17:58:53 +0000748 break;
749 }
drhb38ad992005-09-16 00:27:01 +0000750 }
751 }
752}
753
dan65a7cd12009-09-01 12:16:01 +0000754/*
755** Free the space allocated for aOp and any p4 values allocated for the
756** opcodes contained within. If aOp is not NULL it is assumed to contain
757** nOp entries.
758*/
dan165921a2009-08-28 18:53:45 +0000759static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
760 if( aOp ){
761 Op *pOp;
762 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
763 freeP4(db, pOp->p4type, pOp->p4.p);
drhc7379ce2013-10-30 02:28:23 +0000764#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
dan165921a2009-08-28 18:53:45 +0000765 sqlite3DbFree(db, pOp->zComment);
766#endif
767 }
768 }
769 sqlite3DbFree(db, aOp);
770}
771
dan65a7cd12009-09-01 12:16:01 +0000772/*
dand19c9332010-07-26 12:05:17 +0000773** Link the SubProgram object passed as the second argument into the linked
774** list at Vdbe.pSubProgram. This list is used to delete all sub-program
775** objects when the VM is no longer required.
dan65a7cd12009-09-01 12:16:01 +0000776*/
dand19c9332010-07-26 12:05:17 +0000777void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
778 p->pNext = pVdbe->pProgram;
779 pVdbe->pProgram = p;
dan165921a2009-08-28 18:53:45 +0000780}
781
drh9a324642003-09-06 20:12:01 +0000782/*
drh48f2d3b2011-09-16 01:34:43 +0000783** Change the opcode at addr into OP_Noop
drhf8875402006-03-17 13:56:34 +0000784*/
drh48f2d3b2011-09-16 01:34:43 +0000785void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
dan76ccd892014-08-12 13:38:52 +0000786 if( addr<p->nOp ){
danielk197792d4d7a2007-05-04 12:05:56 +0000787 VdbeOp *pOp = &p->aOp[addr];
drh633e6d52008-07-28 19:34:53 +0000788 sqlite3 *db = p->db;
drh48f2d3b2011-09-16 01:34:43 +0000789 freeP4(db, pOp->p4type, pOp->p4.p);
790 memset(pOp, 0, sizeof(pOp[0]));
791 pOp->opcode = OP_Noop;
drh313619f2013-10-31 20:34:06 +0000792 if( addr==p->nOp-1 ) p->nOp--;
drhf8875402006-03-17 13:56:34 +0000793 }
794}
795
796/*
drh39c4b822014-09-29 15:42:01 +0000797** If the last opcode is "op" and it is not a jump destination,
798** then remove it. Return true if and only if an opcode was removed.
drh762c1c42014-01-02 19:35:30 +0000799*/
drh61019c72014-01-04 16:49:02 +0000800int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
801 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
802 sqlite3VdbeChangeToNoop(p, p->nOp-1);
803 return 1;
804 }else{
805 return 0;
806 }
drh762c1c42014-01-02 19:35:30 +0000807}
808
809/*
drh66a51672008-01-03 00:01:23 +0000810** Change the value of the P4 operand for a specific instruction.
drh9a324642003-09-06 20:12:01 +0000811** This routine is useful when a large program is loaded from a
danielk19774adee202004-05-08 08:23:19 +0000812** static array using sqlite3VdbeAddOpList but we want to make a
drh9a324642003-09-06 20:12:01 +0000813** few minor changes to the program.
814**
drh66a51672008-01-03 00:01:23 +0000815** If n>=0 then the P4 operand is dynamic, meaning that a copy of
drh17435752007-08-16 04:30:38 +0000816** the string is made into memory obtained from sqlite3_malloc().
drh66a51672008-01-03 00:01:23 +0000817** A value of n==0 means copy bytes of zP4 up to and including the
818** first null byte. If n>0 then copy n+1 bytes of zP4.
danielk19771f55c052005-05-19 08:42:59 +0000819**
drh66a51672008-01-03 00:01:23 +0000820** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
danielk19771f55c052005-05-19 08:42:59 +0000821** to a string or structure that is guaranteed to exist for the lifetime of
822** the Vdbe. In these cases we can just copy the pointer.
drh9a324642003-09-06 20:12:01 +0000823**
drh66a51672008-01-03 00:01:23 +0000824** If addr<0 then change P4 on the most recently inserted instruction.
drh9a324642003-09-06 20:12:01 +0000825*/
drh66a51672008-01-03 00:01:23 +0000826void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
drh9a324642003-09-06 20:12:01 +0000827 Op *pOp;
drh633e6d52008-07-28 19:34:53 +0000828 sqlite3 *db;
drh91fd4d42008-01-19 20:11:25 +0000829 assert( p!=0 );
drh633e6d52008-07-28 19:34:53 +0000830 db = p->db;
drh91fd4d42008-01-19 20:11:25 +0000831 assert( p->magic==VDBE_MAGIC_INIT );
drh633e6d52008-07-28 19:34:53 +0000832 if( p->aOp==0 || db->mallocFailed ){
drh2ec2fb22013-11-06 19:59:23 +0000833 if( n!=P4_VTAB ){
drh633e6d52008-07-28 19:34:53 +0000834 freeP4(db, n, (void*)*(char**)&zP4);
danielk1977261919c2005-12-06 12:52:59 +0000835 }
danielk1977d5d56522005-03-16 12:15:20 +0000836 return;
837 }
drh7b746032009-06-26 12:15:22 +0000838 assert( p->nOp>0 );
drh91fd4d42008-01-19 20:11:25 +0000839 assert( addr<p->nOp );
840 if( addr<0 ){
drh9a324642003-09-06 20:12:01 +0000841 addr = p->nOp - 1;
drh9a324642003-09-06 20:12:01 +0000842 }
843 pOp = &p->aOp[addr];
drh079a3072014-03-19 14:10:55 +0000844 assert( pOp->p4type==P4_NOTUSED
845 || pOp->p4type==P4_INT32
846 || pOp->p4type==P4_KEYINFO );
drh633e6d52008-07-28 19:34:53 +0000847 freeP4(db, pOp->p4type, pOp->p4.p);
drh66a51672008-01-03 00:01:23 +0000848 pOp->p4.p = 0;
drh98757152008-01-09 23:04:12 +0000849 if( n==P4_INT32 ){
mlcreech12d40822008-03-06 07:35:21 +0000850 /* Note: this cast is safe, because the origin data point was an int
851 ** that was cast to a (const char *). */
shane1fc41292008-07-08 22:28:48 +0000852 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
drh8df32842008-12-09 02:51:23 +0000853 pOp->p4type = P4_INT32;
drh98757152008-01-09 23:04:12 +0000854 }else if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +0000855 pOp->p4.p = 0;
856 pOp->p4type = P4_NOTUSED;
857 }else if( n==P4_KEYINFO ){
danielk19772dca4ac2008-01-03 11:50:29 +0000858 pOp->p4.p = (void*)zP4;
drh66a51672008-01-03 00:01:23 +0000859 pOp->p4type = P4_KEYINFO;
danielk1977595a5232009-07-24 17:58:53 +0000860 }else if( n==P4_VTAB ){
861 pOp->p4.p = (void*)zP4;
862 pOp->p4type = P4_VTAB;
863 sqlite3VtabLock((VTable *)zP4);
864 assert( ((VTable *)zP4)->db==p->db );
drh9a324642003-09-06 20:12:01 +0000865 }else if( n<0 ){
danielk19772dca4ac2008-01-03 11:50:29 +0000866 pOp->p4.p = (void*)zP4;
drh8df32842008-12-09 02:51:23 +0000867 pOp->p4type = (signed char)n;
drh9a324642003-09-06 20:12:01 +0000868 }else{
drhea678832008-12-10 19:26:22 +0000869 if( n==0 ) n = sqlite3Strlen30(zP4);
danielk19772dca4ac2008-01-03 11:50:29 +0000870 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
drh66a51672008-01-03 00:01:23 +0000871 pOp->p4type = P4_DYNAMIC;
drh9a324642003-09-06 20:12:01 +0000872 }
873}
874
drh2ec2fb22013-11-06 19:59:23 +0000875/*
876** Set the P4 on the most recently added opcode to the KeyInfo for the
877** index given.
878*/
879void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
880 Vdbe *v = pParse->pVdbe;
881 assert( v!=0 );
882 assert( pIdx!=0 );
883 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
884 P4_KEYINFO);
885}
886
drhc7379ce2013-10-30 02:28:23 +0000887#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drhad6d9462004-09-19 02:15:24 +0000888/*
mistachkind5578432012-08-25 10:01:29 +0000889** Change the comment on the most recently coded instruction. Or
drh16ee60f2008-06-20 18:13:25 +0000890** insert a No-op and add the comment to that new instruction. This
891** makes the code easier to read during debugging. None of this happens
892** in a production build.
drhad6d9462004-09-19 02:15:24 +0000893*/
drhb07028f2011-10-14 21:49:18 +0000894static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
danielk197701256832007-04-18 14:24:32 +0000895 assert( p->nOp>0 || p->aOp==0 );
drhd4e70eb2008-01-02 00:34:36 +0000896 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
danielk1977dba01372008-01-05 18:44:29 +0000897 if( p->nOp ){
drhb07028f2011-10-14 21:49:18 +0000898 assert( p->aOp );
899 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
900 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
901 }
902}
903void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
904 va_list ap;
905 if( p ){
danielk1977dba01372008-01-05 18:44:29 +0000906 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +0000907 vdbeVComment(p, zFormat, ap);
danielk1977dba01372008-01-05 18:44:29 +0000908 va_end(ap);
909 }
drhad6d9462004-09-19 02:15:24 +0000910}
drh16ee60f2008-06-20 18:13:25 +0000911void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
912 va_list ap;
drhb07028f2011-10-14 21:49:18 +0000913 if( p ){
914 sqlite3VdbeAddOp0(p, OP_Noop);
drh16ee60f2008-06-20 18:13:25 +0000915 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +0000916 vdbeVComment(p, zFormat, ap);
drh16ee60f2008-06-20 18:13:25 +0000917 va_end(ap);
918 }
919}
920#endif /* NDEBUG */
drhad6d9462004-09-19 02:15:24 +0000921
drh688852a2014-02-17 22:40:43 +0000922#ifdef SQLITE_VDBE_COVERAGE
923/*
924** Set the value if the iSrcLine field for the previously coded instruction.
925*/
926void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
927 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
928}
929#endif /* SQLITE_VDBE_COVERAGE */
930
drh9a324642003-09-06 20:12:01 +0000931/*
drh20411ea2009-05-29 19:00:12 +0000932** Return the opcode for a given address. If the address is -1, then
933** return the most recently inserted opcode.
934**
935** If a memory allocation error has occurred prior to the calling of this
936** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
drhf83dc1e2010-06-03 12:09:52 +0000937** is readable but not writable, though it is cast to a writable value.
938** The return of a dummy opcode allows the call to continue functioning
peter.d.reid60ec9142014-09-06 16:39:46 +0000939** after an OOM fault without having to check to see if the return from
drhf83dc1e2010-06-03 12:09:52 +0000940** this routine is a valid pointer. But because the dummy.opcode is 0,
941** dummy will never be written to. This is verified by code inspection and
942** by running with Valgrind.
drh9a324642003-09-06 20:12:01 +0000943*/
danielk19774adee202004-05-08 08:23:19 +0000944VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
drha0b75da2010-07-02 18:44:37 +0000945 /* C89 specifies that the constant "dummy" will be initialized to all
946 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
mistachkin0fe5f952011-09-14 18:19:08 +0000947 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
drh9a324642003-09-06 20:12:01 +0000948 assert( p->magic==VDBE_MAGIC_INIT );
drh37b89a02009-06-19 00:33:31 +0000949 if( addr<0 ){
drh37b89a02009-06-19 00:33:31 +0000950 addr = p->nOp - 1;
951 }
drh17435752007-08-16 04:30:38 +0000952 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
drh20411ea2009-05-29 19:00:12 +0000953 if( p->db->mallocFailed ){
drhf83dc1e2010-06-03 12:09:52 +0000954 return (VdbeOp*)&dummy;
drh20411ea2009-05-29 19:00:12 +0000955 }else{
956 return &p->aOp[addr];
957 }
drh9a324642003-09-06 20:12:01 +0000958}
959
drhc7379ce2013-10-30 02:28:23 +0000960#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
drh81316f82013-10-29 20:40:47 +0000961/*
drhf63552b2013-10-30 00:25:03 +0000962** Return an integer value for one of the parameters to the opcode pOp
963** determined by character c.
964*/
965static int translateP(char c, const Op *pOp){
966 if( c=='1' ) return pOp->p1;
967 if( c=='2' ) return pOp->p2;
968 if( c=='3' ) return pOp->p3;
969 if( c=='4' ) return pOp->p4.i;
970 return pOp->p5;
971}
972
drh81316f82013-10-29 20:40:47 +0000973/*
drh4eded602013-12-20 15:59:20 +0000974** Compute a string for the "comment" field of a VDBE opcode listing.
975**
976** The Synopsis: field in comments in the vdbe.c source file gets converted
977** to an extra string that is appended to the sqlite3OpcodeName(). In the
978** absence of other comments, this synopsis becomes the comment on the opcode.
979** Some translation occurs:
980**
981** "PX" -> "r[X]"
982** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
983** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
984** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
drh81316f82013-10-29 20:40:47 +0000985*/
drhf63552b2013-10-30 00:25:03 +0000986static int displayComment(
987 const Op *pOp, /* The opcode to be commented */
988 const char *zP4, /* Previously obtained value for P4 */
989 char *zTemp, /* Write result here */
990 int nTemp /* Space available in zTemp[] */
991){
drh81316f82013-10-29 20:40:47 +0000992 const char *zOpName;
993 const char *zSynopsis;
994 int nOpName;
995 int ii, jj;
996 zOpName = sqlite3OpcodeName(pOp->opcode);
997 nOpName = sqlite3Strlen30(zOpName);
998 if( zOpName[nOpName+1] ){
999 int seenCom = 0;
drhf63552b2013-10-30 00:25:03 +00001000 char c;
drh81316f82013-10-29 20:40:47 +00001001 zSynopsis = zOpName += nOpName + 1;
drhf63552b2013-10-30 00:25:03 +00001002 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1003 if( c=='P' ){
1004 c = zSynopsis[++ii];
1005 if( c=='4' ){
1006 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1007 }else if( c=='X' ){
1008 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1009 seenCom = 1;
drh81316f82013-10-29 20:40:47 +00001010 }else{
drhf63552b2013-10-30 00:25:03 +00001011 int v1 = translateP(c, pOp);
1012 int v2;
1013 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1014 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1015 ii += 3;
1016 jj += sqlite3Strlen30(zTemp+jj);
1017 v2 = translateP(zSynopsis[ii], pOp);
drh4eded602013-12-20 15:59:20 +00001018 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1019 ii += 2;
1020 v2++;
1021 }
1022 if( v2>1 ){
1023 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1024 }
drhf63552b2013-10-30 00:25:03 +00001025 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1026 ii += 4;
1027 }
drh81316f82013-10-29 20:40:47 +00001028 }
1029 jj += sqlite3Strlen30(zTemp+jj);
1030 }else{
drhf63552b2013-10-30 00:25:03 +00001031 zTemp[jj++] = c;
drh81316f82013-10-29 20:40:47 +00001032 }
1033 }
1034 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1035 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1036 jj += sqlite3Strlen30(zTemp+jj);
1037 }
1038 if( jj<nTemp ) zTemp[jj] = 0;
1039 }else if( pOp->zComment ){
1040 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1041 jj = sqlite3Strlen30(zTemp);
1042 }else{
1043 zTemp[0] = 0;
1044 jj = 0;
1045 }
1046 return jj;
1047}
1048#endif /* SQLITE_DEBUG */
1049
1050
drhb7f91642004-10-31 02:22:47 +00001051#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
1052 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
drh9a324642003-09-06 20:12:01 +00001053/*
drh66a51672008-01-03 00:01:23 +00001054** Compute a string that describes the P4 parameter for an opcode.
drhd3d39e92004-05-20 22:16:29 +00001055** Use zTemp for any required temporary buffer space.
1056*/
drh66a51672008-01-03 00:01:23 +00001057static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1058 char *zP4 = zTemp;
drhd3d39e92004-05-20 22:16:29 +00001059 assert( nTemp>=20 );
drh66a51672008-01-03 00:01:23 +00001060 switch( pOp->p4type ){
1061 case P4_KEYINFO: {
drhd3d39e92004-05-20 22:16:29 +00001062 int i, j;
danielk19772dca4ac2008-01-03 11:50:29 +00001063 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
drhe1a022e2012-09-17 17:16:53 +00001064 assert( pKeyInfo->aSortOrder!=0 );
drh5b843aa2013-10-30 13:46:01 +00001065 sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField);
drhea678832008-12-10 19:26:22 +00001066 i = sqlite3Strlen30(zTemp);
drhd3d39e92004-05-20 22:16:29 +00001067 for(j=0; j<pKeyInfo->nField; j++){
1068 CollSeq *pColl = pKeyInfo->aColl[j];
drh261d8a52012-12-08 21:36:26 +00001069 const char *zColl = pColl ? pColl->zName : "nil";
1070 int n = sqlite3Strlen30(zColl);
drh5b843aa2013-10-30 13:46:01 +00001071 if( n==6 && memcmp(zColl,"BINARY",6)==0 ){
1072 zColl = "B";
1073 n = 1;
1074 }
drh261d8a52012-12-08 21:36:26 +00001075 if( i+n>nTemp-6 ){
1076 memcpy(&zTemp[i],",...",4);
1077 break;
drhd3d39e92004-05-20 22:16:29 +00001078 }
drh261d8a52012-12-08 21:36:26 +00001079 zTemp[i++] = ',';
1080 if( pKeyInfo->aSortOrder[j] ){
1081 zTemp[i++] = '-';
1082 }
1083 memcpy(&zTemp[i], zColl, n+1);
1084 i += n;
drhd3d39e92004-05-20 22:16:29 +00001085 }
1086 zTemp[i++] = ')';
1087 zTemp[i] = 0;
1088 assert( i<nTemp );
drhd3d39e92004-05-20 22:16:29 +00001089 break;
1090 }
drh66a51672008-01-03 00:01:23 +00001091 case P4_COLLSEQ: {
danielk19772dca4ac2008-01-03 11:50:29 +00001092 CollSeq *pColl = pOp->p4.pColl;
drh5e6790c2013-11-12 20:18:14 +00001093 sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
drhd3d39e92004-05-20 22:16:29 +00001094 break;
1095 }
drh66a51672008-01-03 00:01:23 +00001096 case P4_FUNCDEF: {
danielk19772dca4ac2008-01-03 11:50:29 +00001097 FuncDef *pDef = pOp->p4.pFunc;
drha967e882006-06-13 01:04:52 +00001098 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
drhf9b596e2004-05-26 16:54:42 +00001099 break;
1100 }
drh66a51672008-01-03 00:01:23 +00001101 case P4_INT64: {
danielk19772dca4ac2008-01-03 11:50:29 +00001102 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
drhd4e70eb2008-01-02 00:34:36 +00001103 break;
1104 }
drh66a51672008-01-03 00:01:23 +00001105 case P4_INT32: {
1106 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
drh598f1342007-10-23 15:39:45 +00001107 break;
1108 }
drh66a51672008-01-03 00:01:23 +00001109 case P4_REAL: {
danielk19772dca4ac2008-01-03 11:50:29 +00001110 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
drhd4e70eb2008-01-02 00:34:36 +00001111 break;
1112 }
drh66a51672008-01-03 00:01:23 +00001113 case P4_MEM: {
danielk19772dca4ac2008-01-03 11:50:29 +00001114 Mem *pMem = pOp->p4.pMem;
drhd4e70eb2008-01-02 00:34:36 +00001115 if( pMem->flags & MEM_Str ){
drh66a51672008-01-03 00:01:23 +00001116 zP4 = pMem->z;
drhd4e70eb2008-01-02 00:34:36 +00001117 }else if( pMem->flags & MEM_Int ){
1118 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
1119 }else if( pMem->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +00001120 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
drhb8475df2011-12-09 16:21:19 +00001121 }else if( pMem->flags & MEM_Null ){
1122 sqlite3_snprintf(nTemp, zTemp, "NULL");
drh56016892009-08-25 14:24:04 +00001123 }else{
1124 assert( pMem->flags & MEM_Blob );
1125 zP4 = "(blob)";
drhd4e70eb2008-01-02 00:34:36 +00001126 }
drh598f1342007-10-23 15:39:45 +00001127 break;
1128 }
drha967e882006-06-13 01:04:52 +00001129#ifndef SQLITE_OMIT_VIRTUALTABLE
drh66a51672008-01-03 00:01:23 +00001130 case P4_VTAB: {
danielk1977595a5232009-07-24 17:58:53 +00001131 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
drh466fd812015-03-24 14:57:02 +00001132 sqlite3_snprintf(nTemp, zTemp, "vtab:%p", pVtab);
drha967e882006-06-13 01:04:52 +00001133 break;
1134 }
1135#endif
drh0acb7e42008-06-25 00:12:41 +00001136 case P4_INTARRAY: {
1137 sqlite3_snprintf(nTemp, zTemp, "intarray");
1138 break;
1139 }
dan165921a2009-08-28 18:53:45 +00001140 case P4_SUBPROGRAM: {
1141 sqlite3_snprintf(nTemp, zTemp, "program");
1142 break;
1143 }
drh4a6f3aa2011-08-28 00:19:26 +00001144 case P4_ADVANCE: {
1145 zTemp[0] = 0;
1146 break;
1147 }
drhd3d39e92004-05-20 22:16:29 +00001148 default: {
danielk19772dca4ac2008-01-03 11:50:29 +00001149 zP4 = pOp->p4.z;
drh949f9cd2008-01-12 21:35:57 +00001150 if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +00001151 zP4 = zTemp;
drhd4e70eb2008-01-02 00:34:36 +00001152 zTemp[0] = 0;
drhd3d39e92004-05-20 22:16:29 +00001153 }
1154 }
1155 }
drh66a51672008-01-03 00:01:23 +00001156 assert( zP4!=0 );
drh66a51672008-01-03 00:01:23 +00001157 return zP4;
drhd3d39e92004-05-20 22:16:29 +00001158}
drhb7f91642004-10-31 02:22:47 +00001159#endif
drhd3d39e92004-05-20 22:16:29 +00001160
drh900b31e2007-08-28 02:27:51 +00001161/*
drhd0679ed2007-08-28 22:24:34 +00001162** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
drh3ebaee92010-05-06 21:37:22 +00001163**
drhbdaec522011-04-04 00:14:43 +00001164** The prepared statements need to know in advance the complete set of
drhe4c88c02012-01-04 12:57:45 +00001165** attached databases that will be use. A mask of these databases
1166** is maintained in p->btreeMask. The p->lockMask value is the subset of
1167** p->btreeMask of databases that will require a lock.
drh900b31e2007-08-28 02:27:51 +00001168*/
drhfb982642007-08-30 01:19:59 +00001169void sqlite3VdbeUsesBtree(Vdbe *p, int i){
drhfcd71b62011-04-05 22:08:24 +00001170 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
danielk197700e13612008-11-17 19:18:54 +00001171 assert( i<(int)sizeof(p->btreeMask)*8 );
drha7ab6d82014-07-21 15:44:39 +00001172 DbMaskSet(p->btreeMask, i);
drhdc5b0472011-04-06 22:05:53 +00001173 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
drha7ab6d82014-07-21 15:44:39 +00001174 DbMaskSet(p->lockMask, i);
drhdc5b0472011-04-06 22:05:53 +00001175 }
drh900b31e2007-08-28 02:27:51 +00001176}
1177
drhe54e0512011-04-05 17:31:56 +00001178#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +00001179/*
1180** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1181** this routine obtains the mutex associated with each BtShared structure
1182** that may be accessed by the VM passed as an argument. In doing so it also
1183** sets the BtShared.db member of each of the BtShared structures, ensuring
1184** that the correct busy-handler callback is invoked if required.
1185**
1186** If SQLite is not threadsafe but does support shared-cache mode, then
1187** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1188** of all of BtShared structures accessible via the database handle
1189** associated with the VM.
1190**
1191** If SQLite is not threadsafe and does not support shared-cache mode, this
1192** function is a no-op.
1193**
1194** The p->btreeMask field is a bitmask of all btrees that the prepared
1195** statement p will ever use. Let N be the number of bits in p->btreeMask
1196** corresponding to btrees that use shared cache. Then the runtime of
1197** this routine is N*N. But as N is rarely more than 1, this should not
1198** be a problem.
1199*/
1200void sqlite3VdbeEnter(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001201 int i;
drhdc5b0472011-04-06 22:05:53 +00001202 sqlite3 *db;
1203 Db *aDb;
1204 int nDb;
drha7ab6d82014-07-21 15:44:39 +00001205 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
drhdc5b0472011-04-06 22:05:53 +00001206 db = p->db;
1207 aDb = db->aDb;
1208 nDb = db->nDb;
drha7ab6d82014-07-21 15:44:39 +00001209 for(i=0; i<nDb; i++){
1210 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001211 sqlite3BtreeEnter(aDb[i].pBt);
1212 }
1213 }
drhbdaec522011-04-04 00:14:43 +00001214}
drhe54e0512011-04-05 17:31:56 +00001215#endif
drhbdaec522011-04-04 00:14:43 +00001216
drhe54e0512011-04-05 17:31:56 +00001217#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +00001218/*
1219** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1220*/
1221void sqlite3VdbeLeave(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001222 int i;
drhdc5b0472011-04-06 22:05:53 +00001223 sqlite3 *db;
1224 Db *aDb;
1225 int nDb;
drha7ab6d82014-07-21 15:44:39 +00001226 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
drhdc5b0472011-04-06 22:05:53 +00001227 db = p->db;
1228 aDb = db->aDb;
1229 nDb = db->nDb;
drha7ab6d82014-07-21 15:44:39 +00001230 for(i=0; i<nDb; i++){
1231 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001232 sqlite3BtreeLeave(aDb[i].pBt);
1233 }
1234 }
drhbdaec522011-04-04 00:14:43 +00001235}
drhbdaec522011-04-04 00:14:43 +00001236#endif
drhd3d39e92004-05-20 22:16:29 +00001237
danielk19778b60e0f2005-01-12 09:10:39 +00001238#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
drh9a324642003-09-06 20:12:01 +00001239/*
1240** Print a single opcode. This routine is used for debugging only.
1241*/
danielk19774adee202004-05-08 08:23:19 +00001242void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
drh66a51672008-01-03 00:01:23 +00001243 char *zP4;
drhd3d39e92004-05-20 22:16:29 +00001244 char zPtr[50];
drh81316f82013-10-29 20:40:47 +00001245 char zCom[100];
drh26198bb2013-10-31 11:15:09 +00001246 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
drh9a324642003-09-06 20:12:01 +00001247 if( pOut==0 ) pOut = stdout;
drh66a51672008-01-03 00:01:23 +00001248 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
drhc7379ce2013-10-30 02:28:23 +00001249#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh81316f82013-10-29 20:40:47 +00001250 displayComment(pOp, zP4, zCom, sizeof(zCom));
1251#else
drh2926f962014-02-17 01:13:28 +00001252 zCom[0] = 0;
drh81316f82013-10-29 20:40:47 +00001253#endif
drh4eded602013-12-20 15:59:20 +00001254 /* NB: The sqlite3OpcodeName() function is implemented by code created
1255 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1256 ** information from the vdbe.c source text */
danielk197711641c12008-01-03 08:18:30 +00001257 fprintf(pOut, zFormat1, pc,
drh1db639c2008-01-17 02:36:28 +00001258 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
drh81316f82013-10-29 20:40:47 +00001259 zCom
drh1db639c2008-01-17 02:36:28 +00001260 );
drh9a324642003-09-06 20:12:01 +00001261 fflush(pOut);
1262}
1263#endif
1264
1265/*
drh76ff3a02004-09-24 22:32:30 +00001266** Release an array of N Mem elements
1267*/
drhc890fec2008-08-01 20:10:08 +00001268static void releaseMemArray(Mem *p, int N){
danielk1977a7a8e142008-02-13 18:25:27 +00001269 if( p && N ){
drh069c23c2014-09-19 16:13:12 +00001270 Mem *pEnd = &p[N];
danielk1977a7a8e142008-02-13 18:25:27 +00001271 sqlite3 *db = p->db;
drh8df32842008-12-09 02:51:23 +00001272 u8 malloc_failed = db->mallocFailed;
dand46def72010-07-24 11:28:28 +00001273 if( db->pnBytesFreed ){
drh069c23c2014-09-19 16:13:12 +00001274 do{
drh17bcb102014-09-18 21:25:33 +00001275 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
drh069c23c2014-09-19 16:13:12 +00001276 }while( (++p)<pEnd );
drhc176c272010-07-26 13:57:59 +00001277 return;
1278 }
drh069c23c2014-09-19 16:13:12 +00001279 do{
danielk1977e972e032008-09-19 18:32:26 +00001280 assert( (&p[1])==pEnd || p[0].db==p[1].db );
drh75fd0542014-03-01 16:24:44 +00001281 assert( sqlite3VdbeCheckMemInvariants(p) );
danielk1977e972e032008-09-19 18:32:26 +00001282
1283 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1284 ** that takes advantage of the fact that the memory cell value is
1285 ** being set to NULL after releasing any dynamic resources.
1286 **
1287 ** The justification for duplicating code is that according to
1288 ** callgrind, this causes a certain test case to hit the CPU 4.7
1289 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1290 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1291 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1292 ** with no indexes using a single prepared INSERT statement, bind()
1293 ** and reset(). Inserts are grouped into a transaction.
1294 */
drhb6e8fd12014-03-06 01:56:33 +00001295 testcase( p->flags & MEM_Agg );
1296 testcase( p->flags & MEM_Dyn );
1297 testcase( p->flags & MEM_Frame );
1298 testcase( p->flags & MEM_RowSet );
dan165921a2009-08-28 18:53:45 +00001299 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
danielk1977e972e032008-09-19 18:32:26 +00001300 sqlite3VdbeMemRelease(p);
drh17bcb102014-09-18 21:25:33 +00001301 }else if( p->szMalloc ){
danielk1977e972e032008-09-19 18:32:26 +00001302 sqlite3DbFree(db, p->zMalloc);
drh17bcb102014-09-18 21:25:33 +00001303 p->szMalloc = 0;
danielk1977e972e032008-09-19 18:32:26 +00001304 }
1305
drha5750cf2014-02-07 13:20:31 +00001306 p->flags = MEM_Undefined;
drh069c23c2014-09-19 16:13:12 +00001307 }while( (++p)<pEnd );
danielk1977a7a8e142008-02-13 18:25:27 +00001308 db->mallocFailed = malloc_failed;
drh76ff3a02004-09-24 22:32:30 +00001309 }
1310}
1311
dan65a7cd12009-09-01 12:16:01 +00001312/*
1313** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1314** allocated by the OP_Program opcode in sqlite3VdbeExec().
1315*/
dan165921a2009-08-28 18:53:45 +00001316void sqlite3VdbeFrameDelete(VdbeFrame *p){
1317 int i;
1318 Mem *aMem = VdbeFrameMem(p);
1319 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1320 for(i=0; i<p->nChildCsr; i++){
1321 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1322 }
1323 releaseMemArray(aMem, p->nChildMem);
1324 sqlite3DbFree(p->v->db, p);
1325}
1326
drhb7f91642004-10-31 02:22:47 +00001327#ifndef SQLITE_OMIT_EXPLAIN
drh76ff3a02004-09-24 22:32:30 +00001328/*
drh9a324642003-09-06 20:12:01 +00001329** Give a listing of the program in the virtual machine.
1330**
danielk19774adee202004-05-08 08:23:19 +00001331** The interface is the same as sqlite3VdbeExec(). But instead of
drh9a324642003-09-06 20:12:01 +00001332** running the code, it invokes the callback once for each instruction.
1333** This feature is used to implement "EXPLAIN".
drh9cbf3422008-01-17 16:22:13 +00001334**
1335** When p->explain==1, each instruction is listed. When
1336** p->explain==2, only OP_Explain instructions are listed and these
1337** are shown in a different format. p->explain==2 is used to implement
1338** EXPLAIN QUERY PLAN.
drh5cfa5842009-12-31 20:35:08 +00001339**
1340** When p->explain==1, first the main program is listed, then each of
1341** the trigger subprograms are listed one by one.
drh9a324642003-09-06 20:12:01 +00001342*/
danielk19774adee202004-05-08 08:23:19 +00001343int sqlite3VdbeList(
drh9a324642003-09-06 20:12:01 +00001344 Vdbe *p /* The VDBE */
1345){
drh5cfa5842009-12-31 20:35:08 +00001346 int nRow; /* Stop when row count reaches this */
dan165921a2009-08-28 18:53:45 +00001347 int nSub = 0; /* Number of sub-vdbes seen so far */
1348 SubProgram **apSub = 0; /* Array of sub-vdbes */
drh5cfa5842009-12-31 20:35:08 +00001349 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1350 sqlite3 *db = p->db; /* The database connection */
1351 int i; /* Loop counter */
1352 int rc = SQLITE_OK; /* Return code */
drh9734e6e2011-10-07 18:24:25 +00001353 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
drh9a324642003-09-06 20:12:01 +00001354
drh9a324642003-09-06 20:12:01 +00001355 assert( p->explain );
drh5f82e3c2009-07-06 00:44:08 +00001356 assert( p->magic==VDBE_MAGIC_RUN );
danielk19776c359f02008-11-21 16:58:03 +00001357 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
danielk197718f41892004-05-22 07:27:46 +00001358
drh9cbf3422008-01-17 16:22:13 +00001359 /* Even though this opcode does not use dynamic strings for
1360 ** the result, result columns may become dynamic if the user calls
drh4f26d6c2004-05-26 23:25:30 +00001361 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
danielk197718f41892004-05-22 07:27:46 +00001362 */
dan165921a2009-08-28 18:53:45 +00001363 releaseMemArray(pMem, 8);
drh9734e6e2011-10-07 18:24:25 +00001364 p->pResultSet = 0;
danielk197718f41892004-05-22 07:27:46 +00001365
danielk19776c359f02008-11-21 16:58:03 +00001366 if( p->rc==SQLITE_NOMEM ){
1367 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1368 ** sqlite3_column_text16() failed. */
1369 db->mallocFailed = 1;
1370 return SQLITE_ERROR;
1371 }
1372
drh5cfa5842009-12-31 20:35:08 +00001373 /* When the number of output rows reaches nRow, that means the
1374 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1375 ** nRow is the sum of the number of rows in the main program, plus
1376 ** the sum of the number of rows in all trigger subprograms encountered
1377 ** so far. The nRow value will increase as new trigger subprograms are
1378 ** encountered, but p->pc will eventually catch up to nRow.
1379 */
dan165921a2009-08-28 18:53:45 +00001380 nRow = p->nOp;
1381 if( p->explain==1 ){
drh5cfa5842009-12-31 20:35:08 +00001382 /* The first 8 memory cells are used for the result set. So we will
1383 ** commandeer the 9th cell to use as storage for an array of pointers
1384 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1385 ** cells. */
1386 assert( p->nMem>9 );
dan165921a2009-08-28 18:53:45 +00001387 pSub = &p->aMem[9];
1388 if( pSub->flags&MEM_Blob ){
drh5cfa5842009-12-31 20:35:08 +00001389 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1390 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
dan165921a2009-08-28 18:53:45 +00001391 nSub = pSub->n/sizeof(Vdbe*);
1392 apSub = (SubProgram **)pSub->z;
1393 }
1394 for(i=0; i<nSub; i++){
1395 nRow += apSub[i]->nOp;
1396 }
1397 }
1398
drhecc92422005-09-10 16:46:12 +00001399 do{
1400 i = p->pc++;
dan165921a2009-08-28 18:53:45 +00001401 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1402 if( i>=nRow ){
drh826fb5a2004-02-14 23:59:57 +00001403 p->rc = SQLITE_OK;
1404 rc = SQLITE_DONE;
drh881feaa2006-07-26 01:39:30 +00001405 }else if( db->u1.isInterrupted ){
drhc5cdca62005-01-11 16:54:14 +00001406 p->rc = SQLITE_INTERRUPT;
drh826fb5a2004-02-14 23:59:57 +00001407 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00001408 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
drh826fb5a2004-02-14 23:59:57 +00001409 }else{
drh81316f82013-10-29 20:40:47 +00001410 char *zP4;
dan165921a2009-08-28 18:53:45 +00001411 Op *pOp;
1412 if( i<p->nOp ){
drh5cfa5842009-12-31 20:35:08 +00001413 /* The output line number is small enough that we are still in the
1414 ** main program. */
dan165921a2009-08-28 18:53:45 +00001415 pOp = &p->aOp[i];
1416 }else{
drh5cfa5842009-12-31 20:35:08 +00001417 /* We are currently listing subprograms. Figure out which one and
1418 ** pick up the appropriate opcode. */
dan165921a2009-08-28 18:53:45 +00001419 int j;
1420 i -= p->nOp;
1421 for(j=0; i>=apSub[j]->nOp; j++){
1422 i -= apSub[j]->nOp;
1423 }
1424 pOp = &apSub[j]->aOp[i];
1425 }
danielk19770d78bae2008-01-03 07:09:48 +00001426 if( p->explain==1 ){
1427 pMem->flags = MEM_Int;
danielk19770d78bae2008-01-03 07:09:48 +00001428 pMem->u.i = i; /* Program counter */
1429 pMem++;
1430
1431 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001432 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
danielk19770d78bae2008-01-03 07:09:48 +00001433 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001434 pMem->n = sqlite3Strlen30(pMem->z);
danielk19770d78bae2008-01-03 07:09:48 +00001435 pMem->enc = SQLITE_UTF8;
1436 pMem++;
dan165921a2009-08-28 18:53:45 +00001437
drh5cfa5842009-12-31 20:35:08 +00001438 /* When an OP_Program opcode is encounter (the only opcode that has
1439 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1440 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1441 ** has not already been seen.
1442 */
dan165921a2009-08-28 18:53:45 +00001443 if( pOp->p4type==P4_SUBPROGRAM ){
1444 int nByte = (nSub+1)*sizeof(SubProgram*);
1445 int j;
1446 for(j=0; j<nSub; j++){
1447 if( apSub[j]==pOp->p4.pProgram ) break;
1448 }
dan2b9ee772012-03-31 09:59:44 +00001449 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
dan165921a2009-08-28 18:53:45 +00001450 apSub = (SubProgram **)pSub->z;
1451 apSub[nSub++] = pOp->p4.pProgram;
1452 pSub->flags |= MEM_Blob;
1453 pSub->n = nSub*sizeof(SubProgram*);
1454 }
1455 }
danielk19770d78bae2008-01-03 07:09:48 +00001456 }
drheb2e1762004-05-27 01:53:56 +00001457
1458 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001459 pMem->u.i = pOp->p1; /* P1 */
drheb2e1762004-05-27 01:53:56 +00001460 pMem++;
1461
1462 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001463 pMem->u.i = pOp->p2; /* P2 */
drheb2e1762004-05-27 01:53:56 +00001464 pMem++;
1465
dan2ce22452010-11-08 19:01:16 +00001466 pMem->flags = MEM_Int;
1467 pMem->u.i = pOp->p3; /* P3 */
dan2ce22452010-11-08 19:01:16 +00001468 pMem++;
danielk19770d78bae2008-01-03 07:09:48 +00001469
drh322f2852014-09-19 00:43:39 +00001470 if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */
danielk1977357864e2009-03-25 15:43:08 +00001471 assert( p->db->mallocFailed );
1472 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001473 }
drhc91b2fd2014-03-01 18:13:23 +00001474 pMem->flags = MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001475 zP4 = displayP4(pOp, pMem->z, 32);
1476 if( zP4!=pMem->z ){
1477 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
danielk1977a7a8e142008-02-13 18:25:27 +00001478 }else{
1479 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001480 pMem->n = sqlite3Strlen30(pMem->z);
danielk1977a7a8e142008-02-13 18:25:27 +00001481 pMem->enc = SQLITE_UTF8;
1482 }
danielk19770d78bae2008-01-03 07:09:48 +00001483 pMem++;
drheb2e1762004-05-27 01:53:56 +00001484
danielk19770d78bae2008-01-03 07:09:48 +00001485 if( p->explain==1 ){
drh322f2852014-09-19 00:43:39 +00001486 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
danielk1977357864e2009-03-25 15:43:08 +00001487 assert( p->db->mallocFailed );
1488 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001489 }
drhc91b2fd2014-03-01 18:13:23 +00001490 pMem->flags = MEM_Str|MEM_Term;
drh85e5f0d2008-02-19 18:28:13 +00001491 pMem->n = 2;
1492 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
danielk19770d78bae2008-01-03 07:09:48 +00001493 pMem->enc = SQLITE_UTF8;
1494 pMem++;
1495
drhc7379ce2013-10-30 02:28:23 +00001496#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh322f2852014-09-19 00:43:39 +00001497 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
drh81316f82013-10-29 20:40:47 +00001498 assert( p->db->mallocFailed );
1499 return SQLITE_ERROR;
drh52391cb2008-02-14 23:44:13 +00001500 }
drhc91b2fd2014-03-01 18:13:23 +00001501 pMem->flags = MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001502 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
drh81316f82013-10-29 20:40:47 +00001503 pMem->enc = SQLITE_UTF8;
1504#else
1505 pMem->flags = MEM_Null; /* Comment */
drh81316f82013-10-29 20:40:47 +00001506#endif
danielk19770d78bae2008-01-03 07:09:48 +00001507 }
1508
dan2ce22452010-11-08 19:01:16 +00001509 p->nResColumn = 8 - 4*(p->explain-1);
drh9734e6e2011-10-07 18:24:25 +00001510 p->pResultSet = &p->aMem[1];
drh826fb5a2004-02-14 23:59:57 +00001511 p->rc = SQLITE_OK;
1512 rc = SQLITE_ROW;
drh9a324642003-09-06 20:12:01 +00001513 }
drh826fb5a2004-02-14 23:59:57 +00001514 return rc;
drh9a324642003-09-06 20:12:01 +00001515}
drhb7f91642004-10-31 02:22:47 +00001516#endif /* SQLITE_OMIT_EXPLAIN */
drh9a324642003-09-06 20:12:01 +00001517
drh7c4ac0c2007-04-05 11:25:58 +00001518#ifdef SQLITE_DEBUG
drh9a324642003-09-06 20:12:01 +00001519/*
drh3f7d4e42004-07-24 14:35:58 +00001520** Print the SQL that was used to generate a VDBE program.
1521*/
1522void sqlite3VdbePrintSql(Vdbe *p){
drh84e55a82013-11-13 17:58:23 +00001523 const char *z = 0;
1524 if( p->zSql ){
1525 z = p->zSql;
1526 }else if( p->nOp>=1 ){
1527 const VdbeOp *pOp = &p->aOp[0];
drhaceb31b2014-02-08 01:40:27 +00001528 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
drh84e55a82013-11-13 17:58:23 +00001529 z = pOp->p4.z;
1530 while( sqlite3Isspace(*z) ) z++;
1531 }
drh3f7d4e42004-07-24 14:35:58 +00001532 }
drh84e55a82013-11-13 17:58:23 +00001533 if( z ) printf("SQL: [%s]\n", z);
drh3f7d4e42004-07-24 14:35:58 +00001534}
drh7c4ac0c2007-04-05 11:25:58 +00001535#endif
drh3f7d4e42004-07-24 14:35:58 +00001536
drh602c2372007-03-01 00:29:13 +00001537#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1538/*
1539** Print an IOTRACE message showing SQL content.
1540*/
1541void sqlite3VdbeIOTraceSql(Vdbe *p){
1542 int nOp = p->nOp;
1543 VdbeOp *pOp;
mlcreech3a00f902008-03-04 17:45:01 +00001544 if( sqlite3IoTrace==0 ) return;
drh602c2372007-03-01 00:29:13 +00001545 if( nOp<1 ) return;
drh949f9cd2008-01-12 21:35:57 +00001546 pOp = &p->aOp[0];
drhaceb31b2014-02-08 01:40:27 +00001547 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
drh602c2372007-03-01 00:29:13 +00001548 int i, j;
drh00a18e42007-08-13 11:10:34 +00001549 char z[1000];
drh949f9cd2008-01-12 21:35:57 +00001550 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
danielk197778ca0e72009-01-20 16:53:39 +00001551 for(i=0; sqlite3Isspace(z[i]); i++){}
drh602c2372007-03-01 00:29:13 +00001552 for(j=0; z[i]; i++){
danielk197778ca0e72009-01-20 16:53:39 +00001553 if( sqlite3Isspace(z[i]) ){
drh602c2372007-03-01 00:29:13 +00001554 if( z[i-1]!=' ' ){
1555 z[j++] = ' ';
1556 }
1557 }else{
1558 z[j++] = z[i];
1559 }
1560 }
1561 z[j] = 0;
mlcreech3a00f902008-03-04 17:45:01 +00001562 sqlite3IoTrace("SQL %s\n", z);
drh602c2372007-03-01 00:29:13 +00001563 }
1564}
1565#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1566
drhb2771ce2009-02-20 01:28:59 +00001567/*
drh4800b2e2009-12-08 15:35:22 +00001568** Allocate space from a fixed size buffer and return a pointer to
1569** that space. If insufficient space is available, return NULL.
1570**
1571** The pBuf parameter is the initial value of a pointer which will
1572** receive the new memory. pBuf is normally NULL. If pBuf is not
1573** NULL, it means that memory space has already been allocated and that
1574** this routine should not allocate any new memory. When pBuf is not
1575** NULL simply return pBuf. Only allocate new memory space when pBuf
1576** is NULL.
drhb2771ce2009-02-20 01:28:59 +00001577**
1578** nByte is the number of bytes of space needed.
1579**
drh19875c82009-12-08 19:58:19 +00001580** *ppFrom points to available space and pEnd points to the end of the
1581** available space. When space is allocated, *ppFrom is advanced past
1582** the end of the allocated space.
drhb2771ce2009-02-20 01:28:59 +00001583**
1584** *pnByte is a counter of the number of bytes of space that have failed
1585** to allocate. If there is insufficient space in *ppFrom to satisfy the
danielk1977d336e222009-02-20 10:58:41 +00001586** request, then increment *pnByte by the amount of the request.
drhb2771ce2009-02-20 01:28:59 +00001587*/
drh4800b2e2009-12-08 15:35:22 +00001588static void *allocSpace(
1589 void *pBuf, /* Where return pointer will be stored */
drhb2771ce2009-02-20 01:28:59 +00001590 int nByte, /* Number of bytes to allocate */
1591 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
danielk1977d336e222009-02-20 10:58:41 +00001592 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
drhb2771ce2009-02-20 01:28:59 +00001593 int *pnByte /* If allocation cannot be made, increment *pnByte */
1594){
drhea598cb2009-04-05 12:22:08 +00001595 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
drh4800b2e2009-12-08 15:35:22 +00001596 if( pBuf ) return pBuf;
1597 nByte = ROUND8(nByte);
1598 if( &(*ppFrom)[nByte] <= pEnd ){
1599 pBuf = (void*)*ppFrom;
1600 *ppFrom += nByte;
1601 }else{
1602 *pnByte += nByte;
drhb2771ce2009-02-20 01:28:59 +00001603 }
drh4800b2e2009-12-08 15:35:22 +00001604 return pBuf;
drhb2771ce2009-02-20 01:28:59 +00001605}
drh602c2372007-03-01 00:29:13 +00001606
drh3f7d4e42004-07-24 14:35:58 +00001607/*
drh124c0b42011-06-01 18:15:55 +00001608** Rewind the VDBE back to the beginning in preparation for
1609** running it.
drh9a324642003-09-06 20:12:01 +00001610*/
drh124c0b42011-06-01 18:15:55 +00001611void sqlite3VdbeRewind(Vdbe *p){
1612#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1613 int i;
1614#endif
drh9a324642003-09-06 20:12:01 +00001615 assert( p!=0 );
drh9a324642003-09-06 20:12:01 +00001616 assert( p->magic==VDBE_MAGIC_INIT );
1617
drhc16a03b2004-09-15 13:38:10 +00001618 /* There should be at least one opcode.
drh9a324642003-09-06 20:12:01 +00001619 */
drhc16a03b2004-09-15 13:38:10 +00001620 assert( p->nOp>0 );
drh9a324642003-09-06 20:12:01 +00001621
danielk197700e13612008-11-17 19:18:54 +00001622 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
danielk1977634f2982005-03-28 08:44:07 +00001623 p->magic = VDBE_MAGIC_RUN;
1624
drh124c0b42011-06-01 18:15:55 +00001625#ifdef SQLITE_DEBUG
1626 for(i=1; i<p->nMem; i++){
1627 assert( p->aMem[i].db==p->db );
1628 }
1629#endif
1630 p->pc = -1;
1631 p->rc = SQLITE_OK;
1632 p->errorAction = OE_Abort;
1633 p->magic = VDBE_MAGIC_RUN;
1634 p->nChange = 0;
1635 p->cacheCtr = 1;
1636 p->minWriteFileFormat = 255;
1637 p->iStatement = 0;
1638 p->nFkConstraint = 0;
1639#ifdef VDBE_PROFILE
1640 for(i=0; i<p->nOp; i++){
1641 p->aOp[i].cnt = 0;
1642 p->aOp[i].cycles = 0;
1643 }
1644#endif
1645}
1646
1647/*
1648** Prepare a virtual machine for execution for the first time after
1649** creating the virtual machine. This involves things such
drh7abda852014-09-19 16:02:06 +00001650** as allocating registers and initializing the program counter.
drh124c0b42011-06-01 18:15:55 +00001651** After the VDBE has be prepped, it can be executed by one or more
1652** calls to sqlite3VdbeExec().
1653**
peter.d.reid60ec9142014-09-06 16:39:46 +00001654** This function may be called exactly once on each virtual machine.
drh124c0b42011-06-01 18:15:55 +00001655** After this routine is called the VM has been "packaged" and is ready
peter.d.reid60ec9142014-09-06 16:39:46 +00001656** to run. After this routine is called, further calls to
drh124c0b42011-06-01 18:15:55 +00001657** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1658** the Vdbe from the Parse object that helped generate it so that the
1659** the Vdbe becomes an independent entity and the Parse object can be
1660** destroyed.
1661**
1662** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1663** to its initial state after it has been run.
1664*/
1665void sqlite3VdbeMakeReady(
1666 Vdbe *p, /* The VDBE */
1667 Parse *pParse /* Parsing context */
1668){
1669 sqlite3 *db; /* The database connection */
1670 int nVar; /* Number of parameters */
1671 int nMem; /* Number of VM memory registers */
1672 int nCursor; /* Number of cursors required */
1673 int nArg; /* Number of arguments in subprograms */
dan1d8cb212011-12-09 13:24:16 +00001674 int nOnce; /* Number of OP_Once instructions */
drh124c0b42011-06-01 18:15:55 +00001675 int n; /* Loop counter */
1676 u8 *zCsr; /* Memory available for allocation */
1677 u8 *zEnd; /* First byte past allocated memory */
1678 int nByte; /* How much extra memory is needed */
1679
1680 assert( p!=0 );
1681 assert( p->nOp>0 );
1682 assert( pParse!=0 );
1683 assert( p->magic==VDBE_MAGIC_INIT );
drh73d5b8f2013-12-23 19:09:07 +00001684 assert( pParse==p->pParse );
drh124c0b42011-06-01 18:15:55 +00001685 db = p->db;
1686 assert( db->mallocFailed==0 );
1687 nVar = pParse->nVar;
1688 nMem = pParse->nMem;
1689 nCursor = pParse->nTab;
1690 nArg = pParse->nMaxArg;
dan1d8cb212011-12-09 13:24:16 +00001691 nOnce = pParse->nOnce;
drh20e226d2012-01-01 13:58:53 +00001692 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
drh124c0b42011-06-01 18:15:55 +00001693
danielk1977cd3e8f72008-03-25 09:47:35 +00001694 /* For each cursor required, also allocate a memory cell. Memory
1695 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1696 ** the vdbe program. Instead they are used to allocate space for
drhdfe88ec2008-11-03 20:55:06 +00001697 ** VdbeCursor/BtCursor structures. The blob of memory associated with
danielk1977cd3e8f72008-03-25 09:47:35 +00001698 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1699 ** stores the blob of memory associated with cursor 1, etc.
1700 **
1701 ** See also: allocateCursor().
1702 */
1703 nMem += nCursor;
1704
danielk19776ab3a2e2009-02-19 14:39:25 +00001705 /* Allocate space for memory registers, SQL variables, VDBE cursors and
drh124c0b42011-06-01 18:15:55 +00001706 ** an array to marshal SQL function arguments in.
drh9a324642003-09-06 20:12:01 +00001707 */
drh73d5b8f2013-12-23 19:09:07 +00001708 zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */
1709 zEnd = (u8*)&p->aOp[pParse->nOpAlloc]; /* First byte past end of zCsr[] */
drh19875c82009-12-08 19:58:19 +00001710
drh124c0b42011-06-01 18:15:55 +00001711 resolveP2Values(p, &nArg);
1712 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1713 if( pParse->explain && nMem<10 ){
1714 nMem = 10;
1715 }
1716 memset(zCsr, 0, zEnd-zCsr);
1717 zCsr += (zCsr - (u8*)0)&7;
1718 assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
drhaab910c2011-06-27 00:01:22 +00001719 p->expired = 0;
drh124c0b42011-06-01 18:15:55 +00001720
1721 /* Memory for registers, parameters, cursor, etc, is allocated in two
1722 ** passes. On the first pass, we try to reuse unused space at the
1723 ** end of the opcode array. If we are unable to satisfy all memory
1724 ** requirements by reusing the opcode array tail, then the second
1725 ** pass will fill in the rest using a fresh allocation.
1726 **
1727 ** This two-pass approach that reuses as much memory as possible from
1728 ** the leftover space at the end of the opcode array can significantly
1729 ** reduce the amount of memory held by a prepared statement.
1730 */
1731 do {
1732 nByte = 0;
1733 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
1734 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
1735 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
1736 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
1737 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
1738 &zCsr, zEnd, &nByte);
drhb8475df2011-12-09 16:21:19 +00001739 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
dane2f771b2014-11-03 15:33:17 +00001740#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00001741 p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), &zCsr, zEnd, &nByte);
dane2f771b2014-11-03 15:33:17 +00001742#endif
drh124c0b42011-06-01 18:15:55 +00001743 if( nByte ){
1744 p->pFree = sqlite3DbMallocZero(db, nByte);
drh0f7eb612006-08-08 13:51:43 +00001745 }
drh124c0b42011-06-01 18:15:55 +00001746 zCsr = p->pFree;
1747 zEnd = &zCsr[nByte];
1748 }while( nByte && !db->mallocFailed );
drhb2771ce2009-02-20 01:28:59 +00001749
drhd2a56232013-01-28 19:00:20 +00001750 p->nCursor = nCursor;
dan1d8cb212011-12-09 13:24:16 +00001751 p->nOnceFlag = nOnce;
drh124c0b42011-06-01 18:15:55 +00001752 if( p->aVar ){
1753 p->nVar = (ynVar)nVar;
1754 for(n=0; n<nVar; n++){
1755 p->aVar[n].flags = MEM_Null;
1756 p->aVar[n].db = db;
danielk197754db47e2004-05-19 10:36:43 +00001757 }
drh82a48512003-09-06 22:45:20 +00001758 }
drh9b5444a2014-12-02 13:46:53 +00001759 if( p->azVar && pParse->nzVar>0 ){
drh124c0b42011-06-01 18:15:55 +00001760 p->nzVar = pParse->nzVar;
1761 memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
1762 memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
danielk1977b3bce662005-01-29 08:32:43 +00001763 }
drh124c0b42011-06-01 18:15:55 +00001764 if( p->aMem ){
1765 p->aMem--; /* aMem[] goes from 1..nMem */
1766 p->nMem = nMem; /* not from 0..nMem-1 */
1767 for(n=1; n<=nMem; n++){
drha5750cf2014-02-07 13:20:31 +00001768 p->aMem[n].flags = MEM_Undefined;
drh124c0b42011-06-01 18:15:55 +00001769 p->aMem[n].db = db;
drhcf64d8b2003-12-31 17:57:10 +00001770 }
drh9a324642003-09-06 20:12:01 +00001771 }
drh124c0b42011-06-01 18:15:55 +00001772 p->explain = pParse->explain;
1773 sqlite3VdbeRewind(p);
drh9a324642003-09-06 20:12:01 +00001774}
1775
drh9a324642003-09-06 20:12:01 +00001776/*
danielk1977cd3e8f72008-03-25 09:47:35 +00001777** Close a VDBE cursor and release all the resources that cursor
1778** happens to hold.
drh9a324642003-09-06 20:12:01 +00001779*/
drhdfe88ec2008-11-03 20:55:06 +00001780void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
drh4774b132004-06-12 20:12:51 +00001781 if( pCx==0 ){
1782 return;
1783 }
dana20fde62011-07-12 14:28:05 +00001784 sqlite3VdbeSorterClose(p->db, pCx);
drh9a324642003-09-06 20:12:01 +00001785 if( pCx->pBt ){
danielk19774adee202004-05-08 08:23:19 +00001786 sqlite3BtreeClose(pCx->pBt);
drh34004ce2008-07-11 16:15:17 +00001787 /* The pCx->pCursor will be close automatically, if it exists, by
1788 ** the call above. */
1789 }else if( pCx->pCursor ){
1790 sqlite3BtreeCloseCursor(pCx->pCursor);
drh9a324642003-09-06 20:12:01 +00001791 }
drh9eff6162006-06-12 21:59:13 +00001792#ifndef SQLITE_OMIT_VIRTUALTABLE
drhf526dca2014-10-13 17:42:05 +00001793 else if( pCx->pVtabCursor ){
drh9eff6162006-06-12 21:59:13 +00001794 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
drh5cc10232013-11-21 01:04:02 +00001795 const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;
drha68d6282015-03-24 13:32:53 +00001796 assert( pVtabCursor->pVtab->nRef>0 );
1797 pVtabCursor->pVtab->nRef--;
drh9eff6162006-06-12 21:59:13 +00001798 pModule->xClose(pVtabCursor);
1799 }
1800#endif
drh9a324642003-09-06 20:12:01 +00001801}
1802
dan65a7cd12009-09-01 12:16:01 +00001803/*
drhab4e7f32015-04-16 18:11:50 +00001804** Close all cursors in the current frame.
1805*/
1806static void closeCursorsInFrame(Vdbe *p){
1807 if( p->apCsr ){
1808 int i;
1809 for(i=0; i<p->nCursor; i++){
1810 VdbeCursor *pC = p->apCsr[i];
1811 if( pC ){
1812 sqlite3VdbeFreeCursor(p, pC);
1813 p->apCsr[i] = 0;
1814 }
1815 }
1816 }
1817}
1818
1819/*
dan65a7cd12009-09-01 12:16:01 +00001820** Copy the values stored in the VdbeFrame structure to its Vdbe. This
1821** is used, for example, when a trigger sub-program is halted to restore
1822** control to the main program.
1823*/
dan165921a2009-08-28 18:53:45 +00001824int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
1825 Vdbe *v = pFrame->v;
drhab4e7f32015-04-16 18:11:50 +00001826 closeCursorsInFrame(v);
dane2f771b2014-11-03 15:33:17 +00001827#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00001828 v->anExec = pFrame->anExec;
dane2f771b2014-11-03 15:33:17 +00001829#endif
dan1d8cb212011-12-09 13:24:16 +00001830 v->aOnceFlag = pFrame->aOnceFlag;
1831 v->nOnceFlag = pFrame->nOnceFlag;
dan165921a2009-08-28 18:53:45 +00001832 v->aOp = pFrame->aOp;
1833 v->nOp = pFrame->nOp;
1834 v->aMem = pFrame->aMem;
1835 v->nMem = pFrame->nMem;
1836 v->apCsr = pFrame->apCsr;
1837 v->nCursor = pFrame->nCursor;
dan76d462e2009-08-30 11:42:51 +00001838 v->db->lastRowid = pFrame->lastRowid;
1839 v->nChange = pFrame->nChange;
danc3da6672014-10-28 18:24:16 +00001840 v->db->nChange = pFrame->nDbChange;
dan165921a2009-08-28 18:53:45 +00001841 return pFrame->pc;
1842}
1843
drh9a324642003-09-06 20:12:01 +00001844/*
drh5f82e3c2009-07-06 00:44:08 +00001845** Close all cursors.
dan165921a2009-08-28 18:53:45 +00001846**
1847** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
1848** cell array. This is necessary as the memory cell array may contain
1849** pointers to VdbeFrame objects, which may in turn contain pointers to
1850** open cursors.
drh9a324642003-09-06 20:12:01 +00001851*/
drh5f82e3c2009-07-06 00:44:08 +00001852static void closeAllCursors(Vdbe *p){
dan165921a2009-08-28 18:53:45 +00001853 if( p->pFrame ){
drh23272752011-03-06 21:54:33 +00001854 VdbeFrame *pFrame;
dan165921a2009-08-28 18:53:45 +00001855 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
1856 sqlite3VdbeFrameRestore(pFrame);
drhf526dca2014-10-13 17:42:05 +00001857 p->pFrame = 0;
1858 p->nFrame = 0;
dan165921a2009-08-28 18:53:45 +00001859 }
drhf526dca2014-10-13 17:42:05 +00001860 assert( p->nFrame==0 );
drhab4e7f32015-04-16 18:11:50 +00001861 closeCursorsInFrame(p);
dan523a0872009-08-31 05:23:32 +00001862 if( p->aMem ){
1863 releaseMemArray(&p->aMem[1], p->nMem);
1864 }
dan27106572010-12-01 08:04:47 +00001865 while( p->pDelFrame ){
1866 VdbeFrame *pDel = p->pDelFrame;
1867 p->pDelFrame = pDel->pParent;
1868 sqlite3VdbeFrameDelete(pDel);
1869 }
dan0c547792013-07-18 17:12:08 +00001870
1871 /* Delete any auxdata allocations made by the VM */
drhf526dca2014-10-13 17:42:05 +00001872 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0);
dan0c547792013-07-18 17:12:08 +00001873 assert( p->pAuxData==0 );
drh9a324642003-09-06 20:12:01 +00001874}
1875
1876/*
drh7abda852014-09-19 16:02:06 +00001877** Clean up the VM after a single run.
drh9a324642003-09-06 20:12:01 +00001878*/
drhc890fec2008-08-01 20:10:08 +00001879static void Cleanup(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00001880 sqlite3 *db = p->db;
dan165921a2009-08-28 18:53:45 +00001881
1882#ifdef SQLITE_DEBUG
1883 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
1884 ** Vdbe.aMem[] arrays have already been cleaned up. */
1885 int i;
drhb8475df2011-12-09 16:21:19 +00001886 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
1887 if( p->aMem ){
drha5750cf2014-02-07 13:20:31 +00001888 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
drhb8475df2011-12-09 16:21:19 +00001889 }
dan165921a2009-08-28 18:53:45 +00001890#endif
1891
drh633e6d52008-07-28 19:34:53 +00001892 sqlite3DbFree(db, p->zErrMsg);
drh9a324642003-09-06 20:12:01 +00001893 p->zErrMsg = 0;
drhd4e70eb2008-01-02 00:34:36 +00001894 p->pResultSet = 0;
drh9a324642003-09-06 20:12:01 +00001895}
1896
1897/*
danielk197722322fd2004-05-25 23:35:17 +00001898** Set the number of result columns that will be returned by this SQL
1899** statement. This is now set at compile time, rather than during
1900** execution of the vdbe program so that sqlite3_column_count() can
1901** be called on an SQL statement before sqlite3_step().
1902*/
1903void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
drh76ff3a02004-09-24 22:32:30 +00001904 Mem *pColName;
1905 int n;
drh633e6d52008-07-28 19:34:53 +00001906 sqlite3 *db = p->db;
drh4a50aac2007-08-23 02:47:53 +00001907
drhc890fec2008-08-01 20:10:08 +00001908 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
drh633e6d52008-07-28 19:34:53 +00001909 sqlite3DbFree(db, p->aColName);
danielk1977955de522006-02-10 02:27:42 +00001910 n = nResColumn*COLNAME_N;
shane36840fd2009-06-26 16:32:13 +00001911 p->nResColumn = (u16)nResColumn;
drh633e6d52008-07-28 19:34:53 +00001912 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
drh76ff3a02004-09-24 22:32:30 +00001913 if( p->aColName==0 ) return;
1914 while( n-- > 0 ){
drh4a50aac2007-08-23 02:47:53 +00001915 pColName->flags = MEM_Null;
drh153c62c2007-08-24 03:51:33 +00001916 pColName->db = p->db;
drh4a50aac2007-08-23 02:47:53 +00001917 pColName++;
drh76ff3a02004-09-24 22:32:30 +00001918 }
danielk197722322fd2004-05-25 23:35:17 +00001919}
1920
1921/*
danielk19773cf86062004-05-26 10:11:05 +00001922** Set the name of the idx'th column to be returned by the SQL statement.
1923** zName must be a pointer to a nul terminated string.
1924**
1925** This call must be made after a call to sqlite3VdbeSetNumCols().
1926**
danielk197710fb7492008-10-31 10:53:22 +00001927** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
1928** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
1929** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
danielk19773cf86062004-05-26 10:11:05 +00001930*/
danielk197710fb7492008-10-31 10:53:22 +00001931int sqlite3VdbeSetColName(
1932 Vdbe *p, /* Vdbe being configured */
1933 int idx, /* Index of column zName applies to */
1934 int var, /* One of the COLNAME_* constants */
1935 const char *zName, /* Pointer to buffer containing name */
1936 void (*xDel)(void*) /* Memory management strategy for zName */
1937){
danielk19773cf86062004-05-26 10:11:05 +00001938 int rc;
1939 Mem *pColName;
danielk1977955de522006-02-10 02:27:42 +00001940 assert( idx<p->nResColumn );
1941 assert( var<COLNAME_N );
danielk197710fb7492008-10-31 10:53:22 +00001942 if( p->db->mallocFailed ){
1943 assert( !zName || xDel!=SQLITE_DYNAMIC );
1944 return SQLITE_NOMEM;
1945 }
drh76ff3a02004-09-24 22:32:30 +00001946 assert( p->aColName!=0 );
danielk1977955de522006-02-10 02:27:42 +00001947 pColName = &(p->aColName[idx+var*p->nResColumn]);
danielk197710fb7492008-10-31 10:53:22 +00001948 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
drh0793f1b2008-11-05 17:41:19 +00001949 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
danielk19773cf86062004-05-26 10:11:05 +00001950 return rc;
1951}
1952
danielk197713adf8a2004-06-03 16:08:41 +00001953/*
1954** A read or write transaction may or may not be active on database handle
1955** db. If a transaction is active, commit it. If there is a
1956** write-transaction spanning more than one database file, this routine
1957** takes care of the master journal trickery.
1958*/
danielk19773e3a84d2008-08-01 17:37:40 +00001959static int vdbeCommit(sqlite3 *db, Vdbe *p){
danielk197713adf8a2004-06-03 16:08:41 +00001960 int i;
1961 int nTrans = 0; /* Number of databases with an active write-transaction */
1962 int rc = SQLITE_OK;
1963 int needXcommit = 0;
1964
shane36840fd2009-06-26 16:32:13 +00001965#ifdef SQLITE_OMIT_VIRTUALTABLE
1966 /* With this option, sqlite3VtabSync() is defined to be simply
1967 ** SQLITE_OK so p is not used.
1968 */
1969 UNUSED_PARAMETER(p);
1970#endif
1971
danielk19775bd270b2006-07-25 15:14:52 +00001972 /* Before doing anything else, call the xSync() callback for any
1973 ** virtual module tables written in this transaction. This has to
1974 ** be done before determining whether a master journal file is
1975 ** required, as an xSync() callback may add an attached database
1976 ** to the transaction.
1977 */
dan016f7812013-08-21 17:35:48 +00001978 rc = sqlite3VtabSync(db, p);
danielk19775bd270b2006-07-25 15:14:52 +00001979
1980 /* This loop determines (a) if the commit hook should be invoked and
1981 ** (b) how many database files have open write transactions, not
1982 ** including the temp database. (b) is important because if more than
1983 ** one database file has an open write transaction, a master journal
1984 ** file is required for an atomic commit.
1985 */
drhabfb62f2010-07-30 11:20:35 +00001986 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00001987 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00001988 if( sqlite3BtreeIsInTrans(pBt) ){
danielk197713adf8a2004-06-03 16:08:41 +00001989 needXcommit = 1;
1990 if( i!=1 ) nTrans++;
dan6b9bb592012-10-05 19:43:02 +00001991 sqlite3BtreeEnter(pBt);
drhabfb62f2010-07-30 11:20:35 +00001992 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
dan6b9bb592012-10-05 19:43:02 +00001993 sqlite3BtreeLeave(pBt);
danielk197713adf8a2004-06-03 16:08:41 +00001994 }
1995 }
drhabfb62f2010-07-30 11:20:35 +00001996 if( rc!=SQLITE_OK ){
1997 return rc;
1998 }
danielk197713adf8a2004-06-03 16:08:41 +00001999
2000 /* If there are any write-transactions at all, invoke the commit hook */
2001 if( needXcommit && db->xCommitCallback ){
drh92f02c32004-09-02 14:57:08 +00002002 rc = db->xCommitCallback(db->pCommitArg);
drh92f02c32004-09-02 14:57:08 +00002003 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00002004 return SQLITE_CONSTRAINT_COMMITHOOK;
danielk197713adf8a2004-06-03 16:08:41 +00002005 }
2006 }
2007
danielk197740b38dc2004-06-26 08:38:24 +00002008 /* The simple case - no more than one database file (not counting the
2009 ** TEMP database) has a transaction active. There is no need for the
drh2ac3ee92004-06-07 16:27:46 +00002010 ** master-journal.
drhc9e06862004-06-09 20:03:08 +00002011 **
danielk197740b38dc2004-06-26 08:38:24 +00002012 ** If the return value of sqlite3BtreeGetFilename() is a zero length
danielk197717b90b52008-06-06 11:11:25 +00002013 ** string, it means the main database is :memory: or a temp file. In
2014 ** that case we do not support atomic multi-file commits, so use the
2015 ** simple case then too.
danielk197713adf8a2004-06-03 16:08:41 +00002016 */
drhea678832008-12-10 19:26:22 +00002017 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2018 || nTrans<=1
2019 ){
danielk197704103022009-02-03 16:51:24 +00002020 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002021 Btree *pBt = db->aDb[i].pBt;
2022 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00002023 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
drh2ac3ee92004-06-07 16:27:46 +00002024 }
2025 }
2026
drh80e35f42007-03-30 14:06:34 +00002027 /* Do the commit only if all databases successfully complete phase 1.
2028 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2029 ** IO error while deleting or truncating a journal file. It is unlikely,
2030 ** but could happen. In this case abandon processing and return the error.
danielk1977979f38e2007-03-27 16:19:51 +00002031 */
2032 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2033 Btree *pBt = db->aDb[i].pBt;
2034 if( pBt ){
dan60939d02011-03-29 15:40:55 +00002035 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
danielk197713adf8a2004-06-03 16:08:41 +00002036 }
danielk1977979f38e2007-03-27 16:19:51 +00002037 }
2038 if( rc==SQLITE_OK ){
danielk1977f9e7dda2006-06-16 16:08:53 +00002039 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00002040 }
2041 }
2042
2043 /* The complex case - There is a multi-file write-transaction active.
2044 ** This requires a master journal file to ensure the transaction is
peter.d.reid60ec9142014-09-06 16:39:46 +00002045 ** committed atomically.
danielk197713adf8a2004-06-03 16:08:41 +00002046 */
danielk197744ee5bf2005-05-27 09:41:12 +00002047#ifndef SQLITE_OMIT_DISKIO
danielk197713adf8a2004-06-03 16:08:41 +00002048 else{
danielk1977b4b47412007-08-17 15:53:36 +00002049 sqlite3_vfs *pVfs = db->pVfs;
drh2c8997b2005-08-27 16:36:48 +00002050 int needSync = 0;
danielk197713adf8a2004-06-03 16:08:41 +00002051 char *zMaster = 0; /* File-name for the master journal */
2052 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
danielk1977b4b47412007-08-17 15:53:36 +00002053 sqlite3_file *pMaster = 0;
danielk197762079062007-08-15 17:08:46 +00002054 i64 offset = 0;
danielk1977861f7452008-06-05 11:39:11 +00002055 int res;
drhf5808602011-12-16 00:33:04 +00002056 int retryCount = 0;
drh5c531a42011-12-16 01:21:31 +00002057 int nMainFile;
danielk197713adf8a2004-06-03 16:08:41 +00002058
2059 /* Select a master journal file name */
drh5c531a42011-12-16 01:21:31 +00002060 nMainFile = sqlite3Strlen30(zMainFile);
drh52bcde02012-01-03 14:50:45 +00002061 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
drh5c531a42011-12-16 01:21:31 +00002062 if( zMaster==0 ) return SQLITE_NOMEM;
danielk197713adf8a2004-06-03 16:08:41 +00002063 do {
drhdc5ea5c2008-12-10 17:19:59 +00002064 u32 iRandom;
drh84968c02011-12-16 15:11:39 +00002065 if( retryCount ){
2066 if( retryCount>100 ){
2067 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2068 sqlite3OsDelete(pVfs, zMaster, 0);
2069 break;
2070 }else if( retryCount==1 ){
2071 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2072 }
danielk197713adf8a2004-06-03 16:08:41 +00002073 }
drh84968c02011-12-16 15:11:39 +00002074 retryCount++;
danielk197713adf8a2004-06-03 16:08:41 +00002075 sqlite3_randomness(sizeof(iRandom), &iRandom);
drh5c531a42011-12-16 01:21:31 +00002076 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
drhf5808602011-12-16 00:33:04 +00002077 (iRandom>>8)&0xffffff, iRandom&0xff);
drhf5808602011-12-16 00:33:04 +00002078 /* The antipenultimate character of the master journal name must
2079 ** be "9" to avoid name collisions when using 8+3 filenames. */
drh5c531a42011-12-16 01:21:31 +00002080 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
drh81cc5162011-05-17 20:36:21 +00002081 sqlite3FileSuffix3(zMainFile, zMaster);
danielk1977861f7452008-06-05 11:39:11 +00002082 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2083 }while( rc==SQLITE_OK && res );
2084 if( rc==SQLITE_OK ){
drh19db9352008-03-27 22:42:51 +00002085 /* Open the master journal. */
2086 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2087 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2088 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2089 );
2090 }
danielk197713adf8a2004-06-03 16:08:41 +00002091 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00002092 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002093 return rc;
2094 }
2095
2096 /* Write the name of each database file in the transaction into the new
2097 ** master journal file. If an error occurs at this point close
2098 ** and delete the master journal file. All the individual journal files
2099 ** still have 'null' as the master journal pointer, so they will roll
danielk1977aca790a2005-01-13 11:07:52 +00002100 ** back independently if a failure occurs.
danielk197713adf8a2004-06-03 16:08:41 +00002101 */
danielk19771e536952007-08-16 10:09:01 +00002102 for(i=0; i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002103 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002104 if( sqlite3BtreeIsInTrans(pBt) ){
danielk19775865e3d2004-06-14 06:03:57 +00002105 char const *zFile = sqlite3BtreeGetJournalname(pBt);
drh8c96a6e2010-08-31 01:09:15 +00002106 if( zFile==0 ){
drhb290e1c2009-12-08 13:36:55 +00002107 continue; /* Ignore TEMP and :memory: databases */
2108 }
drh8c96a6e2010-08-31 01:09:15 +00002109 assert( zFile[0]!=0 );
drh2c8997b2005-08-27 16:36:48 +00002110 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
2111 needSync = 1;
2112 }
drhea678832008-12-10 19:26:22 +00002113 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2114 offset += sqlite3Strlen30(zFile)+1;
danielk197713adf8a2004-06-03 16:08:41 +00002115 if( rc!=SQLITE_OK ){
danielk1977fee2d252007-08-18 10:59:19 +00002116 sqlite3OsCloseFree(pMaster);
2117 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00002118 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002119 return rc;
2120 }
2121 }
2122 }
2123
danielk19779663b8f2007-08-24 11:52:28 +00002124 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2125 ** flag is set this is not required.
2126 */
danielk1977bea2a942009-01-20 17:06:27 +00002127 if( needSync
2128 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2129 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2130 ){
danielk1977fee2d252007-08-18 10:59:19 +00002131 sqlite3OsCloseFree(pMaster);
2132 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00002133 sqlite3DbFree(db, zMaster);
danielk19775865e3d2004-06-14 06:03:57 +00002134 return rc;
2135 }
drhc9e06862004-06-09 20:03:08 +00002136
danielk197713adf8a2004-06-03 16:08:41 +00002137 /* Sync all the db files involved in the transaction. The same call
2138 ** sets the master journal pointer in each individual journal. If
2139 ** an error occurs here, do not delete the master journal file.
2140 **
drh80e35f42007-03-30 14:06:34 +00002141 ** If the error occurs during the first call to
2142 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2143 ** master journal file will be orphaned. But we cannot delete it,
2144 ** in case the master journal file name was written into the journal
shanebe217792009-03-05 04:20:31 +00002145 ** file before the failure occurred.
danielk197713adf8a2004-06-03 16:08:41 +00002146 */
danielk19775bd270b2006-07-25 15:14:52 +00002147 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002148 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002149 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00002150 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002151 }
2152 }
danielk1977fee2d252007-08-18 10:59:19 +00002153 sqlite3OsCloseFree(pMaster);
drhabfb62f2010-07-30 11:20:35 +00002154 assert( rc!=SQLITE_BUSY );
danielk19775bd270b2006-07-25 15:14:52 +00002155 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00002156 sqlite3DbFree(db, zMaster);
danielk19775bd270b2006-07-25 15:14:52 +00002157 return rc;
2158 }
danielk197713adf8a2004-06-03 16:08:41 +00002159
danielk1977962398d2004-06-14 09:35:16 +00002160 /* Delete the master journal file. This commits the transaction. After
2161 ** doing this the directory is synced again before any individual
2162 ** transaction files are deleted.
2163 */
drh75a4d7c2015-03-16 16:44:55 +00002164 rc = sqlite3OsDelete(pVfs, zMaster, needSync);
drh633e6d52008-07-28 19:34:53 +00002165 sqlite3DbFree(db, zMaster);
drhc416ba92007-03-30 18:42:55 +00002166 zMaster = 0;
drh29a01382006-08-13 19:04:18 +00002167 if( rc ){
2168 return rc;
2169 }
danielk197713adf8a2004-06-03 16:08:41 +00002170
2171 /* All files and directories have already been synced, so the following
drh80e35f42007-03-30 14:06:34 +00002172 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2173 ** deleting or truncating journals. If something goes wrong while
2174 ** this is happening we don't really care. The integrity of the
2175 ** transaction is already guaranteed, but some stray 'cold' journals
2176 ** may be lying around. Returning an error code won't help matters.
danielk197713adf8a2004-06-03 16:08:41 +00002177 */
danielk1977979f38e2007-03-27 16:19:51 +00002178 disable_simulated_io_errors();
danielk19772d1d86f2008-06-20 14:59:51 +00002179 sqlite3BeginBenignMalloc();
danielk197713adf8a2004-06-03 16:08:41 +00002180 for(i=0; i<db->nDb; i++){
2181 Btree *pBt = db->aDb[i].pBt;
2182 if( pBt ){
dan60939d02011-03-29 15:40:55 +00002183 sqlite3BtreeCommitPhaseTwo(pBt, 1);
danielk197713adf8a2004-06-03 16:08:41 +00002184 }
2185 }
danielk19772d1d86f2008-06-20 14:59:51 +00002186 sqlite3EndBenignMalloc();
danielk1977979f38e2007-03-27 16:19:51 +00002187 enable_simulated_io_errors();
2188
danielk1977f9e7dda2006-06-16 16:08:53 +00002189 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00002190 }
danielk197744ee5bf2005-05-27 09:41:12 +00002191#endif
danielk1977026d2702004-06-14 13:14:59 +00002192
drh2ac3ee92004-06-07 16:27:46 +00002193 return rc;
danielk197713adf8a2004-06-03 16:08:41 +00002194}
2195
danielk19771d850a72004-05-31 08:26:49 +00002196/*
drh4f7d3a52013-06-27 23:54:02 +00002197** This routine checks that the sqlite3.nVdbeActive count variable
danielk19771d850a72004-05-31 08:26:49 +00002198** matches the number of vdbe's in the list sqlite3.pVdbe that are
2199** currently active. An assertion fails if the two counts do not match.
drh92f02c32004-09-02 14:57:08 +00002200** This is an internal self-check only - it is not an essential processing
2201** step.
danielk19771d850a72004-05-31 08:26:49 +00002202**
2203** This is a no-op if NDEBUG is defined.
2204*/
2205#ifndef NDEBUG
drh9bb575f2004-09-06 17:24:11 +00002206static void checkActiveVdbeCnt(sqlite3 *db){
danielk19771d850a72004-05-31 08:26:49 +00002207 Vdbe *p;
2208 int cnt = 0;
drhad4a4b82008-11-05 16:37:34 +00002209 int nWrite = 0;
drh4f7d3a52013-06-27 23:54:02 +00002210 int nRead = 0;
danielk19771d850a72004-05-31 08:26:49 +00002211 p = db->pVdbe;
2212 while( p ){
dan857745c2014-07-19 17:57:10 +00002213 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
danielk19771d850a72004-05-31 08:26:49 +00002214 cnt++;
drhad4a4b82008-11-05 16:37:34 +00002215 if( p->readOnly==0 ) nWrite++;
drh1713afb2013-06-28 01:24:57 +00002216 if( p->bIsReader ) nRead++;
danielk19771d850a72004-05-31 08:26:49 +00002217 }
2218 p = p->pNext;
2219 }
drh4f7d3a52013-06-27 23:54:02 +00002220 assert( cnt==db->nVdbeActive );
2221 assert( nWrite==db->nVdbeWrite );
2222 assert( nRead==db->nVdbeRead );
danielk19771d850a72004-05-31 08:26:49 +00002223}
2224#else
2225#define checkActiveVdbeCnt(x)
2226#endif
2227
danielk19773cf86062004-05-26 10:11:05 +00002228/*
danielk1977bd434552009-03-18 10:33:00 +00002229** If the Vdbe passed as the first argument opened a statement-transaction,
2230** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2231** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2232** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
drhf7b54962013-05-28 12:11:54 +00002233** statement transaction is committed.
danielk1977bd434552009-03-18 10:33:00 +00002234**
2235** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2236** Otherwise SQLITE_OK.
2237*/
2238int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
danielk1977c926b6a2009-03-20 14:42:11 +00002239 sqlite3 *const db = p->db;
danielk1977bd434552009-03-18 10:33:00 +00002240 int rc = SQLITE_OK;
danielk1977ecaecf92009-07-08 08:05:35 +00002241
danielk1977e4948172009-07-17 17:25:43 +00002242 /* If p->iStatement is greater than zero, then this Vdbe opened a
2243 ** statement transaction that should be closed here. The only exception
mistachkin48864df2013-03-21 21:20:32 +00002244 ** is that an IO error may have occurred, causing an emergency rollback.
danielk1977e4948172009-07-17 17:25:43 +00002245 ** In this case (db->nStatement==0), and there is nothing to do.
2246 */
2247 if( db->nStatement && p->iStatement ){
danielk1977bd434552009-03-18 10:33:00 +00002248 int i;
2249 const int iSavepoint = p->iStatement-1;
danielk1977bd434552009-03-18 10:33:00 +00002250
2251 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2252 assert( db->nStatement>0 );
2253 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2254
2255 for(i=0; i<db->nDb; i++){
2256 int rc2 = SQLITE_OK;
2257 Btree *pBt = db->aDb[i].pBt;
2258 if( pBt ){
2259 if( eOp==SAVEPOINT_ROLLBACK ){
2260 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2261 }
2262 if( rc2==SQLITE_OK ){
2263 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2264 }
2265 if( rc==SQLITE_OK ){
2266 rc = rc2;
2267 }
2268 }
2269 }
2270 db->nStatement--;
2271 p->iStatement = 0;
dan1da40a32009-09-19 17:00:31 +00002272
dana311b802011-04-26 19:21:34 +00002273 if( rc==SQLITE_OK ){
2274 if( eOp==SAVEPOINT_ROLLBACK ){
2275 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2276 }
2277 if( rc==SQLITE_OK ){
2278 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2279 }
2280 }
2281
dan1da40a32009-09-19 17:00:31 +00002282 /* If the statement transaction is being rolled back, also restore the
2283 ** database handles deferred constraint counter to the value it had when
2284 ** the statement transaction was opened. */
2285 if( eOp==SAVEPOINT_ROLLBACK ){
2286 db->nDeferredCons = p->nStmtDefCons;
drh648e2642013-07-11 15:03:32 +00002287 db->nDeferredImmCons = p->nStmtDefImmCons;
dan1da40a32009-09-19 17:00:31 +00002288 }
danielk1977bd434552009-03-18 10:33:00 +00002289 }
2290 return rc;
2291}
2292
2293/*
dan1da40a32009-09-19 17:00:31 +00002294** This function is called when a transaction opened by the database
2295** handle associated with the VM passed as an argument is about to be
2296** committed. If there are outstanding deferred foreign key constraint
2297** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2298**
2299** If there are outstanding FK violations and this function returns
drhd91c1a12013-02-09 13:58:25 +00002300** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2301** and write an error message to it. Then return SQLITE_ERROR.
dan1da40a32009-09-19 17:00:31 +00002302*/
2303#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00002304int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
dan1da40a32009-09-19 17:00:31 +00002305 sqlite3 *db = p->db;
drh648e2642013-07-11 15:03:32 +00002306 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2307 || (!deferred && p->nFkConstraint>0)
2308 ){
drhd91c1a12013-02-09 13:58:25 +00002309 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan32b09f22009-09-23 17:29:59 +00002310 p->errorAction = OE_Abort;
drh22c17b82015-05-15 04:13:15 +00002311 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
dan1da40a32009-09-19 17:00:31 +00002312 return SQLITE_ERROR;
2313 }
2314 return SQLITE_OK;
2315}
2316#endif
2317
2318/*
drh92f02c32004-09-02 14:57:08 +00002319** This routine is called the when a VDBE tries to halt. If the VDBE
2320** has made changes and is in autocommit mode, then commit those
2321** changes. If a rollback is needed, then do the rollback.
drh9a324642003-09-06 20:12:01 +00002322**
drh92f02c32004-09-02 14:57:08 +00002323** This routine is the only way to move the state of a VM from
drhff0587c2007-08-29 17:43:19 +00002324** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2325** call this on a VM that is in the SQLITE_MAGIC_HALT state.
drh92f02c32004-09-02 14:57:08 +00002326**
2327** Return an error code. If the commit could not complete because of
2328** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2329** means the close did not happen and needs to be repeated.
drh9a324642003-09-06 20:12:01 +00002330*/
drhff0587c2007-08-29 17:43:19 +00002331int sqlite3VdbeHalt(Vdbe *p){
danielk1977bd434552009-03-18 10:33:00 +00002332 int rc; /* Used to store transient return codes */
drh9bb575f2004-09-06 17:24:11 +00002333 sqlite3 *db = p->db;
danielk197707cb5602006-01-20 10:55:05 +00002334
2335 /* This function contains the logic that determines if a statement or
2336 ** transaction will be committed or rolled back as a result of the
2337 ** execution of this virtual machine.
2338 **
drh71b890a2007-10-03 15:30:52 +00002339 ** If any of the following errors occur:
danielk197707cb5602006-01-20 10:55:05 +00002340 **
drh71b890a2007-10-03 15:30:52 +00002341 ** SQLITE_NOMEM
2342 ** SQLITE_IOERR
2343 ** SQLITE_FULL
2344 ** SQLITE_INTERRUPT
danielk197707cb5602006-01-20 10:55:05 +00002345 **
drh71b890a2007-10-03 15:30:52 +00002346 ** Then the internal cache might have been left in an inconsistent
2347 ** state. We need to rollback the statement transaction, if there is
2348 ** one, or the complete transaction if there is no statement transaction.
danielk197707cb5602006-01-20 10:55:05 +00002349 */
drh9a324642003-09-06 20:12:01 +00002350
drh17435752007-08-16 04:30:38 +00002351 if( p->db->mallocFailed ){
danielk1977261919c2005-12-06 12:52:59 +00002352 p->rc = SQLITE_NOMEM;
2353 }
drh6e856bc2011-12-09 18:06:44 +00002354 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
drh5f82e3c2009-07-06 00:44:08 +00002355 closeAllCursors(p);
drh92f02c32004-09-02 14:57:08 +00002356 if( p->magic!=VDBE_MAGIC_RUN ){
drh92f02c32004-09-02 14:57:08 +00002357 return SQLITE_OK;
drh9a324642003-09-06 20:12:01 +00002358 }
danielk19771d850a72004-05-31 08:26:49 +00002359 checkActiveVdbeCnt(db);
danielk1977261919c2005-12-06 12:52:59 +00002360
danc0537fe2013-06-28 19:41:43 +00002361 /* No commit or rollback needed if the program never started or if the
2362 ** SQL statement does not read or write a database file. */
2363 if( p->pc>=0 && p->bIsReader ){
drhaac2f552006-09-23 21:44:23 +00002364 int mrc; /* Primary error code from p->rc */
danielk1977bd434552009-03-18 10:33:00 +00002365 int eStatementOp = 0;
2366 int isSpecialError; /* Set to true if a 'special' error */
drhff0587c2007-08-29 17:43:19 +00002367
2368 /* Lock all btrees used by the statement */
drhbdaec522011-04-04 00:14:43 +00002369 sqlite3VdbeEnter(p);
drhff0587c2007-08-29 17:43:19 +00002370
drh71b890a2007-10-03 15:30:52 +00002371 /* Check for one of the special errors */
drhaac2f552006-09-23 21:44:23 +00002372 mrc = p->rc & 0xff;
drh71b890a2007-10-03 15:30:52 +00002373 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
drh77658e22007-12-04 16:54:52 +00002374 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
danielk197707cb5602006-01-20 10:55:05 +00002375 if( isSpecialError ){
dan5653e4d2010-08-12 11:25:47 +00002376 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2377 ** no rollback is necessary. Otherwise, at least a savepoint
2378 ** transaction must be rolled back to restore the database to a
2379 ** consistent state.
2380 **
2381 ** Even if the statement is read-only, it is important to perform
2382 ** a statement or transaction rollback operation. If the error
mistachkin48864df2013-03-21 21:20:32 +00002383 ** occurred while writing to the journal, sub-journal or database
dan5653e4d2010-08-12 11:25:47 +00002384 ** file as part of an effort to free up cache space (see function
2385 ** pagerStress() in pager.c), the rollback is required to restore
2386 ** the pager to a consistent state.
danielk197707cb5602006-01-20 10:55:05 +00002387 */
drhad4a4b82008-11-05 16:37:34 +00002388 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
drhfa3be902009-07-07 02:44:07 +00002389 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
danielk1977bd434552009-03-18 10:33:00 +00002390 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002391 }else{
2392 /* We are forced to roll back the active transaction. Before doing
2393 ** so, abort any other statements this handle currently has active.
2394 */
drh21021a52012-02-13 17:01:51 +00002395 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002396 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002397 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002398 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002399 }
danielk1977261919c2005-12-06 12:52:59 +00002400 }
2401 }
dan32b09f22009-09-23 17:29:59 +00002402
2403 /* Check for immediate foreign key violations. */
2404 if( p->rc==SQLITE_OK ){
2405 sqlite3VdbeCheckFk(p, 0);
2406 }
danielk197707cb5602006-01-20 10:55:05 +00002407
danielk1977bd434552009-03-18 10:33:00 +00002408 /* If the auto-commit flag is set and this is the only active writer
2409 ** VM, then we do either a commit or rollback of the current transaction.
danielk197707cb5602006-01-20 10:55:05 +00002410 **
2411 ** Note: This block also runs if one of the special errors handled
drhad4a4b82008-11-05 16:37:34 +00002412 ** above has occurred.
danielk197707cb5602006-01-20 10:55:05 +00002413 */
danielk1977093e0f62008-11-13 18:00:14 +00002414 if( !sqlite3VtabInSync(db)
2415 && db->autoCommit
drh4f7d3a52013-06-27 23:54:02 +00002416 && db->nVdbeWrite==(p->readOnly==0)
danielk1977093e0f62008-11-13 18:00:14 +00002417 ){
danielk197707cb5602006-01-20 10:55:05 +00002418 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
dan19611b12011-01-24 16:00:58 +00002419 rc = sqlite3VdbeCheckFk(p, 1);
2420 if( rc!=SQLITE_OK ){
drhe9ce5852011-02-11 22:54:28 +00002421 if( NEVER(p->readOnly) ){
drhbdaec522011-04-04 00:14:43 +00002422 sqlite3VdbeLeave(p);
dan19611b12011-01-24 16:00:58 +00002423 return SQLITE_ERROR;
2424 }
drhd91c1a12013-02-09 13:58:25 +00002425 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan19611b12011-01-24 16:00:58 +00002426 }else{
2427 /* The auto-commit flag is true, the vdbe program was successful
2428 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2429 ** key constraints to hold up the transaction. This means a commit
2430 ** is required. */
2431 rc = vdbeCommit(db, p);
dan1da40a32009-09-19 17:00:31 +00002432 }
dan19611b12011-01-24 16:00:58 +00002433 if( rc==SQLITE_BUSY && p->readOnly ){
drhbdaec522011-04-04 00:14:43 +00002434 sqlite3VdbeLeave(p);
danielk197707cb5602006-01-20 10:55:05 +00002435 return SQLITE_BUSY;
2436 }else if( rc!=SQLITE_OK ){
2437 p->rc = rc;
drh0f198a72012-02-13 16:43:16 +00002438 sqlite3RollbackAll(db, SQLITE_OK);
danc3da6672014-10-28 18:24:16 +00002439 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002440 }else{
dan1da40a32009-09-19 17:00:31 +00002441 db->nDeferredCons = 0;
drh648e2642013-07-11 15:03:32 +00002442 db->nDeferredImmCons = 0;
2443 db->flags &= ~SQLITE_DeferFKs;
danielk197707cb5602006-01-20 10:55:05 +00002444 sqlite3CommitInternalChanges(db);
2445 }
2446 }else{
drh0f198a72012-02-13 16:43:16 +00002447 sqlite3RollbackAll(db, SQLITE_OK);
danc3da6672014-10-28 18:24:16 +00002448 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002449 }
danielk1977bd434552009-03-18 10:33:00 +00002450 db->nStatement = 0;
2451 }else if( eStatementOp==0 ){
danielk197707cb5602006-01-20 10:55:05 +00002452 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
danielk1977bd434552009-03-18 10:33:00 +00002453 eStatementOp = SAVEPOINT_RELEASE;
danielk197707cb5602006-01-20 10:55:05 +00002454 }else if( p->errorAction==OE_Abort ){
danielk1977bd434552009-03-18 10:33:00 +00002455 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002456 }else{
drh21021a52012-02-13 17:01:51 +00002457 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002458 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002459 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002460 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002461 }
danielk19771d850a72004-05-31 08:26:49 +00002462 }
danielk197707cb5602006-01-20 10:55:05 +00002463
danielk1977bd434552009-03-18 10:33:00 +00002464 /* If eStatementOp is non-zero, then a statement transaction needs to
2465 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2466 ** do so. If this operation returns an error, and the current statement
drh35173242010-03-08 21:40:13 +00002467 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2468 ** current statement error code.
danielk197707cb5602006-01-20 10:55:05 +00002469 */
danielk1977bd434552009-03-18 10:33:00 +00002470 if( eStatementOp ){
2471 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
dan40ad9d22010-06-03 09:17:38 +00002472 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00002473 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
dan40ad9d22010-06-03 09:17:38 +00002474 p->rc = rc;
2475 sqlite3DbFree(db, p->zErrMsg);
2476 p->zErrMsg = 0;
2477 }
drh21021a52012-02-13 17:01:51 +00002478 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
dan40ad9d22010-06-03 09:17:38 +00002479 sqlite3CloseSavepoints(db);
2480 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002481 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002482 }
danielk197777d83ba2004-05-31 10:08:14 +00002483 }
danielk197707cb5602006-01-20 10:55:05 +00002484
danielk1977bd434552009-03-18 10:33:00 +00002485 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2486 ** has been rolled back, update the database connection change-counter.
danielk197707cb5602006-01-20 10:55:05 +00002487 */
drh6be240e2009-07-14 02:33:02 +00002488 if( p->changeCntOn ){
danielk1977bd434552009-03-18 10:33:00 +00002489 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
danielk197707cb5602006-01-20 10:55:05 +00002490 sqlite3VdbeSetChanges(db, p->nChange);
2491 }else{
2492 sqlite3VdbeSetChanges(db, 0);
2493 }
2494 p->nChange = 0;
danielk1977b28af712004-06-21 06:50:26 +00002495 }
drhff0587c2007-08-29 17:43:19 +00002496
2497 /* Release the locks */
drhbdaec522011-04-04 00:14:43 +00002498 sqlite3VdbeLeave(p);
drh9a324642003-09-06 20:12:01 +00002499 }
danielk19771d850a72004-05-31 08:26:49 +00002500
danielk197765fd59f2006-06-24 11:51:33 +00002501 /* We have successfully halted and closed the VM. Record this fact. */
2502 if( p->pc>=0 ){
drh4f7d3a52013-06-27 23:54:02 +00002503 db->nVdbeActive--;
2504 if( !p->readOnly ) db->nVdbeWrite--;
drh1713afb2013-06-28 01:24:57 +00002505 if( p->bIsReader ) db->nVdbeRead--;
drh4f7d3a52013-06-27 23:54:02 +00002506 assert( db->nVdbeActive>=db->nVdbeRead );
2507 assert( db->nVdbeRead>=db->nVdbeWrite );
2508 assert( db->nVdbeWrite>=0 );
drh9a324642003-09-06 20:12:01 +00002509 }
drh92f02c32004-09-02 14:57:08 +00002510 p->magic = VDBE_MAGIC_HALT;
2511 checkActiveVdbeCnt(db);
drhff0587c2007-08-29 17:43:19 +00002512 if( p->db->mallocFailed ){
2513 p->rc = SQLITE_NOMEM;
2514 }
danielk19771d850a72004-05-31 08:26:49 +00002515
danielk1977404ca072009-03-16 13:19:36 +00002516 /* If the auto-commit flag is set to true, then any locks that were held
2517 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2518 ** to invoke any required unlock-notify callbacks.
2519 */
2520 if( db->autoCommit ){
2521 sqlite3ConnectionUnlocked(db);
2522 }
2523
drh4f7d3a52013-06-27 23:54:02 +00002524 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
dan19611b12011-01-24 16:00:58 +00002525 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
drh92f02c32004-09-02 14:57:08 +00002526}
drh4cf7c7f2007-08-28 23:28:07 +00002527
drh92f02c32004-09-02 14:57:08 +00002528
2529/*
drh3c23a882007-01-09 14:01:13 +00002530** Each VDBE holds the result of the most recent sqlite3_step() call
2531** in p->rc. This routine sets that result back to SQLITE_OK.
2532*/
2533void sqlite3VdbeResetStepResult(Vdbe *p){
2534 p->rc = SQLITE_OK;
2535}
2536
2537/*
dan029ead62011-10-27 15:19:58 +00002538** Copy the error code and error message belonging to the VDBE passed
2539** as the first argument to its database handle (so that they will be
2540** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2541**
2542** This function does not clear the VDBE error code or message, just
2543** copies them to the database handle.
2544*/
2545int sqlite3VdbeTransferError(Vdbe *p){
2546 sqlite3 *db = p->db;
2547 int rc = p->rc;
2548 if( p->zErrMsg ){
drh81bdd6d2011-10-29 01:33:24 +00002549 u8 mallocFailed = db->mallocFailed;
dan029ead62011-10-27 15:19:58 +00002550 sqlite3BeginBenignMalloc();
drha3cc0072013-12-13 16:23:55 +00002551 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
dan029ead62011-10-27 15:19:58 +00002552 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2553 sqlite3EndBenignMalloc();
drh81bdd6d2011-10-29 01:33:24 +00002554 db->mallocFailed = mallocFailed;
dan029ead62011-10-27 15:19:58 +00002555 db->errCode = rc;
2556 }else{
drh13f40da2014-08-22 18:00:11 +00002557 sqlite3Error(db, rc);
dan029ead62011-10-27 15:19:58 +00002558 }
2559 return rc;
2560}
2561
danac455932012-11-26 19:50:41 +00002562#ifdef SQLITE_ENABLE_SQLLOG
2563/*
2564** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2565** invoke it.
2566*/
2567static void vdbeInvokeSqllog(Vdbe *v){
2568 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2569 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2570 assert( v->db->init.busy==0 );
2571 if( zExpanded ){
2572 sqlite3GlobalConfig.xSqllog(
2573 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2574 );
2575 sqlite3DbFree(v->db, zExpanded);
2576 }
2577 }
2578}
2579#else
2580# define vdbeInvokeSqllog(x)
2581#endif
2582
dan029ead62011-10-27 15:19:58 +00002583/*
drh92f02c32004-09-02 14:57:08 +00002584** Clean up a VDBE after execution but do not delete the VDBE just yet.
2585** Write any error messages into *pzErrMsg. Return the result code.
2586**
2587** After this routine is run, the VDBE should be ready to be executed
2588** again.
2589**
2590** To look at it another way, this routine resets the state of the
2591** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2592** VDBE_MAGIC_INIT.
2593*/
drhc890fec2008-08-01 20:10:08 +00002594int sqlite3VdbeReset(Vdbe *p){
drh4ac285a2006-09-15 07:28:50 +00002595 sqlite3 *db;
drh4ac285a2006-09-15 07:28:50 +00002596 db = p->db;
drh92f02c32004-09-02 14:57:08 +00002597
2598 /* If the VM did not run to completion or if it encountered an
2599 ** error, then it might not have been halted properly. So halt
2600 ** it now.
2601 */
2602 sqlite3VdbeHalt(p);
2603
drhfb7e7652005-01-24 00:28:42 +00002604 /* If the VDBE has be run even partially, then transfer the error code
2605 ** and error message from the VDBE into the main database structure. But
2606 ** if the VDBE has just been set to run but has not actually executed any
2607 ** instructions yet, leave the main database error information unchanged.
drh92f02c32004-09-02 14:57:08 +00002608 */
drhfb7e7652005-01-24 00:28:42 +00002609 if( p->pc>=0 ){
danac455932012-11-26 19:50:41 +00002610 vdbeInvokeSqllog(p);
dan029ead62011-10-27 15:19:58 +00002611 sqlite3VdbeTransferError(p);
2612 sqlite3DbFree(db, p->zErrMsg);
2613 p->zErrMsg = 0;
drh4611d922010-02-25 14:47:01 +00002614 if( p->runOnlyOnce ) p->expired = 1;
danielk1977a21c6b62005-01-24 10:25:59 +00002615 }else if( p->rc && p->expired ){
2616 /* The expired flag was set on the VDBE before the first call
2617 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2618 ** called), set the database error in this case as well.
2619 */
drh13f40da2014-08-22 18:00:11 +00002620 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
drh633e6d52008-07-28 19:34:53 +00002621 sqlite3DbFree(db, p->zErrMsg);
danielk19778e556522007-11-13 10:30:24 +00002622 p->zErrMsg = 0;
drh92f02c32004-09-02 14:57:08 +00002623 }
2624
2625 /* Reclaim all memory used by the VDBE
2626 */
drhc890fec2008-08-01 20:10:08 +00002627 Cleanup(p);
drh92f02c32004-09-02 14:57:08 +00002628
2629 /* Save profiling information from this VDBE run.
2630 */
drh9a324642003-09-06 20:12:01 +00002631#ifdef VDBE_PROFILE
2632 {
2633 FILE *out = fopen("vdbe_profile.out", "a");
2634 if( out ){
2635 int i;
2636 fprintf(out, "---- ");
2637 for(i=0; i<p->nOp; i++){
2638 fprintf(out, "%02x", p->aOp[i].opcode);
2639 }
2640 fprintf(out, "\n");
drh2926f962014-02-17 01:13:28 +00002641 if( p->zSql ){
2642 char c, pc = 0;
2643 fprintf(out, "-- ");
2644 for(i=0; (c = p->zSql[i])!=0; i++){
2645 if( pc=='\n' ) fprintf(out, "-- ");
2646 putc(c, out);
2647 pc = c;
2648 }
2649 if( pc!='\n' ) fprintf(out, "\n");
2650 }
drh9a324642003-09-06 20:12:01 +00002651 for(i=0; i<p->nOp; i++){
drh15ab9412014-02-24 14:24:01 +00002652 char zHdr[100];
2653 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
drh9a324642003-09-06 20:12:01 +00002654 p->aOp[i].cnt,
2655 p->aOp[i].cycles,
2656 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2657 );
drh15ab9412014-02-24 14:24:01 +00002658 fprintf(out, "%s", zHdr);
danielk19774adee202004-05-08 08:23:19 +00002659 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
drh9a324642003-09-06 20:12:01 +00002660 }
2661 fclose(out);
2662 }
2663 }
2664#endif
drh7fa20922013-09-17 23:36:33 +00002665 p->iCurrentTime = 0;
drh9a324642003-09-06 20:12:01 +00002666 p->magic = VDBE_MAGIC_INIT;
drh4ac285a2006-09-15 07:28:50 +00002667 return p->rc & db->errMask;
drh9a324642003-09-06 20:12:01 +00002668}
drh92f02c32004-09-02 14:57:08 +00002669
drh9a324642003-09-06 20:12:01 +00002670/*
2671** Clean up and delete a VDBE after execution. Return an integer which is
2672** the result code. Write any error message text into *pzErrMsg.
2673*/
danielk19779e6db7d2004-06-21 08:18:51 +00002674int sqlite3VdbeFinalize(Vdbe *p){
danielk1977b5548a82004-06-26 13:51:33 +00002675 int rc = SQLITE_OK;
danielk1977b5548a82004-06-26 13:51:33 +00002676 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
drhc890fec2008-08-01 20:10:08 +00002677 rc = sqlite3VdbeReset(p);
drh4ac285a2006-09-15 07:28:50 +00002678 assert( (rc & p->db->errMask)==rc );
drh9a324642003-09-06 20:12:01 +00002679 }
danielk19774adee202004-05-08 08:23:19 +00002680 sqlite3VdbeDelete(p);
drh9a324642003-09-06 20:12:01 +00002681 return rc;
2682}
2683
2684/*
dan0c547792013-07-18 17:12:08 +00002685** If parameter iOp is less than zero, then invoke the destructor for
2686** all auxiliary data pointers currently cached by the VM passed as
2687** the first argument.
2688**
2689** Or, if iOp is greater than or equal to zero, then the destructor is
2690** only invoked for those auxiliary data pointers created by the user
2691** function invoked by the OP_Function opcode at instruction iOp of
2692** VM pVdbe, and only then if:
2693**
2694** * the associated function parameter is the 32nd or later (counting
2695** from left to right), or
2696**
2697** * the corresponding bit in argument mask is clear (where the first
peter.d.reid60ec9142014-09-06 16:39:46 +00002698** function parameter corresponds to bit 0 etc.).
drhf92c7ff2004-06-19 15:40:23 +00002699*/
dan0c547792013-07-18 17:12:08 +00002700void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
2701 AuxData **pp = &pVdbe->pAuxData;
2702 while( *pp ){
2703 AuxData *pAux = *pp;
2704 if( (iOp<0)
drh693e6712014-01-24 22:58:00 +00002705 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
dan0c547792013-07-18 17:12:08 +00002706 ){
drh693e6712014-01-24 22:58:00 +00002707 testcase( pAux->iArg==31 );
drhf92c7ff2004-06-19 15:40:23 +00002708 if( pAux->xDelete ){
2709 pAux->xDelete(pAux->pAux);
2710 }
dan0c547792013-07-18 17:12:08 +00002711 *pp = pAux->pNext;
2712 sqlite3DbFree(pVdbe->db, pAux);
2713 }else{
2714 pp= &pAux->pNext;
drhf92c7ff2004-06-19 15:40:23 +00002715 }
2716 }
2717}
2718
2719/*
drhcb103b92012-10-26 00:11:23 +00002720** Free all memory associated with the Vdbe passed as the second argument,
2721** except for object itself, which is preserved.
2722**
dand46def72010-07-24 11:28:28 +00002723** The difference between this function and sqlite3VdbeDelete() is that
2724** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
drhcb103b92012-10-26 00:11:23 +00002725** the database connection and frees the object itself.
dand46def72010-07-24 11:28:28 +00002726*/
drhcb103b92012-10-26 00:11:23 +00002727void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
dand19c9332010-07-26 12:05:17 +00002728 SubProgram *pSub, *pNext;
drh124c0b42011-06-01 18:15:55 +00002729 int i;
dand46def72010-07-24 11:28:28 +00002730 assert( p->db==0 || p->db==db );
2731 releaseMemArray(p->aVar, p->nVar);
2732 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
dand19c9332010-07-26 12:05:17 +00002733 for(pSub=p->pProgram; pSub; pSub=pNext){
2734 pNext = pSub->pNext;
2735 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2736 sqlite3DbFree(db, pSub);
2737 }
drh124c0b42011-06-01 18:15:55 +00002738 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
dand46def72010-07-24 11:28:28 +00002739 vdbeFreeOpArray(db, p->aOp, p->nOp);
dand46def72010-07-24 11:28:28 +00002740 sqlite3DbFree(db, p->aColName);
2741 sqlite3DbFree(db, p->zSql);
2742 sqlite3DbFree(db, p->pFree);
dan6f9702e2014-11-01 20:38:06 +00002743#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan6f9702e2014-11-01 20:38:06 +00002744 for(i=0; i<p->nScan; i++){
2745 sqlite3DbFree(db, p->aScan[i].zName);
2746 }
2747 sqlite3DbFree(db, p->aScan);
2748#endif
dand46def72010-07-24 11:28:28 +00002749}
2750
2751/*
drh9a324642003-09-06 20:12:01 +00002752** Delete an entire VDBE.
2753*/
danielk19774adee202004-05-08 08:23:19 +00002754void sqlite3VdbeDelete(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00002755 sqlite3 *db;
2756
drhfa3be902009-07-07 02:44:07 +00002757 if( NEVER(p==0) ) return;
drh633e6d52008-07-28 19:34:53 +00002758 db = p->db;
drh4245c402012-06-02 14:32:21 +00002759 assert( sqlite3_mutex_held(db->mutex) );
drhcb103b92012-10-26 00:11:23 +00002760 sqlite3VdbeClearObject(db, p);
drh9a324642003-09-06 20:12:01 +00002761 if( p->pPrev ){
2762 p->pPrev->pNext = p->pNext;
2763 }else{
drh633e6d52008-07-28 19:34:53 +00002764 assert( db->pVdbe==p );
2765 db->pVdbe = p->pNext;
drh9a324642003-09-06 20:12:01 +00002766 }
2767 if( p->pNext ){
2768 p->pNext->pPrev = p->pPrev;
2769 }
drh9a324642003-09-06 20:12:01 +00002770 p->magic = VDBE_MAGIC_DEAD;
drh87f5c5f2010-01-20 01:20:56 +00002771 p->db = 0;
drhcb103b92012-10-26 00:11:23 +00002772 sqlite3DbFree(db, p);
drh9a324642003-09-06 20:12:01 +00002773}
drha11846b2004-01-07 18:52:56 +00002774
2775/*
drh6848dad2014-08-22 23:33:03 +00002776** The cursor "p" has a pending seek operation that has not yet been
2777** carried out. Seek the cursor now. If an error occurs, return
2778** the appropriate error code.
2779*/
2780static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
2781 int res, rc;
2782#ifdef SQLITE_TEST
2783 extern int sqlite3_search_count;
2784#endif
2785 assert( p->deferredMoveto );
2786 assert( p->isTable );
2787 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
2788 if( rc ) return rc;
drh6848dad2014-08-22 23:33:03 +00002789 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
drh6848dad2014-08-22 23:33:03 +00002790#ifdef SQLITE_TEST
2791 sqlite3_search_count++;
2792#endif
2793 p->deferredMoveto = 0;
2794 p->cacheStatus = CACHE_STALE;
2795 return SQLITE_OK;
2796}
2797
2798/*
2799** Something has moved cursor "p" out of place. Maybe the row it was
2800** pointed to was deleted out from under it. Or maybe the btree was
2801** rebalanced. Whatever the cause, try to restore "p" to the place it
peter.d.reid60ec9142014-09-06 16:39:46 +00002802** is supposed to be pointing. If the row was deleted out from under the
drh6848dad2014-08-22 23:33:03 +00002803** cursor, set the cursor to point to a NULL row.
2804*/
2805static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
2806 int isDifferentRow, rc;
2807 assert( p->pCursor!=0 );
2808 assert( sqlite3BtreeCursorHasMoved(p->pCursor) );
2809 rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow);
2810 p->cacheStatus = CACHE_STALE;
2811 if( isDifferentRow ) p->nullRow = 1;
2812 return rc;
2813}
2814
2815/*
drhc22284f2014-10-13 16:02:20 +00002816** Check to ensure that the cursor is valid. Restore the cursor
2817** if need be. Return any I/O error from the restore operation.
2818*/
2819int sqlite3VdbeCursorRestore(VdbeCursor *p){
2820 if( sqlite3BtreeCursorHasMoved(p->pCursor) ){
2821 return handleMovedCursor(p);
2822 }
2823 return SQLITE_OK;
2824}
2825
2826/*
drh9a65f2c2009-06-22 19:05:40 +00002827** Make sure the cursor p is ready to read or write the row to which it
2828** was last positioned. Return an error code if an OOM fault or I/O error
2829** prevents us from positioning the cursor to its correct position.
2830**
drha11846b2004-01-07 18:52:56 +00002831** If a MoveTo operation is pending on the given cursor, then do that
drh9a65f2c2009-06-22 19:05:40 +00002832** MoveTo now. If no move is pending, check to see if the row has been
2833** deleted out from under the cursor and if it has, mark the row as
2834** a NULL row.
2835**
2836** If the cursor is already pointing to the correct row and that row has
2837** not been deleted out from under the cursor, then this routine is a no-op.
drha11846b2004-01-07 18:52:56 +00002838*/
drhdfe88ec2008-11-03 20:55:06 +00002839int sqlite3VdbeCursorMoveto(VdbeCursor *p){
drha11846b2004-01-07 18:52:56 +00002840 if( p->deferredMoveto ){
drh6848dad2014-08-22 23:33:03 +00002841 return handleDeferredMoveto(p);
2842 }
drhc22284f2014-10-13 16:02:20 +00002843 if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){
drh6848dad2014-08-22 23:33:03 +00002844 return handleMovedCursor(p);
drha11846b2004-01-07 18:52:56 +00002845 }
2846 return SQLITE_OK;
2847}
danielk19774adee202004-05-08 08:23:19 +00002848
drhab9f7f12004-05-08 10:56:11 +00002849/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002850** The following functions:
danielk197790e4d952004-05-10 10:05:53 +00002851**
danielk1977cfcdaef2004-05-12 07:33:33 +00002852** sqlite3VdbeSerialType()
2853** sqlite3VdbeSerialTypeLen()
danielk197790e4d952004-05-10 10:05:53 +00002854** sqlite3VdbeSerialLen()
shane92003092008-07-31 01:43:13 +00002855** sqlite3VdbeSerialPut()
2856** sqlite3VdbeSerialGet()
danielk197790e4d952004-05-10 10:05:53 +00002857**
2858** encapsulate the code that serializes values for storage in SQLite
danielk1977cfcdaef2004-05-12 07:33:33 +00002859** data and index records. Each serialized value consists of a
2860** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
2861** integer, stored as a varint.
danielk197790e4d952004-05-10 10:05:53 +00002862**
danielk1977cfcdaef2004-05-12 07:33:33 +00002863** In an SQLite index record, the serial type is stored directly before
2864** the blob of data that it corresponds to. In a table record, all serial
2865** types are stored at the start of the record, and the blobs of data at
2866** the end. Hence these functions allow the caller to handle the
mistachkin48864df2013-03-21 21:20:32 +00002867** serial-type and data blob separately.
danielk1977cfcdaef2004-05-12 07:33:33 +00002868**
2869** The following table describes the various storage classes for data:
2870**
2871** serial type bytes of data type
danielk197790e4d952004-05-10 10:05:53 +00002872** -------------- --------------- ---------------
drha19b7752004-05-30 21:14:58 +00002873** 0 0 NULL
danielk197790e4d952004-05-10 10:05:53 +00002874** 1 1 signed integer
2875** 2 2 signed integer
drha19b7752004-05-30 21:14:58 +00002876** 3 3 signed integer
2877** 4 4 signed integer
2878** 5 6 signed integer
2879** 6 8 signed integer
2880** 7 8 IEEE float
drhd946db02005-12-29 19:23:06 +00002881** 8 0 Integer constant 0
2882** 9 0 Integer constant 1
2883** 10,11 reserved for expansion
danielk197790e4d952004-05-10 10:05:53 +00002884** N>=12 and even (N-12)/2 BLOB
2885** N>=13 and odd (N-13)/2 text
2886**
drh35a59652006-01-02 18:24:40 +00002887** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
2888** of SQLite will not understand those serial types.
danielk197790e4d952004-05-10 10:05:53 +00002889*/
2890
2891/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002892** Return the serial-type for the value stored in pMem.
danielk1977192ac1d2004-05-10 07:17:30 +00002893*/
drhd946db02005-12-29 19:23:06 +00002894u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
danielk1977cfcdaef2004-05-12 07:33:33 +00002895 int flags = pMem->flags;
drheac5bd72014-07-25 21:35:39 +00002896 u32 n;
danielk1977cfcdaef2004-05-12 07:33:33 +00002897
2898 if( flags&MEM_Null ){
drha19b7752004-05-30 21:14:58 +00002899 return 0;
danielk197790e4d952004-05-10 10:05:53 +00002900 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002901 if( flags&MEM_Int ){
drhfe2093d2005-01-20 22:48:47 +00002902 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
drh5284a052008-05-08 15:18:10 +00002903# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
drh3c024d62007-03-30 11:23:45 +00002904 i64 i = pMem->u.i;
drhd946db02005-12-29 19:23:06 +00002905 u64 u;
drhcfd654b2011-03-05 13:54:15 +00002906 if( i<0 ){
drh1b40e632014-11-20 02:58:10 +00002907 u = ~i;
drhcfd654b2011-03-05 13:54:15 +00002908 }else{
2909 u = i;
2910 }
drh56690b32012-09-17 15:36:31 +00002911 if( u<=127 ){
2912 return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
2913 }
drh5742b632005-01-26 17:47:02 +00002914 if( u<=32767 ) return 2;
2915 if( u<=8388607 ) return 3;
2916 if( u<=2147483647 ) return 4;
2917 if( u<=MAX_6BYTE ) return 5;
drha19b7752004-05-30 21:14:58 +00002918 return 6;
danielk197790e4d952004-05-10 10:05:53 +00002919 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002920 if( flags&MEM_Real ){
drha19b7752004-05-30 21:14:58 +00002921 return 7;
danielk197790e4d952004-05-10 10:05:53 +00002922 }
danielk1977e4359752008-11-03 09:39:45 +00002923 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
drheac5bd72014-07-25 21:35:39 +00002924 assert( pMem->n>=0 );
2925 n = (u32)pMem->n;
drhfdf972a2007-05-02 13:30:27 +00002926 if( flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00002927 n += pMem->u.nZero;
danielk197790e4d952004-05-10 10:05:53 +00002928 }
drhfdf972a2007-05-02 13:30:27 +00002929 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
danielk1977192ac1d2004-05-10 07:17:30 +00002930}
2931
2932/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002933** Return the length of the data corresponding to the supplied serial-type.
danielk1977192ac1d2004-05-10 07:17:30 +00002934*/
drh35cd6432009-06-05 14:17:21 +00002935u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
drha19b7752004-05-30 21:14:58 +00002936 if( serial_type>=12 ){
drh51846b52004-05-28 16:00:21 +00002937 return (serial_type-12)/2;
2938 }else{
drh57196282004-10-06 15:41:16 +00002939 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
drh51846b52004-05-28 16:00:21 +00002940 return aSize[serial_type];
2941 }
danielk1977192ac1d2004-05-10 07:17:30 +00002942}
2943
2944/*
drh110daac2007-05-04 11:59:31 +00002945** If we are on an architecture with mixed-endian floating
drh7a4f5022007-05-23 07:20:08 +00002946** points (ex: ARM7) then swap the lower 4 bytes with the
drh110daac2007-05-04 11:59:31 +00002947** upper 4 bytes. Return the result.
2948**
drh7a4f5022007-05-23 07:20:08 +00002949** For most architectures, this is a no-op.
2950**
2951** (later): It is reported to me that the mixed-endian problem
2952** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
2953** that early versions of GCC stored the two words of a 64-bit
2954** float in the wrong order. And that error has been propagated
2955** ever since. The blame is not necessarily with GCC, though.
2956** GCC might have just copying the problem from a prior compiler.
2957** I am also told that newer versions of GCC that follow a different
2958** ABI get the byte order right.
2959**
2960** Developers using SQLite on an ARM7 should compile and run their
2961** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
2962** enabled, some asserts below will ensure that the byte order of
2963** floating point values is correct.
drh60d09a72007-08-30 15:05:08 +00002964**
2965** (2007-08-30) Frank van Vugt has studied this problem closely
2966** and has send his findings to the SQLite developers. Frank
2967** writes that some Linux kernels offer floating point hardware
2968** emulation that uses only 32-bit mantissas instead of a full
2969** 48-bits as required by the IEEE standard. (This is the
2970** CONFIG_FPE_FASTFPE option.) On such systems, floating point
2971** byte swapping becomes very complicated. To avoid problems,
2972** the necessary byte swapping is carried out using a 64-bit integer
2973** rather than a 64-bit float. Frank assures us that the code here
2974** works for him. We, the developers, have no way to independently
2975** verify this, but Frank seems to know what he is talking about
2976** so we trust him.
drh110daac2007-05-04 11:59:31 +00002977*/
2978#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
drh60d09a72007-08-30 15:05:08 +00002979static u64 floatSwap(u64 in){
drh110daac2007-05-04 11:59:31 +00002980 union {
drh60d09a72007-08-30 15:05:08 +00002981 u64 r;
drh110daac2007-05-04 11:59:31 +00002982 u32 i[2];
2983 } u;
2984 u32 t;
2985
2986 u.r = in;
2987 t = u.i[0];
2988 u.i[0] = u.i[1];
2989 u.i[1] = t;
2990 return u.r;
2991}
2992# define swapMixedEndianFloat(X) X = floatSwap(X)
2993#else
2994# define swapMixedEndianFloat(X)
2995#endif
2996
2997/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002998** Write the serialized data blob for the value stored in pMem into
2999** buf. It is assumed that the caller has allocated sufficient space.
3000** Return the number of bytes written.
drhfdf972a2007-05-02 13:30:27 +00003001**
drh038b7bc2013-12-09 23:17:22 +00003002** nBuf is the amount of space left in buf[]. The caller is responsible
3003** for allocating enough space to buf[] to hold the entire field, exclusive
3004** of the pMem->u.nZero bytes for a MEM_Zero value.
drhfdf972a2007-05-02 13:30:27 +00003005**
3006** Return the number of bytes actually written into buf[]. The number
3007** of bytes in the zero-filled tail is included in the return value only
3008** if those bytes were zeroed in buf[].
danielk1977cfcdaef2004-05-12 07:33:33 +00003009*/
drha9ab4812013-12-11 11:00:44 +00003010u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
drh35cd6432009-06-05 14:17:21 +00003011 u32 len;
danielk1977183f9f72004-05-13 05:20:26 +00003012
drh1483e142004-05-21 21:12:42 +00003013 /* Integer and Real */
drhd946db02005-12-29 19:23:06 +00003014 if( serial_type<=7 && serial_type>0 ){
drh1483e142004-05-21 21:12:42 +00003015 u64 v;
drh35cd6432009-06-05 14:17:21 +00003016 u32 i;
drha19b7752004-05-30 21:14:58 +00003017 if( serial_type==7 ){
drh74eaba42014-09-18 17:52:15 +00003018 assert( sizeof(v)==sizeof(pMem->u.r) );
3019 memcpy(&v, &pMem->u.r, sizeof(v));
drh60d09a72007-08-30 15:05:08 +00003020 swapMixedEndianFloat(v);
drh1483e142004-05-21 21:12:42 +00003021 }else{
drh3c024d62007-03-30 11:23:45 +00003022 v = pMem->u.i;
danielk1977cfcdaef2004-05-12 07:33:33 +00003023 }
drh1483e142004-05-21 21:12:42 +00003024 len = i = sqlite3VdbeSerialTypeLen(serial_type);
drh3f5b1992014-08-22 13:22:32 +00003025 assert( i>0 );
3026 do{
3027 buf[--i] = (u8)(v&0xFF);
drh1483e142004-05-21 21:12:42 +00003028 v >>= 8;
drh3f5b1992014-08-22 13:22:32 +00003029 }while( i );
drh1483e142004-05-21 21:12:42 +00003030 return len;
danielk1977cfcdaef2004-05-12 07:33:33 +00003031 }
drhd946db02005-12-29 19:23:06 +00003032
danielk1977cfcdaef2004-05-12 07:33:33 +00003033 /* String or blob */
drhd946db02005-12-29 19:23:06 +00003034 if( serial_type>=12 ){
drh8df32842008-12-09 02:51:23 +00003035 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
shane75ac1de2009-06-09 18:58:52 +00003036 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
drhfdf972a2007-05-02 13:30:27 +00003037 len = pMem->n;
drhd946db02005-12-29 19:23:06 +00003038 memcpy(buf, pMem->z, len);
3039 return len;
3040 }
3041
3042 /* NULL or constants 0 or 1 */
3043 return 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00003044}
3045
drhf926d1e2014-03-04 04:04:33 +00003046/* Input "x" is a sequence of unsigned characters that represent a
3047** big-endian integer. Return the equivalent native integer
3048*/
3049#define ONE_BYTE_INT(x) ((i8)(x)[0])
3050#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3051#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3052#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
drh8932bec2014-08-22 14:56:13 +00003053#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
drhf926d1e2014-03-04 04:04:33 +00003054
danielk1977cfcdaef2004-05-12 07:33:33 +00003055/*
3056** Deserialize the data blob pointed to by buf as serial type serial_type
3057** and store the result in pMem. Return the number of bytes read.
drh14a924a2014-08-22 14:34:05 +00003058**
3059** This function is implemented as two separate routines for performance.
3060** The few cases that require local variables are broken out into a separate
3061** routine so that in most cases the overhead of moving the stack pointer
3062** is avoided.
danielk1977cfcdaef2004-05-12 07:33:33 +00003063*/
drh14a924a2014-08-22 14:34:05 +00003064static u32 SQLITE_NOINLINE serialGet(
danielk197793d46752004-05-23 13:30:58 +00003065 const unsigned char *buf, /* Buffer to deserialize from */
drh25aa1b42004-05-28 01:39:01 +00003066 u32 serial_type, /* Serial type to deserialize */
3067 Mem *pMem /* Memory cell to write value into */
danielk1977b1bc9532004-05-22 03:05:33 +00003068){
drh8932bec2014-08-22 14:56:13 +00003069 u64 x = FOUR_BYTE_UINT(buf);
3070 u32 y = FOUR_BYTE_UINT(buf+4);
3071 x = (x<<32) + y;
drh14a924a2014-08-22 14:34:05 +00003072 if( serial_type==6 ){
drh654858d2014-11-20 02:18:14 +00003073 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3074 ** twos-complement integer. */
drh14a924a2014-08-22 14:34:05 +00003075 pMem->u.i = *(i64*)&x;
3076 pMem->flags = MEM_Int;
3077 testcase( pMem->u.i<0 );
3078 }else{
drh654858d2014-11-20 02:18:14 +00003079 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3080 ** floating point number. */
drh14a924a2014-08-22 14:34:05 +00003081#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3082 /* Verify that integers and floating point values use the same
3083 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3084 ** defined that 64-bit floating point values really are mixed
3085 ** endian.
3086 */
3087 static const u64 t1 = ((u64)0x3ff00000)<<32;
3088 static const double r1 = 1.0;
3089 u64 t2 = t1;
3090 swapMixedEndianFloat(t2);
3091 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3092#endif
drh74eaba42014-09-18 17:52:15 +00003093 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
drh14a924a2014-08-22 14:34:05 +00003094 swapMixedEndianFloat(x);
drh74eaba42014-09-18 17:52:15 +00003095 memcpy(&pMem->u.r, &x, sizeof(x));
3096 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
drh14a924a2014-08-22 14:34:05 +00003097 }
3098 return 8;
3099}
danielk1977b1bc9532004-05-22 03:05:33 +00003100u32 sqlite3VdbeSerialGet(
3101 const unsigned char *buf, /* Buffer to deserialize from */
3102 u32 serial_type, /* Serial type to deserialize */
3103 Mem *pMem /* Memory cell to write value into */
3104){
drh3c685822005-05-21 18:32:18 +00003105 switch( serial_type ){
drh3c685822005-05-21 18:32:18 +00003106 case 10: /* Reserved for future use */
3107 case 11: /* Reserved for future use */
drh654858d2014-11-20 02:18:14 +00003108 case 0: { /* Null */
3109 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
drh3c685822005-05-21 18:32:18 +00003110 pMem->flags = MEM_Null;
3111 break;
3112 }
drh654858d2014-11-20 02:18:14 +00003113 case 1: {
3114 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3115 ** integer. */
drhf926d1e2014-03-04 04:04:33 +00003116 pMem->u.i = ONE_BYTE_INT(buf);
drh1483e142004-05-21 21:12:42 +00003117 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003118 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003119 return 1;
drh1483e142004-05-21 21:12:42 +00003120 }
drh3c685822005-05-21 18:32:18 +00003121 case 2: { /* 2-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003122 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3123 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003124 pMem->u.i = TWO_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003125 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003126 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003127 return 2;
3128 }
3129 case 3: { /* 3-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003130 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3131 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003132 pMem->u.i = THREE_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003133 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003134 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003135 return 3;
3136 }
3137 case 4: { /* 4-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003138 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3139 ** twos-complement integer. */
drh8932bec2014-08-22 14:56:13 +00003140 pMem->u.i = FOUR_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003141 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003142 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003143 return 4;
3144 }
3145 case 5: { /* 6-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003146 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3147 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003148 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003149 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003150 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003151 return 6;
3152 }
drh91124b32005-08-18 18:15:05 +00003153 case 6: /* 8-byte signed integer */
drh3c685822005-05-21 18:32:18 +00003154 case 7: { /* IEEE floating point */
drh8932bec2014-08-22 14:56:13 +00003155 /* These use local variables, so do them in a separate routine
3156 ** to avoid having to move the frame pointer in the common case */
drh14a924a2014-08-22 14:34:05 +00003157 return serialGet(buf,serial_type,pMem);
drh3c685822005-05-21 18:32:18 +00003158 }
drhd946db02005-12-29 19:23:06 +00003159 case 8: /* Integer 0 */
3160 case 9: { /* Integer 1 */
drh654858d2014-11-20 02:18:14 +00003161 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3162 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
drh3c024d62007-03-30 11:23:45 +00003163 pMem->u.i = serial_type-8;
drhd946db02005-12-29 19:23:06 +00003164 pMem->flags = MEM_Int;
3165 return 0;
3166 }
drh3c685822005-05-21 18:32:18 +00003167 default: {
drh654858d2014-11-20 02:18:14 +00003168 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3169 ** length.
3170 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3171 ** (N-13)/2 bytes in length. */
drhc138daf2013-11-19 13:55:34 +00003172 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
drh3c685822005-05-21 18:32:18 +00003173 pMem->z = (char *)buf;
drh14a924a2014-08-22 14:34:05 +00003174 pMem->n = (serial_type-12)/2;
drhc138daf2013-11-19 13:55:34 +00003175 pMem->flags = aFlag[serial_type&1];
drh14a924a2014-08-22 14:34:05 +00003176 return pMem->n;
drh696b32f2004-05-30 01:51:52 +00003177 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003178 }
drh3c685822005-05-21 18:32:18 +00003179 return 0;
danielk1977192ac1d2004-05-10 07:17:30 +00003180}
drh1e968a02008-03-25 00:22:21 +00003181/*
dan03e9cfc2011-09-05 14:20:27 +00003182** This routine is used to allocate sufficient space for an UnpackedRecord
3183** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3184** the first argument is a pointer to KeyInfo structure pKeyInfo.
drh1e968a02008-03-25 00:22:21 +00003185**
dan03e9cfc2011-09-05 14:20:27 +00003186** The space is either allocated using sqlite3DbMallocRaw() or from within
3187** the unaligned buffer passed via the second and third arguments (presumably
3188** stack space). If the former, then *ppFree is set to a pointer that should
3189** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3190** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3191** before returning.
drh1e968a02008-03-25 00:22:21 +00003192**
dan03e9cfc2011-09-05 14:20:27 +00003193** If an OOM error occurs, NULL is returned.
3194*/
3195UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3196 KeyInfo *pKeyInfo, /* Description of the record */
3197 char *pSpace, /* Unaligned space available */
3198 int szSpace, /* Size of pSpace[] in bytes */
3199 char **ppFree /* OUT: Caller should free this pointer */
drh1e968a02008-03-25 00:22:21 +00003200){
dan03e9cfc2011-09-05 14:20:27 +00003201 UnpackedRecord *p; /* Unpacked record to return */
3202 int nOff; /* Increment pSpace by nOff to align it */
3203 int nByte; /* Number of bytes required for *p */
3204
3205 /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
shane80167bf2009-04-10 15:42:36 +00003206 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
3207 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
3208 */
3209 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
drh8c5d1522009-04-10 00:56:28 +00003210 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
dan42acb3e2011-09-05 20:16:38 +00003211 if( nByte>szSpace+nOff ){
dan03e9cfc2011-09-05 14:20:27 +00003212 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3213 *ppFree = (char *)p;
dan42acb3e2011-09-05 20:16:38 +00003214 if( !p ) return 0;
drh1e968a02008-03-25 00:22:21 +00003215 }else{
dan42acb3e2011-09-05 20:16:38 +00003216 p = (UnpackedRecord*)&pSpace[nOff];
dan03e9cfc2011-09-05 14:20:27 +00003217 *ppFree = 0;
drh1e968a02008-03-25 00:22:21 +00003218 }
dan42acb3e2011-09-05 20:16:38 +00003219
3220 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
drhe1a022e2012-09-17 17:16:53 +00003221 assert( pKeyInfo->aSortOrder!=0 );
drh1e968a02008-03-25 00:22:21 +00003222 p->pKeyInfo = pKeyInfo;
3223 p->nField = pKeyInfo->nField + 1;
dan03e9cfc2011-09-05 14:20:27 +00003224 return p;
3225}
3226
3227/*
3228** Given the nKey-byte encoding of a record in pKey[], populate the
3229** UnpackedRecord structure indicated by the fourth argument with the
3230** contents of the decoded record.
3231*/
3232void sqlite3VdbeRecordUnpack(
3233 KeyInfo *pKeyInfo, /* Information about the record format */
3234 int nKey, /* Size of the binary record */
3235 const void *pKey, /* The binary record */
3236 UnpackedRecord *p /* Populate this structure before returning. */
3237){
3238 const unsigned char *aKey = (const unsigned char *)pKey;
3239 int d;
3240 u32 idx; /* Offset in aKey[] to read from */
3241 u16 u; /* Unsigned loop counter */
3242 u32 szHdr;
dan42acb3e2011-09-05 20:16:38 +00003243 Mem *pMem = p->aMem;
dan03e9cfc2011-09-05 14:20:27 +00003244
dan1fed5da2014-02-25 21:01:25 +00003245 p->default_rc = 0;
drh8c5d1522009-04-10 00:56:28 +00003246 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
shane3f8d5cf2008-04-24 19:15:09 +00003247 idx = getVarint32(aKey, szHdr);
drh1e968a02008-03-25 00:22:21 +00003248 d = szHdr;
shane0b8d2762008-07-22 05:18:00 +00003249 u = 0;
drh7f4b19f2014-09-16 13:30:05 +00003250 while( idx<szHdr && d<=nKey ){
drh1e968a02008-03-25 00:22:21 +00003251 u32 serial_type;
3252
danielk197700e13612008-11-17 19:18:54 +00003253 idx += getVarint32(&aKey[idx], serial_type);
drh1e968a02008-03-25 00:22:21 +00003254 pMem->enc = pKeyInfo->enc;
3255 pMem->db = pKeyInfo->db;
drhc3f1d5f2011-05-30 23:42:16 +00003256 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
drh17bcb102014-09-18 21:25:33 +00003257 pMem->szMalloc = 0;
drh1e968a02008-03-25 00:22:21 +00003258 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
drhe14006d2008-03-25 17:23:32 +00003259 pMem++;
drh7f4b19f2014-09-16 13:30:05 +00003260 if( (++u)>=p->nField ) break;
drh1e968a02008-03-25 00:22:21 +00003261 }
drh7d10d5a2008-08-20 16:35:10 +00003262 assert( u<=pKeyInfo->nField + 1 );
shane0b8d2762008-07-22 05:18:00 +00003263 p->nField = u;
drh1e968a02008-03-25 00:22:21 +00003264}
3265
dan3833e932014-03-01 19:44:56 +00003266#if SQLITE_DEBUG
dan3b9330f2014-02-27 20:44:18 +00003267/*
dan3833e932014-03-01 19:44:56 +00003268** This function compares two index or table record keys in the same way
3269** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3270** this function deserializes and compares values using the
3271** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3272** in assert() statements to ensure that the optimized code in
3273** sqlite3VdbeRecordCompare() returns results with these two primitives.
drh79211e12014-05-02 17:33:16 +00003274**
3275** Return true if the result of comparison is equivalent to desiredResult.
3276** Return false if there is a disagreement.
dan3b9330f2014-02-27 20:44:18 +00003277*/
dan3833e932014-03-01 19:44:56 +00003278static int vdbeRecordCompareDebug(
dan1fed5da2014-02-25 21:01:25 +00003279 int nKey1, const void *pKey1, /* Left key */
drh79211e12014-05-02 17:33:16 +00003280 const UnpackedRecord *pPKey2, /* Right key */
3281 int desiredResult /* Correct answer */
dan1fed5da2014-02-25 21:01:25 +00003282){
dan3b9330f2014-02-27 20:44:18 +00003283 u32 d1; /* Offset into aKey[] of next data element */
3284 u32 idx1; /* Offset into aKey[] of next header element */
3285 u32 szHdr1; /* Number of bytes in header */
3286 int i = 0;
3287 int rc = 0;
3288 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3289 KeyInfo *pKeyInfo;
3290 Mem mem1;
dan1fed5da2014-02-25 21:01:25 +00003291
dan3b9330f2014-02-27 20:44:18 +00003292 pKeyInfo = pPKey2->pKeyInfo;
drh84de6902014-05-02 18:46:52 +00003293 if( pKeyInfo->db==0 ) return 1;
dan3b9330f2014-02-27 20:44:18 +00003294 mem1.enc = pKeyInfo->enc;
3295 mem1.db = pKeyInfo->db;
3296 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
drh17bcb102014-09-18 21:25:33 +00003297 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
dan1fed5da2014-02-25 21:01:25 +00003298
dan3b9330f2014-02-27 20:44:18 +00003299 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3300 ** We could initialize it, as shown here, to silence those complaints.
3301 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3302 ** the unnecessary initialization has a measurable negative performance
3303 ** impact, since this routine is a very high runner. And so, we choose
3304 ** to ignore the compiler warnings and leave this variable uninitialized.
3305 */
3306 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
3307
3308 idx1 = getVarint32(aKey1, szHdr1);
3309 d1 = szHdr1;
3310 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
3311 assert( pKeyInfo->aSortOrder!=0 );
3312 assert( pKeyInfo->nField>0 );
3313 assert( idx1<=szHdr1 || CORRUPT_DB );
3314 do{
3315 u32 serial_type1;
dan1fed5da2014-02-25 21:01:25 +00003316
dan3b9330f2014-02-27 20:44:18 +00003317 /* Read the serial types for the next element in each key. */
3318 idx1 += getVarint32( aKey1+idx1, serial_type1 );
dan1fed5da2014-02-25 21:01:25 +00003319
dan3b9330f2014-02-27 20:44:18 +00003320 /* Verify that there is enough key space remaining to avoid
3321 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3322 ** always be greater than or equal to the amount of required key space.
3323 ** Use that approximation to avoid the more expensive call to
3324 ** sqlite3VdbeSerialTypeLen() in the common case.
3325 */
3326 if( d1+serial_type1+2>(u32)nKey1
3327 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3328 ){
3329 break;
dan1fed5da2014-02-25 21:01:25 +00003330 }
dan1fed5da2014-02-25 21:01:25 +00003331
dan3b9330f2014-02-27 20:44:18 +00003332 /* Extract the values to be compared.
3333 */
3334 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
dan1fed5da2014-02-25 21:01:25 +00003335
dan3b9330f2014-02-27 20:44:18 +00003336 /* Do the comparison
3337 */
3338 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3339 if( rc!=0 ){
drh17bcb102014-09-18 21:25:33 +00003340 assert( mem1.szMalloc==0 ); /* See comment below */
dan3b9330f2014-02-27 20:44:18 +00003341 if( pKeyInfo->aSortOrder[i] ){
3342 rc = -rc; /* Invert the result for DESC sort order. */
dan1fed5da2014-02-25 21:01:25 +00003343 }
drh79211e12014-05-02 17:33:16 +00003344 goto debugCompareEnd;
dan1fed5da2014-02-25 21:01:25 +00003345 }
dan3b9330f2014-02-27 20:44:18 +00003346 i++;
3347 }while( idx1<szHdr1 && i<pPKey2->nField );
dan1fed5da2014-02-25 21:01:25 +00003348
dan3b9330f2014-02-27 20:44:18 +00003349 /* No memory allocation is ever used on mem1. Prove this using
3350 ** the following assert(). If the assert() fails, it indicates a
3351 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3352 */
drh17bcb102014-09-18 21:25:33 +00003353 assert( mem1.szMalloc==0 );
dan3b9330f2014-02-27 20:44:18 +00003354
3355 /* rc==0 here means that one of the keys ran out of fields and
peter.d.reid60ec9142014-09-06 16:39:46 +00003356 ** all the fields up to that point were equal. Return the default_rc
dan3b9330f2014-02-27 20:44:18 +00003357 ** value. */
drh79211e12014-05-02 17:33:16 +00003358 rc = pPKey2->default_rc;
3359
3360debugCompareEnd:
3361 if( desiredResult==0 && rc==0 ) return 1;
3362 if( desiredResult<0 && rc<0 ) return 1;
3363 if( desiredResult>0 && rc>0 ) return 1;
3364 if( CORRUPT_DB ) return 1;
3365 if( pKeyInfo->db->mallocFailed ) return 1;
3366 return 0;
dan1fed5da2014-02-25 21:01:25 +00003367}
dan3833e932014-03-01 19:44:56 +00003368#endif
dan1fed5da2014-02-25 21:01:25 +00003369
drhe1bb8022015-01-19 19:48:52 +00003370#if SQLITE_DEBUG
3371/*
3372** Count the number of fields (a.k.a. columns) in the record given by
3373** pKey,nKey. The verify that this count is less than or equal to the
3374** limit given by pKeyInfo->nField + pKeyInfo->nXField.
3375**
3376** If this constraint is not satisfied, it means that the high-speed
3377** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3378** not work correctly. If this assert() ever fires, it probably means
3379** that the KeyInfo.nField or KeyInfo.nXField values were computed
3380** incorrectly.
3381*/
3382static void vdbeAssertFieldCountWithinLimits(
3383 int nKey, const void *pKey, /* The record to verify */
3384 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
3385){
3386 int nField = 0;
3387 u32 szHdr;
3388 u32 idx;
3389 u32 notUsed;
3390 const unsigned char *aKey = (const unsigned char*)pKey;
3391
3392 if( CORRUPT_DB ) return;
3393 idx = getVarint32(aKey, szHdr);
mistachkin1b3ee492015-01-21 00:51:08 +00003394 assert( nKey>=0 );
3395 assert( szHdr<=(u32)nKey );
drhe1bb8022015-01-19 19:48:52 +00003396 while( idx<szHdr ){
3397 idx += getVarint32(aKey+idx, notUsed);
3398 nField++;
3399 }
3400 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField );
3401}
drh1af3c642015-01-19 20:57:19 +00003402#else
3403# define vdbeAssertFieldCountWithinLimits(A,B,C)
drhe1bb8022015-01-19 19:48:52 +00003404#endif
3405
dan3833e932014-03-01 19:44:56 +00003406/*
3407** Both *pMem1 and *pMem2 contain string values. Compare the two values
3408** using the collation sequence pColl. As usual, return a negative , zero
3409** or positive value if *pMem1 is less than, equal to or greater than
3410** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3411*/
dan1fed5da2014-02-25 21:01:25 +00003412static int vdbeCompareMemString(
dan3833e932014-03-01 19:44:56 +00003413 const Mem *pMem1,
3414 const Mem *pMem2,
dan38fdead2014-04-01 10:19:02 +00003415 const CollSeq *pColl,
3416 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
dan1fed5da2014-02-25 21:01:25 +00003417){
3418 if( pMem1->enc==pColl->enc ){
3419 /* The strings are already in the correct encoding. Call the
3420 ** comparison function directly */
3421 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3422 }else{
3423 int rc;
3424 const void *v1, *v2;
3425 int n1, n2;
3426 Mem c1;
3427 Mem c2;
drh17bcb102014-09-18 21:25:33 +00003428 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3429 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
dan1fed5da2014-02-25 21:01:25 +00003430 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3431 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3432 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3433 n1 = v1==0 ? 0 : c1.n;
3434 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3435 n2 = v2==0 ? 0 : c2.n;
3436 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
3437 sqlite3VdbeMemRelease(&c1);
3438 sqlite3VdbeMemRelease(&c2);
dan38fdead2014-04-01 10:19:02 +00003439 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
dan1fed5da2014-02-25 21:01:25 +00003440 return rc;
3441 }
3442}
3443
3444/*
drh982ff722014-09-16 03:24:43 +00003445** Compare two blobs. Return negative, zero, or positive if the first
3446** is less than, equal to, or greater than the second, respectively.
3447** If one blob is a prefix of the other, then the shorter is the lessor.
3448*/
3449static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3450 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
3451 if( c ) return c;
3452 return pB1->n - pB2->n;
3453}
3454
3455
3456/*
dan1fed5da2014-02-25 21:01:25 +00003457** Compare the values contained by the two memory cells, returning
3458** negative, zero or positive if pMem1 is less than, equal to, or greater
3459** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3460** and reals) sorted numerically, followed by text ordered by the collating
3461** sequence pColl and finally blob's ordered by memcmp().
3462**
3463** Two NULL values are considered equal by this function.
3464*/
3465int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
dan1fed5da2014-02-25 21:01:25 +00003466 int f1, f2;
3467 int combined_flags;
3468
3469 f1 = pMem1->flags;
3470 f2 = pMem2->flags;
3471 combined_flags = f1|f2;
3472 assert( (combined_flags & MEM_RowSet)==0 );
3473
3474 /* If one value is NULL, it is less than the other. If both values
3475 ** are NULL, return 0.
3476 */
3477 if( combined_flags&MEM_Null ){
3478 return (f2&MEM_Null) - (f1&MEM_Null);
3479 }
3480
3481 /* If one value is a number and the other is not, the number is less.
3482 ** If both are numbers, compare as reals if one is a real, or as integers
3483 ** if both values are integers.
3484 */
3485 if( combined_flags&(MEM_Int|MEM_Real) ){
3486 double r1, r2;
3487 if( (f1 & f2 & MEM_Int)!=0 ){
3488 if( pMem1->u.i < pMem2->u.i ) return -1;
3489 if( pMem1->u.i > pMem2->u.i ) return 1;
3490 return 0;
3491 }
3492 if( (f1&MEM_Real)!=0 ){
drh74eaba42014-09-18 17:52:15 +00003493 r1 = pMem1->u.r;
dan1fed5da2014-02-25 21:01:25 +00003494 }else if( (f1&MEM_Int)!=0 ){
3495 r1 = (double)pMem1->u.i;
3496 }else{
3497 return 1;
3498 }
3499 if( (f2&MEM_Real)!=0 ){
drh74eaba42014-09-18 17:52:15 +00003500 r2 = pMem2->u.r;
dan1fed5da2014-02-25 21:01:25 +00003501 }else if( (f2&MEM_Int)!=0 ){
3502 r2 = (double)pMem2->u.i;
3503 }else{
3504 return -1;
3505 }
3506 if( r1<r2 ) return -1;
3507 if( r1>r2 ) return 1;
3508 return 0;
3509 }
3510
3511 /* If one value is a string and the other is a blob, the string is less.
3512 ** If both are strings, compare using the collating functions.
3513 */
3514 if( combined_flags&MEM_Str ){
3515 if( (f1 & MEM_Str)==0 ){
3516 return 1;
3517 }
3518 if( (f2 & MEM_Str)==0 ){
3519 return -1;
3520 }
3521
3522 assert( pMem1->enc==pMem2->enc );
3523 assert( pMem1->enc==SQLITE_UTF8 ||
3524 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3525
3526 /* The collation sequence must be defined at this point, even if
3527 ** the user deletes the collation sequence after the vdbe program is
3528 ** compiled (this was not always the case).
3529 */
3530 assert( !pColl || pColl->xCmp );
3531
3532 if( pColl ){
dan38fdead2014-04-01 10:19:02 +00003533 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
dan1fed5da2014-02-25 21:01:25 +00003534 }
3535 /* If a NULL pointer was passed as the collate function, fall through
3536 ** to the blob case and use memcmp(). */
3537 }
3538
3539 /* Both values must be blobs. Compare using memcmp(). */
drh982ff722014-09-16 03:24:43 +00003540 return sqlite3BlobCompare(pMem1, pMem2);
dan1fed5da2014-02-25 21:01:25 +00003541}
3542
3543
dan3833e932014-03-01 19:44:56 +00003544/*
3545** The first argument passed to this function is a serial-type that
3546** corresponds to an integer - all values between 1 and 9 inclusive
3547** except 7. The second points to a buffer containing an integer value
3548** serialized according to serial_type. This function deserializes
3549** and returns the value.
3550*/
dan3b9330f2014-02-27 20:44:18 +00003551static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
drhf926d1e2014-03-04 04:04:33 +00003552 u32 y;
dan3833e932014-03-01 19:44:56 +00003553 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
dan3b9330f2014-02-27 20:44:18 +00003554 switch( serial_type ){
dan3833e932014-03-01 19:44:56 +00003555 case 0:
dan3b9330f2014-02-27 20:44:18 +00003556 case 1:
drhb6e8fd12014-03-06 01:56:33 +00003557 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003558 return ONE_BYTE_INT(aKey);
dan3b9330f2014-02-27 20:44:18 +00003559 case 2:
drhb6e8fd12014-03-06 01:56:33 +00003560 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003561 return TWO_BYTE_INT(aKey);
dan3b9330f2014-02-27 20:44:18 +00003562 case 3:
drhb6e8fd12014-03-06 01:56:33 +00003563 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003564 return THREE_BYTE_INT(aKey);
3565 case 4: {
drhb6e8fd12014-03-06 01:56:33 +00003566 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003567 y = FOUR_BYTE_UINT(aKey);
3568 return (i64)*(int*)&y;
3569 }
dan3b9330f2014-02-27 20:44:18 +00003570 case 5: {
drhb6e8fd12014-03-06 01:56:33 +00003571 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003572 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
drhaf5b2af2013-08-05 15:32:09 +00003573 }
dan3b9330f2014-02-27 20:44:18 +00003574 case 6: {
drhf926d1e2014-03-04 04:04:33 +00003575 u64 x = FOUR_BYTE_UINT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003576 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003577 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3578 return (i64)*(i64*)&x;
drh1e968a02008-03-25 00:22:21 +00003579 }
dan3b9330f2014-02-27 20:44:18 +00003580 }
drh407414c2009-07-14 14:15:27 +00003581
dan3b9330f2014-02-27 20:44:18 +00003582 return (serial_type - 8);
drh1e968a02008-03-25 00:22:21 +00003583}
danielk1977eb015e02004-05-18 01:31:14 +00003584
dan3833e932014-03-01 19:44:56 +00003585/*
3586** This function compares the two table rows or index records
3587** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
3588** or positive integer if key1 is less than, equal to or
3589** greater than key2. The {nKey1, pKey1} key must be a blob
peter.d.reid60ec9142014-09-06 16:39:46 +00003590** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
dan3833e932014-03-01 19:44:56 +00003591** key must be a parsed key such as obtained from
3592** sqlite3VdbeParseRecord.
3593**
3594** If argument bSkip is non-zero, it is assumed that the caller has already
3595** determined that the first fields of the keys are equal.
3596**
3597** Key1 and Key2 do not have to contain the same number of fields. If all
3598** fields that appear in both keys are equal, then pPKey2->default_rc is
3599** returned.
drha1f7c0a2014-03-28 03:12:48 +00003600**
dan38fdead2014-04-01 10:19:02 +00003601** If database corruption is discovered, set pPKey2->errCode to
3602** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3603** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3604** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
dan3833e932014-03-01 19:44:56 +00003605*/
dan7004f3f2015-03-30 12:06:26 +00003606int sqlite3VdbeRecordCompareWithSkip(
dan3833e932014-03-01 19:44:56 +00003607 int nKey1, const void *pKey1, /* Left key */
drha1f7c0a2014-03-28 03:12:48 +00003608 UnpackedRecord *pPKey2, /* Right key */
dan3833e932014-03-01 19:44:56 +00003609 int bSkip /* If true, skip the first field */
dan1fed5da2014-02-25 21:01:25 +00003610){
dan3833e932014-03-01 19:44:56 +00003611 u32 d1; /* Offset into aKey[] of next data element */
3612 int i; /* Index of next field to compare */
mistachkinffe6bc22014-03-04 11:16:20 +00003613 u32 szHdr1; /* Size of record header in bytes */
dan3833e932014-03-01 19:44:56 +00003614 u32 idx1; /* Offset of first type in header */
3615 int rc = 0; /* Return value */
3616 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
dan1fed5da2014-02-25 21:01:25 +00003617 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3618 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3619 Mem mem1;
3620
dan3833e932014-03-01 19:44:56 +00003621 /* If bSkip is true, then the caller has already determined that the first
3622 ** two elements in the keys are equal. Fix the various stack variables so
dan3b9330f2014-02-27 20:44:18 +00003623 ** that this routine begins comparing at the second field. */
dan3833e932014-03-01 19:44:56 +00003624 if( bSkip ){
dan3b9330f2014-02-27 20:44:18 +00003625 u32 s1;
dan3b9330f2014-02-27 20:44:18 +00003626 idx1 = 1 + getVarint32(&aKey1[1], s1);
dan3833e932014-03-01 19:44:56 +00003627 szHdr1 = aKey1[0];
3628 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
dan3b9330f2014-02-27 20:44:18 +00003629 i = 1;
3630 pRhs++;
dan3833e932014-03-01 19:44:56 +00003631 }else{
3632 idx1 = getVarint32(aKey1, szHdr1);
3633 d1 = szHdr1;
drha1f7c0a2014-03-28 03:12:48 +00003634 if( d1>(unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003635 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003636 return 0; /* Corruption */
3637 }
dan3833e932014-03-01 19:44:56 +00003638 i = 0;
dan3b9330f2014-02-27 20:44:18 +00003639 }
3640
drh17bcb102014-09-18 21:25:33 +00003641 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
dan1fed5da2014-02-25 21:01:25 +00003642 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
3643 || CORRUPT_DB );
3644 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
3645 assert( pPKey2->pKeyInfo->nField>0 );
3646 assert( idx1<=szHdr1 || CORRUPT_DB );
3647 do{
dan1fed5da2014-02-25 21:01:25 +00003648 u32 serial_type;
3649
3650 /* RHS is an integer */
3651 if( pRhs->flags & MEM_Int ){
3652 serial_type = aKey1[idx1];
drhb6e8fd12014-03-06 01:56:33 +00003653 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00003654 if( serial_type>=12 ){
3655 rc = +1;
3656 }else if( serial_type==0 ){
3657 rc = -1;
dan3b9330f2014-02-27 20:44:18 +00003658 }else if( serial_type==7 ){
3659 double rhs = (double)pRhs->u.i;
dan1fed5da2014-02-25 21:01:25 +00003660 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
drh74eaba42014-09-18 17:52:15 +00003661 if( mem1.u.r<rhs ){
dan3b9330f2014-02-27 20:44:18 +00003662 rc = -1;
drh74eaba42014-09-18 17:52:15 +00003663 }else if( mem1.u.r>rhs ){
dan3b9330f2014-02-27 20:44:18 +00003664 rc = +1;
3665 }
3666 }else{
3667 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
3668 i64 rhs = pRhs->u.i;
3669 if( lhs<rhs ){
3670 rc = -1;
3671 }else if( lhs>rhs ){
3672 rc = +1;
dan1fed5da2014-02-25 21:01:25 +00003673 }
3674 }
3675 }
3676
3677 /* RHS is real */
3678 else if( pRhs->flags & MEM_Real ){
3679 serial_type = aKey1[idx1];
dancc7aa1f2015-05-26 20:07:32 +00003680 if( serial_type>=10 ){
3681 /* Serial types 12 or greater are strings and blobs (greater than
3682 ** numbers). Types 10 and 11 are currently "reserved for future
3683 ** use", so it doesn't really matter what the results of comparing
3684 ** them to numberic values are. */
dan1fed5da2014-02-25 21:01:25 +00003685 rc = +1;
3686 }else if( serial_type==0 ){
3687 rc = -1;
3688 }else{
drh74eaba42014-09-18 17:52:15 +00003689 double rhs = pRhs->u.r;
dan1fed5da2014-02-25 21:01:25 +00003690 double lhs;
3691 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3692 if( serial_type==7 ){
drh74eaba42014-09-18 17:52:15 +00003693 lhs = mem1.u.r;
dan1fed5da2014-02-25 21:01:25 +00003694 }else{
drh295aedf2014-03-03 18:25:24 +00003695 lhs = (double)mem1.u.i;
dan1fed5da2014-02-25 21:01:25 +00003696 }
3697 if( lhs<rhs ){
3698 rc = -1;
3699 }else if( lhs>rhs ){
3700 rc = +1;
3701 }
3702 }
3703 }
3704
3705 /* RHS is a string */
3706 else if( pRhs->flags & MEM_Str ){
3707 getVarint32(&aKey1[idx1], serial_type);
drhb6e8fd12014-03-06 01:56:33 +00003708 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00003709 if( serial_type<12 ){
3710 rc = -1;
3711 }else if( !(serial_type & 0x01) ){
3712 rc = +1;
3713 }else{
3714 mem1.n = (serial_type - 12) / 2;
drhb6e8fd12014-03-06 01:56:33 +00003715 testcase( (d1+mem1.n)==(unsigned)nKey1 );
3716 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
drh295aedf2014-03-03 18:25:24 +00003717 if( (d1+mem1.n) > (unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003718 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003719 return 0; /* Corruption */
dan1fed5da2014-02-25 21:01:25 +00003720 }else if( pKeyInfo->aColl[i] ){
3721 mem1.enc = pKeyInfo->enc;
3722 mem1.db = pKeyInfo->db;
3723 mem1.flags = MEM_Str;
drhfcb44a82014-03-03 15:13:27 +00003724 mem1.z = (char*)&aKey1[d1];
dan38fdead2014-04-01 10:19:02 +00003725 rc = vdbeCompareMemString(
3726 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
3727 );
dan1fed5da2014-02-25 21:01:25 +00003728 }else{
3729 int nCmp = MIN(mem1.n, pRhs->n);
3730 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3731 if( rc==0 ) rc = mem1.n - pRhs->n;
3732 }
3733 }
3734 }
3735
3736 /* RHS is a blob */
3737 else if( pRhs->flags & MEM_Blob ){
3738 getVarint32(&aKey1[idx1], serial_type);
drhb6e8fd12014-03-06 01:56:33 +00003739 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00003740 if( serial_type<12 || (serial_type & 0x01) ){
3741 rc = -1;
3742 }else{
3743 int nStr = (serial_type - 12) / 2;
drhb6e8fd12014-03-06 01:56:33 +00003744 testcase( (d1+nStr)==(unsigned)nKey1 );
3745 testcase( (d1+nStr+1)==(unsigned)nKey1 );
drh295aedf2014-03-03 18:25:24 +00003746 if( (d1+nStr) > (unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003747 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003748 return 0; /* Corruption */
dan1fed5da2014-02-25 21:01:25 +00003749 }else{
3750 int nCmp = MIN(nStr, pRhs->n);
3751 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3752 if( rc==0 ) rc = nStr - pRhs->n;
3753 }
3754 }
3755 }
3756
3757 /* RHS is null */
3758 else{
3759 serial_type = aKey1[idx1];
3760 rc = (serial_type!=0);
3761 }
3762
3763 if( rc!=0 ){
dan1fed5da2014-02-25 21:01:25 +00003764 if( pKeyInfo->aSortOrder[i] ){
3765 rc = -rc;
dan1fed5da2014-02-25 21:01:25 +00003766 }
drh79211e12014-05-02 17:33:16 +00003767 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
drh17bcb102014-09-18 21:25:33 +00003768 assert( mem1.szMalloc==0 ); /* See comment below */
dan1fed5da2014-02-25 21:01:25 +00003769 return rc;
3770 }
3771
3772 i++;
dan3b9330f2014-02-27 20:44:18 +00003773 pRhs++;
dan1fed5da2014-02-25 21:01:25 +00003774 d1 += sqlite3VdbeSerialTypeLen(serial_type);
3775 idx1 += sqlite3VarintLen(serial_type);
drh295aedf2014-03-03 18:25:24 +00003776 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
dan1fed5da2014-02-25 21:01:25 +00003777
3778 /* No memory allocation is ever used on mem1. Prove this using
3779 ** the following assert(). If the assert() fails, it indicates a
dan3833e932014-03-01 19:44:56 +00003780 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
drh17bcb102014-09-18 21:25:33 +00003781 assert( mem1.szMalloc==0 );
dan1fed5da2014-02-25 21:01:25 +00003782
3783 /* rc==0 here means that one or both of the keys ran out of fields and
peter.d.reid60ec9142014-09-06 16:39:46 +00003784 ** all the fields up to that point were equal. Return the default_rc
dan1fed5da2014-02-25 21:01:25 +00003785 ** value. */
dan3833e932014-03-01 19:44:56 +00003786 assert( CORRUPT_DB
drh66141812014-06-30 20:25:03 +00003787 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
dan6696ba32014-06-28 19:06:49 +00003788 || pKeyInfo->db->mallocFailed
dan3833e932014-03-01 19:44:56 +00003789 );
dan1fed5da2014-02-25 21:01:25 +00003790 return pPKey2->default_rc;
3791}
drh75179de2014-09-16 14:37:35 +00003792int sqlite3VdbeRecordCompare(
3793 int nKey1, const void *pKey1, /* Left key */
3794 UnpackedRecord *pPKey2 /* Right key */
3795){
dan7004f3f2015-03-30 12:06:26 +00003796 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
drh75179de2014-09-16 14:37:35 +00003797}
3798
dan1fed5da2014-02-25 21:01:25 +00003799
dan3833e932014-03-01 19:44:56 +00003800/*
3801** This function is an optimized version of sqlite3VdbeRecordCompare()
3802** that (a) the first field of pPKey2 is an integer, and (b) the
3803** size-of-header varint at the start of (pKey1/nKey1) fits in a single
3804** byte (i.e. is less than 128).
drhe2ac5062014-03-26 12:02:38 +00003805**
3806** To avoid concerns about buffer overreads, this routine is only used
3807** on schemas where the maximum valid header size is 63 bytes or less.
dan3833e932014-03-01 19:44:56 +00003808*/
dan3b9330f2014-02-27 20:44:18 +00003809static int vdbeRecordCompareInt(
3810 int nKey1, const void *pKey1, /* Left key */
drh75179de2014-09-16 14:37:35 +00003811 UnpackedRecord *pPKey2 /* Right key */
dan3b9330f2014-02-27 20:44:18 +00003812){
dan9b8afef2014-03-03 20:48:50 +00003813 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
dan3b9330f2014-02-27 20:44:18 +00003814 int serial_type = ((const u8*)pKey1)[1];
3815 int res;
drhf926d1e2014-03-04 04:04:33 +00003816 u32 y;
3817 u64 x;
dan3b9330f2014-02-27 20:44:18 +00003818 i64 v = pPKey2->aMem[0].u.i;
3819 i64 lhs;
3820
drhe1bb8022015-01-19 19:48:52 +00003821 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
drhe2ac5062014-03-26 12:02:38 +00003822 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
dan3833e932014-03-01 19:44:56 +00003823 switch( serial_type ){
drhf926d1e2014-03-04 04:04:33 +00003824 case 1: { /* 1-byte signed integer */
3825 lhs = ONE_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003826 testcase( lhs<0 );
dan3b9330f2014-02-27 20:44:18 +00003827 break;
3828 }
drhf926d1e2014-03-04 04:04:33 +00003829 case 2: { /* 2-byte signed integer */
3830 lhs = TWO_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003831 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00003832 break;
3833 }
3834 case 3: { /* 3-byte signed integer */
3835 lhs = THREE_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003836 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00003837 break;
3838 }
3839 case 4: { /* 4-byte signed integer */
3840 y = FOUR_BYTE_UINT(aKey);
3841 lhs = (i64)*(int*)&y;
drhb6e8fd12014-03-06 01:56:33 +00003842 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00003843 break;
3844 }
3845 case 5: { /* 6-byte signed integer */
3846 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003847 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00003848 break;
3849 }
3850 case 6: { /* 8-byte signed integer */
3851 x = FOUR_BYTE_UINT(aKey);
3852 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3853 lhs = *(i64*)&x;
drhb6e8fd12014-03-06 01:56:33 +00003854 testcase( lhs<0 );
dan3b9330f2014-02-27 20:44:18 +00003855 break;
3856 }
dan3b9330f2014-02-27 20:44:18 +00003857 case 8:
3858 lhs = 0;
3859 break;
dan3b9330f2014-02-27 20:44:18 +00003860 case 9:
3861 lhs = 1;
3862 break;
3863
dan063d4a02014-02-28 09:48:30 +00003864 /* This case could be removed without changing the results of running
3865 ** this code. Including it causes gcc to generate a faster switch
3866 ** statement (since the range of switch targets now starts at zero and
dan597515d2014-02-28 18:39:51 +00003867 ** is contiguous) but does not cause any duplicate code to be generated
dan063d4a02014-02-28 09:48:30 +00003868 ** (as gcc is clever enough to combine the two like cases). Other
3869 ** compilers might be similar. */
3870 case 0: case 7:
drh75179de2014-09-16 14:37:35 +00003871 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
dan063d4a02014-02-28 09:48:30 +00003872
dan3b9330f2014-02-27 20:44:18 +00003873 default:
drh75179de2014-09-16 14:37:35 +00003874 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
dan3b9330f2014-02-27 20:44:18 +00003875 }
3876
3877 if( v>lhs ){
3878 res = pPKey2->r1;
3879 }else if( v<lhs ){
3880 res = pPKey2->r2;
3881 }else if( pPKey2->nField>1 ){
dan063d4a02014-02-28 09:48:30 +00003882 /* The first fields of the two keys are equal. Compare the trailing
3883 ** fields. */
dan7004f3f2015-03-30 12:06:26 +00003884 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
dan3b9330f2014-02-27 20:44:18 +00003885 }else{
dan063d4a02014-02-28 09:48:30 +00003886 /* The first fields of the two keys are equal and there are no trailing
3887 ** fields. Return pPKey2->default_rc in this case. */
dan3b9330f2014-02-27 20:44:18 +00003888 res = pPKey2->default_rc;
3889 }
3890
drh79211e12014-05-02 17:33:16 +00003891 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
dan3b9330f2014-02-27 20:44:18 +00003892 return res;
3893}
3894
dan3833e932014-03-01 19:44:56 +00003895/*
3896** This function is an optimized version of sqlite3VdbeRecordCompare()
3897** that (a) the first field of pPKey2 is a string, that (b) the first field
3898** uses the collation sequence BINARY and (c) that the size-of-header varint
3899** at the start of (pKey1/nKey1) fits in a single byte.
3900*/
dan3b9330f2014-02-27 20:44:18 +00003901static int vdbeRecordCompareString(
3902 int nKey1, const void *pKey1, /* Left key */
drh75179de2014-09-16 14:37:35 +00003903 UnpackedRecord *pPKey2 /* Right key */
dan3b9330f2014-02-27 20:44:18 +00003904){
3905 const u8 *aKey1 = (const u8*)pKey1;
3906 int serial_type;
3907 int res;
3908
drhe1bb8022015-01-19 19:48:52 +00003909 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
dan3b9330f2014-02-27 20:44:18 +00003910 getVarint32(&aKey1[1], serial_type);
dan3b9330f2014-02-27 20:44:18 +00003911 if( serial_type<12 ){
3912 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
3913 }else if( !(serial_type & 0x01) ){
3914 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
3915 }else{
3916 int nCmp;
3917 int nStr;
dan3833e932014-03-01 19:44:56 +00003918 int szHdr = aKey1[0];
dan3b9330f2014-02-27 20:44:18 +00003919
3920 nStr = (serial_type-12) / 2;
drha1f7c0a2014-03-28 03:12:48 +00003921 if( (szHdr + nStr) > nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003922 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003923 return 0; /* Corruption */
3924 }
dan3b9330f2014-02-27 20:44:18 +00003925 nCmp = MIN( pPKey2->aMem[0].n, nStr );
dan3833e932014-03-01 19:44:56 +00003926 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
dan3b9330f2014-02-27 20:44:18 +00003927
3928 if( res==0 ){
3929 res = nStr - pPKey2->aMem[0].n;
3930 if( res==0 ){
3931 if( pPKey2->nField>1 ){
dan7004f3f2015-03-30 12:06:26 +00003932 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
dan3b9330f2014-02-27 20:44:18 +00003933 }else{
3934 res = pPKey2->default_rc;
3935 }
3936 }else if( res>0 ){
3937 res = pPKey2->r2;
3938 }else{
3939 res = pPKey2->r1;
3940 }
3941 }else if( res>0 ){
3942 res = pPKey2->r2;
3943 }else{
3944 res = pPKey2->r1;
3945 }
3946 }
3947
drh66141812014-06-30 20:25:03 +00003948 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
dan3b9330f2014-02-27 20:44:18 +00003949 || CORRUPT_DB
dan6696ba32014-06-28 19:06:49 +00003950 || pPKey2->pKeyInfo->db->mallocFailed
dan3b9330f2014-02-27 20:44:18 +00003951 );
3952 return res;
3953}
3954
dan3833e932014-03-01 19:44:56 +00003955/*
3956** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
3957** suitable for comparing serialized records to the unpacked record passed
3958** as the only argument.
3959*/
dan1fed5da2014-02-25 21:01:25 +00003960RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
dan9b8afef2014-03-03 20:48:50 +00003961 /* varintRecordCompareInt() and varintRecordCompareString() both assume
3962 ** that the size-of-header varint that occurs at the start of each record
3963 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
3964 ** also assumes that it is safe to overread a buffer by at least the
3965 ** maximum possible legal header size plus 8 bytes. Because there is
3966 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
3967 ** buffer passed to varintRecordCompareInt() this makes it convenient to
3968 ** limit the size of the header to 64 bytes in cases where the first field
3969 ** is an integer.
3970 **
3971 ** The easiest way to enforce this limit is to consider only records with
3972 ** 13 fields or less. If the first field is an integer, the maximum legal
3973 ** header size is (12*5 + 1 + 1) bytes. */
3974 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
dan1fed5da2014-02-25 21:01:25 +00003975 int flags = p->aMem[0].flags;
dan3b9330f2014-02-27 20:44:18 +00003976 if( p->pKeyInfo->aSortOrder[0] ){
3977 p->r1 = 1;
3978 p->r2 = -1;
3979 }else{
3980 p->r1 = -1;
3981 p->r2 = 1;
3982 }
dan1fed5da2014-02-25 21:01:25 +00003983 if( (flags & MEM_Int) ){
3984 return vdbeRecordCompareInt;
dan3b9330f2014-02-27 20:44:18 +00003985 }
drhb6e8fd12014-03-06 01:56:33 +00003986 testcase( flags & MEM_Real );
3987 testcase( flags & MEM_Null );
3988 testcase( flags & MEM_Blob );
3989 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
3990 assert( flags & MEM_Str );
dan1fed5da2014-02-25 21:01:25 +00003991 return vdbeRecordCompareString;
3992 }
3993 }
dan3b9330f2014-02-27 20:44:18 +00003994
dan3833e932014-03-01 19:44:56 +00003995 return sqlite3VdbeRecordCompare;
dan3b9330f2014-02-27 20:44:18 +00003996}
dan1fed5da2014-02-25 21:01:25 +00003997
danielk1977eb015e02004-05-18 01:31:14 +00003998/*
drh7a224de2004-06-02 01:22:02 +00003999** pCur points at an index entry created using the OP_MakeRecord opcode.
4000** Read the rowid (the last field in the record) and store it in *rowid.
4001** Return SQLITE_OK if everything works, or an error code otherwise.
drh88a003e2008-12-11 16:17:03 +00004002**
4003** pCur might be pointing to text obtained from a corrupt database file.
4004** So the content cannot be trusted. Do appropriate checks on the content.
danielk1977183f9f72004-05-13 05:20:26 +00004005*/
drhd3b74202014-09-17 16:41:15 +00004006int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
drh61fc5952007-04-01 23:49:51 +00004007 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00004008 int rc;
drhd5788202004-05-28 08:21:05 +00004009 u32 szHdr; /* Size of the header */
4010 u32 typeRowid; /* Serial type of the rowid */
4011 u32 lenRowid; /* Size of the rowid */
4012 Mem m, v;
danielk1977183f9f72004-05-13 05:20:26 +00004013
drh88a003e2008-12-11 16:17:03 +00004014 /* Get the size of the index entry. Only indices entries of less
drh7b746032009-06-26 12:15:22 +00004015 ** than 2GiB are support - anything large must be database corruption.
4016 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
drhc27ae612009-07-14 18:35:44 +00004017 ** this code can safely assume that nCellKey is 32-bits
4018 */
drhea8ffdf2009-07-22 00:35:23 +00004019 assert( sqlite3BtreeCursorIsValid(pCur) );
drhb07028f2011-10-14 21:49:18 +00004020 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
drhc27ae612009-07-14 18:35:44 +00004021 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
drh7b746032009-06-26 12:15:22 +00004022 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
drh88a003e2008-12-11 16:17:03 +00004023
4024 /* Read in the complete content of the index entry */
drhd3b74202014-09-17 16:41:15 +00004025 sqlite3VdbeMemInit(&m, db, 0);
drh501932c2013-11-21 21:59:53 +00004026 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
drhd5788202004-05-28 08:21:05 +00004027 if( rc ){
danielk1977183f9f72004-05-13 05:20:26 +00004028 return rc;
4029 }
drh88a003e2008-12-11 16:17:03 +00004030
4031 /* The index entry must begin with a header size */
shane3f8d5cf2008-04-24 19:15:09 +00004032 (void)getVarint32((u8*)m.z, szHdr);
drh7b746032009-06-26 12:15:22 +00004033 testcase( szHdr==3 );
drh88a003e2008-12-11 16:17:03 +00004034 testcase( szHdr==m.n );
drh7b746032009-06-26 12:15:22 +00004035 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
drh88a003e2008-12-11 16:17:03 +00004036 goto idx_rowid_corruption;
4037 }
4038
4039 /* The last field of the index should be an integer - the ROWID.
4040 ** Verify that the last entry really is an integer. */
shane3f8d5cf2008-04-24 19:15:09 +00004041 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
drh88a003e2008-12-11 16:17:03 +00004042 testcase( typeRowid==1 );
4043 testcase( typeRowid==2 );
4044 testcase( typeRowid==3 );
4045 testcase( typeRowid==4 );
4046 testcase( typeRowid==5 );
4047 testcase( typeRowid==6 );
4048 testcase( typeRowid==8 );
4049 testcase( typeRowid==9 );
4050 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4051 goto idx_rowid_corruption;
4052 }
drhd5788202004-05-28 08:21:05 +00004053 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
drheeb844a2009-08-08 18:01:07 +00004054 testcase( (u32)m.n==szHdr+lenRowid );
4055 if( unlikely((u32)m.n<szHdr+lenRowid) ){
drh88a003e2008-12-11 16:17:03 +00004056 goto idx_rowid_corruption;
4057 }
4058
4059 /* Fetch the integer off the end of the index record */
drh2646da72005-12-09 20:02:05 +00004060 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
drh3c024d62007-03-30 11:23:45 +00004061 *rowid = v.u.i;
danielk1977d8123362004-06-12 09:25:12 +00004062 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00004063 return SQLITE_OK;
drh88a003e2008-12-11 16:17:03 +00004064
4065 /* Jump here if database corruption is detected after m has been
4066 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4067idx_rowid_corruption:
drh17bcb102014-09-18 21:25:33 +00004068 testcase( m.szMalloc!=0 );
drh88a003e2008-12-11 16:17:03 +00004069 sqlite3VdbeMemRelease(&m);
4070 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00004071}
4072
drh7cf6e4d2004-05-19 14:56:55 +00004073/*
drh5f82e3c2009-07-06 00:44:08 +00004074** Compare the key of the index entry that cursor pC is pointing to against
4075** the key string in pUnpacked. Write into *pRes a number
drh7cf6e4d2004-05-19 14:56:55 +00004076** that is negative, zero, or positive if pC is less than, equal to,
drh5f82e3c2009-07-06 00:44:08 +00004077** or greater than pUnpacked. Return SQLITE_OK on success.
drhd3d39e92004-05-20 22:16:29 +00004078**
drh5f82e3c2009-07-06 00:44:08 +00004079** pUnpacked is either created without a rowid or is truncated so that it
drhd5788202004-05-28 08:21:05 +00004080** omits the rowid at the end. The rowid at the end of the index entry
drhec1fc802008-08-13 14:07:40 +00004081** is ignored as well. Hence, this routine only compares the prefixes
4082** of the keys prior to the final rowid, not the entire key.
drh7cf6e4d2004-05-19 14:56:55 +00004083*/
danielk1977183f9f72004-05-13 05:20:26 +00004084int sqlite3VdbeIdxKeyCompare(
drhd3b74202014-09-17 16:41:15 +00004085 sqlite3 *db, /* Database connection */
drh295aedf2014-03-03 18:25:24 +00004086 VdbeCursor *pC, /* The cursor to compare against */
drha1f7c0a2014-03-28 03:12:48 +00004087 UnpackedRecord *pUnpacked, /* Unpacked version of key */
drh295aedf2014-03-03 18:25:24 +00004088 int *res /* Write the comparison result here */
danielk1977183f9f72004-05-13 05:20:26 +00004089){
drh61fc5952007-04-01 23:49:51 +00004090 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00004091 int rc;
danielk19773d1bfea2004-05-14 11:00:53 +00004092 BtCursor *pCur = pC->pCursor;
drhd5788202004-05-28 08:21:05 +00004093 Mem m;
danielk1977183f9f72004-05-13 05:20:26 +00004094
drhea8ffdf2009-07-22 00:35:23 +00004095 assert( sqlite3BtreeCursorIsValid(pCur) );
drhb07028f2011-10-14 21:49:18 +00004096 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
drhc27ae612009-07-14 18:35:44 +00004097 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
drh56689692014-03-03 19:29:28 +00004098 /* nCellKey will always be between 0 and 0xffffffff because of the way
drh407414c2009-07-14 14:15:27 +00004099 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
drhc27ae612009-07-14 18:35:44 +00004100 if( nCellKey<=0 || nCellKey>0x7fffffff ){
danielk1977183f9f72004-05-13 05:20:26 +00004101 *res = 0;
drh9978c972010-02-23 17:36:32 +00004102 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00004103 }
drhd3b74202014-09-17 16:41:15 +00004104 sqlite3VdbeMemInit(&m, db, 0);
drh501932c2013-11-21 21:59:53 +00004105 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
drhec1fc802008-08-13 14:07:40 +00004106 if( rc ){
drhd5788202004-05-28 08:21:05 +00004107 return rc;
danielk1977183f9f72004-05-13 05:20:26 +00004108 }
drh75179de2014-09-16 14:37:35 +00004109 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
danielk1977d8123362004-06-12 09:25:12 +00004110 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00004111 return SQLITE_OK;
4112}
danielk1977b28af712004-06-21 06:50:26 +00004113
4114/*
4115** This routine sets the value to be returned by subsequent calls to
4116** sqlite3_changes() on the database handle 'db'.
4117*/
4118void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
drhb21c8cd2007-08-21 19:33:56 +00004119 assert( sqlite3_mutex_held(db->mutex) );
danielk1977b28af712004-06-21 06:50:26 +00004120 db->nChange = nChange;
4121 db->nTotalChange += nChange;
4122}
4123
4124/*
4125** Set a flag in the vdbe to update the change counter when it is finalised
4126** or reset.
4127*/
drh4794f732004-11-05 17:17:50 +00004128void sqlite3VdbeCountChanges(Vdbe *v){
4129 v->changeCntOn = 1;
danielk1977b28af712004-06-21 06:50:26 +00004130}
drhd89bd002005-01-22 03:03:54 +00004131
4132/*
4133** Mark every prepared statement associated with a database connection
4134** as expired.
4135**
4136** An expired statement means that recompilation of the statement is
4137** recommend. Statements expire when things happen that make their
4138** programs obsolete. Removing user-defined functions or collating
4139** sequences, or changing an authorization function are the types of
4140** things that make prepared statements obsolete.
4141*/
4142void sqlite3ExpirePreparedStatements(sqlite3 *db){
4143 Vdbe *p;
4144 for(p = db->pVdbe; p; p=p->pNext){
4145 p->expired = 1;
4146 }
4147}
danielk1977aee18ef2005-03-09 12:26:50 +00004148
4149/*
4150** Return the database associated with the Vdbe.
4151*/
4152sqlite3 *sqlite3VdbeDb(Vdbe *v){
4153 return v->db;
4154}
dan937d0de2009-10-15 18:35:38 +00004155
4156/*
4157** Return a pointer to an sqlite3_value structure containing the value bound
4158** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4159** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4160** constants) to the value before returning it.
4161**
4162** The returned value must be freed by the caller using sqlite3ValueFree().
4163*/
drhcf0fd4a2013-08-01 12:21:58 +00004164sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
dan937d0de2009-10-15 18:35:38 +00004165 assert( iVar>0 );
4166 if( v ){
4167 Mem *pMem = &v->aVar[iVar-1];
4168 if( 0==(pMem->flags & MEM_Null) ){
4169 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4170 if( pRet ){
4171 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4172 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
dan937d0de2009-10-15 18:35:38 +00004173 }
4174 return pRet;
4175 }
4176 }
4177 return 0;
4178}
4179
4180/*
4181** Configure SQL variable iVar so that binding a new value to it signals
4182** to sqlite3_reoptimize() that re-preparing the statement may result
4183** in a better query plan.
4184*/
dan1d2ce4f2009-10-19 18:11:09 +00004185void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
dan937d0de2009-10-15 18:35:38 +00004186 assert( iVar>0 );
4187 if( iVar>32 ){
dan1d2ce4f2009-10-19 18:11:09 +00004188 v->expmask = 0xffffffff;
dan937d0de2009-10-15 18:35:38 +00004189 }else{
dan1d2ce4f2009-10-19 18:11:09 +00004190 v->expmask |= ((u32)1 << (iVar-1));
dan937d0de2009-10-15 18:35:38 +00004191 }
4192}
dan016f7812013-08-21 17:35:48 +00004193
4194#ifndef SQLITE_OMIT_VIRTUALTABLE
4195/*
4196** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4197** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4198** in memory obtained from sqlite3DbMalloc).
4199*/
4200void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4201 sqlite3 *db = p->db;
4202 sqlite3DbFree(db, p->zErrMsg);
4203 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4204 sqlite3_free(pVtab->zErrMsg);
4205 pVtab->zErrMsg = 0;
4206}
4207#endif /* SQLITE_OMIT_VIRTUALTABLE */