blob: 196a6765df675a281de473b9da37f13956dcd758 [file] [log] [blame]
drh9a324642003-09-06 20:12:01 +00001/*
2** 2003 September 6
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This file contains code used for creating, destroying, and populating
drh7abda852014-09-19 16:02:06 +000013** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
drh9a324642003-09-06 20:12:01 +000014*/
15#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000016#include "vdbeInt.h"
17
drh9a324642003-09-06 20:12:01 +000018/*
19** Create a new virtual database engine.
20*/
drh9ac79622013-12-18 15:11:47 +000021Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
drh9a324642003-09-06 20:12:01 +000023 Vdbe *p;
drh17435752007-08-16 04:30:38 +000024 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
drh9a324642003-09-06 20:12:01 +000025 if( p==0 ) return 0;
26 p->db = db;
27 if( db->pVdbe ){
28 db->pVdbe->pPrev = p;
29 }
30 p->pNext = db->pVdbe;
31 p->pPrev = 0;
32 db->pVdbe = p;
33 p->magic = VDBE_MAGIC_INIT;
drh9ac79622013-12-18 15:11:47 +000034 p->pParse = pParse;
drh73d5b8f2013-12-23 19:09:07 +000035 assert( pParse->aLabel==0 );
36 assert( pParse->nLabel==0 );
37 assert( pParse->nOpAlloc==0 );
drh9a324642003-09-06 20:12:01 +000038 return p;
39}
40
41/*
drh22c17b82015-05-15 04:13:15 +000042** Change the error string stored in Vdbe.zErrMsg
43*/
44void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
45 va_list ap;
46 sqlite3DbFree(p->db, p->zErrMsg);
47 va_start(ap, zFormat);
48 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
49 va_end(ap);
50}
51
52/*
drhb900aaf2006-11-09 00:24:53 +000053** Remember the SQL string for a prepared statement.
54*/
danielk19776ab3a2e2009-02-19 14:39:25 +000055void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
dan1d2ce4f2009-10-19 18:11:09 +000056 assert( isPrepareV2==1 || isPrepareV2==0 );
drhb900aaf2006-11-09 00:24:53 +000057 if( p==0 ) return;
danac455932012-11-26 19:50:41 +000058#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
danielk19776ab3a2e2009-02-19 14:39:25 +000059 if( !isPrepareV2 ) return;
60#endif
drhb900aaf2006-11-09 00:24:53 +000061 assert( p->zSql==0 );
drh17435752007-08-16 04:30:38 +000062 p->zSql = sqlite3DbStrNDup(p->db, z, n);
shanef639c402009-11-03 19:42:30 +000063 p->isPrepareV2 = (u8)isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000064}
65
66/*
67** Return the SQL associated with a prepared statement
68*/
danielk1977d0e2a852007-11-14 06:48:48 +000069const char *sqlite3_sql(sqlite3_stmt *pStmt){
danielk19776ab3a2e2009-02-19 14:39:25 +000070 Vdbe *p = (Vdbe *)pStmt;
drhef41dfe2015-09-02 17:55:12 +000071 return p ? p->zSql : 0;
drhb900aaf2006-11-09 00:24:53 +000072}
73
74/*
drhc5155252007-01-08 21:07:17 +000075** Swap all content between two VDBE structures.
drhb900aaf2006-11-09 00:24:53 +000076*/
drhc5155252007-01-08 21:07:17 +000077void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
78 Vdbe tmp, *pTmp;
79 char *zTmp;
drhc5155252007-01-08 21:07:17 +000080 tmp = *pA;
81 *pA = *pB;
82 *pB = tmp;
83 pTmp = pA->pNext;
84 pA->pNext = pB->pNext;
85 pB->pNext = pTmp;
86 pTmp = pA->pPrev;
87 pA->pPrev = pB->pPrev;
88 pB->pPrev = pTmp;
89 zTmp = pA->zSql;
90 pA->zSql = pB->zSql;
91 pB->zSql = zTmp;
danielk19776ab3a2e2009-02-19 14:39:25 +000092 pB->isPrepareV2 = pA->isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000093}
94
drh9a324642003-09-06 20:12:01 +000095/*
dan76ccd892014-08-12 13:38:52 +000096** Resize the Vdbe.aOp array so that it is at least nOp elements larger
drh81e069e2014-08-12 14:29:20 +000097** than its current size. nOp is guaranteed to be less than or equal
98** to 1024/sizeof(Op).
danielk1977ace3eb22006-01-26 10:35:04 +000099**
danielk197700e13612008-11-17 19:18:54 +0000100** If an out-of-memory error occurs while resizing the array, return
dan76ccd892014-08-12 13:38:52 +0000101** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
danielk197700e13612008-11-17 19:18:54 +0000102** unchanged (this is so that any opcodes already allocated can be
103** correctly deallocated along with the rest of the Vdbe).
drh76ff3a02004-09-24 22:32:30 +0000104*/
dan76ccd892014-08-12 13:38:52 +0000105static int growOpArray(Vdbe *v, int nOp){
drha4e5d582007-10-20 15:41:57 +0000106 VdbeOp *pNew;
drh73d5b8f2013-12-23 19:09:07 +0000107 Parse *p = v->pParse;
dan76ccd892014-08-12 13:38:52 +0000108
drh81e069e2014-08-12 14:29:20 +0000109 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
110 ** more frequent reallocs and hence provide more opportunities for
111 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
112 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
113 ** by the minimum* amount required until the size reaches 512. Normal
114 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
115 ** size of the op array or add 1KB of space, whichever is smaller. */
dan76ccd892014-08-12 13:38:52 +0000116#ifdef SQLITE_TEST_REALLOC_STRESS
117 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
118#else
danielk197700e13612008-11-17 19:18:54 +0000119 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
dan76ccd892014-08-12 13:38:52 +0000120 UNUSED_PARAMETER(nOp);
121#endif
122
drh81e069e2014-08-12 14:29:20 +0000123 assert( nOp<=(1024/sizeof(Op)) );
dan76ccd892014-08-12 13:38:52 +0000124 assert( nNew>=(p->nOpAlloc+nOp) );
drh73d5b8f2013-12-23 19:09:07 +0000125 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
drha4e5d582007-10-20 15:41:57 +0000126 if( pNew ){
drhb45f65d2009-03-01 19:42:11 +0000127 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
drh73d5b8f2013-12-23 19:09:07 +0000128 v->aOp = pNew;
drh76ff3a02004-09-24 22:32:30 +0000129 }
danielk197700e13612008-11-17 19:18:54 +0000130 return (pNew ? SQLITE_OK : SQLITE_NOMEM);
drh76ff3a02004-09-24 22:32:30 +0000131}
132
drh313619f2013-10-31 20:34:06 +0000133#ifdef SQLITE_DEBUG
134/* This routine is just a convenient place to set a breakpoint that will
135** fire after each opcode is inserted and displayed using
136** "PRAGMA vdbe_addoptrace=on".
137*/
138static void test_addop_breakpoint(void){
139 static int n = 0;
140 n++;
141}
142#endif
143
drh76ff3a02004-09-24 22:32:30 +0000144/*
drh9a324642003-09-06 20:12:01 +0000145** Add a new instruction to the list of instructions current in the
146** VDBE. Return the address of the new instruction.
147**
148** Parameters:
149**
150** p Pointer to the VDBE
151**
152** op The opcode for this instruction
153**
drh66a51672008-01-03 00:01:23 +0000154** p1, p2, p3 Operands
drh9a324642003-09-06 20:12:01 +0000155**
danielk19774adee202004-05-08 08:23:19 +0000156** Use the sqlite3VdbeResolveLabel() function to fix an address and
drh66a51672008-01-03 00:01:23 +0000157** the sqlite3VdbeChangeP4() function to change the value of the P4
drh9a324642003-09-06 20:12:01 +0000158** operand.
159*/
drh66a51672008-01-03 00:01:23 +0000160int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
drh9a324642003-09-06 20:12:01 +0000161 int i;
drh701a0ae2004-02-22 20:05:00 +0000162 VdbeOp *pOp;
drh9a324642003-09-06 20:12:01 +0000163
164 i = p->nOp;
drh9a324642003-09-06 20:12:01 +0000165 assert( p->magic==VDBE_MAGIC_INIT );
drh8df32842008-12-09 02:51:23 +0000166 assert( op>0 && op<0xff );
drh73d5b8f2013-12-23 19:09:07 +0000167 if( p->pParse->nOpAlloc<=i ){
dan76ccd892014-08-12 13:38:52 +0000168 if( growOpArray(p, 1) ){
drhc42ed162009-06-26 14:04:51 +0000169 return 1;
drhfd2d26b2006-03-15 22:44:36 +0000170 }
drh9a324642003-09-06 20:12:01 +0000171 }
danielk197701256832007-04-18 14:24:32 +0000172 p->nOp++;
drh701a0ae2004-02-22 20:05:00 +0000173 pOp = &p->aOp[i];
drh8df32842008-12-09 02:51:23 +0000174 pOp->opcode = (u8)op;
drh26c9b5e2008-04-11 14:56:53 +0000175 pOp->p5 = 0;
drh701a0ae2004-02-22 20:05:00 +0000176 pOp->p1 = p1;
drh701a0ae2004-02-22 20:05:00 +0000177 pOp->p2 = p2;
drh66a51672008-01-03 00:01:23 +0000178 pOp->p3 = p3;
179 pOp->p4.p = 0;
180 pOp->p4type = P4_NOTUSED;
drhc7379ce2013-10-30 02:28:23 +0000181#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh26c9b5e2008-04-11 14:56:53 +0000182 pOp->zComment = 0;
drhc7379ce2013-10-30 02:28:23 +0000183#endif
184#ifdef SQLITE_DEBUG
drhe0962052013-01-29 19:14:31 +0000185 if( p->db->flags & SQLITE_VdbeAddopTrace ){
drh9ac79622013-12-18 15:11:47 +0000186 int jj, kk;
187 Parse *pParse = p->pParse;
188 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
189 struct yColCache *x = pParse->aColCache + jj;
190 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
191 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
192 kk++;
193 }
194 if( kk ) printf("\n");
drhe0962052013-01-29 19:14:31 +0000195 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
drh313619f2013-10-31 20:34:06 +0000196 test_addop_breakpoint();
drhe0962052013-01-29 19:14:31 +0000197 }
drh9a324642003-09-06 20:12:01 +0000198#endif
drh26c9b5e2008-04-11 14:56:53 +0000199#ifdef VDBE_PROFILE
200 pOp->cycles = 0;
201 pOp->cnt = 0;
202#endif
drh688852a2014-02-17 22:40:43 +0000203#ifdef SQLITE_VDBE_COVERAGE
204 pOp->iSrcLine = 0;
205#endif
drh9a324642003-09-06 20:12:01 +0000206 return i;
207}
drh66a51672008-01-03 00:01:23 +0000208int sqlite3VdbeAddOp0(Vdbe *p, int op){
209 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
210}
211int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
212 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
213}
214int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
215 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
drh701a0ae2004-02-22 20:05:00 +0000216}
217
drh076e85f2015-09-03 13:46:12 +0000218/* Generate code for an unconditional jump to instruction iDest
219*/
220int sqlite3VdbeGoto(Vdbe *p, int iDest){
drh2991ba02015-09-02 18:19:00 +0000221 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
222}
drh701a0ae2004-02-22 20:05:00 +0000223
drh076e85f2015-09-03 13:46:12 +0000224/* Generate code to cause the string zStr to be loaded into
225** register iDest
226*/
227int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
228 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
229}
230
231/*
232** Generate code that initializes multiple registers to string or integer
233** constants. The registers begin with iDest and increase consecutively.
234** One register is initialized for each characgter in zTypes[]. For each
235** "s" character in zTypes[], the register is a string if the argument is
236** not NULL, or OP_Null if the value is a null pointer. For each "i" character
237** in zTypes[], the register is initialized to an integer.
238*/
239void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
240 va_list ap;
241 int i;
242 char c;
243 va_start(ap, zTypes);
244 for(i=0; (c = zTypes[i])!=0; i++){
245 if( c=='s' ){
246 const char *z = va_arg(ap, const char*);
247 int addr = sqlite3VdbeAddOp2(p, z==0 ? OP_Null : OP_String8, 0, iDest++);
248 if( z ) sqlite3VdbeChangeP4(p, addr, z, 0);
249 }else{
250 assert( c=='i' );
251 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++);
252 }
253 }
254 va_end(ap);
255}
drh66a51672008-01-03 00:01:23 +0000256
drh701a0ae2004-02-22 20:05:00 +0000257/*
drh66a51672008-01-03 00:01:23 +0000258** Add an opcode that includes the p4 value as a pointer.
drhd4e70eb2008-01-02 00:34:36 +0000259*/
drh66a51672008-01-03 00:01:23 +0000260int sqlite3VdbeAddOp4(
drhd4e70eb2008-01-02 00:34:36 +0000261 Vdbe *p, /* Add the opcode to this VM */
262 int op, /* The new opcode */
drh66a51672008-01-03 00:01:23 +0000263 int p1, /* The P1 operand */
264 int p2, /* The P2 operand */
265 int p3, /* The P3 operand */
266 const char *zP4, /* The P4 operand */
267 int p4type /* P4 operand type */
drhd4e70eb2008-01-02 00:34:36 +0000268){
drh66a51672008-01-03 00:01:23 +0000269 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
270 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
drhd4e70eb2008-01-02 00:34:36 +0000271 return addr;
272}
273
274/*
drh7cc023c2015-09-03 04:28:25 +0000275** Add an opcode that includes the p4 value with a P4_INT64 or
276** P4_REAL type.
drh97bae792015-06-05 15:59:57 +0000277*/
278int sqlite3VdbeAddOp4Dup8(
279 Vdbe *p, /* Add the opcode to this VM */
280 int op, /* The new opcode */
281 int p1, /* The P1 operand */
282 int p2, /* The P2 operand */
283 int p3, /* The P3 operand */
284 const u8 *zP4, /* The P4 operand */
285 int p4type /* P4 operand type */
286){
287 char *p4copy = sqlite3DbMallocRaw(sqlite3VdbeDb(p), 8);
288 if( p4copy ) memcpy(p4copy, zP4, 8);
289 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
290}
291
292/*
drh5d9c9da2011-06-03 20:11:17 +0000293** Add an OP_ParseSchema opcode. This routine is broken out from
drhe4c88c02012-01-04 12:57:45 +0000294** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
295** as having been used.
drh5d9c9da2011-06-03 20:11:17 +0000296**
297** The zWhere string must have been obtained from sqlite3_malloc().
298** This routine will take ownership of the allocated memory.
299*/
300void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
301 int j;
302 int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
303 sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
304 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
305}
306
307/*
drh8cff69d2009-11-12 19:59:44 +0000308** Add an opcode that includes the p4 value as an integer.
309*/
310int sqlite3VdbeAddOp4Int(
311 Vdbe *p, /* Add the opcode to this VM */
312 int op, /* The new opcode */
313 int p1, /* The P1 operand */
314 int p2, /* The P2 operand */
315 int p3, /* The P3 operand */
316 int p4 /* The P4 operand as an integer */
317){
318 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
319 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
320 return addr;
321}
322
323/*
drh9a324642003-09-06 20:12:01 +0000324** Create a new symbolic label for an instruction that has yet to be
325** coded. The symbolic label is really just a negative number. The
326** label can be used as the P2 value of an operation. Later, when
327** the label is resolved to a specific address, the VDBE will scan
328** through its operation list and change all values of P2 which match
329** the label into the resolved address.
330**
331** The VDBE knows that a P2 value is a label because labels are
332** always negative and P2 values are suppose to be non-negative.
333** Hence, a negative P2 value is a label that has yet to be resolved.
danielk1977b5548a82004-06-26 13:51:33 +0000334**
335** Zero is returned if a malloc() fails.
drh9a324642003-09-06 20:12:01 +0000336*/
drh73d5b8f2013-12-23 19:09:07 +0000337int sqlite3VdbeMakeLabel(Vdbe *v){
338 Parse *p = v->pParse;
drhc35f3d52012-02-01 19:03:38 +0000339 int i = p->nLabel++;
drh73d5b8f2013-12-23 19:09:07 +0000340 assert( v->magic==VDBE_MAGIC_INIT );
drhc35f3d52012-02-01 19:03:38 +0000341 if( (i & (i-1))==0 ){
342 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
343 (i*2+1)*sizeof(p->aLabel[0]));
drh9a324642003-09-06 20:12:01 +0000344 }
drh76ff3a02004-09-24 22:32:30 +0000345 if( p->aLabel ){
346 p->aLabel[i] = -1;
drh9a324642003-09-06 20:12:01 +0000347 }
drh9a324642003-09-06 20:12:01 +0000348 return -1-i;
349}
350
351/*
352** Resolve label "x" to be the address of the next instruction to
353** be inserted. The parameter "x" must have been obtained from
danielk19774adee202004-05-08 08:23:19 +0000354** a prior call to sqlite3VdbeMakeLabel().
drh9a324642003-09-06 20:12:01 +0000355*/
drh73d5b8f2013-12-23 19:09:07 +0000356void sqlite3VdbeResolveLabel(Vdbe *v, int x){
357 Parse *p = v->pParse;
drh76ff3a02004-09-24 22:32:30 +0000358 int j = -1-x;
drh73d5b8f2013-12-23 19:09:07 +0000359 assert( v->magic==VDBE_MAGIC_INIT );
drhb2b9d3d2013-08-01 01:14:43 +0000360 assert( j<p->nLabel );
drhef41dfe2015-09-02 17:55:12 +0000361 assert( j>=0 );
362 if( p->aLabel ){
drh73d5b8f2013-12-23 19:09:07 +0000363 p->aLabel[j] = v->nOp;
drh9a324642003-09-06 20:12:01 +0000364 }
drh61019c72014-01-04 16:49:02 +0000365 p->iFixedOp = v->nOp - 1;
drh9a324642003-09-06 20:12:01 +0000366}
367
drh4611d922010-02-25 14:47:01 +0000368/*
369** Mark the VDBE as one that can only be run one time.
370*/
371void sqlite3VdbeRunOnlyOnce(Vdbe *p){
372 p->runOnlyOnce = 1;
373}
374
drhff738bc2009-09-24 00:09:58 +0000375#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
dan144926d2009-09-09 11:37:20 +0000376
377/*
378** The following type and function are used to iterate through all opcodes
379** in a Vdbe main program and each of the sub-programs (triggers) it may
380** invoke directly or indirectly. It should be used as follows:
381**
382** Op *pOp;
383** VdbeOpIter sIter;
384**
385** memset(&sIter, 0, sizeof(sIter));
386** sIter.v = v; // v is of type Vdbe*
387** while( (pOp = opIterNext(&sIter)) ){
388** // Do something with pOp
389** }
390** sqlite3DbFree(v->db, sIter.apSub);
391**
392*/
393typedef struct VdbeOpIter VdbeOpIter;
394struct VdbeOpIter {
395 Vdbe *v; /* Vdbe to iterate through the opcodes of */
396 SubProgram **apSub; /* Array of subprograms */
397 int nSub; /* Number of entries in apSub */
398 int iAddr; /* Address of next instruction to return */
399 int iSub; /* 0 = main program, 1 = first sub-program etc. */
400};
401static Op *opIterNext(VdbeOpIter *p){
402 Vdbe *v = p->v;
403 Op *pRet = 0;
404 Op *aOp;
405 int nOp;
406
407 if( p->iSub<=p->nSub ){
408
409 if( p->iSub==0 ){
410 aOp = v->aOp;
411 nOp = v->nOp;
412 }else{
413 aOp = p->apSub[p->iSub-1]->aOp;
414 nOp = p->apSub[p->iSub-1]->nOp;
415 }
416 assert( p->iAddr<nOp );
417
418 pRet = &aOp[p->iAddr];
419 p->iAddr++;
420 if( p->iAddr==nOp ){
421 p->iSub++;
422 p->iAddr = 0;
423 }
424
425 if( pRet->p4type==P4_SUBPROGRAM ){
426 int nByte = (p->nSub+1)*sizeof(SubProgram*);
427 int j;
428 for(j=0; j<p->nSub; j++){
429 if( p->apSub[j]==pRet->p4.pProgram ) break;
430 }
431 if( j==p->nSub ){
432 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
433 if( !p->apSub ){
434 pRet = 0;
435 }else{
436 p->apSub[p->nSub++] = pRet->p4.pProgram;
437 }
438 }
439 }
440 }
441
442 return pRet;
443}
444
445/*
danf3677212009-09-10 16:14:50 +0000446** Check if the program stored in the VM associated with pParse may
drhff738bc2009-09-24 00:09:58 +0000447** throw an ABORT exception (causing the statement, but not entire transaction
dan144926d2009-09-09 11:37:20 +0000448** to be rolled back). This condition is true if the main program or any
449** sub-programs contains any of the following:
450**
451** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
452** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
453** * OP_Destroy
454** * OP_VUpdate
455** * OP_VRename
dan32b09f22009-09-23 17:29:59 +0000456** * OP_FkCounter with P2==0 (immediate foreign key constraint)
drh0dd5cda2015-06-16 16:39:01 +0000457** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...)
dan144926d2009-09-09 11:37:20 +0000458**
danf3677212009-09-10 16:14:50 +0000459** Then check that the value of Parse.mayAbort is true if an
460** ABORT may be thrown, or false otherwise. Return true if it does
461** match, or false otherwise. This function is intended to be used as
462** part of an assert statement in the compiler. Similar to:
463**
464** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
dan144926d2009-09-09 11:37:20 +0000465*/
danf3677212009-09-10 16:14:50 +0000466int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
467 int hasAbort = 0;
dan04668832014-12-16 20:13:30 +0000468 int hasFkCounter = 0;
drh0dd5cda2015-06-16 16:39:01 +0000469 int hasCreateTable = 0;
470 int hasInitCoroutine = 0;
dan144926d2009-09-09 11:37:20 +0000471 Op *pOp;
472 VdbeOpIter sIter;
473 memset(&sIter, 0, sizeof(sIter));
474 sIter.v = v;
475
476 while( (pOp = opIterNext(&sIter))!=0 ){
477 int opcode = pOp->opcode;
478 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
479 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
drhd91c1a12013-02-09 13:58:25 +0000480 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
dan144926d2009-09-09 11:37:20 +0000481 ){
danf3677212009-09-10 16:14:50 +0000482 hasAbort = 1;
dan144926d2009-09-09 11:37:20 +0000483 break;
484 }
drh0dd5cda2015-06-16 16:39:01 +0000485 if( opcode==OP_CreateTable ) hasCreateTable = 1;
486 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
dan04668832014-12-16 20:13:30 +0000487#ifndef SQLITE_OMIT_FOREIGN_KEY
488 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
489 hasFkCounter = 1;
490 }
491#endif
dan144926d2009-09-09 11:37:20 +0000492 }
dan144926d2009-09-09 11:37:20 +0000493 sqlite3DbFree(v->db, sIter.apSub);
danf3677212009-09-10 16:14:50 +0000494
mistachkin48864df2013-03-21 21:20:32 +0000495 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
danf3677212009-09-10 16:14:50 +0000496 ** If malloc failed, then the while() loop above may not have iterated
497 ** through all opcodes and hasAbort may be set incorrectly. Return
498 ** true for this case to prevent the assert() in the callers frame
499 ** from failing. */
drh0dd5cda2015-06-16 16:39:01 +0000500 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
501 || (hasCreateTable && hasInitCoroutine) );
dan144926d2009-09-09 11:37:20 +0000502}
drhff738bc2009-09-24 00:09:58 +0000503#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
dan144926d2009-09-09 11:37:20 +0000504
drh9a324642003-09-06 20:12:01 +0000505/*
drhef41dfe2015-09-02 17:55:12 +0000506** This routine is called after all opcodes have been inserted. It loops
507** through all the opcodes and fixes up some details.
drh76ff3a02004-09-24 22:32:30 +0000508**
drhef41dfe2015-09-02 17:55:12 +0000509** (1) For each jump instruction with a negative P2 value (a label)
510** resolve the P2 value to an actual address.
danielk1977634f2982005-03-28 08:44:07 +0000511**
drhef41dfe2015-09-02 17:55:12 +0000512** (2) Compute the maximum number of arguments used by any SQL function
513** and store that value in *pMaxFuncArgs.
drha6c2ed92009-11-14 23:22:23 +0000514**
drhef41dfe2015-09-02 17:55:12 +0000515** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
516** indicate what the prepared statement actually does.
517**
518** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
519**
520** (5) Reclaim the memory allocated for storing labels.
drh76ff3a02004-09-24 22:32:30 +0000521*/
drh9cbf3422008-01-17 16:22:13 +0000522static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
drh76ff3a02004-09-24 22:32:30 +0000523 int i;
dan165921a2009-08-28 18:53:45 +0000524 int nMaxArgs = *pMaxFuncArgs;
drh76ff3a02004-09-24 22:32:30 +0000525 Op *pOp;
drh73d5b8f2013-12-23 19:09:07 +0000526 Parse *pParse = p->pParse;
527 int *aLabel = pParse->aLabel;
drhad4a4b82008-11-05 16:37:34 +0000528 p->readOnly = 1;
drh1713afb2013-06-28 01:24:57 +0000529 p->bIsReader = 0;
drh76ff3a02004-09-24 22:32:30 +0000530 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
danielk1977634f2982005-03-28 08:44:07 +0000531 u8 opcode = pOp->opcode;
532
drh8c8a8c42013-08-06 07:45:08 +0000533 /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
534 ** cases from this switch! */
535 switch( opcode ){
drh8c8a8c42013-08-06 07:45:08 +0000536 case OP_Transaction: {
537 if( pOp->p2!=0 ) p->readOnly = 0;
538 /* fall thru */
539 }
540 case OP_AutoCommit:
541 case OP_Savepoint: {
542 p->bIsReader = 1;
543 break;
544 }
dand9031542013-07-05 16:54:30 +0000545#ifndef SQLITE_OMIT_WAL
drh8c8a8c42013-08-06 07:45:08 +0000546 case OP_Checkpoint:
drh9e92a472013-06-27 17:40:30 +0000547#endif
drh8c8a8c42013-08-06 07:45:08 +0000548 case OP_Vacuum:
549 case OP_JournalMode: {
550 p->readOnly = 0;
551 p->bIsReader = 1;
552 break;
553 }
danielk1977182c4ba2007-06-27 15:53:34 +0000554#ifndef SQLITE_OMIT_VIRTUALTABLE
drh8c8a8c42013-08-06 07:45:08 +0000555 case OP_VUpdate: {
556 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
557 break;
558 }
559 case OP_VFilter: {
560 int n;
561 assert( p->nOp - i >= 3 );
562 assert( pOp[-1].opcode==OP_Integer );
563 n = pOp[-1].p1;
564 if( n>nMaxArgs ) nMaxArgs = n;
565 break;
566 }
danielk1977182c4ba2007-06-27 15:53:34 +0000567#endif
drh8c8a8c42013-08-06 07:45:08 +0000568 case OP_Next:
drhf93cd942013-11-21 03:12:25 +0000569 case OP_NextIfOpen:
drh8c8a8c42013-08-06 07:45:08 +0000570 case OP_SorterNext: {
571 pOp->p4.xAdvance = sqlite3BtreeNext;
572 pOp->p4type = P4_ADVANCE;
573 break;
574 }
drhf93cd942013-11-21 03:12:25 +0000575 case OP_Prev:
576 case OP_PrevIfOpen: {
drh8c8a8c42013-08-06 07:45:08 +0000577 pOp->p4.xAdvance = sqlite3BtreePrevious;
578 pOp->p4type = P4_ADVANCE;
579 break;
580 }
danielk1977bc04f852005-03-29 08:26:13 +0000581 }
danielk1977634f2982005-03-28 08:44:07 +0000582
drh8c8a8c42013-08-06 07:45:08 +0000583 pOp->opflags = sqlite3OpcodeProperty[opcode];
drha6c2ed92009-11-14 23:22:23 +0000584 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
drh73d5b8f2013-12-23 19:09:07 +0000585 assert( -1-pOp->p2<pParse->nLabel );
drhd2981512008-01-04 19:33:49 +0000586 pOp->p2 = aLabel[-1-pOp->p2];
587 }
drh76ff3a02004-09-24 22:32:30 +0000588 }
drh73d5b8f2013-12-23 19:09:07 +0000589 sqlite3DbFree(p->db, pParse->aLabel);
590 pParse->aLabel = 0;
591 pParse->nLabel = 0;
danielk1977bc04f852005-03-29 08:26:13 +0000592 *pMaxFuncArgs = nMaxArgs;
drha7ab6d82014-07-21 15:44:39 +0000593 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
drh76ff3a02004-09-24 22:32:30 +0000594}
595
596/*
drh9a324642003-09-06 20:12:01 +0000597** Return the address of the next instruction to be inserted.
598*/
danielk19774adee202004-05-08 08:23:19 +0000599int sqlite3VdbeCurrentAddr(Vdbe *p){
drh9a324642003-09-06 20:12:01 +0000600 assert( p->magic==VDBE_MAGIC_INIT );
601 return p->nOp;
602}
603
dan65a7cd12009-09-01 12:16:01 +0000604/*
605** This function returns a pointer to the array of opcodes associated with
606** the Vdbe passed as the first argument. It is the callers responsibility
607** to arrange for the returned array to be eventually freed using the
608** vdbeFreeOpArray() function.
609**
610** Before returning, *pnOp is set to the number of entries in the returned
611** array. Also, *pnMaxArg is set to the larger of its current value and
612** the number of entries in the Vdbe.apArg[] array required to execute the
613** returned program.
614*/
dan165921a2009-08-28 18:53:45 +0000615VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
616 VdbeOp *aOp = p->aOp;
dan523a0872009-08-31 05:23:32 +0000617 assert( aOp && !p->db->mallocFailed );
dan65a7cd12009-09-01 12:16:01 +0000618
619 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
drha7ab6d82014-07-21 15:44:39 +0000620 assert( DbMaskAllZero(p->btreeMask) );
dan65a7cd12009-09-01 12:16:01 +0000621
dan165921a2009-08-28 18:53:45 +0000622 resolveP2Values(p, pnMaxArg);
623 *pnOp = p->nOp;
624 p->aOp = 0;
625 return aOp;
626}
627
drh9a324642003-09-06 20:12:01 +0000628/*
629** Add a whole list of operations to the operation stack. Return the
630** address of the first operation added.
631*/
drh688852a2014-02-17 22:40:43 +0000632int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){
drhef41dfe2015-09-02 17:55:12 +0000633 int addr, i;
634 VdbeOp *pOut;
635 assert( nOp>0 );
drh9a324642003-09-06 20:12:01 +0000636 assert( p->magic==VDBE_MAGIC_INIT );
dan76ccd892014-08-12 13:38:52 +0000637 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
drh76ff3a02004-09-24 22:32:30 +0000638 return 0;
drh9a324642003-09-06 20:12:01 +0000639 }
640 addr = p->nOp;
drhef41dfe2015-09-02 17:55:12 +0000641 pOut = &p->aOp[addr];
642 for(i=0; i<nOp; i++, aOp++, pOut++){
643 int p2 = aOp->p2;
644 pOut->opcode = aOp->opcode;
645 pOut->p1 = aOp->p1;
646 if( p2<0 ){
647 assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP );
648 pOut->p2 = addr + ADDR(p2);
649 }else{
650 pOut->p2 = p2;
651 }
652 pOut->p3 = aOp->p3;
653 pOut->p4type = P4_NOTUSED;
654 pOut->p4.p = 0;
655 pOut->p5 = 0;
drhc7379ce2013-10-30 02:28:23 +0000656#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drhef41dfe2015-09-02 17:55:12 +0000657 pOut->zComment = 0;
drhc7379ce2013-10-30 02:28:23 +0000658#endif
drh688852a2014-02-17 22:40:43 +0000659#ifdef SQLITE_VDBE_COVERAGE
drhef41dfe2015-09-02 17:55:12 +0000660 pOut->iSrcLine = iLineno+i;
drh688852a2014-02-17 22:40:43 +0000661#else
drhef41dfe2015-09-02 17:55:12 +0000662 (void)iLineno;
drh688852a2014-02-17 22:40:43 +0000663#endif
drhc7379ce2013-10-30 02:28:23 +0000664#ifdef SQLITE_DEBUG
drhef41dfe2015-09-02 17:55:12 +0000665 if( p->db->flags & SQLITE_VdbeAddopTrace ){
666 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
drh9a324642003-09-06 20:12:01 +0000667 }
drhef41dfe2015-09-02 17:55:12 +0000668#endif
drh9a324642003-09-06 20:12:01 +0000669 }
drhef41dfe2015-09-02 17:55:12 +0000670 p->nOp += nOp;
drh9a324642003-09-06 20:12:01 +0000671 return addr;
672}
673
dan6f9702e2014-11-01 20:38:06 +0000674#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
675/*
676** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
677*/
dan037b5322014-11-03 11:25:32 +0000678void sqlite3VdbeScanStatus(
dan6f9702e2014-11-01 20:38:06 +0000679 Vdbe *p, /* VM to add scanstatus() to */
680 int addrExplain, /* Address of OP_Explain (or 0) */
681 int addrLoop, /* Address of loop counter */
682 int addrVisit, /* Address of rows visited counter */
drh518140e2014-11-06 03:55:10 +0000683 LogEst nEst, /* Estimated number of output rows */
dan6f9702e2014-11-01 20:38:06 +0000684 const char *zName /* Name of table or index being scanned */
685){
dan037b5322014-11-03 11:25:32 +0000686 int nByte = (p->nScan+1) * sizeof(ScanStatus);
687 ScanStatus *aNew;
688 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
dan6f9702e2014-11-01 20:38:06 +0000689 if( aNew ){
dan037b5322014-11-03 11:25:32 +0000690 ScanStatus *pNew = &aNew[p->nScan++];
dan6f9702e2014-11-01 20:38:06 +0000691 pNew->addrExplain = addrExplain;
692 pNew->addrLoop = addrLoop;
693 pNew->addrVisit = addrVisit;
694 pNew->nEst = nEst;
695 pNew->zName = sqlite3DbStrDup(p->db, zName);
696 p->aScan = aNew;
697 }
698}
699#endif
700
701
drh9a324642003-09-06 20:12:01 +0000702/*
drh0ff287f2015-09-02 18:40:33 +0000703** Change the value of the opcode, or P1, P2, P3, or P5 operands
704** for a specific instruction.
drh9a324642003-09-06 20:12:01 +0000705*/
drh0ff287f2015-09-02 18:40:33 +0000706void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
707 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
708}
drh88caeac2011-08-24 15:12:08 +0000709void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000710 sqlite3VdbeGetOp(p,addr)->p1 = val;
drh9a324642003-09-06 20:12:01 +0000711}
drh88caeac2011-08-24 15:12:08 +0000712void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000713 sqlite3VdbeGetOp(p,addr)->p2 = val;
drh9a324642003-09-06 20:12:01 +0000714}
drh88caeac2011-08-24 15:12:08 +0000715void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000716 sqlite3VdbeGetOp(p,addr)->p3 = val;
danielk1977207872a2008-01-03 07:54:23 +0000717}
drh0ff287f2015-09-02 18:40:33 +0000718void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){
719 sqlite3VdbeGetOp(p,-1)->p5 = p5;
danielk19771f4aa332008-01-03 09:51:55 +0000720}
721
722/*
drhf8875402006-03-17 13:56:34 +0000723** Change the P2 operand of instruction addr so that it points to
drhd654be82005-09-20 17:42:23 +0000724** the address of the next instruction to be coded.
725*/
726void sqlite3VdbeJumpHere(Vdbe *p, int addr){
drh61019c72014-01-04 16:49:02 +0000727 p->pParse->iFixedOp = p->nOp - 1;
drh0ff287f2015-09-02 18:40:33 +0000728 sqlite3VdbeChangeP2(p, addr, p->nOp);
drhd654be82005-09-20 17:42:23 +0000729}
drhb38ad992005-09-16 00:27:01 +0000730
drhb7f6f682006-07-08 17:06:43 +0000731
732/*
733** If the input FuncDef structure is ephemeral, then free it. If
734** the FuncDef is not ephermal, then do nothing.
735*/
drh633e6d52008-07-28 19:34:53 +0000736static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
drhd36e1042013-09-06 13:10:12 +0000737 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
drh633e6d52008-07-28 19:34:53 +0000738 sqlite3DbFree(db, pDef);
drhb7f6f682006-07-08 17:06:43 +0000739 }
740}
741
dand46def72010-07-24 11:28:28 +0000742static void vdbeFreeOpArray(sqlite3 *, Op *, int);
743
drhb38ad992005-09-16 00:27:01 +0000744/*
drh66a51672008-01-03 00:01:23 +0000745** Delete a P4 value if necessary.
drhb38ad992005-09-16 00:27:01 +0000746*/
drh633e6d52008-07-28 19:34:53 +0000747static void freeP4(sqlite3 *db, int p4type, void *p4){
drh0acb7e42008-06-25 00:12:41 +0000748 if( p4 ){
dand46def72010-07-24 11:28:28 +0000749 assert( db );
drh66a51672008-01-03 00:01:23 +0000750 switch( p4type ){
drh9c7c9132015-06-26 18:16:52 +0000751 case P4_FUNCCTX: {
752 freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc);
753 /* Fall through into the next case */
754 }
drh66a51672008-01-03 00:01:23 +0000755 case P4_REAL:
756 case P4_INT64:
drh66a51672008-01-03 00:01:23 +0000757 case P4_DYNAMIC:
drh2ec2fb22013-11-06 19:59:23 +0000758 case P4_INTARRAY: {
drh633e6d52008-07-28 19:34:53 +0000759 sqlite3DbFree(db, p4);
drhac1733d2005-09-17 17:58:22 +0000760 break;
761 }
drh2ec2fb22013-11-06 19:59:23 +0000762 case P4_KEYINFO: {
763 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
764 break;
765 }
drh28935362013-12-07 20:39:19 +0000766#ifdef SQLITE_ENABLE_CURSOR_HINTS
767 case P4_EXPR: {
768 sqlite3ExprDelete(db, (Expr*)p4);
769 break;
770 }
771#endif
drhb9755982010-07-24 16:34:37 +0000772 case P4_MPRINTF: {
drh7043db92010-07-26 12:38:12 +0000773 if( db->pnBytesFreed==0 ) sqlite3_free(p4);
drhb9755982010-07-24 16:34:37 +0000774 break;
775 }
drh66a51672008-01-03 00:01:23 +0000776 case P4_FUNCDEF: {
drh633e6d52008-07-28 19:34:53 +0000777 freeEphemeralFunction(db, (FuncDef*)p4);
drhb7f6f682006-07-08 17:06:43 +0000778 break;
779 }
drh66a51672008-01-03 00:01:23 +0000780 case P4_MEM: {
drhc176c272010-07-26 13:57:59 +0000781 if( db->pnBytesFreed==0 ){
782 sqlite3ValueFree((sqlite3_value*)p4);
783 }else{
drhf37c68e2010-07-26 14:20:06 +0000784 Mem *p = (Mem*)p4;
drh17bcb102014-09-18 21:25:33 +0000785 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
drhf37c68e2010-07-26 14:20:06 +0000786 sqlite3DbFree(db, p);
drhc176c272010-07-26 13:57:59 +0000787 }
drhac1733d2005-09-17 17:58:22 +0000788 break;
789 }
danielk1977595a5232009-07-24 17:58:53 +0000790 case P4_VTAB : {
dand46def72010-07-24 11:28:28 +0000791 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
danielk1977595a5232009-07-24 17:58:53 +0000792 break;
793 }
drhb38ad992005-09-16 00:27:01 +0000794 }
795 }
796}
797
dan65a7cd12009-09-01 12:16:01 +0000798/*
799** Free the space allocated for aOp and any p4 values allocated for the
800** opcodes contained within. If aOp is not NULL it is assumed to contain
801** nOp entries.
802*/
dan165921a2009-08-28 18:53:45 +0000803static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
804 if( aOp ){
805 Op *pOp;
806 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
807 freeP4(db, pOp->p4type, pOp->p4.p);
drhc7379ce2013-10-30 02:28:23 +0000808#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
dan165921a2009-08-28 18:53:45 +0000809 sqlite3DbFree(db, pOp->zComment);
810#endif
811 }
812 }
813 sqlite3DbFree(db, aOp);
814}
815
dan65a7cd12009-09-01 12:16:01 +0000816/*
dand19c9332010-07-26 12:05:17 +0000817** Link the SubProgram object passed as the second argument into the linked
818** list at Vdbe.pSubProgram. This list is used to delete all sub-program
819** objects when the VM is no longer required.
dan65a7cd12009-09-01 12:16:01 +0000820*/
dand19c9332010-07-26 12:05:17 +0000821void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
822 p->pNext = pVdbe->pProgram;
823 pVdbe->pProgram = p;
dan165921a2009-08-28 18:53:45 +0000824}
825
drh9a324642003-09-06 20:12:01 +0000826/*
drh48f2d3b2011-09-16 01:34:43 +0000827** Change the opcode at addr into OP_Noop
drhf8875402006-03-17 13:56:34 +0000828*/
drh48f2d3b2011-09-16 01:34:43 +0000829void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
dan76ccd892014-08-12 13:38:52 +0000830 if( addr<p->nOp ){
danielk197792d4d7a2007-05-04 12:05:56 +0000831 VdbeOp *pOp = &p->aOp[addr];
drh633e6d52008-07-28 19:34:53 +0000832 sqlite3 *db = p->db;
drh48f2d3b2011-09-16 01:34:43 +0000833 freeP4(db, pOp->p4type, pOp->p4.p);
834 memset(pOp, 0, sizeof(pOp[0]));
835 pOp->opcode = OP_Noop;
drh313619f2013-10-31 20:34:06 +0000836 if( addr==p->nOp-1 ) p->nOp--;
drhf8875402006-03-17 13:56:34 +0000837 }
838}
839
840/*
drh39c4b822014-09-29 15:42:01 +0000841** If the last opcode is "op" and it is not a jump destination,
842** then remove it. Return true if and only if an opcode was removed.
drh762c1c42014-01-02 19:35:30 +0000843*/
drh61019c72014-01-04 16:49:02 +0000844int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
845 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
846 sqlite3VdbeChangeToNoop(p, p->nOp-1);
847 return 1;
848 }else{
849 return 0;
850 }
drh762c1c42014-01-02 19:35:30 +0000851}
852
853/*
drh66a51672008-01-03 00:01:23 +0000854** Change the value of the P4 operand for a specific instruction.
drh9a324642003-09-06 20:12:01 +0000855** This routine is useful when a large program is loaded from a
danielk19774adee202004-05-08 08:23:19 +0000856** static array using sqlite3VdbeAddOpList but we want to make a
drh9a324642003-09-06 20:12:01 +0000857** few minor changes to the program.
858**
drh66a51672008-01-03 00:01:23 +0000859** If n>=0 then the P4 operand is dynamic, meaning that a copy of
drh17435752007-08-16 04:30:38 +0000860** the string is made into memory obtained from sqlite3_malloc().
drh66a51672008-01-03 00:01:23 +0000861** A value of n==0 means copy bytes of zP4 up to and including the
862** first null byte. If n>0 then copy n+1 bytes of zP4.
danielk19771f55c052005-05-19 08:42:59 +0000863**
drh66a51672008-01-03 00:01:23 +0000864** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
danielk19771f55c052005-05-19 08:42:59 +0000865** to a string or structure that is guaranteed to exist for the lifetime of
866** the Vdbe. In these cases we can just copy the pointer.
drh9a324642003-09-06 20:12:01 +0000867**
drh66a51672008-01-03 00:01:23 +0000868** If addr<0 then change P4 on the most recently inserted instruction.
drh9a324642003-09-06 20:12:01 +0000869*/
drh66a51672008-01-03 00:01:23 +0000870void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
drh9a324642003-09-06 20:12:01 +0000871 Op *pOp;
drh633e6d52008-07-28 19:34:53 +0000872 sqlite3 *db;
drh91fd4d42008-01-19 20:11:25 +0000873 assert( p!=0 );
drh633e6d52008-07-28 19:34:53 +0000874 db = p->db;
drh91fd4d42008-01-19 20:11:25 +0000875 assert( p->magic==VDBE_MAGIC_INIT );
drh633e6d52008-07-28 19:34:53 +0000876 if( p->aOp==0 || db->mallocFailed ){
drh2ec2fb22013-11-06 19:59:23 +0000877 if( n!=P4_VTAB ){
drh633e6d52008-07-28 19:34:53 +0000878 freeP4(db, n, (void*)*(char**)&zP4);
danielk1977261919c2005-12-06 12:52:59 +0000879 }
danielk1977d5d56522005-03-16 12:15:20 +0000880 return;
881 }
drh7b746032009-06-26 12:15:22 +0000882 assert( p->nOp>0 );
drh91fd4d42008-01-19 20:11:25 +0000883 assert( addr<p->nOp );
884 if( addr<0 ){
drh9a324642003-09-06 20:12:01 +0000885 addr = p->nOp - 1;
drh9a324642003-09-06 20:12:01 +0000886 }
887 pOp = &p->aOp[addr];
drh079a3072014-03-19 14:10:55 +0000888 assert( pOp->p4type==P4_NOTUSED
889 || pOp->p4type==P4_INT32
890 || pOp->p4type==P4_KEYINFO );
drh633e6d52008-07-28 19:34:53 +0000891 freeP4(db, pOp->p4type, pOp->p4.p);
drh66a51672008-01-03 00:01:23 +0000892 pOp->p4.p = 0;
drh98757152008-01-09 23:04:12 +0000893 if( n==P4_INT32 ){
mlcreech12d40822008-03-06 07:35:21 +0000894 /* Note: this cast is safe, because the origin data point was an int
895 ** that was cast to a (const char *). */
shane1fc41292008-07-08 22:28:48 +0000896 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
drh8df32842008-12-09 02:51:23 +0000897 pOp->p4type = P4_INT32;
drh98757152008-01-09 23:04:12 +0000898 }else if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +0000899 pOp->p4.p = 0;
900 pOp->p4type = P4_NOTUSED;
901 }else if( n==P4_KEYINFO ){
danielk19772dca4ac2008-01-03 11:50:29 +0000902 pOp->p4.p = (void*)zP4;
drh66a51672008-01-03 00:01:23 +0000903 pOp->p4type = P4_KEYINFO;
drh28935362013-12-07 20:39:19 +0000904#ifdef SQLITE_ENABLE_CURSOR_HINTS
905 }else if( n==P4_EXPR ){
906 /* Responsibility for deleting the Expr tree is handed over to the
907 ** VDBE by this operation. The caller should have already invoked
908 ** sqlite3ExprDup() or whatever other routine is needed to make a
909 ** private copy of the tree. */
910 pOp->p4.pExpr = (Expr*)zP4;
911 pOp->p4type = P4_EXPR;
912#endif
danielk1977595a5232009-07-24 17:58:53 +0000913 }else if( n==P4_VTAB ){
914 pOp->p4.p = (void*)zP4;
915 pOp->p4type = P4_VTAB;
916 sqlite3VtabLock((VTable *)zP4);
917 assert( ((VTable *)zP4)->db==p->db );
drh9a324642003-09-06 20:12:01 +0000918 }else if( n<0 ){
danielk19772dca4ac2008-01-03 11:50:29 +0000919 pOp->p4.p = (void*)zP4;
drh8df32842008-12-09 02:51:23 +0000920 pOp->p4type = (signed char)n;
drh9a324642003-09-06 20:12:01 +0000921 }else{
drhea678832008-12-10 19:26:22 +0000922 if( n==0 ) n = sqlite3Strlen30(zP4);
danielk19772dca4ac2008-01-03 11:50:29 +0000923 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
drh66a51672008-01-03 00:01:23 +0000924 pOp->p4type = P4_DYNAMIC;
drh9a324642003-09-06 20:12:01 +0000925 }
926}
927
drh2ec2fb22013-11-06 19:59:23 +0000928/*
929** Set the P4 on the most recently added opcode to the KeyInfo for the
930** index given.
931*/
932void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
933 Vdbe *v = pParse->pVdbe;
934 assert( v!=0 );
935 assert( pIdx!=0 );
936 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
937 P4_KEYINFO);
938}
939
drhc7379ce2013-10-30 02:28:23 +0000940#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drhad6d9462004-09-19 02:15:24 +0000941/*
mistachkind5578432012-08-25 10:01:29 +0000942** Change the comment on the most recently coded instruction. Or
drh16ee60f2008-06-20 18:13:25 +0000943** insert a No-op and add the comment to that new instruction. This
944** makes the code easier to read during debugging. None of this happens
945** in a production build.
drhad6d9462004-09-19 02:15:24 +0000946*/
drhb07028f2011-10-14 21:49:18 +0000947static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
danielk197701256832007-04-18 14:24:32 +0000948 assert( p->nOp>0 || p->aOp==0 );
drhd4e70eb2008-01-02 00:34:36 +0000949 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
danielk1977dba01372008-01-05 18:44:29 +0000950 if( p->nOp ){
drhb07028f2011-10-14 21:49:18 +0000951 assert( p->aOp );
952 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
953 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
954 }
955}
956void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
957 va_list ap;
958 if( p ){
danielk1977dba01372008-01-05 18:44:29 +0000959 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +0000960 vdbeVComment(p, zFormat, ap);
danielk1977dba01372008-01-05 18:44:29 +0000961 va_end(ap);
962 }
drhad6d9462004-09-19 02:15:24 +0000963}
drh16ee60f2008-06-20 18:13:25 +0000964void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
965 va_list ap;
drhb07028f2011-10-14 21:49:18 +0000966 if( p ){
967 sqlite3VdbeAddOp0(p, OP_Noop);
drh16ee60f2008-06-20 18:13:25 +0000968 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +0000969 vdbeVComment(p, zFormat, ap);
drh16ee60f2008-06-20 18:13:25 +0000970 va_end(ap);
971 }
972}
973#endif /* NDEBUG */
drhad6d9462004-09-19 02:15:24 +0000974
drh688852a2014-02-17 22:40:43 +0000975#ifdef SQLITE_VDBE_COVERAGE
976/*
977** Set the value if the iSrcLine field for the previously coded instruction.
978*/
979void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
980 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
981}
982#endif /* SQLITE_VDBE_COVERAGE */
983
drh9a324642003-09-06 20:12:01 +0000984/*
drh20411ea2009-05-29 19:00:12 +0000985** Return the opcode for a given address. If the address is -1, then
986** return the most recently inserted opcode.
987**
988** If a memory allocation error has occurred prior to the calling of this
989** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
drhf83dc1e2010-06-03 12:09:52 +0000990** is readable but not writable, though it is cast to a writable value.
991** The return of a dummy opcode allows the call to continue functioning
peter.d.reid60ec9142014-09-06 16:39:46 +0000992** after an OOM fault without having to check to see if the return from
drhf83dc1e2010-06-03 12:09:52 +0000993** this routine is a valid pointer. But because the dummy.opcode is 0,
994** dummy will never be written to. This is verified by code inspection and
995** by running with Valgrind.
drh9a324642003-09-06 20:12:01 +0000996*/
danielk19774adee202004-05-08 08:23:19 +0000997VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
drha0b75da2010-07-02 18:44:37 +0000998 /* C89 specifies that the constant "dummy" will be initialized to all
999 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
mistachkin0fe5f952011-09-14 18:19:08 +00001000 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
drh9a324642003-09-06 20:12:01 +00001001 assert( p->magic==VDBE_MAGIC_INIT );
drh37b89a02009-06-19 00:33:31 +00001002 if( addr<0 ){
drh37b89a02009-06-19 00:33:31 +00001003 addr = p->nOp - 1;
1004 }
drh17435752007-08-16 04:30:38 +00001005 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
drh20411ea2009-05-29 19:00:12 +00001006 if( p->db->mallocFailed ){
drhf83dc1e2010-06-03 12:09:52 +00001007 return (VdbeOp*)&dummy;
drh20411ea2009-05-29 19:00:12 +00001008 }else{
1009 return &p->aOp[addr];
1010 }
drh9a324642003-09-06 20:12:01 +00001011}
1012
drhc7379ce2013-10-30 02:28:23 +00001013#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
drh81316f82013-10-29 20:40:47 +00001014/*
drhf63552b2013-10-30 00:25:03 +00001015** Return an integer value for one of the parameters to the opcode pOp
1016** determined by character c.
1017*/
1018static int translateP(char c, const Op *pOp){
1019 if( c=='1' ) return pOp->p1;
1020 if( c=='2' ) return pOp->p2;
1021 if( c=='3' ) return pOp->p3;
1022 if( c=='4' ) return pOp->p4.i;
1023 return pOp->p5;
1024}
1025
drh81316f82013-10-29 20:40:47 +00001026/*
drh4eded602013-12-20 15:59:20 +00001027** Compute a string for the "comment" field of a VDBE opcode listing.
1028**
1029** The Synopsis: field in comments in the vdbe.c source file gets converted
1030** to an extra string that is appended to the sqlite3OpcodeName(). In the
1031** absence of other comments, this synopsis becomes the comment on the opcode.
1032** Some translation occurs:
1033**
1034** "PX" -> "r[X]"
1035** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1036** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1037** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
drh81316f82013-10-29 20:40:47 +00001038*/
drhf63552b2013-10-30 00:25:03 +00001039static int displayComment(
1040 const Op *pOp, /* The opcode to be commented */
1041 const char *zP4, /* Previously obtained value for P4 */
1042 char *zTemp, /* Write result here */
1043 int nTemp /* Space available in zTemp[] */
1044){
drh81316f82013-10-29 20:40:47 +00001045 const char *zOpName;
1046 const char *zSynopsis;
1047 int nOpName;
1048 int ii, jj;
1049 zOpName = sqlite3OpcodeName(pOp->opcode);
1050 nOpName = sqlite3Strlen30(zOpName);
1051 if( zOpName[nOpName+1] ){
1052 int seenCom = 0;
drhf63552b2013-10-30 00:25:03 +00001053 char c;
drh81316f82013-10-29 20:40:47 +00001054 zSynopsis = zOpName += nOpName + 1;
drhf63552b2013-10-30 00:25:03 +00001055 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1056 if( c=='P' ){
1057 c = zSynopsis[++ii];
1058 if( c=='4' ){
1059 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1060 }else if( c=='X' ){
1061 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1062 seenCom = 1;
drh81316f82013-10-29 20:40:47 +00001063 }else{
drhf63552b2013-10-30 00:25:03 +00001064 int v1 = translateP(c, pOp);
1065 int v2;
1066 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1067 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1068 ii += 3;
1069 jj += sqlite3Strlen30(zTemp+jj);
1070 v2 = translateP(zSynopsis[ii], pOp);
drh4eded602013-12-20 15:59:20 +00001071 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1072 ii += 2;
1073 v2++;
1074 }
1075 if( v2>1 ){
1076 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1077 }
drhf63552b2013-10-30 00:25:03 +00001078 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1079 ii += 4;
1080 }
drh81316f82013-10-29 20:40:47 +00001081 }
1082 jj += sqlite3Strlen30(zTemp+jj);
1083 }else{
drhf63552b2013-10-30 00:25:03 +00001084 zTemp[jj++] = c;
drh81316f82013-10-29 20:40:47 +00001085 }
1086 }
1087 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1088 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1089 jj += sqlite3Strlen30(zTemp+jj);
1090 }
1091 if( jj<nTemp ) zTemp[jj] = 0;
1092 }else if( pOp->zComment ){
1093 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1094 jj = sqlite3Strlen30(zTemp);
1095 }else{
1096 zTemp[0] = 0;
1097 jj = 0;
1098 }
1099 return jj;
1100}
1101#endif /* SQLITE_DEBUG */
1102
drhf7e36902015-08-13 21:32:41 +00001103#if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1104/*
1105** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1106** that can be displayed in the P4 column of EXPLAIN output.
1107*/
1108static int displayP4Expr(int nTemp, char *zTemp, Expr *pExpr){
drha67a3162015-08-15 00:51:23 +00001109 const char *zOp = 0;
1110 int n;
drhf7e36902015-08-13 21:32:41 +00001111 switch( pExpr->op ){
1112 case TK_STRING:
1113 sqlite3_snprintf(nTemp, zTemp, "%Q", pExpr->u.zToken);
1114 break;
drhf7e36902015-08-13 21:32:41 +00001115 case TK_INTEGER:
1116 sqlite3_snprintf(nTemp, zTemp, "%d", pExpr->u.iValue);
1117 break;
drhf7e36902015-08-13 21:32:41 +00001118 case TK_NULL:
1119 sqlite3_snprintf(nTemp, zTemp, "NULL");
1120 break;
drhf7e36902015-08-13 21:32:41 +00001121 case TK_REGISTER: {
1122 sqlite3_snprintf(nTemp, zTemp, "r[%d]", pExpr->iTable);
1123 break;
1124 }
drhf7e36902015-08-13 21:32:41 +00001125 case TK_COLUMN: {
drhfe663522015-08-14 01:03:21 +00001126 if( pExpr->iColumn<0 ){
1127 sqlite3_snprintf(nTemp, zTemp, "rowid");
1128 }else{
1129 sqlite3_snprintf(nTemp, zTemp, "c%d", (int)pExpr->iColumn);
1130 }
drhf7e36902015-08-13 21:32:41 +00001131 break;
1132 }
drha67a3162015-08-15 00:51:23 +00001133 case TK_LT: zOp = "LT"; break;
1134 case TK_LE: zOp = "LE"; break;
1135 case TK_GT: zOp = "GT"; break;
1136 case TK_GE: zOp = "GE"; break;
1137 case TK_NE: zOp = "NE"; break;
1138 case TK_EQ: zOp = "EQ"; break;
1139 case TK_IS: zOp = "IS"; break;
1140 case TK_ISNOT: zOp = "ISNOT"; break;
1141 case TK_AND: zOp = "AND"; break;
1142 case TK_OR: zOp = "OR"; break;
1143 case TK_PLUS: zOp = "ADD"; break;
1144 case TK_STAR: zOp = "MUL"; break;
1145 case TK_MINUS: zOp = "SUB"; break;
1146 case TK_REM: zOp = "REM"; break;
1147 case TK_BITAND: zOp = "BITAND"; break;
1148 case TK_BITOR: zOp = "BITOR"; break;
1149 case TK_SLASH: zOp = "DIV"; break;
1150 case TK_LSHIFT: zOp = "LSHIFT"; break;
1151 case TK_RSHIFT: zOp = "RSHIFT"; break;
1152 case TK_CONCAT: zOp = "CONCAT"; break;
1153 case TK_UMINUS: zOp = "MINUS"; break;
1154 case TK_UPLUS: zOp = "PLUS"; break;
1155 case TK_BITNOT: zOp = "BITNOT"; break;
1156 case TK_NOT: zOp = "NOT"; break;
1157 case TK_ISNULL: zOp = "ISNULL"; break;
1158 case TK_NOTNULL: zOp = "NOTNULL"; break;
drhf7e36902015-08-13 21:32:41 +00001159
1160 default:
1161 sqlite3_snprintf(nTemp, zTemp, "%s", "expr");
1162 break;
1163 }
1164
drha67a3162015-08-15 00:51:23 +00001165 if( zOp ){
1166 sqlite3_snprintf(nTemp, zTemp, "%s(", zOp);
1167 n = sqlite3Strlen30(zTemp);
drhf7e36902015-08-13 21:32:41 +00001168 n += displayP4Expr(nTemp-n, zTemp+n, pExpr->pLeft);
drha67a3162015-08-15 00:51:23 +00001169 if( n<nTemp-1 && pExpr->pRight ){
1170 zTemp[n++] = ',';
1171 n += displayP4Expr(nTemp-n, zTemp+n, pExpr->pRight);
1172 }
drhf7e36902015-08-13 21:32:41 +00001173 sqlite3_snprintf(nTemp-n, zTemp+n, ")");
1174 }
drhf7e36902015-08-13 21:32:41 +00001175 return sqlite3Strlen30(zTemp);
1176}
1177#endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1178
1179
1180#if VDBE_DISPLAY_P4
drh9a324642003-09-06 20:12:01 +00001181/*
drh66a51672008-01-03 00:01:23 +00001182** Compute a string that describes the P4 parameter for an opcode.
drhd3d39e92004-05-20 22:16:29 +00001183** Use zTemp for any required temporary buffer space.
1184*/
drh66a51672008-01-03 00:01:23 +00001185static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1186 char *zP4 = zTemp;
drhd3d39e92004-05-20 22:16:29 +00001187 assert( nTemp>=20 );
drh66a51672008-01-03 00:01:23 +00001188 switch( pOp->p4type ){
1189 case P4_KEYINFO: {
drhd3d39e92004-05-20 22:16:29 +00001190 int i, j;
danielk19772dca4ac2008-01-03 11:50:29 +00001191 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
drhe1a022e2012-09-17 17:16:53 +00001192 assert( pKeyInfo->aSortOrder!=0 );
drh5b843aa2013-10-30 13:46:01 +00001193 sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField);
drhea678832008-12-10 19:26:22 +00001194 i = sqlite3Strlen30(zTemp);
drhd3d39e92004-05-20 22:16:29 +00001195 for(j=0; j<pKeyInfo->nField; j++){
1196 CollSeq *pColl = pKeyInfo->aColl[j];
drh261d8a52012-12-08 21:36:26 +00001197 const char *zColl = pColl ? pColl->zName : "nil";
1198 int n = sqlite3Strlen30(zColl);
drh5b843aa2013-10-30 13:46:01 +00001199 if( n==6 && memcmp(zColl,"BINARY",6)==0 ){
1200 zColl = "B";
1201 n = 1;
1202 }
drhd5a74c82015-08-15 16:32:50 +00001203 if( i+n>nTemp-7 ){
drh261d8a52012-12-08 21:36:26 +00001204 memcpy(&zTemp[i],",...",4);
drhd5a74c82015-08-15 16:32:50 +00001205 i += 4;
drh261d8a52012-12-08 21:36:26 +00001206 break;
drhd3d39e92004-05-20 22:16:29 +00001207 }
drh261d8a52012-12-08 21:36:26 +00001208 zTemp[i++] = ',';
1209 if( pKeyInfo->aSortOrder[j] ){
1210 zTemp[i++] = '-';
1211 }
1212 memcpy(&zTemp[i], zColl, n+1);
1213 i += n;
drhd3d39e92004-05-20 22:16:29 +00001214 }
1215 zTemp[i++] = ')';
1216 zTemp[i] = 0;
1217 assert( i<nTemp );
drhd3d39e92004-05-20 22:16:29 +00001218 break;
1219 }
drh28935362013-12-07 20:39:19 +00001220#ifdef SQLITE_ENABLE_CURSOR_HINTS
1221 case P4_EXPR: {
drhf7e36902015-08-13 21:32:41 +00001222 displayP4Expr(nTemp, zTemp, pOp->p4.pExpr);
drh28935362013-12-07 20:39:19 +00001223 break;
1224 }
1225#endif
drh66a51672008-01-03 00:01:23 +00001226 case P4_COLLSEQ: {
danielk19772dca4ac2008-01-03 11:50:29 +00001227 CollSeq *pColl = pOp->p4.pColl;
drh5e6790c2013-11-12 20:18:14 +00001228 sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
drhd3d39e92004-05-20 22:16:29 +00001229 break;
1230 }
drh66a51672008-01-03 00:01:23 +00001231 case P4_FUNCDEF: {
danielk19772dca4ac2008-01-03 11:50:29 +00001232 FuncDef *pDef = pOp->p4.pFunc;
drha967e882006-06-13 01:04:52 +00001233 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
drhf9b596e2004-05-26 16:54:42 +00001234 break;
1235 }
drhe2d9e7c2015-06-26 18:47:53 +00001236#ifdef SQLITE_DEBUG
drh9c7c9132015-06-26 18:16:52 +00001237 case P4_FUNCCTX: {
1238 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1239 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
1240 break;
1241 }
drhe2d9e7c2015-06-26 18:47:53 +00001242#endif
drh66a51672008-01-03 00:01:23 +00001243 case P4_INT64: {
danielk19772dca4ac2008-01-03 11:50:29 +00001244 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
drhd4e70eb2008-01-02 00:34:36 +00001245 break;
1246 }
drh66a51672008-01-03 00:01:23 +00001247 case P4_INT32: {
1248 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
drh598f1342007-10-23 15:39:45 +00001249 break;
1250 }
drh66a51672008-01-03 00:01:23 +00001251 case P4_REAL: {
danielk19772dca4ac2008-01-03 11:50:29 +00001252 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
drhd4e70eb2008-01-02 00:34:36 +00001253 break;
1254 }
drh66a51672008-01-03 00:01:23 +00001255 case P4_MEM: {
danielk19772dca4ac2008-01-03 11:50:29 +00001256 Mem *pMem = pOp->p4.pMem;
drhd4e70eb2008-01-02 00:34:36 +00001257 if( pMem->flags & MEM_Str ){
drh66a51672008-01-03 00:01:23 +00001258 zP4 = pMem->z;
drhd4e70eb2008-01-02 00:34:36 +00001259 }else if( pMem->flags & MEM_Int ){
1260 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
1261 }else if( pMem->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +00001262 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
drhb8475df2011-12-09 16:21:19 +00001263 }else if( pMem->flags & MEM_Null ){
1264 sqlite3_snprintf(nTemp, zTemp, "NULL");
drh56016892009-08-25 14:24:04 +00001265 }else{
1266 assert( pMem->flags & MEM_Blob );
1267 zP4 = "(blob)";
drhd4e70eb2008-01-02 00:34:36 +00001268 }
drh598f1342007-10-23 15:39:45 +00001269 break;
1270 }
drha967e882006-06-13 01:04:52 +00001271#ifndef SQLITE_OMIT_VIRTUALTABLE
drh66a51672008-01-03 00:01:23 +00001272 case P4_VTAB: {
danielk1977595a5232009-07-24 17:58:53 +00001273 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
drh466fd812015-03-24 14:57:02 +00001274 sqlite3_snprintf(nTemp, zTemp, "vtab:%p", pVtab);
drha967e882006-06-13 01:04:52 +00001275 break;
1276 }
1277#endif
drh0acb7e42008-06-25 00:12:41 +00001278 case P4_INTARRAY: {
1279 sqlite3_snprintf(nTemp, zTemp, "intarray");
1280 break;
1281 }
dan165921a2009-08-28 18:53:45 +00001282 case P4_SUBPROGRAM: {
1283 sqlite3_snprintf(nTemp, zTemp, "program");
1284 break;
1285 }
drh4a6f3aa2011-08-28 00:19:26 +00001286 case P4_ADVANCE: {
1287 zTemp[0] = 0;
1288 break;
1289 }
drhd3d39e92004-05-20 22:16:29 +00001290 default: {
danielk19772dca4ac2008-01-03 11:50:29 +00001291 zP4 = pOp->p4.z;
drh949f9cd2008-01-12 21:35:57 +00001292 if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +00001293 zP4 = zTemp;
drhd4e70eb2008-01-02 00:34:36 +00001294 zTemp[0] = 0;
drhd3d39e92004-05-20 22:16:29 +00001295 }
1296 }
1297 }
drh66a51672008-01-03 00:01:23 +00001298 assert( zP4!=0 );
drh66a51672008-01-03 00:01:23 +00001299 return zP4;
drhd3d39e92004-05-20 22:16:29 +00001300}
drhf7e36902015-08-13 21:32:41 +00001301#endif /* VDBE_DISPLAY_P4 */
drhd3d39e92004-05-20 22:16:29 +00001302
drh900b31e2007-08-28 02:27:51 +00001303/*
drhd0679ed2007-08-28 22:24:34 +00001304** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
drh3ebaee92010-05-06 21:37:22 +00001305**
drhbdaec522011-04-04 00:14:43 +00001306** The prepared statements need to know in advance the complete set of
drhe4c88c02012-01-04 12:57:45 +00001307** attached databases that will be use. A mask of these databases
1308** is maintained in p->btreeMask. The p->lockMask value is the subset of
1309** p->btreeMask of databases that will require a lock.
drh900b31e2007-08-28 02:27:51 +00001310*/
drhfb982642007-08-30 01:19:59 +00001311void sqlite3VdbeUsesBtree(Vdbe *p, int i){
drhfcd71b62011-04-05 22:08:24 +00001312 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
danielk197700e13612008-11-17 19:18:54 +00001313 assert( i<(int)sizeof(p->btreeMask)*8 );
drha7ab6d82014-07-21 15:44:39 +00001314 DbMaskSet(p->btreeMask, i);
drhdc5b0472011-04-06 22:05:53 +00001315 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
drha7ab6d82014-07-21 15:44:39 +00001316 DbMaskSet(p->lockMask, i);
drhdc5b0472011-04-06 22:05:53 +00001317 }
drh900b31e2007-08-28 02:27:51 +00001318}
1319
drhe54e0512011-04-05 17:31:56 +00001320#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +00001321/*
1322** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1323** this routine obtains the mutex associated with each BtShared structure
1324** that may be accessed by the VM passed as an argument. In doing so it also
1325** sets the BtShared.db member of each of the BtShared structures, ensuring
1326** that the correct busy-handler callback is invoked if required.
1327**
1328** If SQLite is not threadsafe but does support shared-cache mode, then
1329** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1330** of all of BtShared structures accessible via the database handle
1331** associated with the VM.
1332**
1333** If SQLite is not threadsafe and does not support shared-cache mode, this
1334** function is a no-op.
1335**
1336** The p->btreeMask field is a bitmask of all btrees that the prepared
1337** statement p will ever use. Let N be the number of bits in p->btreeMask
1338** corresponding to btrees that use shared cache. Then the runtime of
1339** this routine is N*N. But as N is rarely more than 1, this should not
1340** be a problem.
1341*/
1342void sqlite3VdbeEnter(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001343 int i;
drhdc5b0472011-04-06 22:05:53 +00001344 sqlite3 *db;
1345 Db *aDb;
1346 int nDb;
drha7ab6d82014-07-21 15:44:39 +00001347 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
drhdc5b0472011-04-06 22:05:53 +00001348 db = p->db;
1349 aDb = db->aDb;
1350 nDb = db->nDb;
drha7ab6d82014-07-21 15:44:39 +00001351 for(i=0; i<nDb; i++){
1352 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001353 sqlite3BtreeEnter(aDb[i].pBt);
1354 }
1355 }
drhbdaec522011-04-04 00:14:43 +00001356}
drhe54e0512011-04-05 17:31:56 +00001357#endif
drhbdaec522011-04-04 00:14:43 +00001358
drhe54e0512011-04-05 17:31:56 +00001359#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +00001360/*
1361** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1362*/
drhf1aabd62015-06-17 01:31:28 +00001363static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001364 int i;
drhdc5b0472011-04-06 22:05:53 +00001365 sqlite3 *db;
1366 Db *aDb;
1367 int nDb;
drhdc5b0472011-04-06 22:05:53 +00001368 db = p->db;
1369 aDb = db->aDb;
1370 nDb = db->nDb;
drha7ab6d82014-07-21 15:44:39 +00001371 for(i=0; i<nDb; i++){
1372 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001373 sqlite3BtreeLeave(aDb[i].pBt);
1374 }
1375 }
drhbdaec522011-04-04 00:14:43 +00001376}
drhf1aabd62015-06-17 01:31:28 +00001377void sqlite3VdbeLeave(Vdbe *p){
1378 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1379 vdbeLeave(p);
1380}
drhbdaec522011-04-04 00:14:43 +00001381#endif
drhd3d39e92004-05-20 22:16:29 +00001382
danielk19778b60e0f2005-01-12 09:10:39 +00001383#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
drh9a324642003-09-06 20:12:01 +00001384/*
1385** Print a single opcode. This routine is used for debugging only.
1386*/
danielk19774adee202004-05-08 08:23:19 +00001387void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
drh66a51672008-01-03 00:01:23 +00001388 char *zP4;
drhd3d39e92004-05-20 22:16:29 +00001389 char zPtr[50];
drh81316f82013-10-29 20:40:47 +00001390 char zCom[100];
drh26198bb2013-10-31 11:15:09 +00001391 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
drh9a324642003-09-06 20:12:01 +00001392 if( pOut==0 ) pOut = stdout;
drh66a51672008-01-03 00:01:23 +00001393 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
drhc7379ce2013-10-30 02:28:23 +00001394#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh81316f82013-10-29 20:40:47 +00001395 displayComment(pOp, zP4, zCom, sizeof(zCom));
1396#else
drh2926f962014-02-17 01:13:28 +00001397 zCom[0] = 0;
drh81316f82013-10-29 20:40:47 +00001398#endif
drh4eded602013-12-20 15:59:20 +00001399 /* NB: The sqlite3OpcodeName() function is implemented by code created
1400 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1401 ** information from the vdbe.c source text */
danielk197711641c12008-01-03 08:18:30 +00001402 fprintf(pOut, zFormat1, pc,
drh1db639c2008-01-17 02:36:28 +00001403 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
drh81316f82013-10-29 20:40:47 +00001404 zCom
drh1db639c2008-01-17 02:36:28 +00001405 );
drh9a324642003-09-06 20:12:01 +00001406 fflush(pOut);
1407}
1408#endif
1409
1410/*
drh76ff3a02004-09-24 22:32:30 +00001411** Release an array of N Mem elements
1412*/
drhc890fec2008-08-01 20:10:08 +00001413static void releaseMemArray(Mem *p, int N){
danielk1977a7a8e142008-02-13 18:25:27 +00001414 if( p && N ){
drh069c23c2014-09-19 16:13:12 +00001415 Mem *pEnd = &p[N];
danielk1977a7a8e142008-02-13 18:25:27 +00001416 sqlite3 *db = p->db;
drh8df32842008-12-09 02:51:23 +00001417 u8 malloc_failed = db->mallocFailed;
dand46def72010-07-24 11:28:28 +00001418 if( db->pnBytesFreed ){
drh069c23c2014-09-19 16:13:12 +00001419 do{
drh17bcb102014-09-18 21:25:33 +00001420 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
drh069c23c2014-09-19 16:13:12 +00001421 }while( (++p)<pEnd );
drhc176c272010-07-26 13:57:59 +00001422 return;
1423 }
drh069c23c2014-09-19 16:13:12 +00001424 do{
danielk1977e972e032008-09-19 18:32:26 +00001425 assert( (&p[1])==pEnd || p[0].db==p[1].db );
drh75fd0542014-03-01 16:24:44 +00001426 assert( sqlite3VdbeCheckMemInvariants(p) );
danielk1977e972e032008-09-19 18:32:26 +00001427
1428 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1429 ** that takes advantage of the fact that the memory cell value is
1430 ** being set to NULL after releasing any dynamic resources.
1431 **
1432 ** The justification for duplicating code is that according to
1433 ** callgrind, this causes a certain test case to hit the CPU 4.7
1434 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1435 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1436 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1437 ** with no indexes using a single prepared INSERT statement, bind()
1438 ** and reset(). Inserts are grouped into a transaction.
1439 */
drhb6e8fd12014-03-06 01:56:33 +00001440 testcase( p->flags & MEM_Agg );
1441 testcase( p->flags & MEM_Dyn );
1442 testcase( p->flags & MEM_Frame );
1443 testcase( p->flags & MEM_RowSet );
dan165921a2009-08-28 18:53:45 +00001444 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
danielk1977e972e032008-09-19 18:32:26 +00001445 sqlite3VdbeMemRelease(p);
drh17bcb102014-09-18 21:25:33 +00001446 }else if( p->szMalloc ){
danielk1977e972e032008-09-19 18:32:26 +00001447 sqlite3DbFree(db, p->zMalloc);
drh17bcb102014-09-18 21:25:33 +00001448 p->szMalloc = 0;
danielk1977e972e032008-09-19 18:32:26 +00001449 }
1450
drha5750cf2014-02-07 13:20:31 +00001451 p->flags = MEM_Undefined;
drh069c23c2014-09-19 16:13:12 +00001452 }while( (++p)<pEnd );
danielk1977a7a8e142008-02-13 18:25:27 +00001453 db->mallocFailed = malloc_failed;
drh76ff3a02004-09-24 22:32:30 +00001454 }
1455}
1456
dan65a7cd12009-09-01 12:16:01 +00001457/*
1458** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1459** allocated by the OP_Program opcode in sqlite3VdbeExec().
1460*/
dan165921a2009-08-28 18:53:45 +00001461void sqlite3VdbeFrameDelete(VdbeFrame *p){
1462 int i;
1463 Mem *aMem = VdbeFrameMem(p);
1464 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1465 for(i=0; i<p->nChildCsr; i++){
1466 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1467 }
1468 releaseMemArray(aMem, p->nChildMem);
1469 sqlite3DbFree(p->v->db, p);
1470}
1471
drhb7f91642004-10-31 02:22:47 +00001472#ifndef SQLITE_OMIT_EXPLAIN
drh76ff3a02004-09-24 22:32:30 +00001473/*
drh9a324642003-09-06 20:12:01 +00001474** Give a listing of the program in the virtual machine.
1475**
danielk19774adee202004-05-08 08:23:19 +00001476** The interface is the same as sqlite3VdbeExec(). But instead of
drh9a324642003-09-06 20:12:01 +00001477** running the code, it invokes the callback once for each instruction.
1478** This feature is used to implement "EXPLAIN".
drh9cbf3422008-01-17 16:22:13 +00001479**
1480** When p->explain==1, each instruction is listed. When
1481** p->explain==2, only OP_Explain instructions are listed and these
1482** are shown in a different format. p->explain==2 is used to implement
1483** EXPLAIN QUERY PLAN.
drh5cfa5842009-12-31 20:35:08 +00001484**
1485** When p->explain==1, first the main program is listed, then each of
1486** the trigger subprograms are listed one by one.
drh9a324642003-09-06 20:12:01 +00001487*/
danielk19774adee202004-05-08 08:23:19 +00001488int sqlite3VdbeList(
drh9a324642003-09-06 20:12:01 +00001489 Vdbe *p /* The VDBE */
1490){
drh5cfa5842009-12-31 20:35:08 +00001491 int nRow; /* Stop when row count reaches this */
dan165921a2009-08-28 18:53:45 +00001492 int nSub = 0; /* Number of sub-vdbes seen so far */
1493 SubProgram **apSub = 0; /* Array of sub-vdbes */
drh5cfa5842009-12-31 20:35:08 +00001494 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1495 sqlite3 *db = p->db; /* The database connection */
1496 int i; /* Loop counter */
1497 int rc = SQLITE_OK; /* Return code */
drh9734e6e2011-10-07 18:24:25 +00001498 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
drh9a324642003-09-06 20:12:01 +00001499
drh9a324642003-09-06 20:12:01 +00001500 assert( p->explain );
drh5f82e3c2009-07-06 00:44:08 +00001501 assert( p->magic==VDBE_MAGIC_RUN );
danielk19776c359f02008-11-21 16:58:03 +00001502 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
danielk197718f41892004-05-22 07:27:46 +00001503
drh9cbf3422008-01-17 16:22:13 +00001504 /* Even though this opcode does not use dynamic strings for
1505 ** the result, result columns may become dynamic if the user calls
drh4f26d6c2004-05-26 23:25:30 +00001506 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
danielk197718f41892004-05-22 07:27:46 +00001507 */
dan165921a2009-08-28 18:53:45 +00001508 releaseMemArray(pMem, 8);
drh9734e6e2011-10-07 18:24:25 +00001509 p->pResultSet = 0;
danielk197718f41892004-05-22 07:27:46 +00001510
danielk19776c359f02008-11-21 16:58:03 +00001511 if( p->rc==SQLITE_NOMEM ){
1512 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1513 ** sqlite3_column_text16() failed. */
1514 db->mallocFailed = 1;
1515 return SQLITE_ERROR;
1516 }
1517
drh5cfa5842009-12-31 20:35:08 +00001518 /* When the number of output rows reaches nRow, that means the
1519 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1520 ** nRow is the sum of the number of rows in the main program, plus
1521 ** the sum of the number of rows in all trigger subprograms encountered
1522 ** so far. The nRow value will increase as new trigger subprograms are
1523 ** encountered, but p->pc will eventually catch up to nRow.
1524 */
dan165921a2009-08-28 18:53:45 +00001525 nRow = p->nOp;
1526 if( p->explain==1 ){
drh5cfa5842009-12-31 20:35:08 +00001527 /* The first 8 memory cells are used for the result set. So we will
1528 ** commandeer the 9th cell to use as storage for an array of pointers
1529 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1530 ** cells. */
1531 assert( p->nMem>9 );
dan165921a2009-08-28 18:53:45 +00001532 pSub = &p->aMem[9];
1533 if( pSub->flags&MEM_Blob ){
drh5cfa5842009-12-31 20:35:08 +00001534 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1535 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
dan165921a2009-08-28 18:53:45 +00001536 nSub = pSub->n/sizeof(Vdbe*);
1537 apSub = (SubProgram **)pSub->z;
1538 }
1539 for(i=0; i<nSub; i++){
1540 nRow += apSub[i]->nOp;
1541 }
1542 }
1543
drhecc92422005-09-10 16:46:12 +00001544 do{
1545 i = p->pc++;
dan165921a2009-08-28 18:53:45 +00001546 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1547 if( i>=nRow ){
drh826fb5a2004-02-14 23:59:57 +00001548 p->rc = SQLITE_OK;
1549 rc = SQLITE_DONE;
drh881feaa2006-07-26 01:39:30 +00001550 }else if( db->u1.isInterrupted ){
drhc5cdca62005-01-11 16:54:14 +00001551 p->rc = SQLITE_INTERRUPT;
drh826fb5a2004-02-14 23:59:57 +00001552 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00001553 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
drh826fb5a2004-02-14 23:59:57 +00001554 }else{
drh81316f82013-10-29 20:40:47 +00001555 char *zP4;
dan165921a2009-08-28 18:53:45 +00001556 Op *pOp;
1557 if( i<p->nOp ){
drh5cfa5842009-12-31 20:35:08 +00001558 /* The output line number is small enough that we are still in the
1559 ** main program. */
dan165921a2009-08-28 18:53:45 +00001560 pOp = &p->aOp[i];
1561 }else{
drh5cfa5842009-12-31 20:35:08 +00001562 /* We are currently listing subprograms. Figure out which one and
1563 ** pick up the appropriate opcode. */
dan165921a2009-08-28 18:53:45 +00001564 int j;
1565 i -= p->nOp;
1566 for(j=0; i>=apSub[j]->nOp; j++){
1567 i -= apSub[j]->nOp;
1568 }
1569 pOp = &apSub[j]->aOp[i];
1570 }
danielk19770d78bae2008-01-03 07:09:48 +00001571 if( p->explain==1 ){
1572 pMem->flags = MEM_Int;
danielk19770d78bae2008-01-03 07:09:48 +00001573 pMem->u.i = i; /* Program counter */
1574 pMem++;
1575
1576 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001577 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
danielk19770d78bae2008-01-03 07:09:48 +00001578 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001579 pMem->n = sqlite3Strlen30(pMem->z);
danielk19770d78bae2008-01-03 07:09:48 +00001580 pMem->enc = SQLITE_UTF8;
1581 pMem++;
dan165921a2009-08-28 18:53:45 +00001582
drh5cfa5842009-12-31 20:35:08 +00001583 /* When an OP_Program opcode is encounter (the only opcode that has
1584 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1585 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1586 ** has not already been seen.
1587 */
dan165921a2009-08-28 18:53:45 +00001588 if( pOp->p4type==P4_SUBPROGRAM ){
1589 int nByte = (nSub+1)*sizeof(SubProgram*);
1590 int j;
1591 for(j=0; j<nSub; j++){
1592 if( apSub[j]==pOp->p4.pProgram ) break;
1593 }
dan2b9ee772012-03-31 09:59:44 +00001594 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
dan165921a2009-08-28 18:53:45 +00001595 apSub = (SubProgram **)pSub->z;
1596 apSub[nSub++] = pOp->p4.pProgram;
1597 pSub->flags |= MEM_Blob;
1598 pSub->n = nSub*sizeof(SubProgram*);
1599 }
1600 }
danielk19770d78bae2008-01-03 07:09:48 +00001601 }
drheb2e1762004-05-27 01:53:56 +00001602
1603 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001604 pMem->u.i = pOp->p1; /* P1 */
drheb2e1762004-05-27 01:53:56 +00001605 pMem++;
1606
1607 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001608 pMem->u.i = pOp->p2; /* P2 */
drheb2e1762004-05-27 01:53:56 +00001609 pMem++;
1610
dan2ce22452010-11-08 19:01:16 +00001611 pMem->flags = MEM_Int;
1612 pMem->u.i = pOp->p3; /* P3 */
dan2ce22452010-11-08 19:01:16 +00001613 pMem++;
danielk19770d78bae2008-01-03 07:09:48 +00001614
drh2f2b0272015-08-14 18:50:04 +00001615 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
danielk1977357864e2009-03-25 15:43:08 +00001616 assert( p->db->mallocFailed );
1617 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001618 }
drhc91b2fd2014-03-01 18:13:23 +00001619 pMem->flags = MEM_Str|MEM_Term;
drh2f2b0272015-08-14 18:50:04 +00001620 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
drh81316f82013-10-29 20:40:47 +00001621 if( zP4!=pMem->z ){
1622 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
danielk1977a7a8e142008-02-13 18:25:27 +00001623 }else{
1624 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001625 pMem->n = sqlite3Strlen30(pMem->z);
danielk1977a7a8e142008-02-13 18:25:27 +00001626 pMem->enc = SQLITE_UTF8;
1627 }
danielk19770d78bae2008-01-03 07:09:48 +00001628 pMem++;
drheb2e1762004-05-27 01:53:56 +00001629
danielk19770d78bae2008-01-03 07:09:48 +00001630 if( p->explain==1 ){
drh322f2852014-09-19 00:43:39 +00001631 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
danielk1977357864e2009-03-25 15:43:08 +00001632 assert( p->db->mallocFailed );
1633 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001634 }
drhc91b2fd2014-03-01 18:13:23 +00001635 pMem->flags = MEM_Str|MEM_Term;
drh85e5f0d2008-02-19 18:28:13 +00001636 pMem->n = 2;
1637 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
danielk19770d78bae2008-01-03 07:09:48 +00001638 pMem->enc = SQLITE_UTF8;
1639 pMem++;
1640
drhc7379ce2013-10-30 02:28:23 +00001641#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh322f2852014-09-19 00:43:39 +00001642 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
drh81316f82013-10-29 20:40:47 +00001643 assert( p->db->mallocFailed );
1644 return SQLITE_ERROR;
drh52391cb2008-02-14 23:44:13 +00001645 }
drhc91b2fd2014-03-01 18:13:23 +00001646 pMem->flags = MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001647 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
drh81316f82013-10-29 20:40:47 +00001648 pMem->enc = SQLITE_UTF8;
1649#else
1650 pMem->flags = MEM_Null; /* Comment */
drh81316f82013-10-29 20:40:47 +00001651#endif
danielk19770d78bae2008-01-03 07:09:48 +00001652 }
1653
dan2ce22452010-11-08 19:01:16 +00001654 p->nResColumn = 8 - 4*(p->explain-1);
drh9734e6e2011-10-07 18:24:25 +00001655 p->pResultSet = &p->aMem[1];
drh826fb5a2004-02-14 23:59:57 +00001656 p->rc = SQLITE_OK;
1657 rc = SQLITE_ROW;
drh9a324642003-09-06 20:12:01 +00001658 }
drh826fb5a2004-02-14 23:59:57 +00001659 return rc;
drh9a324642003-09-06 20:12:01 +00001660}
drhb7f91642004-10-31 02:22:47 +00001661#endif /* SQLITE_OMIT_EXPLAIN */
drh9a324642003-09-06 20:12:01 +00001662
drh7c4ac0c2007-04-05 11:25:58 +00001663#ifdef SQLITE_DEBUG
drh9a324642003-09-06 20:12:01 +00001664/*
drh3f7d4e42004-07-24 14:35:58 +00001665** Print the SQL that was used to generate a VDBE program.
1666*/
1667void sqlite3VdbePrintSql(Vdbe *p){
drh84e55a82013-11-13 17:58:23 +00001668 const char *z = 0;
1669 if( p->zSql ){
1670 z = p->zSql;
1671 }else if( p->nOp>=1 ){
1672 const VdbeOp *pOp = &p->aOp[0];
drhaceb31b2014-02-08 01:40:27 +00001673 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
drh84e55a82013-11-13 17:58:23 +00001674 z = pOp->p4.z;
1675 while( sqlite3Isspace(*z) ) z++;
1676 }
drh3f7d4e42004-07-24 14:35:58 +00001677 }
drh84e55a82013-11-13 17:58:23 +00001678 if( z ) printf("SQL: [%s]\n", z);
drh3f7d4e42004-07-24 14:35:58 +00001679}
drh7c4ac0c2007-04-05 11:25:58 +00001680#endif
drh3f7d4e42004-07-24 14:35:58 +00001681
drh602c2372007-03-01 00:29:13 +00001682#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1683/*
1684** Print an IOTRACE message showing SQL content.
1685*/
1686void sqlite3VdbeIOTraceSql(Vdbe *p){
1687 int nOp = p->nOp;
1688 VdbeOp *pOp;
mlcreech3a00f902008-03-04 17:45:01 +00001689 if( sqlite3IoTrace==0 ) return;
drh602c2372007-03-01 00:29:13 +00001690 if( nOp<1 ) return;
drh949f9cd2008-01-12 21:35:57 +00001691 pOp = &p->aOp[0];
drhaceb31b2014-02-08 01:40:27 +00001692 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
drh602c2372007-03-01 00:29:13 +00001693 int i, j;
drh00a18e42007-08-13 11:10:34 +00001694 char z[1000];
drh949f9cd2008-01-12 21:35:57 +00001695 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
danielk197778ca0e72009-01-20 16:53:39 +00001696 for(i=0; sqlite3Isspace(z[i]); i++){}
drh602c2372007-03-01 00:29:13 +00001697 for(j=0; z[i]; i++){
danielk197778ca0e72009-01-20 16:53:39 +00001698 if( sqlite3Isspace(z[i]) ){
drh602c2372007-03-01 00:29:13 +00001699 if( z[i-1]!=' ' ){
1700 z[j++] = ' ';
1701 }
1702 }else{
1703 z[j++] = z[i];
1704 }
1705 }
1706 z[j] = 0;
mlcreech3a00f902008-03-04 17:45:01 +00001707 sqlite3IoTrace("SQL %s\n", z);
drh602c2372007-03-01 00:29:13 +00001708 }
1709}
1710#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1711
drhb2771ce2009-02-20 01:28:59 +00001712/*
drh4800b2e2009-12-08 15:35:22 +00001713** Allocate space from a fixed size buffer and return a pointer to
1714** that space. If insufficient space is available, return NULL.
1715**
1716** The pBuf parameter is the initial value of a pointer which will
1717** receive the new memory. pBuf is normally NULL. If pBuf is not
1718** NULL, it means that memory space has already been allocated and that
1719** this routine should not allocate any new memory. When pBuf is not
1720** NULL simply return pBuf. Only allocate new memory space when pBuf
1721** is NULL.
drhb2771ce2009-02-20 01:28:59 +00001722**
1723** nByte is the number of bytes of space needed.
1724**
drh19875c82009-12-08 19:58:19 +00001725** *ppFrom points to available space and pEnd points to the end of the
1726** available space. When space is allocated, *ppFrom is advanced past
1727** the end of the allocated space.
drhb2771ce2009-02-20 01:28:59 +00001728**
1729** *pnByte is a counter of the number of bytes of space that have failed
1730** to allocate. If there is insufficient space in *ppFrom to satisfy the
danielk1977d336e222009-02-20 10:58:41 +00001731** request, then increment *pnByte by the amount of the request.
drhb2771ce2009-02-20 01:28:59 +00001732*/
drh4800b2e2009-12-08 15:35:22 +00001733static void *allocSpace(
1734 void *pBuf, /* Where return pointer will be stored */
drhb2771ce2009-02-20 01:28:59 +00001735 int nByte, /* Number of bytes to allocate */
1736 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
danielk1977d336e222009-02-20 10:58:41 +00001737 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
drhb2771ce2009-02-20 01:28:59 +00001738 int *pnByte /* If allocation cannot be made, increment *pnByte */
1739){
drhea598cb2009-04-05 12:22:08 +00001740 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
drh4800b2e2009-12-08 15:35:22 +00001741 if( pBuf ) return pBuf;
1742 nByte = ROUND8(nByte);
1743 if( &(*ppFrom)[nByte] <= pEnd ){
1744 pBuf = (void*)*ppFrom;
1745 *ppFrom += nByte;
1746 }else{
1747 *pnByte += nByte;
drhb2771ce2009-02-20 01:28:59 +00001748 }
drh4800b2e2009-12-08 15:35:22 +00001749 return pBuf;
drhb2771ce2009-02-20 01:28:59 +00001750}
drh602c2372007-03-01 00:29:13 +00001751
drh3f7d4e42004-07-24 14:35:58 +00001752/*
drh124c0b42011-06-01 18:15:55 +00001753** Rewind the VDBE back to the beginning in preparation for
1754** running it.
drh9a324642003-09-06 20:12:01 +00001755*/
drh124c0b42011-06-01 18:15:55 +00001756void sqlite3VdbeRewind(Vdbe *p){
1757#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1758 int i;
1759#endif
drh9a324642003-09-06 20:12:01 +00001760 assert( p!=0 );
drh9a324642003-09-06 20:12:01 +00001761 assert( p->magic==VDBE_MAGIC_INIT );
1762
drhc16a03b2004-09-15 13:38:10 +00001763 /* There should be at least one opcode.
drh9a324642003-09-06 20:12:01 +00001764 */
drhc16a03b2004-09-15 13:38:10 +00001765 assert( p->nOp>0 );
drh9a324642003-09-06 20:12:01 +00001766
danielk197700e13612008-11-17 19:18:54 +00001767 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
danielk1977634f2982005-03-28 08:44:07 +00001768 p->magic = VDBE_MAGIC_RUN;
1769
drh124c0b42011-06-01 18:15:55 +00001770#ifdef SQLITE_DEBUG
1771 for(i=1; i<p->nMem; i++){
1772 assert( p->aMem[i].db==p->db );
1773 }
1774#endif
1775 p->pc = -1;
1776 p->rc = SQLITE_OK;
1777 p->errorAction = OE_Abort;
1778 p->magic = VDBE_MAGIC_RUN;
1779 p->nChange = 0;
1780 p->cacheCtr = 1;
1781 p->minWriteFileFormat = 255;
1782 p->iStatement = 0;
1783 p->nFkConstraint = 0;
1784#ifdef VDBE_PROFILE
1785 for(i=0; i<p->nOp; i++){
1786 p->aOp[i].cnt = 0;
1787 p->aOp[i].cycles = 0;
1788 }
1789#endif
1790}
1791
1792/*
1793** Prepare a virtual machine for execution for the first time after
1794** creating the virtual machine. This involves things such
drh7abda852014-09-19 16:02:06 +00001795** as allocating registers and initializing the program counter.
drh124c0b42011-06-01 18:15:55 +00001796** After the VDBE has be prepped, it can be executed by one or more
1797** calls to sqlite3VdbeExec().
1798**
peter.d.reid60ec9142014-09-06 16:39:46 +00001799** This function may be called exactly once on each virtual machine.
drh124c0b42011-06-01 18:15:55 +00001800** After this routine is called the VM has been "packaged" and is ready
peter.d.reid60ec9142014-09-06 16:39:46 +00001801** to run. After this routine is called, further calls to
drh124c0b42011-06-01 18:15:55 +00001802** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1803** the Vdbe from the Parse object that helped generate it so that the
1804** the Vdbe becomes an independent entity and the Parse object can be
1805** destroyed.
1806**
1807** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1808** to its initial state after it has been run.
1809*/
1810void sqlite3VdbeMakeReady(
1811 Vdbe *p, /* The VDBE */
1812 Parse *pParse /* Parsing context */
1813){
1814 sqlite3 *db; /* The database connection */
1815 int nVar; /* Number of parameters */
1816 int nMem; /* Number of VM memory registers */
1817 int nCursor; /* Number of cursors required */
1818 int nArg; /* Number of arguments in subprograms */
dan1d8cb212011-12-09 13:24:16 +00001819 int nOnce; /* Number of OP_Once instructions */
drh124c0b42011-06-01 18:15:55 +00001820 int n; /* Loop counter */
1821 u8 *zCsr; /* Memory available for allocation */
1822 u8 *zEnd; /* First byte past allocated memory */
1823 int nByte; /* How much extra memory is needed */
1824
1825 assert( p!=0 );
1826 assert( p->nOp>0 );
1827 assert( pParse!=0 );
1828 assert( p->magic==VDBE_MAGIC_INIT );
drh73d5b8f2013-12-23 19:09:07 +00001829 assert( pParse==p->pParse );
drh124c0b42011-06-01 18:15:55 +00001830 db = p->db;
1831 assert( db->mallocFailed==0 );
1832 nVar = pParse->nVar;
1833 nMem = pParse->nMem;
1834 nCursor = pParse->nTab;
1835 nArg = pParse->nMaxArg;
dan1d8cb212011-12-09 13:24:16 +00001836 nOnce = pParse->nOnce;
drh20e226d2012-01-01 13:58:53 +00001837 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
drh124c0b42011-06-01 18:15:55 +00001838
danielk1977cd3e8f72008-03-25 09:47:35 +00001839 /* For each cursor required, also allocate a memory cell. Memory
1840 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1841 ** the vdbe program. Instead they are used to allocate space for
drhdfe88ec2008-11-03 20:55:06 +00001842 ** VdbeCursor/BtCursor structures. The blob of memory associated with
danielk1977cd3e8f72008-03-25 09:47:35 +00001843 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1844 ** stores the blob of memory associated with cursor 1, etc.
1845 **
1846 ** See also: allocateCursor().
1847 */
1848 nMem += nCursor;
1849
danielk19776ab3a2e2009-02-19 14:39:25 +00001850 /* Allocate space for memory registers, SQL variables, VDBE cursors and
drh124c0b42011-06-01 18:15:55 +00001851 ** an array to marshal SQL function arguments in.
drh9a324642003-09-06 20:12:01 +00001852 */
drh73d5b8f2013-12-23 19:09:07 +00001853 zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */
1854 zEnd = (u8*)&p->aOp[pParse->nOpAlloc]; /* First byte past end of zCsr[] */
drh19875c82009-12-08 19:58:19 +00001855
drh124c0b42011-06-01 18:15:55 +00001856 resolveP2Values(p, &nArg);
1857 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1858 if( pParse->explain && nMem<10 ){
1859 nMem = 10;
1860 }
1861 memset(zCsr, 0, zEnd-zCsr);
1862 zCsr += (zCsr - (u8*)0)&7;
1863 assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
drhaab910c2011-06-27 00:01:22 +00001864 p->expired = 0;
drh124c0b42011-06-01 18:15:55 +00001865
1866 /* Memory for registers, parameters, cursor, etc, is allocated in two
1867 ** passes. On the first pass, we try to reuse unused space at the
1868 ** end of the opcode array. If we are unable to satisfy all memory
1869 ** requirements by reusing the opcode array tail, then the second
1870 ** pass will fill in the rest using a fresh allocation.
1871 **
1872 ** This two-pass approach that reuses as much memory as possible from
1873 ** the leftover space at the end of the opcode array can significantly
1874 ** reduce the amount of memory held by a prepared statement.
1875 */
1876 do {
1877 nByte = 0;
1878 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
1879 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
1880 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
1881 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
1882 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
1883 &zCsr, zEnd, &nByte);
drhb8475df2011-12-09 16:21:19 +00001884 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
dane2f771b2014-11-03 15:33:17 +00001885#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00001886 p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), &zCsr, zEnd, &nByte);
dane2f771b2014-11-03 15:33:17 +00001887#endif
drh124c0b42011-06-01 18:15:55 +00001888 if( nByte ){
1889 p->pFree = sqlite3DbMallocZero(db, nByte);
drh0f7eb612006-08-08 13:51:43 +00001890 }
drh124c0b42011-06-01 18:15:55 +00001891 zCsr = p->pFree;
1892 zEnd = &zCsr[nByte];
1893 }while( nByte && !db->mallocFailed );
drhb2771ce2009-02-20 01:28:59 +00001894
drhd2a56232013-01-28 19:00:20 +00001895 p->nCursor = nCursor;
dan1d8cb212011-12-09 13:24:16 +00001896 p->nOnceFlag = nOnce;
drh124c0b42011-06-01 18:15:55 +00001897 if( p->aVar ){
1898 p->nVar = (ynVar)nVar;
1899 for(n=0; n<nVar; n++){
1900 p->aVar[n].flags = MEM_Null;
1901 p->aVar[n].db = db;
danielk197754db47e2004-05-19 10:36:43 +00001902 }
drh82a48512003-09-06 22:45:20 +00001903 }
drh9b5444a2014-12-02 13:46:53 +00001904 if( p->azVar && pParse->nzVar>0 ){
drh124c0b42011-06-01 18:15:55 +00001905 p->nzVar = pParse->nzVar;
1906 memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
1907 memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
danielk1977b3bce662005-01-29 08:32:43 +00001908 }
drh124c0b42011-06-01 18:15:55 +00001909 if( p->aMem ){
1910 p->aMem--; /* aMem[] goes from 1..nMem */
1911 p->nMem = nMem; /* not from 0..nMem-1 */
1912 for(n=1; n<=nMem; n++){
drha5750cf2014-02-07 13:20:31 +00001913 p->aMem[n].flags = MEM_Undefined;
drh124c0b42011-06-01 18:15:55 +00001914 p->aMem[n].db = db;
drhcf64d8b2003-12-31 17:57:10 +00001915 }
drh9a324642003-09-06 20:12:01 +00001916 }
drh124c0b42011-06-01 18:15:55 +00001917 p->explain = pParse->explain;
1918 sqlite3VdbeRewind(p);
drh9a324642003-09-06 20:12:01 +00001919}
1920
drh9a324642003-09-06 20:12:01 +00001921/*
danielk1977cd3e8f72008-03-25 09:47:35 +00001922** Close a VDBE cursor and release all the resources that cursor
1923** happens to hold.
drh9a324642003-09-06 20:12:01 +00001924*/
drhdfe88ec2008-11-03 20:55:06 +00001925void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
drh4774b132004-06-12 20:12:51 +00001926 if( pCx==0 ){
1927 return;
1928 }
dana20fde62011-07-12 14:28:05 +00001929 sqlite3VdbeSorterClose(p->db, pCx);
drh9a324642003-09-06 20:12:01 +00001930 if( pCx->pBt ){
danielk19774adee202004-05-08 08:23:19 +00001931 sqlite3BtreeClose(pCx->pBt);
drh34004ce2008-07-11 16:15:17 +00001932 /* The pCx->pCursor will be close automatically, if it exists, by
1933 ** the call above. */
1934 }else if( pCx->pCursor ){
1935 sqlite3BtreeCloseCursor(pCx->pCursor);
drh9a324642003-09-06 20:12:01 +00001936 }
drh9eff6162006-06-12 21:59:13 +00001937#ifndef SQLITE_OMIT_VIRTUALTABLE
drhf526dca2014-10-13 17:42:05 +00001938 else if( pCx->pVtabCursor ){
drh9eff6162006-06-12 21:59:13 +00001939 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
drh5cc10232013-11-21 01:04:02 +00001940 const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;
drha68d6282015-03-24 13:32:53 +00001941 assert( pVtabCursor->pVtab->nRef>0 );
1942 pVtabCursor->pVtab->nRef--;
drh9eff6162006-06-12 21:59:13 +00001943 pModule->xClose(pVtabCursor);
1944 }
1945#endif
drh9a324642003-09-06 20:12:01 +00001946}
1947
dan65a7cd12009-09-01 12:16:01 +00001948/*
drhab4e7f32015-04-16 18:11:50 +00001949** Close all cursors in the current frame.
1950*/
1951static void closeCursorsInFrame(Vdbe *p){
1952 if( p->apCsr ){
1953 int i;
1954 for(i=0; i<p->nCursor; i++){
1955 VdbeCursor *pC = p->apCsr[i];
1956 if( pC ){
1957 sqlite3VdbeFreeCursor(p, pC);
1958 p->apCsr[i] = 0;
1959 }
1960 }
1961 }
1962}
1963
1964/*
dan65a7cd12009-09-01 12:16:01 +00001965** Copy the values stored in the VdbeFrame structure to its Vdbe. This
1966** is used, for example, when a trigger sub-program is halted to restore
1967** control to the main program.
1968*/
dan165921a2009-08-28 18:53:45 +00001969int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
1970 Vdbe *v = pFrame->v;
drhab4e7f32015-04-16 18:11:50 +00001971 closeCursorsInFrame(v);
dane2f771b2014-11-03 15:33:17 +00001972#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00001973 v->anExec = pFrame->anExec;
dane2f771b2014-11-03 15:33:17 +00001974#endif
dan1d8cb212011-12-09 13:24:16 +00001975 v->aOnceFlag = pFrame->aOnceFlag;
1976 v->nOnceFlag = pFrame->nOnceFlag;
dan165921a2009-08-28 18:53:45 +00001977 v->aOp = pFrame->aOp;
1978 v->nOp = pFrame->nOp;
1979 v->aMem = pFrame->aMem;
1980 v->nMem = pFrame->nMem;
1981 v->apCsr = pFrame->apCsr;
1982 v->nCursor = pFrame->nCursor;
dan76d462e2009-08-30 11:42:51 +00001983 v->db->lastRowid = pFrame->lastRowid;
1984 v->nChange = pFrame->nChange;
danc3da6672014-10-28 18:24:16 +00001985 v->db->nChange = pFrame->nDbChange;
dan165921a2009-08-28 18:53:45 +00001986 return pFrame->pc;
1987}
1988
drh9a324642003-09-06 20:12:01 +00001989/*
drh5f82e3c2009-07-06 00:44:08 +00001990** Close all cursors.
dan165921a2009-08-28 18:53:45 +00001991**
1992** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
1993** cell array. This is necessary as the memory cell array may contain
1994** pointers to VdbeFrame objects, which may in turn contain pointers to
1995** open cursors.
drh9a324642003-09-06 20:12:01 +00001996*/
drh5f82e3c2009-07-06 00:44:08 +00001997static void closeAllCursors(Vdbe *p){
dan165921a2009-08-28 18:53:45 +00001998 if( p->pFrame ){
drh23272752011-03-06 21:54:33 +00001999 VdbeFrame *pFrame;
dan165921a2009-08-28 18:53:45 +00002000 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2001 sqlite3VdbeFrameRestore(pFrame);
drhf526dca2014-10-13 17:42:05 +00002002 p->pFrame = 0;
2003 p->nFrame = 0;
dan165921a2009-08-28 18:53:45 +00002004 }
drhf526dca2014-10-13 17:42:05 +00002005 assert( p->nFrame==0 );
drhab4e7f32015-04-16 18:11:50 +00002006 closeCursorsInFrame(p);
dan523a0872009-08-31 05:23:32 +00002007 if( p->aMem ){
2008 releaseMemArray(&p->aMem[1], p->nMem);
2009 }
dan27106572010-12-01 08:04:47 +00002010 while( p->pDelFrame ){
2011 VdbeFrame *pDel = p->pDelFrame;
2012 p->pDelFrame = pDel->pParent;
2013 sqlite3VdbeFrameDelete(pDel);
2014 }
dan0c547792013-07-18 17:12:08 +00002015
2016 /* Delete any auxdata allocations made by the VM */
drhf526dca2014-10-13 17:42:05 +00002017 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0);
dan0c547792013-07-18 17:12:08 +00002018 assert( p->pAuxData==0 );
drh9a324642003-09-06 20:12:01 +00002019}
2020
2021/*
drh7abda852014-09-19 16:02:06 +00002022** Clean up the VM after a single run.
drh9a324642003-09-06 20:12:01 +00002023*/
drhc890fec2008-08-01 20:10:08 +00002024static void Cleanup(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00002025 sqlite3 *db = p->db;
dan165921a2009-08-28 18:53:45 +00002026
2027#ifdef SQLITE_DEBUG
2028 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
2029 ** Vdbe.aMem[] arrays have already been cleaned up. */
2030 int i;
drhb8475df2011-12-09 16:21:19 +00002031 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
2032 if( p->aMem ){
drha5750cf2014-02-07 13:20:31 +00002033 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
drhb8475df2011-12-09 16:21:19 +00002034 }
dan165921a2009-08-28 18:53:45 +00002035#endif
2036
drh633e6d52008-07-28 19:34:53 +00002037 sqlite3DbFree(db, p->zErrMsg);
drh9a324642003-09-06 20:12:01 +00002038 p->zErrMsg = 0;
drhd4e70eb2008-01-02 00:34:36 +00002039 p->pResultSet = 0;
drh9a324642003-09-06 20:12:01 +00002040}
2041
2042/*
danielk197722322fd2004-05-25 23:35:17 +00002043** Set the number of result columns that will be returned by this SQL
2044** statement. This is now set at compile time, rather than during
2045** execution of the vdbe program so that sqlite3_column_count() can
2046** be called on an SQL statement before sqlite3_step().
2047*/
2048void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
drh76ff3a02004-09-24 22:32:30 +00002049 Mem *pColName;
2050 int n;
drh633e6d52008-07-28 19:34:53 +00002051 sqlite3 *db = p->db;
drh4a50aac2007-08-23 02:47:53 +00002052
drhc890fec2008-08-01 20:10:08 +00002053 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
drh633e6d52008-07-28 19:34:53 +00002054 sqlite3DbFree(db, p->aColName);
danielk1977955de522006-02-10 02:27:42 +00002055 n = nResColumn*COLNAME_N;
shane36840fd2009-06-26 16:32:13 +00002056 p->nResColumn = (u16)nResColumn;
drh633e6d52008-07-28 19:34:53 +00002057 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
drh76ff3a02004-09-24 22:32:30 +00002058 if( p->aColName==0 ) return;
2059 while( n-- > 0 ){
drh4a50aac2007-08-23 02:47:53 +00002060 pColName->flags = MEM_Null;
drh153c62c2007-08-24 03:51:33 +00002061 pColName->db = p->db;
drh4a50aac2007-08-23 02:47:53 +00002062 pColName++;
drh76ff3a02004-09-24 22:32:30 +00002063 }
danielk197722322fd2004-05-25 23:35:17 +00002064}
2065
2066/*
danielk19773cf86062004-05-26 10:11:05 +00002067** Set the name of the idx'th column to be returned by the SQL statement.
2068** zName must be a pointer to a nul terminated string.
2069**
2070** This call must be made after a call to sqlite3VdbeSetNumCols().
2071**
danielk197710fb7492008-10-31 10:53:22 +00002072** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2073** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2074** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
danielk19773cf86062004-05-26 10:11:05 +00002075*/
danielk197710fb7492008-10-31 10:53:22 +00002076int sqlite3VdbeSetColName(
2077 Vdbe *p, /* Vdbe being configured */
2078 int idx, /* Index of column zName applies to */
2079 int var, /* One of the COLNAME_* constants */
2080 const char *zName, /* Pointer to buffer containing name */
2081 void (*xDel)(void*) /* Memory management strategy for zName */
2082){
danielk19773cf86062004-05-26 10:11:05 +00002083 int rc;
2084 Mem *pColName;
danielk1977955de522006-02-10 02:27:42 +00002085 assert( idx<p->nResColumn );
2086 assert( var<COLNAME_N );
danielk197710fb7492008-10-31 10:53:22 +00002087 if( p->db->mallocFailed ){
2088 assert( !zName || xDel!=SQLITE_DYNAMIC );
2089 return SQLITE_NOMEM;
2090 }
drh76ff3a02004-09-24 22:32:30 +00002091 assert( p->aColName!=0 );
danielk1977955de522006-02-10 02:27:42 +00002092 pColName = &(p->aColName[idx+var*p->nResColumn]);
danielk197710fb7492008-10-31 10:53:22 +00002093 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
drh0793f1b2008-11-05 17:41:19 +00002094 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
danielk19773cf86062004-05-26 10:11:05 +00002095 return rc;
2096}
2097
danielk197713adf8a2004-06-03 16:08:41 +00002098/*
2099** A read or write transaction may or may not be active on database handle
2100** db. If a transaction is active, commit it. If there is a
2101** write-transaction spanning more than one database file, this routine
2102** takes care of the master journal trickery.
2103*/
danielk19773e3a84d2008-08-01 17:37:40 +00002104static int vdbeCommit(sqlite3 *db, Vdbe *p){
danielk197713adf8a2004-06-03 16:08:41 +00002105 int i;
2106 int nTrans = 0; /* Number of databases with an active write-transaction */
2107 int rc = SQLITE_OK;
2108 int needXcommit = 0;
2109
shane36840fd2009-06-26 16:32:13 +00002110#ifdef SQLITE_OMIT_VIRTUALTABLE
2111 /* With this option, sqlite3VtabSync() is defined to be simply
2112 ** SQLITE_OK so p is not used.
2113 */
2114 UNUSED_PARAMETER(p);
2115#endif
2116
danielk19775bd270b2006-07-25 15:14:52 +00002117 /* Before doing anything else, call the xSync() callback for any
2118 ** virtual module tables written in this transaction. This has to
2119 ** be done before determining whether a master journal file is
2120 ** required, as an xSync() callback may add an attached database
2121 ** to the transaction.
2122 */
dan016f7812013-08-21 17:35:48 +00002123 rc = sqlite3VtabSync(db, p);
danielk19775bd270b2006-07-25 15:14:52 +00002124
2125 /* This loop determines (a) if the commit hook should be invoked and
2126 ** (b) how many database files have open write transactions, not
2127 ** including the temp database. (b) is important because if more than
2128 ** one database file has an open write transaction, a master journal
2129 ** file is required for an atomic commit.
2130 */
drhabfb62f2010-07-30 11:20:35 +00002131 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002132 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002133 if( sqlite3BtreeIsInTrans(pBt) ){
danielk197713adf8a2004-06-03 16:08:41 +00002134 needXcommit = 1;
2135 if( i!=1 ) nTrans++;
dan6b9bb592012-10-05 19:43:02 +00002136 sqlite3BtreeEnter(pBt);
drhabfb62f2010-07-30 11:20:35 +00002137 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
dan6b9bb592012-10-05 19:43:02 +00002138 sqlite3BtreeLeave(pBt);
danielk197713adf8a2004-06-03 16:08:41 +00002139 }
2140 }
drhabfb62f2010-07-30 11:20:35 +00002141 if( rc!=SQLITE_OK ){
2142 return rc;
2143 }
danielk197713adf8a2004-06-03 16:08:41 +00002144
2145 /* If there are any write-transactions at all, invoke the commit hook */
2146 if( needXcommit && db->xCommitCallback ){
drh92f02c32004-09-02 14:57:08 +00002147 rc = db->xCommitCallback(db->pCommitArg);
drh92f02c32004-09-02 14:57:08 +00002148 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00002149 return SQLITE_CONSTRAINT_COMMITHOOK;
danielk197713adf8a2004-06-03 16:08:41 +00002150 }
2151 }
2152
danielk197740b38dc2004-06-26 08:38:24 +00002153 /* The simple case - no more than one database file (not counting the
2154 ** TEMP database) has a transaction active. There is no need for the
drh2ac3ee92004-06-07 16:27:46 +00002155 ** master-journal.
drhc9e06862004-06-09 20:03:08 +00002156 **
danielk197740b38dc2004-06-26 08:38:24 +00002157 ** If the return value of sqlite3BtreeGetFilename() is a zero length
danielk197717b90b52008-06-06 11:11:25 +00002158 ** string, it means the main database is :memory: or a temp file. In
2159 ** that case we do not support atomic multi-file commits, so use the
2160 ** simple case then too.
danielk197713adf8a2004-06-03 16:08:41 +00002161 */
drhea678832008-12-10 19:26:22 +00002162 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2163 || nTrans<=1
2164 ){
danielk197704103022009-02-03 16:51:24 +00002165 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002166 Btree *pBt = db->aDb[i].pBt;
2167 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00002168 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
drh2ac3ee92004-06-07 16:27:46 +00002169 }
2170 }
2171
drh80e35f42007-03-30 14:06:34 +00002172 /* Do the commit only if all databases successfully complete phase 1.
2173 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2174 ** IO error while deleting or truncating a journal file. It is unlikely,
2175 ** but could happen. In this case abandon processing and return the error.
danielk1977979f38e2007-03-27 16:19:51 +00002176 */
2177 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2178 Btree *pBt = db->aDb[i].pBt;
2179 if( pBt ){
dan60939d02011-03-29 15:40:55 +00002180 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
danielk197713adf8a2004-06-03 16:08:41 +00002181 }
danielk1977979f38e2007-03-27 16:19:51 +00002182 }
2183 if( rc==SQLITE_OK ){
danielk1977f9e7dda2006-06-16 16:08:53 +00002184 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00002185 }
2186 }
2187
2188 /* The complex case - There is a multi-file write-transaction active.
2189 ** This requires a master journal file to ensure the transaction is
peter.d.reid60ec9142014-09-06 16:39:46 +00002190 ** committed atomically.
danielk197713adf8a2004-06-03 16:08:41 +00002191 */
danielk197744ee5bf2005-05-27 09:41:12 +00002192#ifndef SQLITE_OMIT_DISKIO
danielk197713adf8a2004-06-03 16:08:41 +00002193 else{
danielk1977b4b47412007-08-17 15:53:36 +00002194 sqlite3_vfs *pVfs = db->pVfs;
drh2c8997b2005-08-27 16:36:48 +00002195 int needSync = 0;
danielk197713adf8a2004-06-03 16:08:41 +00002196 char *zMaster = 0; /* File-name for the master journal */
2197 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
danielk1977b4b47412007-08-17 15:53:36 +00002198 sqlite3_file *pMaster = 0;
danielk197762079062007-08-15 17:08:46 +00002199 i64 offset = 0;
danielk1977861f7452008-06-05 11:39:11 +00002200 int res;
drhf5808602011-12-16 00:33:04 +00002201 int retryCount = 0;
drh5c531a42011-12-16 01:21:31 +00002202 int nMainFile;
danielk197713adf8a2004-06-03 16:08:41 +00002203
2204 /* Select a master journal file name */
drh5c531a42011-12-16 01:21:31 +00002205 nMainFile = sqlite3Strlen30(zMainFile);
drh52bcde02012-01-03 14:50:45 +00002206 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
drh5c531a42011-12-16 01:21:31 +00002207 if( zMaster==0 ) return SQLITE_NOMEM;
danielk197713adf8a2004-06-03 16:08:41 +00002208 do {
drhdc5ea5c2008-12-10 17:19:59 +00002209 u32 iRandom;
drh84968c02011-12-16 15:11:39 +00002210 if( retryCount ){
2211 if( retryCount>100 ){
2212 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2213 sqlite3OsDelete(pVfs, zMaster, 0);
2214 break;
2215 }else if( retryCount==1 ){
2216 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2217 }
danielk197713adf8a2004-06-03 16:08:41 +00002218 }
drh84968c02011-12-16 15:11:39 +00002219 retryCount++;
danielk197713adf8a2004-06-03 16:08:41 +00002220 sqlite3_randomness(sizeof(iRandom), &iRandom);
drh5c531a42011-12-16 01:21:31 +00002221 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
drhf5808602011-12-16 00:33:04 +00002222 (iRandom>>8)&0xffffff, iRandom&0xff);
drhf5808602011-12-16 00:33:04 +00002223 /* The antipenultimate character of the master journal name must
2224 ** be "9" to avoid name collisions when using 8+3 filenames. */
drh5c531a42011-12-16 01:21:31 +00002225 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
drh81cc5162011-05-17 20:36:21 +00002226 sqlite3FileSuffix3(zMainFile, zMaster);
danielk1977861f7452008-06-05 11:39:11 +00002227 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2228 }while( rc==SQLITE_OK && res );
2229 if( rc==SQLITE_OK ){
drh19db9352008-03-27 22:42:51 +00002230 /* Open the master journal. */
2231 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2232 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2233 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2234 );
2235 }
danielk197713adf8a2004-06-03 16:08:41 +00002236 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00002237 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002238 return rc;
2239 }
2240
2241 /* Write the name of each database file in the transaction into the new
2242 ** master journal file. If an error occurs at this point close
2243 ** and delete the master journal file. All the individual journal files
2244 ** still have 'null' as the master journal pointer, so they will roll
danielk1977aca790a2005-01-13 11:07:52 +00002245 ** back independently if a failure occurs.
danielk197713adf8a2004-06-03 16:08:41 +00002246 */
danielk19771e536952007-08-16 10:09:01 +00002247 for(i=0; i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002248 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002249 if( sqlite3BtreeIsInTrans(pBt) ){
danielk19775865e3d2004-06-14 06:03:57 +00002250 char const *zFile = sqlite3BtreeGetJournalname(pBt);
drh8c96a6e2010-08-31 01:09:15 +00002251 if( zFile==0 ){
drhb290e1c2009-12-08 13:36:55 +00002252 continue; /* Ignore TEMP and :memory: databases */
2253 }
drh8c96a6e2010-08-31 01:09:15 +00002254 assert( zFile[0]!=0 );
drh2c8997b2005-08-27 16:36:48 +00002255 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
2256 needSync = 1;
2257 }
drhea678832008-12-10 19:26:22 +00002258 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2259 offset += sqlite3Strlen30(zFile)+1;
danielk197713adf8a2004-06-03 16:08:41 +00002260 if( rc!=SQLITE_OK ){
danielk1977fee2d252007-08-18 10:59:19 +00002261 sqlite3OsCloseFree(pMaster);
2262 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00002263 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002264 return rc;
2265 }
2266 }
2267 }
2268
danielk19779663b8f2007-08-24 11:52:28 +00002269 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2270 ** flag is set this is not required.
2271 */
danielk1977bea2a942009-01-20 17:06:27 +00002272 if( needSync
2273 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2274 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2275 ){
danielk1977fee2d252007-08-18 10:59:19 +00002276 sqlite3OsCloseFree(pMaster);
2277 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00002278 sqlite3DbFree(db, zMaster);
danielk19775865e3d2004-06-14 06:03:57 +00002279 return rc;
2280 }
drhc9e06862004-06-09 20:03:08 +00002281
danielk197713adf8a2004-06-03 16:08:41 +00002282 /* Sync all the db files involved in the transaction. The same call
2283 ** sets the master journal pointer in each individual journal. If
2284 ** an error occurs here, do not delete the master journal file.
2285 **
drh80e35f42007-03-30 14:06:34 +00002286 ** If the error occurs during the first call to
2287 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2288 ** master journal file will be orphaned. But we cannot delete it,
2289 ** in case the master journal file name was written into the journal
shanebe217792009-03-05 04:20:31 +00002290 ** file before the failure occurred.
danielk197713adf8a2004-06-03 16:08:41 +00002291 */
danielk19775bd270b2006-07-25 15:14:52 +00002292 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002293 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002294 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00002295 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002296 }
2297 }
danielk1977fee2d252007-08-18 10:59:19 +00002298 sqlite3OsCloseFree(pMaster);
drhabfb62f2010-07-30 11:20:35 +00002299 assert( rc!=SQLITE_BUSY );
danielk19775bd270b2006-07-25 15:14:52 +00002300 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00002301 sqlite3DbFree(db, zMaster);
danielk19775bd270b2006-07-25 15:14:52 +00002302 return rc;
2303 }
danielk197713adf8a2004-06-03 16:08:41 +00002304
danielk1977962398d2004-06-14 09:35:16 +00002305 /* Delete the master journal file. This commits the transaction. After
2306 ** doing this the directory is synced again before any individual
2307 ** transaction files are deleted.
2308 */
drh75a4d7c2015-03-16 16:44:55 +00002309 rc = sqlite3OsDelete(pVfs, zMaster, needSync);
drh633e6d52008-07-28 19:34:53 +00002310 sqlite3DbFree(db, zMaster);
drhc416ba92007-03-30 18:42:55 +00002311 zMaster = 0;
drh29a01382006-08-13 19:04:18 +00002312 if( rc ){
2313 return rc;
2314 }
danielk197713adf8a2004-06-03 16:08:41 +00002315
2316 /* All files and directories have already been synced, so the following
drh80e35f42007-03-30 14:06:34 +00002317 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2318 ** deleting or truncating journals. If something goes wrong while
2319 ** this is happening we don't really care. The integrity of the
2320 ** transaction is already guaranteed, but some stray 'cold' journals
2321 ** may be lying around. Returning an error code won't help matters.
danielk197713adf8a2004-06-03 16:08:41 +00002322 */
danielk1977979f38e2007-03-27 16:19:51 +00002323 disable_simulated_io_errors();
danielk19772d1d86f2008-06-20 14:59:51 +00002324 sqlite3BeginBenignMalloc();
danielk197713adf8a2004-06-03 16:08:41 +00002325 for(i=0; i<db->nDb; i++){
2326 Btree *pBt = db->aDb[i].pBt;
2327 if( pBt ){
dan60939d02011-03-29 15:40:55 +00002328 sqlite3BtreeCommitPhaseTwo(pBt, 1);
danielk197713adf8a2004-06-03 16:08:41 +00002329 }
2330 }
danielk19772d1d86f2008-06-20 14:59:51 +00002331 sqlite3EndBenignMalloc();
danielk1977979f38e2007-03-27 16:19:51 +00002332 enable_simulated_io_errors();
2333
danielk1977f9e7dda2006-06-16 16:08:53 +00002334 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00002335 }
danielk197744ee5bf2005-05-27 09:41:12 +00002336#endif
danielk1977026d2702004-06-14 13:14:59 +00002337
drh2ac3ee92004-06-07 16:27:46 +00002338 return rc;
danielk197713adf8a2004-06-03 16:08:41 +00002339}
2340
danielk19771d850a72004-05-31 08:26:49 +00002341/*
drh4f7d3a52013-06-27 23:54:02 +00002342** This routine checks that the sqlite3.nVdbeActive count variable
danielk19771d850a72004-05-31 08:26:49 +00002343** matches the number of vdbe's in the list sqlite3.pVdbe that are
2344** currently active. An assertion fails if the two counts do not match.
drh92f02c32004-09-02 14:57:08 +00002345** This is an internal self-check only - it is not an essential processing
2346** step.
danielk19771d850a72004-05-31 08:26:49 +00002347**
2348** This is a no-op if NDEBUG is defined.
2349*/
2350#ifndef NDEBUG
drh9bb575f2004-09-06 17:24:11 +00002351static void checkActiveVdbeCnt(sqlite3 *db){
danielk19771d850a72004-05-31 08:26:49 +00002352 Vdbe *p;
2353 int cnt = 0;
drhad4a4b82008-11-05 16:37:34 +00002354 int nWrite = 0;
drh4f7d3a52013-06-27 23:54:02 +00002355 int nRead = 0;
danielk19771d850a72004-05-31 08:26:49 +00002356 p = db->pVdbe;
2357 while( p ){
dan857745c2014-07-19 17:57:10 +00002358 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
danielk19771d850a72004-05-31 08:26:49 +00002359 cnt++;
drhad4a4b82008-11-05 16:37:34 +00002360 if( p->readOnly==0 ) nWrite++;
drh1713afb2013-06-28 01:24:57 +00002361 if( p->bIsReader ) nRead++;
danielk19771d850a72004-05-31 08:26:49 +00002362 }
2363 p = p->pNext;
2364 }
drh4f7d3a52013-06-27 23:54:02 +00002365 assert( cnt==db->nVdbeActive );
2366 assert( nWrite==db->nVdbeWrite );
2367 assert( nRead==db->nVdbeRead );
danielk19771d850a72004-05-31 08:26:49 +00002368}
2369#else
2370#define checkActiveVdbeCnt(x)
2371#endif
2372
danielk19773cf86062004-05-26 10:11:05 +00002373/*
danielk1977bd434552009-03-18 10:33:00 +00002374** If the Vdbe passed as the first argument opened a statement-transaction,
2375** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2376** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2377** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
drhf7b54962013-05-28 12:11:54 +00002378** statement transaction is committed.
danielk1977bd434552009-03-18 10:33:00 +00002379**
2380** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2381** Otherwise SQLITE_OK.
2382*/
2383int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
danielk1977c926b6a2009-03-20 14:42:11 +00002384 sqlite3 *const db = p->db;
danielk1977bd434552009-03-18 10:33:00 +00002385 int rc = SQLITE_OK;
danielk1977ecaecf92009-07-08 08:05:35 +00002386
danielk1977e4948172009-07-17 17:25:43 +00002387 /* If p->iStatement is greater than zero, then this Vdbe opened a
2388 ** statement transaction that should be closed here. The only exception
mistachkin48864df2013-03-21 21:20:32 +00002389 ** is that an IO error may have occurred, causing an emergency rollback.
danielk1977e4948172009-07-17 17:25:43 +00002390 ** In this case (db->nStatement==0), and there is nothing to do.
2391 */
2392 if( db->nStatement && p->iStatement ){
danielk1977bd434552009-03-18 10:33:00 +00002393 int i;
2394 const int iSavepoint = p->iStatement-1;
danielk1977bd434552009-03-18 10:33:00 +00002395
2396 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2397 assert( db->nStatement>0 );
2398 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2399
2400 for(i=0; i<db->nDb; i++){
2401 int rc2 = SQLITE_OK;
2402 Btree *pBt = db->aDb[i].pBt;
2403 if( pBt ){
2404 if( eOp==SAVEPOINT_ROLLBACK ){
2405 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2406 }
2407 if( rc2==SQLITE_OK ){
2408 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2409 }
2410 if( rc==SQLITE_OK ){
2411 rc = rc2;
2412 }
2413 }
2414 }
2415 db->nStatement--;
2416 p->iStatement = 0;
dan1da40a32009-09-19 17:00:31 +00002417
dana311b802011-04-26 19:21:34 +00002418 if( rc==SQLITE_OK ){
2419 if( eOp==SAVEPOINT_ROLLBACK ){
2420 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2421 }
2422 if( rc==SQLITE_OK ){
2423 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2424 }
2425 }
2426
dan1da40a32009-09-19 17:00:31 +00002427 /* If the statement transaction is being rolled back, also restore the
2428 ** database handles deferred constraint counter to the value it had when
2429 ** the statement transaction was opened. */
2430 if( eOp==SAVEPOINT_ROLLBACK ){
2431 db->nDeferredCons = p->nStmtDefCons;
drh648e2642013-07-11 15:03:32 +00002432 db->nDeferredImmCons = p->nStmtDefImmCons;
dan1da40a32009-09-19 17:00:31 +00002433 }
danielk1977bd434552009-03-18 10:33:00 +00002434 }
2435 return rc;
2436}
2437
2438/*
dan1da40a32009-09-19 17:00:31 +00002439** This function is called when a transaction opened by the database
2440** handle associated with the VM passed as an argument is about to be
2441** committed. If there are outstanding deferred foreign key constraint
2442** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2443**
2444** If there are outstanding FK violations and this function returns
drhd91c1a12013-02-09 13:58:25 +00002445** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2446** and write an error message to it. Then return SQLITE_ERROR.
dan1da40a32009-09-19 17:00:31 +00002447*/
2448#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00002449int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
dan1da40a32009-09-19 17:00:31 +00002450 sqlite3 *db = p->db;
drh648e2642013-07-11 15:03:32 +00002451 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2452 || (!deferred && p->nFkConstraint>0)
2453 ){
drhd91c1a12013-02-09 13:58:25 +00002454 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan32b09f22009-09-23 17:29:59 +00002455 p->errorAction = OE_Abort;
drh22c17b82015-05-15 04:13:15 +00002456 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
dan1da40a32009-09-19 17:00:31 +00002457 return SQLITE_ERROR;
2458 }
2459 return SQLITE_OK;
2460}
2461#endif
2462
2463/*
drh92f02c32004-09-02 14:57:08 +00002464** This routine is called the when a VDBE tries to halt. If the VDBE
2465** has made changes and is in autocommit mode, then commit those
2466** changes. If a rollback is needed, then do the rollback.
drh9a324642003-09-06 20:12:01 +00002467**
drh92f02c32004-09-02 14:57:08 +00002468** This routine is the only way to move the state of a VM from
drhff0587c2007-08-29 17:43:19 +00002469** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2470** call this on a VM that is in the SQLITE_MAGIC_HALT state.
drh92f02c32004-09-02 14:57:08 +00002471**
2472** Return an error code. If the commit could not complete because of
2473** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2474** means the close did not happen and needs to be repeated.
drh9a324642003-09-06 20:12:01 +00002475*/
drhff0587c2007-08-29 17:43:19 +00002476int sqlite3VdbeHalt(Vdbe *p){
danielk1977bd434552009-03-18 10:33:00 +00002477 int rc; /* Used to store transient return codes */
drh9bb575f2004-09-06 17:24:11 +00002478 sqlite3 *db = p->db;
danielk197707cb5602006-01-20 10:55:05 +00002479
2480 /* This function contains the logic that determines if a statement or
2481 ** transaction will be committed or rolled back as a result of the
2482 ** execution of this virtual machine.
2483 **
drh71b890a2007-10-03 15:30:52 +00002484 ** If any of the following errors occur:
danielk197707cb5602006-01-20 10:55:05 +00002485 **
drh71b890a2007-10-03 15:30:52 +00002486 ** SQLITE_NOMEM
2487 ** SQLITE_IOERR
2488 ** SQLITE_FULL
2489 ** SQLITE_INTERRUPT
danielk197707cb5602006-01-20 10:55:05 +00002490 **
drh71b890a2007-10-03 15:30:52 +00002491 ** Then the internal cache might have been left in an inconsistent
2492 ** state. We need to rollback the statement transaction, if there is
2493 ** one, or the complete transaction if there is no statement transaction.
danielk197707cb5602006-01-20 10:55:05 +00002494 */
drh9a324642003-09-06 20:12:01 +00002495
drh17435752007-08-16 04:30:38 +00002496 if( p->db->mallocFailed ){
danielk1977261919c2005-12-06 12:52:59 +00002497 p->rc = SQLITE_NOMEM;
2498 }
drh6e856bc2011-12-09 18:06:44 +00002499 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
drh5f82e3c2009-07-06 00:44:08 +00002500 closeAllCursors(p);
drh92f02c32004-09-02 14:57:08 +00002501 if( p->magic!=VDBE_MAGIC_RUN ){
drh92f02c32004-09-02 14:57:08 +00002502 return SQLITE_OK;
drh9a324642003-09-06 20:12:01 +00002503 }
danielk19771d850a72004-05-31 08:26:49 +00002504 checkActiveVdbeCnt(db);
danielk1977261919c2005-12-06 12:52:59 +00002505
danc0537fe2013-06-28 19:41:43 +00002506 /* No commit or rollback needed if the program never started or if the
2507 ** SQL statement does not read or write a database file. */
2508 if( p->pc>=0 && p->bIsReader ){
drhaac2f552006-09-23 21:44:23 +00002509 int mrc; /* Primary error code from p->rc */
danielk1977bd434552009-03-18 10:33:00 +00002510 int eStatementOp = 0;
2511 int isSpecialError; /* Set to true if a 'special' error */
drhff0587c2007-08-29 17:43:19 +00002512
2513 /* Lock all btrees used by the statement */
drhbdaec522011-04-04 00:14:43 +00002514 sqlite3VdbeEnter(p);
drhff0587c2007-08-29 17:43:19 +00002515
drh71b890a2007-10-03 15:30:52 +00002516 /* Check for one of the special errors */
drhaac2f552006-09-23 21:44:23 +00002517 mrc = p->rc & 0xff;
drh71b890a2007-10-03 15:30:52 +00002518 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
drh77658e22007-12-04 16:54:52 +00002519 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
danielk197707cb5602006-01-20 10:55:05 +00002520 if( isSpecialError ){
dan5653e4d2010-08-12 11:25:47 +00002521 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2522 ** no rollback is necessary. Otherwise, at least a savepoint
2523 ** transaction must be rolled back to restore the database to a
2524 ** consistent state.
2525 **
2526 ** Even if the statement is read-only, it is important to perform
2527 ** a statement or transaction rollback operation. If the error
mistachkin48864df2013-03-21 21:20:32 +00002528 ** occurred while writing to the journal, sub-journal or database
dan5653e4d2010-08-12 11:25:47 +00002529 ** file as part of an effort to free up cache space (see function
2530 ** pagerStress() in pager.c), the rollback is required to restore
2531 ** the pager to a consistent state.
danielk197707cb5602006-01-20 10:55:05 +00002532 */
drhad4a4b82008-11-05 16:37:34 +00002533 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
drhfa3be902009-07-07 02:44:07 +00002534 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
danielk1977bd434552009-03-18 10:33:00 +00002535 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002536 }else{
2537 /* We are forced to roll back the active transaction. Before doing
2538 ** so, abort any other statements this handle currently has active.
2539 */
drh21021a52012-02-13 17:01:51 +00002540 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002541 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002542 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002543 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002544 }
danielk1977261919c2005-12-06 12:52:59 +00002545 }
2546 }
dan32b09f22009-09-23 17:29:59 +00002547
2548 /* Check for immediate foreign key violations. */
2549 if( p->rc==SQLITE_OK ){
2550 sqlite3VdbeCheckFk(p, 0);
2551 }
danielk197707cb5602006-01-20 10:55:05 +00002552
danielk1977bd434552009-03-18 10:33:00 +00002553 /* If the auto-commit flag is set and this is the only active writer
2554 ** VM, then we do either a commit or rollback of the current transaction.
danielk197707cb5602006-01-20 10:55:05 +00002555 **
2556 ** Note: This block also runs if one of the special errors handled
drhad4a4b82008-11-05 16:37:34 +00002557 ** above has occurred.
danielk197707cb5602006-01-20 10:55:05 +00002558 */
danielk1977093e0f62008-11-13 18:00:14 +00002559 if( !sqlite3VtabInSync(db)
2560 && db->autoCommit
drh4f7d3a52013-06-27 23:54:02 +00002561 && db->nVdbeWrite==(p->readOnly==0)
danielk1977093e0f62008-11-13 18:00:14 +00002562 ){
danielk197707cb5602006-01-20 10:55:05 +00002563 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
dan19611b12011-01-24 16:00:58 +00002564 rc = sqlite3VdbeCheckFk(p, 1);
2565 if( rc!=SQLITE_OK ){
drhe9ce5852011-02-11 22:54:28 +00002566 if( NEVER(p->readOnly) ){
drhbdaec522011-04-04 00:14:43 +00002567 sqlite3VdbeLeave(p);
dan19611b12011-01-24 16:00:58 +00002568 return SQLITE_ERROR;
2569 }
drhd91c1a12013-02-09 13:58:25 +00002570 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan19611b12011-01-24 16:00:58 +00002571 }else{
2572 /* The auto-commit flag is true, the vdbe program was successful
2573 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2574 ** key constraints to hold up the transaction. This means a commit
2575 ** is required. */
2576 rc = vdbeCommit(db, p);
dan1da40a32009-09-19 17:00:31 +00002577 }
dan19611b12011-01-24 16:00:58 +00002578 if( rc==SQLITE_BUSY && p->readOnly ){
drhbdaec522011-04-04 00:14:43 +00002579 sqlite3VdbeLeave(p);
danielk197707cb5602006-01-20 10:55:05 +00002580 return SQLITE_BUSY;
2581 }else if( rc!=SQLITE_OK ){
2582 p->rc = rc;
drh0f198a72012-02-13 16:43:16 +00002583 sqlite3RollbackAll(db, SQLITE_OK);
danc3da6672014-10-28 18:24:16 +00002584 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002585 }else{
dan1da40a32009-09-19 17:00:31 +00002586 db->nDeferredCons = 0;
drh648e2642013-07-11 15:03:32 +00002587 db->nDeferredImmCons = 0;
2588 db->flags &= ~SQLITE_DeferFKs;
danielk197707cb5602006-01-20 10:55:05 +00002589 sqlite3CommitInternalChanges(db);
2590 }
2591 }else{
drh0f198a72012-02-13 16:43:16 +00002592 sqlite3RollbackAll(db, SQLITE_OK);
danc3da6672014-10-28 18:24:16 +00002593 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002594 }
danielk1977bd434552009-03-18 10:33:00 +00002595 db->nStatement = 0;
2596 }else if( eStatementOp==0 ){
danielk197707cb5602006-01-20 10:55:05 +00002597 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
danielk1977bd434552009-03-18 10:33:00 +00002598 eStatementOp = SAVEPOINT_RELEASE;
danielk197707cb5602006-01-20 10:55:05 +00002599 }else if( p->errorAction==OE_Abort ){
danielk1977bd434552009-03-18 10:33:00 +00002600 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002601 }else{
drh21021a52012-02-13 17:01:51 +00002602 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002603 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002604 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002605 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002606 }
danielk19771d850a72004-05-31 08:26:49 +00002607 }
danielk197707cb5602006-01-20 10:55:05 +00002608
danielk1977bd434552009-03-18 10:33:00 +00002609 /* If eStatementOp is non-zero, then a statement transaction needs to
2610 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2611 ** do so. If this operation returns an error, and the current statement
drh35173242010-03-08 21:40:13 +00002612 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2613 ** current statement error code.
danielk197707cb5602006-01-20 10:55:05 +00002614 */
danielk1977bd434552009-03-18 10:33:00 +00002615 if( eStatementOp ){
2616 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
dan40ad9d22010-06-03 09:17:38 +00002617 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00002618 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
dan40ad9d22010-06-03 09:17:38 +00002619 p->rc = rc;
2620 sqlite3DbFree(db, p->zErrMsg);
2621 p->zErrMsg = 0;
2622 }
drh21021a52012-02-13 17:01:51 +00002623 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
dan40ad9d22010-06-03 09:17:38 +00002624 sqlite3CloseSavepoints(db);
2625 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002626 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002627 }
danielk197777d83ba2004-05-31 10:08:14 +00002628 }
danielk197707cb5602006-01-20 10:55:05 +00002629
danielk1977bd434552009-03-18 10:33:00 +00002630 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2631 ** has been rolled back, update the database connection change-counter.
danielk197707cb5602006-01-20 10:55:05 +00002632 */
drh6be240e2009-07-14 02:33:02 +00002633 if( p->changeCntOn ){
danielk1977bd434552009-03-18 10:33:00 +00002634 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
danielk197707cb5602006-01-20 10:55:05 +00002635 sqlite3VdbeSetChanges(db, p->nChange);
2636 }else{
2637 sqlite3VdbeSetChanges(db, 0);
2638 }
2639 p->nChange = 0;
danielk1977b28af712004-06-21 06:50:26 +00002640 }
drhff0587c2007-08-29 17:43:19 +00002641
2642 /* Release the locks */
drhbdaec522011-04-04 00:14:43 +00002643 sqlite3VdbeLeave(p);
drh9a324642003-09-06 20:12:01 +00002644 }
danielk19771d850a72004-05-31 08:26:49 +00002645
danielk197765fd59f2006-06-24 11:51:33 +00002646 /* We have successfully halted and closed the VM. Record this fact. */
2647 if( p->pc>=0 ){
drh4f7d3a52013-06-27 23:54:02 +00002648 db->nVdbeActive--;
2649 if( !p->readOnly ) db->nVdbeWrite--;
drh1713afb2013-06-28 01:24:57 +00002650 if( p->bIsReader ) db->nVdbeRead--;
drh4f7d3a52013-06-27 23:54:02 +00002651 assert( db->nVdbeActive>=db->nVdbeRead );
2652 assert( db->nVdbeRead>=db->nVdbeWrite );
2653 assert( db->nVdbeWrite>=0 );
drh9a324642003-09-06 20:12:01 +00002654 }
drh92f02c32004-09-02 14:57:08 +00002655 p->magic = VDBE_MAGIC_HALT;
2656 checkActiveVdbeCnt(db);
drhff0587c2007-08-29 17:43:19 +00002657 if( p->db->mallocFailed ){
2658 p->rc = SQLITE_NOMEM;
2659 }
danielk19771d850a72004-05-31 08:26:49 +00002660
danielk1977404ca072009-03-16 13:19:36 +00002661 /* If the auto-commit flag is set to true, then any locks that were held
2662 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2663 ** to invoke any required unlock-notify callbacks.
2664 */
2665 if( db->autoCommit ){
2666 sqlite3ConnectionUnlocked(db);
2667 }
2668
drh4f7d3a52013-06-27 23:54:02 +00002669 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
dan19611b12011-01-24 16:00:58 +00002670 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
drh92f02c32004-09-02 14:57:08 +00002671}
drh4cf7c7f2007-08-28 23:28:07 +00002672
drh92f02c32004-09-02 14:57:08 +00002673
2674/*
drh3c23a882007-01-09 14:01:13 +00002675** Each VDBE holds the result of the most recent sqlite3_step() call
2676** in p->rc. This routine sets that result back to SQLITE_OK.
2677*/
2678void sqlite3VdbeResetStepResult(Vdbe *p){
2679 p->rc = SQLITE_OK;
2680}
2681
2682/*
dan029ead62011-10-27 15:19:58 +00002683** Copy the error code and error message belonging to the VDBE passed
2684** as the first argument to its database handle (so that they will be
2685** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2686**
2687** This function does not clear the VDBE error code or message, just
2688** copies them to the database handle.
2689*/
2690int sqlite3VdbeTransferError(Vdbe *p){
2691 sqlite3 *db = p->db;
2692 int rc = p->rc;
2693 if( p->zErrMsg ){
drh81bdd6d2011-10-29 01:33:24 +00002694 u8 mallocFailed = db->mallocFailed;
dan029ead62011-10-27 15:19:58 +00002695 sqlite3BeginBenignMalloc();
drha3cc0072013-12-13 16:23:55 +00002696 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
dan029ead62011-10-27 15:19:58 +00002697 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2698 sqlite3EndBenignMalloc();
drh81bdd6d2011-10-29 01:33:24 +00002699 db->mallocFailed = mallocFailed;
dan029ead62011-10-27 15:19:58 +00002700 db->errCode = rc;
2701 }else{
drh13f40da2014-08-22 18:00:11 +00002702 sqlite3Error(db, rc);
dan029ead62011-10-27 15:19:58 +00002703 }
2704 return rc;
2705}
2706
danac455932012-11-26 19:50:41 +00002707#ifdef SQLITE_ENABLE_SQLLOG
2708/*
2709** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2710** invoke it.
2711*/
2712static void vdbeInvokeSqllog(Vdbe *v){
2713 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2714 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2715 assert( v->db->init.busy==0 );
2716 if( zExpanded ){
2717 sqlite3GlobalConfig.xSqllog(
2718 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2719 );
2720 sqlite3DbFree(v->db, zExpanded);
2721 }
2722 }
2723}
2724#else
2725# define vdbeInvokeSqllog(x)
2726#endif
2727
dan029ead62011-10-27 15:19:58 +00002728/*
drh92f02c32004-09-02 14:57:08 +00002729** Clean up a VDBE after execution but do not delete the VDBE just yet.
2730** Write any error messages into *pzErrMsg. Return the result code.
2731**
2732** After this routine is run, the VDBE should be ready to be executed
2733** again.
2734**
2735** To look at it another way, this routine resets the state of the
2736** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2737** VDBE_MAGIC_INIT.
2738*/
drhc890fec2008-08-01 20:10:08 +00002739int sqlite3VdbeReset(Vdbe *p){
drh4ac285a2006-09-15 07:28:50 +00002740 sqlite3 *db;
drh4ac285a2006-09-15 07:28:50 +00002741 db = p->db;
drh92f02c32004-09-02 14:57:08 +00002742
2743 /* If the VM did not run to completion or if it encountered an
2744 ** error, then it might not have been halted properly. So halt
2745 ** it now.
2746 */
2747 sqlite3VdbeHalt(p);
2748
drhfb7e7652005-01-24 00:28:42 +00002749 /* If the VDBE has be run even partially, then transfer the error code
2750 ** and error message from the VDBE into the main database structure. But
2751 ** if the VDBE has just been set to run but has not actually executed any
2752 ** instructions yet, leave the main database error information unchanged.
drh92f02c32004-09-02 14:57:08 +00002753 */
drhfb7e7652005-01-24 00:28:42 +00002754 if( p->pc>=0 ){
danac455932012-11-26 19:50:41 +00002755 vdbeInvokeSqllog(p);
dan029ead62011-10-27 15:19:58 +00002756 sqlite3VdbeTransferError(p);
2757 sqlite3DbFree(db, p->zErrMsg);
2758 p->zErrMsg = 0;
drh4611d922010-02-25 14:47:01 +00002759 if( p->runOnlyOnce ) p->expired = 1;
danielk1977a21c6b62005-01-24 10:25:59 +00002760 }else if( p->rc && p->expired ){
2761 /* The expired flag was set on the VDBE before the first call
2762 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2763 ** called), set the database error in this case as well.
2764 */
drh13f40da2014-08-22 18:00:11 +00002765 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
drh633e6d52008-07-28 19:34:53 +00002766 sqlite3DbFree(db, p->zErrMsg);
danielk19778e556522007-11-13 10:30:24 +00002767 p->zErrMsg = 0;
drh92f02c32004-09-02 14:57:08 +00002768 }
2769
2770 /* Reclaim all memory used by the VDBE
2771 */
drhc890fec2008-08-01 20:10:08 +00002772 Cleanup(p);
drh92f02c32004-09-02 14:57:08 +00002773
2774 /* Save profiling information from this VDBE run.
2775 */
drh9a324642003-09-06 20:12:01 +00002776#ifdef VDBE_PROFILE
2777 {
2778 FILE *out = fopen("vdbe_profile.out", "a");
2779 if( out ){
2780 int i;
2781 fprintf(out, "---- ");
2782 for(i=0; i<p->nOp; i++){
2783 fprintf(out, "%02x", p->aOp[i].opcode);
2784 }
2785 fprintf(out, "\n");
drh2926f962014-02-17 01:13:28 +00002786 if( p->zSql ){
2787 char c, pc = 0;
2788 fprintf(out, "-- ");
2789 for(i=0; (c = p->zSql[i])!=0; i++){
2790 if( pc=='\n' ) fprintf(out, "-- ");
2791 putc(c, out);
2792 pc = c;
2793 }
2794 if( pc!='\n' ) fprintf(out, "\n");
2795 }
drh9a324642003-09-06 20:12:01 +00002796 for(i=0; i<p->nOp; i++){
drh15ab9412014-02-24 14:24:01 +00002797 char zHdr[100];
2798 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
drh9a324642003-09-06 20:12:01 +00002799 p->aOp[i].cnt,
2800 p->aOp[i].cycles,
2801 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2802 );
drh15ab9412014-02-24 14:24:01 +00002803 fprintf(out, "%s", zHdr);
danielk19774adee202004-05-08 08:23:19 +00002804 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
drh9a324642003-09-06 20:12:01 +00002805 }
2806 fclose(out);
2807 }
2808 }
2809#endif
drh7fa20922013-09-17 23:36:33 +00002810 p->iCurrentTime = 0;
drh9a324642003-09-06 20:12:01 +00002811 p->magic = VDBE_MAGIC_INIT;
drh4ac285a2006-09-15 07:28:50 +00002812 return p->rc & db->errMask;
drh9a324642003-09-06 20:12:01 +00002813}
drh92f02c32004-09-02 14:57:08 +00002814
drh9a324642003-09-06 20:12:01 +00002815/*
2816** Clean up and delete a VDBE after execution. Return an integer which is
2817** the result code. Write any error message text into *pzErrMsg.
2818*/
danielk19779e6db7d2004-06-21 08:18:51 +00002819int sqlite3VdbeFinalize(Vdbe *p){
danielk1977b5548a82004-06-26 13:51:33 +00002820 int rc = SQLITE_OK;
danielk1977b5548a82004-06-26 13:51:33 +00002821 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
drhc890fec2008-08-01 20:10:08 +00002822 rc = sqlite3VdbeReset(p);
drh4ac285a2006-09-15 07:28:50 +00002823 assert( (rc & p->db->errMask)==rc );
drh9a324642003-09-06 20:12:01 +00002824 }
danielk19774adee202004-05-08 08:23:19 +00002825 sqlite3VdbeDelete(p);
drh9a324642003-09-06 20:12:01 +00002826 return rc;
2827}
2828
2829/*
dan0c547792013-07-18 17:12:08 +00002830** If parameter iOp is less than zero, then invoke the destructor for
2831** all auxiliary data pointers currently cached by the VM passed as
2832** the first argument.
2833**
2834** Or, if iOp is greater than or equal to zero, then the destructor is
2835** only invoked for those auxiliary data pointers created by the user
2836** function invoked by the OP_Function opcode at instruction iOp of
2837** VM pVdbe, and only then if:
2838**
2839** * the associated function parameter is the 32nd or later (counting
2840** from left to right), or
2841**
2842** * the corresponding bit in argument mask is clear (where the first
peter.d.reid60ec9142014-09-06 16:39:46 +00002843** function parameter corresponds to bit 0 etc.).
drhf92c7ff2004-06-19 15:40:23 +00002844*/
dan0c547792013-07-18 17:12:08 +00002845void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
2846 AuxData **pp = &pVdbe->pAuxData;
2847 while( *pp ){
2848 AuxData *pAux = *pp;
2849 if( (iOp<0)
drh693e6712014-01-24 22:58:00 +00002850 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
dan0c547792013-07-18 17:12:08 +00002851 ){
drh693e6712014-01-24 22:58:00 +00002852 testcase( pAux->iArg==31 );
drhf92c7ff2004-06-19 15:40:23 +00002853 if( pAux->xDelete ){
2854 pAux->xDelete(pAux->pAux);
2855 }
dan0c547792013-07-18 17:12:08 +00002856 *pp = pAux->pNext;
2857 sqlite3DbFree(pVdbe->db, pAux);
2858 }else{
2859 pp= &pAux->pNext;
drhf92c7ff2004-06-19 15:40:23 +00002860 }
2861 }
2862}
2863
2864/*
drhcb103b92012-10-26 00:11:23 +00002865** Free all memory associated with the Vdbe passed as the second argument,
2866** except for object itself, which is preserved.
2867**
dand46def72010-07-24 11:28:28 +00002868** The difference between this function and sqlite3VdbeDelete() is that
2869** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
drhcb103b92012-10-26 00:11:23 +00002870** the database connection and frees the object itself.
dand46def72010-07-24 11:28:28 +00002871*/
drhcb103b92012-10-26 00:11:23 +00002872void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
dand19c9332010-07-26 12:05:17 +00002873 SubProgram *pSub, *pNext;
drh124c0b42011-06-01 18:15:55 +00002874 int i;
dand46def72010-07-24 11:28:28 +00002875 assert( p->db==0 || p->db==db );
2876 releaseMemArray(p->aVar, p->nVar);
2877 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
dand19c9332010-07-26 12:05:17 +00002878 for(pSub=p->pProgram; pSub; pSub=pNext){
2879 pNext = pSub->pNext;
2880 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2881 sqlite3DbFree(db, pSub);
2882 }
drh124c0b42011-06-01 18:15:55 +00002883 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
dand46def72010-07-24 11:28:28 +00002884 vdbeFreeOpArray(db, p->aOp, p->nOp);
dand46def72010-07-24 11:28:28 +00002885 sqlite3DbFree(db, p->aColName);
2886 sqlite3DbFree(db, p->zSql);
2887 sqlite3DbFree(db, p->pFree);
dan6f9702e2014-11-01 20:38:06 +00002888#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan6f9702e2014-11-01 20:38:06 +00002889 for(i=0; i<p->nScan; i++){
2890 sqlite3DbFree(db, p->aScan[i].zName);
2891 }
2892 sqlite3DbFree(db, p->aScan);
drh7e02e5e2011-12-06 19:44:51 +00002893#endif
dand46def72010-07-24 11:28:28 +00002894}
2895
2896/*
drh9a324642003-09-06 20:12:01 +00002897** Delete an entire VDBE.
2898*/
danielk19774adee202004-05-08 08:23:19 +00002899void sqlite3VdbeDelete(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00002900 sqlite3 *db;
2901
drhfa3be902009-07-07 02:44:07 +00002902 if( NEVER(p==0) ) return;
drh633e6d52008-07-28 19:34:53 +00002903 db = p->db;
drh4245c402012-06-02 14:32:21 +00002904 assert( sqlite3_mutex_held(db->mutex) );
drhcb103b92012-10-26 00:11:23 +00002905 sqlite3VdbeClearObject(db, p);
drh9a324642003-09-06 20:12:01 +00002906 if( p->pPrev ){
2907 p->pPrev->pNext = p->pNext;
2908 }else{
drh633e6d52008-07-28 19:34:53 +00002909 assert( db->pVdbe==p );
2910 db->pVdbe = p->pNext;
drh9a324642003-09-06 20:12:01 +00002911 }
2912 if( p->pNext ){
2913 p->pNext->pPrev = p->pPrev;
2914 }
drh9a324642003-09-06 20:12:01 +00002915 p->magic = VDBE_MAGIC_DEAD;
drh87f5c5f2010-01-20 01:20:56 +00002916 p->db = 0;
drhcb103b92012-10-26 00:11:23 +00002917 sqlite3DbFree(db, p);
drh9a324642003-09-06 20:12:01 +00002918}
drha11846b2004-01-07 18:52:56 +00002919
2920/*
drh6848dad2014-08-22 23:33:03 +00002921** The cursor "p" has a pending seek operation that has not yet been
2922** carried out. Seek the cursor now. If an error occurs, return
2923** the appropriate error code.
2924*/
2925static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
2926 int res, rc;
2927#ifdef SQLITE_TEST
2928 extern int sqlite3_search_count;
2929#endif
2930 assert( p->deferredMoveto );
2931 assert( p->isTable );
2932 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
2933 if( rc ) return rc;
drh6848dad2014-08-22 23:33:03 +00002934 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
drh6848dad2014-08-22 23:33:03 +00002935#ifdef SQLITE_TEST
2936 sqlite3_search_count++;
2937#endif
2938 p->deferredMoveto = 0;
2939 p->cacheStatus = CACHE_STALE;
2940 return SQLITE_OK;
2941}
2942
2943/*
2944** Something has moved cursor "p" out of place. Maybe the row it was
2945** pointed to was deleted out from under it. Or maybe the btree was
2946** rebalanced. Whatever the cause, try to restore "p" to the place it
peter.d.reid60ec9142014-09-06 16:39:46 +00002947** is supposed to be pointing. If the row was deleted out from under the
drh6848dad2014-08-22 23:33:03 +00002948** cursor, set the cursor to point to a NULL row.
2949*/
2950static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
2951 int isDifferentRow, rc;
2952 assert( p->pCursor!=0 );
2953 assert( sqlite3BtreeCursorHasMoved(p->pCursor) );
2954 rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow);
2955 p->cacheStatus = CACHE_STALE;
2956 if( isDifferentRow ) p->nullRow = 1;
2957 return rc;
2958}
2959
2960/*
drhc22284f2014-10-13 16:02:20 +00002961** Check to ensure that the cursor is valid. Restore the cursor
2962** if need be. Return any I/O error from the restore operation.
2963*/
2964int sqlite3VdbeCursorRestore(VdbeCursor *p){
2965 if( sqlite3BtreeCursorHasMoved(p->pCursor) ){
2966 return handleMovedCursor(p);
2967 }
2968 return SQLITE_OK;
2969}
2970
2971/*
drh9a65f2c2009-06-22 19:05:40 +00002972** Make sure the cursor p is ready to read or write the row to which it
2973** was last positioned. Return an error code if an OOM fault or I/O error
2974** prevents us from positioning the cursor to its correct position.
2975**
drha11846b2004-01-07 18:52:56 +00002976** If a MoveTo operation is pending on the given cursor, then do that
drh9a65f2c2009-06-22 19:05:40 +00002977** MoveTo now. If no move is pending, check to see if the row has been
2978** deleted out from under the cursor and if it has, mark the row as
2979** a NULL row.
2980**
2981** If the cursor is already pointing to the correct row and that row has
2982** not been deleted out from under the cursor, then this routine is a no-op.
drha11846b2004-01-07 18:52:56 +00002983*/
drhdfe88ec2008-11-03 20:55:06 +00002984int sqlite3VdbeCursorMoveto(VdbeCursor *p){
drha11846b2004-01-07 18:52:56 +00002985 if( p->deferredMoveto ){
drh6848dad2014-08-22 23:33:03 +00002986 return handleDeferredMoveto(p);
2987 }
drhc22284f2014-10-13 16:02:20 +00002988 if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){
drh6848dad2014-08-22 23:33:03 +00002989 return handleMovedCursor(p);
drha11846b2004-01-07 18:52:56 +00002990 }
2991 return SQLITE_OK;
2992}
danielk19774adee202004-05-08 08:23:19 +00002993
drhab9f7f12004-05-08 10:56:11 +00002994/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002995** The following functions:
danielk197790e4d952004-05-10 10:05:53 +00002996**
danielk1977cfcdaef2004-05-12 07:33:33 +00002997** sqlite3VdbeSerialType()
2998** sqlite3VdbeSerialTypeLen()
danielk197790e4d952004-05-10 10:05:53 +00002999** sqlite3VdbeSerialLen()
shane92003092008-07-31 01:43:13 +00003000** sqlite3VdbeSerialPut()
3001** sqlite3VdbeSerialGet()
danielk197790e4d952004-05-10 10:05:53 +00003002**
3003** encapsulate the code that serializes values for storage in SQLite
danielk1977cfcdaef2004-05-12 07:33:33 +00003004** data and index records. Each serialized value consists of a
3005** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3006** integer, stored as a varint.
danielk197790e4d952004-05-10 10:05:53 +00003007**
danielk1977cfcdaef2004-05-12 07:33:33 +00003008** In an SQLite index record, the serial type is stored directly before
3009** the blob of data that it corresponds to. In a table record, all serial
3010** types are stored at the start of the record, and the blobs of data at
3011** the end. Hence these functions allow the caller to handle the
mistachkin48864df2013-03-21 21:20:32 +00003012** serial-type and data blob separately.
danielk1977cfcdaef2004-05-12 07:33:33 +00003013**
3014** The following table describes the various storage classes for data:
3015**
3016** serial type bytes of data type
danielk197790e4d952004-05-10 10:05:53 +00003017** -------------- --------------- ---------------
drha19b7752004-05-30 21:14:58 +00003018** 0 0 NULL
danielk197790e4d952004-05-10 10:05:53 +00003019** 1 1 signed integer
3020** 2 2 signed integer
drha19b7752004-05-30 21:14:58 +00003021** 3 3 signed integer
3022** 4 4 signed integer
3023** 5 6 signed integer
3024** 6 8 signed integer
3025** 7 8 IEEE float
drhd946db02005-12-29 19:23:06 +00003026** 8 0 Integer constant 0
3027** 9 0 Integer constant 1
3028** 10,11 reserved for expansion
danielk197790e4d952004-05-10 10:05:53 +00003029** N>=12 and even (N-12)/2 BLOB
3030** N>=13 and odd (N-13)/2 text
3031**
drh35a59652006-01-02 18:24:40 +00003032** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3033** of SQLite will not understand those serial types.
danielk197790e4d952004-05-10 10:05:53 +00003034*/
3035
3036/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003037** Return the serial-type for the value stored in pMem.
danielk1977192ac1d2004-05-10 07:17:30 +00003038*/
drhbe37c122015-10-16 14:54:17 +00003039u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
danielk1977cfcdaef2004-05-12 07:33:33 +00003040 int flags = pMem->flags;
drheac5bd72014-07-25 21:35:39 +00003041 u32 n;
danielk1977cfcdaef2004-05-12 07:33:33 +00003042
drhbe37c122015-10-16 14:54:17 +00003043 assert( pLen!=0 );
danielk1977cfcdaef2004-05-12 07:33:33 +00003044 if( flags&MEM_Null ){
drhbe37c122015-10-16 14:54:17 +00003045 *pLen = 0;
drha19b7752004-05-30 21:14:58 +00003046 return 0;
danielk197790e4d952004-05-10 10:05:53 +00003047 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003048 if( flags&MEM_Int ){
drhfe2093d2005-01-20 22:48:47 +00003049 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
drh5284a052008-05-08 15:18:10 +00003050# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
drh3c024d62007-03-30 11:23:45 +00003051 i64 i = pMem->u.i;
drhd946db02005-12-29 19:23:06 +00003052 u64 u;
drhcfd654b2011-03-05 13:54:15 +00003053 if( i<0 ){
drh1b40e632014-11-20 02:58:10 +00003054 u = ~i;
drhcfd654b2011-03-05 13:54:15 +00003055 }else{
3056 u = i;
3057 }
drh56690b32012-09-17 15:36:31 +00003058 if( u<=127 ){
drhbe37c122015-10-16 14:54:17 +00003059 if( (i&1)==i && file_format>=4 ){
3060 *pLen = 0;
3061 return 8+(u32)u;
3062 }else{
3063 *pLen = 1;
3064 return 1;
3065 }
drh56690b32012-09-17 15:36:31 +00003066 }
drhbe37c122015-10-16 14:54:17 +00003067 if( u<=32767 ){ *pLen = 2; return 2; }
3068 if( u<=8388607 ){ *pLen = 3; return 3; }
3069 if( u<=2147483647 ){ *pLen = 4; return 4; }
3070 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3071 *pLen = 8;
drha19b7752004-05-30 21:14:58 +00003072 return 6;
danielk197790e4d952004-05-10 10:05:53 +00003073 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003074 if( flags&MEM_Real ){
drhbe37c122015-10-16 14:54:17 +00003075 *pLen = 8;
drha19b7752004-05-30 21:14:58 +00003076 return 7;
danielk197790e4d952004-05-10 10:05:53 +00003077 }
danielk1977e4359752008-11-03 09:39:45 +00003078 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
drheac5bd72014-07-25 21:35:39 +00003079 assert( pMem->n>=0 );
3080 n = (u32)pMem->n;
drhfdf972a2007-05-02 13:30:27 +00003081 if( flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00003082 n += pMem->u.nZero;
danielk197790e4d952004-05-10 10:05:53 +00003083 }
drhbe37c122015-10-16 14:54:17 +00003084 *pLen = n;
drhfdf972a2007-05-02 13:30:27 +00003085 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
danielk1977192ac1d2004-05-10 07:17:30 +00003086}
3087
3088/*
drhfaf37272015-10-16 14:23:42 +00003089** The sizes for serial types less than 128
drhc5ef7152015-06-28 02:58:51 +00003090*/
3091static const u8 sqlite3SmallTypeSizes[] = {
drhfaf37272015-10-16 14:23:42 +00003092 /* 0 1 2 3 4 5 6 7 8 9 */
3093/* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3094/* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3095/* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3096/* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3097/* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3098/* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3099/* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3100/* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3101/* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3102/* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3103/* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3104/* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3105/* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
drhc5ef7152015-06-28 02:58:51 +00003106};
3107
3108/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003109** Return the length of the data corresponding to the supplied serial-type.
danielk1977192ac1d2004-05-10 07:17:30 +00003110*/
drh35cd6432009-06-05 14:17:21 +00003111u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
drhfaf37272015-10-16 14:23:42 +00003112 if( serial_type>=128 ){
drh51846b52004-05-28 16:00:21 +00003113 return (serial_type-12)/2;
3114 }else{
drhfaf37272015-10-16 14:23:42 +00003115 assert( serial_type<12
3116 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
drhc5ef7152015-06-28 02:58:51 +00003117 return sqlite3SmallTypeSizes[serial_type];
drh51846b52004-05-28 16:00:21 +00003118 }
danielk1977192ac1d2004-05-10 07:17:30 +00003119}
drhfaf37272015-10-16 14:23:42 +00003120u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3121 assert( serial_type<128 );
3122 return sqlite3SmallTypeSizes[serial_type];
3123}
danielk1977192ac1d2004-05-10 07:17:30 +00003124
3125/*
drh110daac2007-05-04 11:59:31 +00003126** If we are on an architecture with mixed-endian floating
drh7a4f5022007-05-23 07:20:08 +00003127** points (ex: ARM7) then swap the lower 4 bytes with the
drh110daac2007-05-04 11:59:31 +00003128** upper 4 bytes. Return the result.
3129**
drh7a4f5022007-05-23 07:20:08 +00003130** For most architectures, this is a no-op.
3131**
3132** (later): It is reported to me that the mixed-endian problem
3133** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3134** that early versions of GCC stored the two words of a 64-bit
3135** float in the wrong order. And that error has been propagated
3136** ever since. The blame is not necessarily with GCC, though.
3137** GCC might have just copying the problem from a prior compiler.
3138** I am also told that newer versions of GCC that follow a different
3139** ABI get the byte order right.
3140**
3141** Developers using SQLite on an ARM7 should compile and run their
3142** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3143** enabled, some asserts below will ensure that the byte order of
3144** floating point values is correct.
drh60d09a72007-08-30 15:05:08 +00003145**
3146** (2007-08-30) Frank van Vugt has studied this problem closely
3147** and has send his findings to the SQLite developers. Frank
3148** writes that some Linux kernels offer floating point hardware
3149** emulation that uses only 32-bit mantissas instead of a full
3150** 48-bits as required by the IEEE standard. (This is the
3151** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3152** byte swapping becomes very complicated. To avoid problems,
3153** the necessary byte swapping is carried out using a 64-bit integer
3154** rather than a 64-bit float. Frank assures us that the code here
3155** works for him. We, the developers, have no way to independently
3156** verify this, but Frank seems to know what he is talking about
3157** so we trust him.
drh110daac2007-05-04 11:59:31 +00003158*/
3159#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
drh60d09a72007-08-30 15:05:08 +00003160static u64 floatSwap(u64 in){
drh110daac2007-05-04 11:59:31 +00003161 union {
drh60d09a72007-08-30 15:05:08 +00003162 u64 r;
drh110daac2007-05-04 11:59:31 +00003163 u32 i[2];
3164 } u;
3165 u32 t;
3166
3167 u.r = in;
3168 t = u.i[0];
3169 u.i[0] = u.i[1];
3170 u.i[1] = t;
3171 return u.r;
3172}
3173# define swapMixedEndianFloat(X) X = floatSwap(X)
3174#else
3175# define swapMixedEndianFloat(X)
3176#endif
3177
3178/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003179** Write the serialized data blob for the value stored in pMem into
3180** buf. It is assumed that the caller has allocated sufficient space.
3181** Return the number of bytes written.
drhfdf972a2007-05-02 13:30:27 +00003182**
drh038b7bc2013-12-09 23:17:22 +00003183** nBuf is the amount of space left in buf[]. The caller is responsible
3184** for allocating enough space to buf[] to hold the entire field, exclusive
3185** of the pMem->u.nZero bytes for a MEM_Zero value.
drhfdf972a2007-05-02 13:30:27 +00003186**
3187** Return the number of bytes actually written into buf[]. The number
3188** of bytes in the zero-filled tail is included in the return value only
3189** if those bytes were zeroed in buf[].
danielk1977cfcdaef2004-05-12 07:33:33 +00003190*/
drha9ab4812013-12-11 11:00:44 +00003191u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
drh35cd6432009-06-05 14:17:21 +00003192 u32 len;
danielk1977183f9f72004-05-13 05:20:26 +00003193
drh1483e142004-05-21 21:12:42 +00003194 /* Integer and Real */
drhd946db02005-12-29 19:23:06 +00003195 if( serial_type<=7 && serial_type>0 ){
drh1483e142004-05-21 21:12:42 +00003196 u64 v;
drh35cd6432009-06-05 14:17:21 +00003197 u32 i;
drha19b7752004-05-30 21:14:58 +00003198 if( serial_type==7 ){
drh74eaba42014-09-18 17:52:15 +00003199 assert( sizeof(v)==sizeof(pMem->u.r) );
3200 memcpy(&v, &pMem->u.r, sizeof(v));
drh60d09a72007-08-30 15:05:08 +00003201 swapMixedEndianFloat(v);
drh1483e142004-05-21 21:12:42 +00003202 }else{
drh3c024d62007-03-30 11:23:45 +00003203 v = pMem->u.i;
danielk1977cfcdaef2004-05-12 07:33:33 +00003204 }
drhc5ef7152015-06-28 02:58:51 +00003205 len = i = sqlite3SmallTypeSizes[serial_type];
drh3f5b1992014-08-22 13:22:32 +00003206 assert( i>0 );
3207 do{
3208 buf[--i] = (u8)(v&0xFF);
drh1483e142004-05-21 21:12:42 +00003209 v >>= 8;
drh3f5b1992014-08-22 13:22:32 +00003210 }while( i );
drh1483e142004-05-21 21:12:42 +00003211 return len;
danielk1977cfcdaef2004-05-12 07:33:33 +00003212 }
drhd946db02005-12-29 19:23:06 +00003213
danielk1977cfcdaef2004-05-12 07:33:33 +00003214 /* String or blob */
drhd946db02005-12-29 19:23:06 +00003215 if( serial_type>=12 ){
drh8df32842008-12-09 02:51:23 +00003216 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
shane75ac1de2009-06-09 18:58:52 +00003217 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
drhfdf972a2007-05-02 13:30:27 +00003218 len = pMem->n;
drhd946db02005-12-29 19:23:06 +00003219 memcpy(buf, pMem->z, len);
3220 return len;
3221 }
3222
3223 /* NULL or constants 0 or 1 */
3224 return 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00003225}
3226
drhf926d1e2014-03-04 04:04:33 +00003227/* Input "x" is a sequence of unsigned characters that represent a
3228** big-endian integer. Return the equivalent native integer
3229*/
3230#define ONE_BYTE_INT(x) ((i8)(x)[0])
3231#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3232#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3233#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
drh8932bec2014-08-22 14:56:13 +00003234#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
drhf926d1e2014-03-04 04:04:33 +00003235
danielk1977cfcdaef2004-05-12 07:33:33 +00003236/*
3237** Deserialize the data blob pointed to by buf as serial type serial_type
3238** and store the result in pMem. Return the number of bytes read.
drh14a924a2014-08-22 14:34:05 +00003239**
3240** This function is implemented as two separate routines for performance.
3241** The few cases that require local variables are broken out into a separate
3242** routine so that in most cases the overhead of moving the stack pointer
3243** is avoided.
danielk1977cfcdaef2004-05-12 07:33:33 +00003244*/
drh14a924a2014-08-22 14:34:05 +00003245static u32 SQLITE_NOINLINE serialGet(
danielk197793d46752004-05-23 13:30:58 +00003246 const unsigned char *buf, /* Buffer to deserialize from */
drh25aa1b42004-05-28 01:39:01 +00003247 u32 serial_type, /* Serial type to deserialize */
3248 Mem *pMem /* Memory cell to write value into */
danielk1977b1bc9532004-05-22 03:05:33 +00003249){
drh8932bec2014-08-22 14:56:13 +00003250 u64 x = FOUR_BYTE_UINT(buf);
3251 u32 y = FOUR_BYTE_UINT(buf+4);
3252 x = (x<<32) + y;
drh14a924a2014-08-22 14:34:05 +00003253 if( serial_type==6 ){
drh654858d2014-11-20 02:18:14 +00003254 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3255 ** twos-complement integer. */
drh14a924a2014-08-22 14:34:05 +00003256 pMem->u.i = *(i64*)&x;
3257 pMem->flags = MEM_Int;
3258 testcase( pMem->u.i<0 );
3259 }else{
drh654858d2014-11-20 02:18:14 +00003260 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3261 ** floating point number. */
drh14a924a2014-08-22 14:34:05 +00003262#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3263 /* Verify that integers and floating point values use the same
3264 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3265 ** defined that 64-bit floating point values really are mixed
3266 ** endian.
3267 */
3268 static const u64 t1 = ((u64)0x3ff00000)<<32;
3269 static const double r1 = 1.0;
3270 u64 t2 = t1;
3271 swapMixedEndianFloat(t2);
3272 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3273#endif
drh74eaba42014-09-18 17:52:15 +00003274 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
drh14a924a2014-08-22 14:34:05 +00003275 swapMixedEndianFloat(x);
drh74eaba42014-09-18 17:52:15 +00003276 memcpy(&pMem->u.r, &x, sizeof(x));
3277 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
drh14a924a2014-08-22 14:34:05 +00003278 }
3279 return 8;
3280}
danielk1977b1bc9532004-05-22 03:05:33 +00003281u32 sqlite3VdbeSerialGet(
3282 const unsigned char *buf, /* Buffer to deserialize from */
3283 u32 serial_type, /* Serial type to deserialize */
3284 Mem *pMem /* Memory cell to write value into */
3285){
drh3c685822005-05-21 18:32:18 +00003286 switch( serial_type ){
drh3c685822005-05-21 18:32:18 +00003287 case 10: /* Reserved for future use */
3288 case 11: /* Reserved for future use */
drh654858d2014-11-20 02:18:14 +00003289 case 0: { /* Null */
3290 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
drh3c685822005-05-21 18:32:18 +00003291 pMem->flags = MEM_Null;
3292 break;
3293 }
drh654858d2014-11-20 02:18:14 +00003294 case 1: {
3295 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3296 ** integer. */
drhf926d1e2014-03-04 04:04:33 +00003297 pMem->u.i = ONE_BYTE_INT(buf);
drh1483e142004-05-21 21:12:42 +00003298 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003299 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003300 return 1;
drh1483e142004-05-21 21:12:42 +00003301 }
drh3c685822005-05-21 18:32:18 +00003302 case 2: { /* 2-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003303 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3304 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003305 pMem->u.i = TWO_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003306 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003307 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003308 return 2;
3309 }
3310 case 3: { /* 3-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003311 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3312 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003313 pMem->u.i = THREE_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003314 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003315 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003316 return 3;
3317 }
3318 case 4: { /* 4-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003319 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3320 ** twos-complement integer. */
drh8932bec2014-08-22 14:56:13 +00003321 pMem->u.i = FOUR_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003322 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003323 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003324 return 4;
3325 }
3326 case 5: { /* 6-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003327 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3328 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003329 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003330 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003331 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003332 return 6;
3333 }
drh91124b32005-08-18 18:15:05 +00003334 case 6: /* 8-byte signed integer */
drh3c685822005-05-21 18:32:18 +00003335 case 7: { /* IEEE floating point */
drh8932bec2014-08-22 14:56:13 +00003336 /* These use local variables, so do them in a separate routine
3337 ** to avoid having to move the frame pointer in the common case */
drh14a924a2014-08-22 14:34:05 +00003338 return serialGet(buf,serial_type,pMem);
drh3c685822005-05-21 18:32:18 +00003339 }
drhd946db02005-12-29 19:23:06 +00003340 case 8: /* Integer 0 */
3341 case 9: { /* Integer 1 */
drh654858d2014-11-20 02:18:14 +00003342 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3343 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
drh3c024d62007-03-30 11:23:45 +00003344 pMem->u.i = serial_type-8;
drhd946db02005-12-29 19:23:06 +00003345 pMem->flags = MEM_Int;
3346 return 0;
3347 }
drh3c685822005-05-21 18:32:18 +00003348 default: {
drh654858d2014-11-20 02:18:14 +00003349 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3350 ** length.
3351 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3352 ** (N-13)/2 bytes in length. */
drhc138daf2013-11-19 13:55:34 +00003353 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
drh3c685822005-05-21 18:32:18 +00003354 pMem->z = (char *)buf;
drh14a924a2014-08-22 14:34:05 +00003355 pMem->n = (serial_type-12)/2;
drhc138daf2013-11-19 13:55:34 +00003356 pMem->flags = aFlag[serial_type&1];
drh14a924a2014-08-22 14:34:05 +00003357 return pMem->n;
drh696b32f2004-05-30 01:51:52 +00003358 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003359 }
drh3c685822005-05-21 18:32:18 +00003360 return 0;
danielk1977192ac1d2004-05-10 07:17:30 +00003361}
drh1e968a02008-03-25 00:22:21 +00003362/*
dan03e9cfc2011-09-05 14:20:27 +00003363** This routine is used to allocate sufficient space for an UnpackedRecord
3364** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3365** the first argument is a pointer to KeyInfo structure pKeyInfo.
drh1e968a02008-03-25 00:22:21 +00003366**
dan03e9cfc2011-09-05 14:20:27 +00003367** The space is either allocated using sqlite3DbMallocRaw() or from within
3368** the unaligned buffer passed via the second and third arguments (presumably
3369** stack space). If the former, then *ppFree is set to a pointer that should
3370** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3371** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3372** before returning.
drh1e968a02008-03-25 00:22:21 +00003373**
dan03e9cfc2011-09-05 14:20:27 +00003374** If an OOM error occurs, NULL is returned.
3375*/
3376UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3377 KeyInfo *pKeyInfo, /* Description of the record */
3378 char *pSpace, /* Unaligned space available */
3379 int szSpace, /* Size of pSpace[] in bytes */
3380 char **ppFree /* OUT: Caller should free this pointer */
drh1e968a02008-03-25 00:22:21 +00003381){
dan03e9cfc2011-09-05 14:20:27 +00003382 UnpackedRecord *p; /* Unpacked record to return */
3383 int nOff; /* Increment pSpace by nOff to align it */
3384 int nByte; /* Number of bytes required for *p */
3385
3386 /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
shane80167bf2009-04-10 15:42:36 +00003387 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
3388 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
3389 */
3390 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
drh8c5d1522009-04-10 00:56:28 +00003391 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
dan42acb3e2011-09-05 20:16:38 +00003392 if( nByte>szSpace+nOff ){
dan03e9cfc2011-09-05 14:20:27 +00003393 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3394 *ppFree = (char *)p;
dan42acb3e2011-09-05 20:16:38 +00003395 if( !p ) return 0;
drh1e968a02008-03-25 00:22:21 +00003396 }else{
dan42acb3e2011-09-05 20:16:38 +00003397 p = (UnpackedRecord*)&pSpace[nOff];
dan03e9cfc2011-09-05 14:20:27 +00003398 *ppFree = 0;
drh1e968a02008-03-25 00:22:21 +00003399 }
dan42acb3e2011-09-05 20:16:38 +00003400
3401 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
drhe1a022e2012-09-17 17:16:53 +00003402 assert( pKeyInfo->aSortOrder!=0 );
drh1e968a02008-03-25 00:22:21 +00003403 p->pKeyInfo = pKeyInfo;
3404 p->nField = pKeyInfo->nField + 1;
dan03e9cfc2011-09-05 14:20:27 +00003405 return p;
3406}
3407
3408/*
3409** Given the nKey-byte encoding of a record in pKey[], populate the
3410** UnpackedRecord structure indicated by the fourth argument with the
3411** contents of the decoded record.
3412*/
3413void sqlite3VdbeRecordUnpack(
3414 KeyInfo *pKeyInfo, /* Information about the record format */
3415 int nKey, /* Size of the binary record */
3416 const void *pKey, /* The binary record */
3417 UnpackedRecord *p /* Populate this structure before returning. */
3418){
3419 const unsigned char *aKey = (const unsigned char *)pKey;
3420 int d;
3421 u32 idx; /* Offset in aKey[] to read from */
3422 u16 u; /* Unsigned loop counter */
3423 u32 szHdr;
dan42acb3e2011-09-05 20:16:38 +00003424 Mem *pMem = p->aMem;
dan03e9cfc2011-09-05 14:20:27 +00003425
dan1fed5da2014-02-25 21:01:25 +00003426 p->default_rc = 0;
drh8c5d1522009-04-10 00:56:28 +00003427 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
shane3f8d5cf2008-04-24 19:15:09 +00003428 idx = getVarint32(aKey, szHdr);
drh1e968a02008-03-25 00:22:21 +00003429 d = szHdr;
shane0b8d2762008-07-22 05:18:00 +00003430 u = 0;
drh7f4b19f2014-09-16 13:30:05 +00003431 while( idx<szHdr && d<=nKey ){
drh1e968a02008-03-25 00:22:21 +00003432 u32 serial_type;
3433
danielk197700e13612008-11-17 19:18:54 +00003434 idx += getVarint32(&aKey[idx], serial_type);
drh1e968a02008-03-25 00:22:21 +00003435 pMem->enc = pKeyInfo->enc;
3436 pMem->db = pKeyInfo->db;
drhc3f1d5f2011-05-30 23:42:16 +00003437 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
drh17bcb102014-09-18 21:25:33 +00003438 pMem->szMalloc = 0;
drh1e968a02008-03-25 00:22:21 +00003439 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
drhe14006d2008-03-25 17:23:32 +00003440 pMem++;
drh7f4b19f2014-09-16 13:30:05 +00003441 if( (++u)>=p->nField ) break;
drh1e968a02008-03-25 00:22:21 +00003442 }
drh7d10d5a2008-08-20 16:35:10 +00003443 assert( u<=pKeyInfo->nField + 1 );
shane0b8d2762008-07-22 05:18:00 +00003444 p->nField = u;
drh1e968a02008-03-25 00:22:21 +00003445}
3446
dan3833e932014-03-01 19:44:56 +00003447#if SQLITE_DEBUG
drh1e968a02008-03-25 00:22:21 +00003448/*
dan3833e932014-03-01 19:44:56 +00003449** This function compares two index or table record keys in the same way
3450** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3451** this function deserializes and compares values using the
3452** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3453** in assert() statements to ensure that the optimized code in
3454** sqlite3VdbeRecordCompare() returns results with these two primitives.
drh1e968a02008-03-25 00:22:21 +00003455**
drh79211e12014-05-02 17:33:16 +00003456** Return true if the result of comparison is equivalent to desiredResult.
3457** Return false if there is a disagreement.
drh1e968a02008-03-25 00:22:21 +00003458*/
dan3833e932014-03-01 19:44:56 +00003459static int vdbeRecordCompareDebug(
drhec1fc802008-08-13 14:07:40 +00003460 int nKey1, const void *pKey1, /* Left key */
drh79211e12014-05-02 17:33:16 +00003461 const UnpackedRecord *pPKey2, /* Right key */
3462 int desiredResult /* Correct answer */
drh1e968a02008-03-25 00:22:21 +00003463){
drhdf003d62013-08-01 19:17:39 +00003464 u32 d1; /* Offset into aKey[] of next data element */
drh1e968a02008-03-25 00:22:21 +00003465 u32 idx1; /* Offset into aKey[] of next header element */
3466 u32 szHdr1; /* Number of bytes in header */
3467 int i = 0;
drh1e968a02008-03-25 00:22:21 +00003468 int rc = 0;
3469 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3470 KeyInfo *pKeyInfo;
3471 Mem mem1;
3472
3473 pKeyInfo = pPKey2->pKeyInfo;
drh84de6902014-05-02 18:46:52 +00003474 if( pKeyInfo->db==0 ) return 1;
drh1e968a02008-03-25 00:22:21 +00003475 mem1.enc = pKeyInfo->enc;
drh37272632009-11-16 21:28:45 +00003476 mem1.db = pKeyInfo->db;
drhd93a8b22009-11-16 03:13:40 +00003477 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
drh17bcb102014-09-18 21:25:33 +00003478 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
drh8b249a82009-11-16 02:14:00 +00003479
3480 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3481 ** We could initialize it, as shown here, to silence those complaints.
drh5275d2e2011-04-27 01:00:17 +00003482 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
drh8b249a82009-11-16 02:14:00 +00003483 ** the unnecessary initialization has a measurable negative performance
3484 ** impact, since this routine is a very high runner. And so, we choose
3485 ** to ignore the compiler warnings and leave this variable uninitialized.
3486 */
3487 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
drh1e968a02008-03-25 00:22:21 +00003488
shane3f8d5cf2008-04-24 19:15:09 +00003489 idx1 = getVarint32(aKey1, szHdr1);
drh46981362015-07-08 12:25:38 +00003490 if( szHdr1>98307 ) return SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00003491 d1 = szHdr1;
drhb2023662013-11-29 15:39:36 +00003492 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
drhe1a022e2012-09-17 17:16:53 +00003493 assert( pKeyInfo->aSortOrder!=0 );
dan89bc0212013-12-03 09:49:52 +00003494 assert( pKeyInfo->nField>0 );
3495 assert( idx1<=szHdr1 || CORRUPT_DB );
drh0b9dada2013-11-25 22:24:36 +00003496 do{
drh1e968a02008-03-25 00:22:21 +00003497 u32 serial_type1;
3498
3499 /* Read the serial types for the next element in each key. */
shane3f8d5cf2008-04-24 19:15:09 +00003500 idx1 += getVarint32( aKey1+idx1, serial_type1 );
drhaf5b2af2013-08-05 15:32:09 +00003501
3502 /* Verify that there is enough key space remaining to avoid
3503 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3504 ** always be greater than or equal to the amount of required key space.
3505 ** Use that approximation to avoid the more expensive call to
3506 ** sqlite3VdbeSerialTypeLen() in the common case.
3507 */
3508 if( d1+serial_type1+2>(u32)nKey1
3509 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3510 ){
3511 break;
3512 }
drh1e968a02008-03-25 00:22:21 +00003513
3514 /* Extract the values to be compared.
3515 */
3516 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3517
3518 /* Do the comparison
3519 */
drh323df792013-08-05 19:11:29 +00003520 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
drh1e968a02008-03-25 00:22:21 +00003521 if( rc!=0 ){
drh17bcb102014-09-18 21:25:33 +00003522 assert( mem1.szMalloc==0 ); /* See comment below */
drh323df792013-08-05 19:11:29 +00003523 if( pKeyInfo->aSortOrder[i] ){
drh6f225d02013-10-26 13:36:51 +00003524 rc = -rc; /* Invert the result for DESC sort order. */
drh8b249a82009-11-16 02:14:00 +00003525 }
drh79211e12014-05-02 17:33:16 +00003526 goto debugCompareEnd;
drh1e968a02008-03-25 00:22:21 +00003527 }
3528 i++;
drh0b9dada2013-11-25 22:24:36 +00003529 }while( idx1<szHdr1 && i<pPKey2->nField );
drh407414c2009-07-14 14:15:27 +00003530
drh8b249a82009-11-16 02:14:00 +00003531 /* No memory allocation is ever used on mem1. Prove this using
3532 ** the following assert(). If the assert() fails, it indicates a
3533 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
danielk1977de630352009-05-04 11:42:29 +00003534 */
drh17bcb102014-09-18 21:25:33 +00003535 assert( mem1.szMalloc==0 );
danielk1977de630352009-05-04 11:42:29 +00003536
drh8b249a82009-11-16 02:14:00 +00003537 /* rc==0 here means that one of the keys ran out of fields and
peter.d.reid60ec9142014-09-06 16:39:46 +00003538 ** all the fields up to that point were equal. Return the default_rc
dan3b9330f2014-02-27 20:44:18 +00003539 ** value. */
drh79211e12014-05-02 17:33:16 +00003540 rc = pPKey2->default_rc;
3541
3542debugCompareEnd:
3543 if( desiredResult==0 && rc==0 ) return 1;
3544 if( desiredResult<0 && rc<0 ) return 1;
3545 if( desiredResult>0 && rc>0 ) return 1;
3546 if( CORRUPT_DB ) return 1;
3547 if( pKeyInfo->db->mallocFailed ) return 1;
3548 return 0;
drh1e968a02008-03-25 00:22:21 +00003549}
dan3833e932014-03-01 19:44:56 +00003550#endif
dan1fed5da2014-02-25 21:01:25 +00003551
drhe1bb8022015-01-19 19:48:52 +00003552#if SQLITE_DEBUG
3553/*
3554** Count the number of fields (a.k.a. columns) in the record given by
3555** pKey,nKey. The verify that this count is less than or equal to the
3556** limit given by pKeyInfo->nField + pKeyInfo->nXField.
3557**
3558** If this constraint is not satisfied, it means that the high-speed
3559** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3560** not work correctly. If this assert() ever fires, it probably means
3561** that the KeyInfo.nField or KeyInfo.nXField values were computed
3562** incorrectly.
3563*/
3564static void vdbeAssertFieldCountWithinLimits(
3565 int nKey, const void *pKey, /* The record to verify */
3566 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
3567){
3568 int nField = 0;
3569 u32 szHdr;
3570 u32 idx;
3571 u32 notUsed;
3572 const unsigned char *aKey = (const unsigned char*)pKey;
3573
3574 if( CORRUPT_DB ) return;
3575 idx = getVarint32(aKey, szHdr);
mistachkin1b3ee492015-01-21 00:51:08 +00003576 assert( nKey>=0 );
3577 assert( szHdr<=(u32)nKey );
drhe1bb8022015-01-19 19:48:52 +00003578 while( idx<szHdr ){
3579 idx += getVarint32(aKey+idx, notUsed);
3580 nField++;
3581 }
3582 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField );
3583}
drh1af3c642015-01-19 20:57:19 +00003584#else
3585# define vdbeAssertFieldCountWithinLimits(A,B,C)
drhe1bb8022015-01-19 19:48:52 +00003586#endif
3587
dan3833e932014-03-01 19:44:56 +00003588/*
3589** Both *pMem1 and *pMem2 contain string values. Compare the two values
3590** using the collation sequence pColl. As usual, return a negative , zero
3591** or positive value if *pMem1 is less than, equal to or greater than
3592** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3593*/
dan1fed5da2014-02-25 21:01:25 +00003594static int vdbeCompareMemString(
dan3833e932014-03-01 19:44:56 +00003595 const Mem *pMem1,
3596 const Mem *pMem2,
dan38fdead2014-04-01 10:19:02 +00003597 const CollSeq *pColl,
3598 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
dan1fed5da2014-02-25 21:01:25 +00003599){
3600 if( pMem1->enc==pColl->enc ){
3601 /* The strings are already in the correct encoding. Call the
3602 ** comparison function directly */
3603 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3604 }else{
3605 int rc;
3606 const void *v1, *v2;
3607 int n1, n2;
3608 Mem c1;
3609 Mem c2;
drh17bcb102014-09-18 21:25:33 +00003610 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3611 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
dan1fed5da2014-02-25 21:01:25 +00003612 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3613 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3614 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3615 n1 = v1==0 ? 0 : c1.n;
3616 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3617 n2 = v2==0 ? 0 : c2.n;
3618 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
3619 sqlite3VdbeMemRelease(&c1);
3620 sqlite3VdbeMemRelease(&c2);
dan38fdead2014-04-01 10:19:02 +00003621 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
dan1fed5da2014-02-25 21:01:25 +00003622 return rc;
3623 }
3624}
3625
3626/*
drh982ff722014-09-16 03:24:43 +00003627** Compare two blobs. Return negative, zero, or positive if the first
3628** is less than, equal to, or greater than the second, respectively.
3629** If one blob is a prefix of the other, then the shorter is the lessor.
3630*/
3631static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3632 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
3633 if( c ) return c;
3634 return pB1->n - pB2->n;
3635}
3636
drh2ab410a2015-11-06 14:59:07 +00003637/*
3638** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3639** number. Return negative, zero, or positive if the first (i64) is less than,
3640** equal to, or greater than the second (double).
3641*/
3642static int sqlite3IntFloatCompare(i64 i, double r){
3643 if( sizeof(LONGDOUBLE_TYPE)>8 ){
3644 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3645 if( x<r ) return -1;
3646 if( x>r ) return +1;
3647 return 0;
3648 }else{
3649 i64 y;
3650 double s;
3651 if( r<-9223372036854775808.0 ) return +1;
3652 if( r>9223372036854775807.0 ) return -1;
3653 y = (i64)r;
3654 if( i<y ) return -1;
3655 if( i>y ){
3656 if( y==SMALLEST_INT64 && r>0.0 ) return -1;
3657 return +1;
3658 }
3659 s = (double)i;
3660 if( s<r ) return -1;
3661 if( s>r ) return +1;
3662 return 0;
3663 }
3664}
drh982ff722014-09-16 03:24:43 +00003665
3666/*
dan1fed5da2014-02-25 21:01:25 +00003667** Compare the values contained by the two memory cells, returning
3668** negative, zero or positive if pMem1 is less than, equal to, or greater
3669** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3670** and reals) sorted numerically, followed by text ordered by the collating
3671** sequence pColl and finally blob's ordered by memcmp().
3672**
3673** Two NULL values are considered equal by this function.
3674*/
3675int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
dan1fed5da2014-02-25 21:01:25 +00003676 int f1, f2;
3677 int combined_flags;
3678
3679 f1 = pMem1->flags;
3680 f2 = pMem2->flags;
3681 combined_flags = f1|f2;
3682 assert( (combined_flags & MEM_RowSet)==0 );
drhec1fc802008-08-13 14:07:40 +00003683
dan1fed5da2014-02-25 21:01:25 +00003684 /* If one value is NULL, it is less than the other. If both values
3685 ** are NULL, return 0.
3686 */
3687 if( combined_flags&MEM_Null ){
3688 return (f2&MEM_Null) - (f1&MEM_Null);
3689 }
3690
drh2ab410a2015-11-06 14:59:07 +00003691 /* At least one of the two values is a number
dan1fed5da2014-02-25 21:01:25 +00003692 */
3693 if( combined_flags&(MEM_Int|MEM_Real) ){
dan1fed5da2014-02-25 21:01:25 +00003694 if( (f1 & f2 & MEM_Int)!=0 ){
3695 if( pMem1->u.i < pMem2->u.i ) return -1;
drh2ab410a2015-11-06 14:59:07 +00003696 if( pMem1->u.i > pMem2->u.i ) return +1;
dan1fed5da2014-02-25 21:01:25 +00003697 return 0;
3698 }
drh2ab410a2015-11-06 14:59:07 +00003699 if( (f1 & f2 & MEM_Real)!=0 ){
3700 if( pMem1->u.r < pMem2->u.r ) return -1;
3701 if( pMem1->u.r > pMem2->u.r ) return +1;
3702 return 0;
3703 }
3704 if( (f1&MEM_Int)!=0 ){
3705 if( (f2&MEM_Real)!=0 ){
3706 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
3707 }else{
3708 return -1;
3709 }
3710 }
dan1fed5da2014-02-25 21:01:25 +00003711 if( (f1&MEM_Real)!=0 ){
drh2ab410a2015-11-06 14:59:07 +00003712 if( (f2&MEM_Int)!=0 ){
3713 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
3714 }else{
3715 return -1;
3716 }
dan1fed5da2014-02-25 21:01:25 +00003717 }
drh2ab410a2015-11-06 14:59:07 +00003718 return +1;
dan1fed5da2014-02-25 21:01:25 +00003719 }
3720
3721 /* If one value is a string and the other is a blob, the string is less.
3722 ** If both are strings, compare using the collating functions.
3723 */
3724 if( combined_flags&MEM_Str ){
3725 if( (f1 & MEM_Str)==0 ){
3726 return 1;
3727 }
3728 if( (f2 & MEM_Str)==0 ){
3729 return -1;
3730 }
3731
3732 assert( pMem1->enc==pMem2->enc );
3733 assert( pMem1->enc==SQLITE_UTF8 ||
3734 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3735
3736 /* The collation sequence must be defined at this point, even if
3737 ** the user deletes the collation sequence after the vdbe program is
3738 ** compiled (this was not always the case).
3739 */
3740 assert( !pColl || pColl->xCmp );
3741
3742 if( pColl ){
dan38fdead2014-04-01 10:19:02 +00003743 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
dan1fed5da2014-02-25 21:01:25 +00003744 }
3745 /* If a NULL pointer was passed as the collate function, fall through
3746 ** to the blob case and use memcmp(). */
3747 }
3748
3749 /* Both values must be blobs. Compare using memcmp(). */
drh982ff722014-09-16 03:24:43 +00003750 return sqlite3BlobCompare(pMem1, pMem2);
dan1fed5da2014-02-25 21:01:25 +00003751}
3752
3753
dan3833e932014-03-01 19:44:56 +00003754/*
3755** The first argument passed to this function is a serial-type that
3756** corresponds to an integer - all values between 1 and 9 inclusive
3757** except 7. The second points to a buffer containing an integer value
3758** serialized according to serial_type. This function deserializes
3759** and returns the value.
3760*/
dan3b9330f2014-02-27 20:44:18 +00003761static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
drhf926d1e2014-03-04 04:04:33 +00003762 u32 y;
dan3833e932014-03-01 19:44:56 +00003763 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
dan3b9330f2014-02-27 20:44:18 +00003764 switch( serial_type ){
dan3833e932014-03-01 19:44:56 +00003765 case 0:
dan3b9330f2014-02-27 20:44:18 +00003766 case 1:
drhb6e8fd12014-03-06 01:56:33 +00003767 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003768 return ONE_BYTE_INT(aKey);
dan3b9330f2014-02-27 20:44:18 +00003769 case 2:
drhb6e8fd12014-03-06 01:56:33 +00003770 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003771 return TWO_BYTE_INT(aKey);
dan3b9330f2014-02-27 20:44:18 +00003772 case 3:
drhb6e8fd12014-03-06 01:56:33 +00003773 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003774 return THREE_BYTE_INT(aKey);
3775 case 4: {
drhb6e8fd12014-03-06 01:56:33 +00003776 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003777 y = FOUR_BYTE_UINT(aKey);
3778 return (i64)*(int*)&y;
3779 }
dan3b9330f2014-02-27 20:44:18 +00003780 case 5: {
drhb6e8fd12014-03-06 01:56:33 +00003781 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003782 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
danielk19779a96b662007-11-29 17:05:18 +00003783 }
dan3b9330f2014-02-27 20:44:18 +00003784 case 6: {
drhf926d1e2014-03-04 04:04:33 +00003785 u64 x = FOUR_BYTE_UINT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003786 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003787 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3788 return (i64)*(i64*)&x;
drh7a224de2004-06-02 01:22:02 +00003789 }
dan3b9330f2014-02-27 20:44:18 +00003790 }
danielk1977161546c2008-07-26 18:26:10 +00003791
dan3b9330f2014-02-27 20:44:18 +00003792 return (serial_type - 8);
drhd5788202004-05-28 08:21:05 +00003793}
danielk1977eb015e02004-05-18 01:31:14 +00003794
dan3833e932014-03-01 19:44:56 +00003795/*
3796** This function compares the two table rows or index records
3797** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
3798** or positive integer if key1 is less than, equal to or
3799** greater than key2. The {nKey1, pKey1} key must be a blob
peter.d.reid60ec9142014-09-06 16:39:46 +00003800** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
dan3833e932014-03-01 19:44:56 +00003801** key must be a parsed key such as obtained from
3802** sqlite3VdbeParseRecord.
3803**
3804** If argument bSkip is non-zero, it is assumed that the caller has already
3805** determined that the first fields of the keys are equal.
3806**
3807** Key1 and Key2 do not have to contain the same number of fields. If all
3808** fields that appear in both keys are equal, then pPKey2->default_rc is
3809** returned.
drha1f7c0a2014-03-28 03:12:48 +00003810**
dan38fdead2014-04-01 10:19:02 +00003811** If database corruption is discovered, set pPKey2->errCode to
3812** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3813** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3814** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
dan3833e932014-03-01 19:44:56 +00003815*/
dan7004f3f2015-03-30 12:06:26 +00003816int sqlite3VdbeRecordCompareWithSkip(
dan3833e932014-03-01 19:44:56 +00003817 int nKey1, const void *pKey1, /* Left key */
drha1f7c0a2014-03-28 03:12:48 +00003818 UnpackedRecord *pPKey2, /* Right key */
dan3833e932014-03-01 19:44:56 +00003819 int bSkip /* If true, skip the first field */
dan1fed5da2014-02-25 21:01:25 +00003820){
dan3833e932014-03-01 19:44:56 +00003821 u32 d1; /* Offset into aKey[] of next data element */
3822 int i; /* Index of next field to compare */
mistachkinffe6bc22014-03-04 11:16:20 +00003823 u32 szHdr1; /* Size of record header in bytes */
dan3833e932014-03-01 19:44:56 +00003824 u32 idx1; /* Offset of first type in header */
3825 int rc = 0; /* Return value */
3826 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
dan1fed5da2014-02-25 21:01:25 +00003827 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3828 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3829 Mem mem1;
3830
dan3833e932014-03-01 19:44:56 +00003831 /* If bSkip is true, then the caller has already determined that the first
3832 ** two elements in the keys are equal. Fix the various stack variables so
dan3b9330f2014-02-27 20:44:18 +00003833 ** that this routine begins comparing at the second field. */
dan3833e932014-03-01 19:44:56 +00003834 if( bSkip ){
dan3b9330f2014-02-27 20:44:18 +00003835 u32 s1;
dan3b9330f2014-02-27 20:44:18 +00003836 idx1 = 1 + getVarint32(&aKey1[1], s1);
dan3833e932014-03-01 19:44:56 +00003837 szHdr1 = aKey1[0];
3838 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
dan3b9330f2014-02-27 20:44:18 +00003839 i = 1;
3840 pRhs++;
dan3833e932014-03-01 19:44:56 +00003841 }else{
3842 idx1 = getVarint32(aKey1, szHdr1);
3843 d1 = szHdr1;
drha1f7c0a2014-03-28 03:12:48 +00003844 if( d1>(unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003845 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003846 return 0; /* Corruption */
3847 }
dan3833e932014-03-01 19:44:56 +00003848 i = 0;
dan3b9330f2014-02-27 20:44:18 +00003849 }
3850
drh17bcb102014-09-18 21:25:33 +00003851 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
dan1fed5da2014-02-25 21:01:25 +00003852 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
3853 || CORRUPT_DB );
3854 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
3855 assert( pPKey2->pKeyInfo->nField>0 );
3856 assert( idx1<=szHdr1 || CORRUPT_DB );
3857 do{
dan1fed5da2014-02-25 21:01:25 +00003858 u32 serial_type;
3859
3860 /* RHS is an integer */
3861 if( pRhs->flags & MEM_Int ){
3862 serial_type = aKey1[idx1];
drhb6e8fd12014-03-06 01:56:33 +00003863 testcase( serial_type==12 );
danb95e1192015-05-26 20:31:20 +00003864 if( serial_type>=10 ){
dan1fed5da2014-02-25 21:01:25 +00003865 rc = +1;
3866 }else if( serial_type==0 ){
3867 rc = -1;
dan3b9330f2014-02-27 20:44:18 +00003868 }else if( serial_type==7 ){
dan1fed5da2014-02-25 21:01:25 +00003869 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
drh2ab410a2015-11-06 14:59:07 +00003870 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
dan3b9330f2014-02-27 20:44:18 +00003871 }else{
3872 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
3873 i64 rhs = pRhs->u.i;
3874 if( lhs<rhs ){
3875 rc = -1;
3876 }else if( lhs>rhs ){
3877 rc = +1;
dan1fed5da2014-02-25 21:01:25 +00003878 }
3879 }
3880 }
3881
3882 /* RHS is real */
3883 else if( pRhs->flags & MEM_Real ){
3884 serial_type = aKey1[idx1];
dancc7aa1f2015-05-26 20:07:32 +00003885 if( serial_type>=10 ){
3886 /* Serial types 12 or greater are strings and blobs (greater than
3887 ** numbers). Types 10 and 11 are currently "reserved for future
3888 ** use", so it doesn't really matter what the results of comparing
3889 ** them to numberic values are. */
dan1fed5da2014-02-25 21:01:25 +00003890 rc = +1;
3891 }else if( serial_type==0 ){
3892 rc = -1;
3893 }else{
dan1fed5da2014-02-25 21:01:25 +00003894 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3895 if( serial_type==7 ){
drh2ab410a2015-11-06 14:59:07 +00003896 if( mem1.u.r<pRhs->u.r ){
3897 rc = -1;
3898 }else if( mem1.u.r>pRhs->u.r ){
3899 rc = +1;
3900 }
dan1fed5da2014-02-25 21:01:25 +00003901 }else{
drh2ab410a2015-11-06 14:59:07 +00003902 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
dan1fed5da2014-02-25 21:01:25 +00003903 }
3904 }
3905 }
3906
3907 /* RHS is a string */
3908 else if( pRhs->flags & MEM_Str ){
3909 getVarint32(&aKey1[idx1], serial_type);
drhb6e8fd12014-03-06 01:56:33 +00003910 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00003911 if( serial_type<12 ){
3912 rc = -1;
3913 }else if( !(serial_type & 0x01) ){
3914 rc = +1;
3915 }else{
3916 mem1.n = (serial_type - 12) / 2;
drhb6e8fd12014-03-06 01:56:33 +00003917 testcase( (d1+mem1.n)==(unsigned)nKey1 );
3918 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
drh295aedf2014-03-03 18:25:24 +00003919 if( (d1+mem1.n) > (unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003920 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003921 return 0; /* Corruption */
dan1fed5da2014-02-25 21:01:25 +00003922 }else if( pKeyInfo->aColl[i] ){
3923 mem1.enc = pKeyInfo->enc;
3924 mem1.db = pKeyInfo->db;
3925 mem1.flags = MEM_Str;
drhfcb44a82014-03-03 15:13:27 +00003926 mem1.z = (char*)&aKey1[d1];
dan38fdead2014-04-01 10:19:02 +00003927 rc = vdbeCompareMemString(
3928 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
3929 );
dan1fed5da2014-02-25 21:01:25 +00003930 }else{
3931 int nCmp = MIN(mem1.n, pRhs->n);
3932 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3933 if( rc==0 ) rc = mem1.n - pRhs->n;
3934 }
3935 }
3936 }
3937
3938 /* RHS is a blob */
3939 else if( pRhs->flags & MEM_Blob ){
3940 getVarint32(&aKey1[idx1], serial_type);
drhb6e8fd12014-03-06 01:56:33 +00003941 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00003942 if( serial_type<12 || (serial_type & 0x01) ){
3943 rc = -1;
3944 }else{
3945 int nStr = (serial_type - 12) / 2;
drhb6e8fd12014-03-06 01:56:33 +00003946 testcase( (d1+nStr)==(unsigned)nKey1 );
3947 testcase( (d1+nStr+1)==(unsigned)nKey1 );
drh295aedf2014-03-03 18:25:24 +00003948 if( (d1+nStr) > (unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003949 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003950 return 0; /* Corruption */
dan1fed5da2014-02-25 21:01:25 +00003951 }else{
3952 int nCmp = MIN(nStr, pRhs->n);
3953 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3954 if( rc==0 ) rc = nStr - pRhs->n;
3955 }
3956 }
3957 }
3958
3959 /* RHS is null */
3960 else{
3961 serial_type = aKey1[idx1];
3962 rc = (serial_type!=0);
3963 }
3964
3965 if( rc!=0 ){
dan1fed5da2014-02-25 21:01:25 +00003966 if( pKeyInfo->aSortOrder[i] ){
3967 rc = -rc;
dan1fed5da2014-02-25 21:01:25 +00003968 }
drh79211e12014-05-02 17:33:16 +00003969 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
drh17bcb102014-09-18 21:25:33 +00003970 assert( mem1.szMalloc==0 ); /* See comment below */
dan1fed5da2014-02-25 21:01:25 +00003971 return rc;
3972 }
3973
3974 i++;
dan3b9330f2014-02-27 20:44:18 +00003975 pRhs++;
dan1fed5da2014-02-25 21:01:25 +00003976 d1 += sqlite3VdbeSerialTypeLen(serial_type);
3977 idx1 += sqlite3VarintLen(serial_type);
drh295aedf2014-03-03 18:25:24 +00003978 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
dan1fed5da2014-02-25 21:01:25 +00003979
3980 /* No memory allocation is ever used on mem1. Prove this using
3981 ** the following assert(). If the assert() fails, it indicates a
dan3833e932014-03-01 19:44:56 +00003982 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
drh17bcb102014-09-18 21:25:33 +00003983 assert( mem1.szMalloc==0 );
dan1fed5da2014-02-25 21:01:25 +00003984
3985 /* rc==0 here means that one or both of the keys ran out of fields and
peter.d.reid60ec9142014-09-06 16:39:46 +00003986 ** all the fields up to that point were equal. Return the default_rc
dan1fed5da2014-02-25 21:01:25 +00003987 ** value. */
dan3833e932014-03-01 19:44:56 +00003988 assert( CORRUPT_DB
drh66141812014-06-30 20:25:03 +00003989 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
dan6696ba32014-06-28 19:06:49 +00003990 || pKeyInfo->db->mallocFailed
dan3833e932014-03-01 19:44:56 +00003991 );
dan1fed5da2014-02-25 21:01:25 +00003992 return pPKey2->default_rc;
3993}
drh75179de2014-09-16 14:37:35 +00003994int sqlite3VdbeRecordCompare(
3995 int nKey1, const void *pKey1, /* Left key */
3996 UnpackedRecord *pPKey2 /* Right key */
3997){
dan7004f3f2015-03-30 12:06:26 +00003998 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
drh75179de2014-09-16 14:37:35 +00003999}
4000
dan1fed5da2014-02-25 21:01:25 +00004001
dan3833e932014-03-01 19:44:56 +00004002/*
4003** This function is an optimized version of sqlite3VdbeRecordCompare()
4004** that (a) the first field of pPKey2 is an integer, and (b) the
4005** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4006** byte (i.e. is less than 128).
drhe2ac5062014-03-26 12:02:38 +00004007**
4008** To avoid concerns about buffer overreads, this routine is only used
4009** on schemas where the maximum valid header size is 63 bytes or less.
dan3833e932014-03-01 19:44:56 +00004010*/
dan3b9330f2014-02-27 20:44:18 +00004011static int vdbeRecordCompareInt(
4012 int nKey1, const void *pKey1, /* Left key */
drh75179de2014-09-16 14:37:35 +00004013 UnpackedRecord *pPKey2 /* Right key */
dan3b9330f2014-02-27 20:44:18 +00004014){
dan9b8afef2014-03-03 20:48:50 +00004015 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
dan3b9330f2014-02-27 20:44:18 +00004016 int serial_type = ((const u8*)pKey1)[1];
4017 int res;
drhf926d1e2014-03-04 04:04:33 +00004018 u32 y;
4019 u64 x;
dan3b9330f2014-02-27 20:44:18 +00004020 i64 v = pPKey2->aMem[0].u.i;
4021 i64 lhs;
4022
drhe1bb8022015-01-19 19:48:52 +00004023 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
drhe2ac5062014-03-26 12:02:38 +00004024 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
dan3833e932014-03-01 19:44:56 +00004025 switch( serial_type ){
drhf926d1e2014-03-04 04:04:33 +00004026 case 1: { /* 1-byte signed integer */
4027 lhs = ONE_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004028 testcase( lhs<0 );
dan3b9330f2014-02-27 20:44:18 +00004029 break;
4030 }
drhf926d1e2014-03-04 04:04:33 +00004031 case 2: { /* 2-byte signed integer */
4032 lhs = TWO_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004033 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004034 break;
4035 }
4036 case 3: { /* 3-byte signed integer */
4037 lhs = THREE_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004038 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004039 break;
4040 }
4041 case 4: { /* 4-byte signed integer */
4042 y = FOUR_BYTE_UINT(aKey);
4043 lhs = (i64)*(int*)&y;
drhb6e8fd12014-03-06 01:56:33 +00004044 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004045 break;
4046 }
4047 case 5: { /* 6-byte signed integer */
4048 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004049 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004050 break;
4051 }
4052 case 6: { /* 8-byte signed integer */
4053 x = FOUR_BYTE_UINT(aKey);
4054 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4055 lhs = *(i64*)&x;
drhb6e8fd12014-03-06 01:56:33 +00004056 testcase( lhs<0 );
dan3b9330f2014-02-27 20:44:18 +00004057 break;
4058 }
dan3b9330f2014-02-27 20:44:18 +00004059 case 8:
4060 lhs = 0;
4061 break;
dan3b9330f2014-02-27 20:44:18 +00004062 case 9:
4063 lhs = 1;
4064 break;
4065
dan063d4a02014-02-28 09:48:30 +00004066 /* This case could be removed without changing the results of running
4067 ** this code. Including it causes gcc to generate a faster switch
4068 ** statement (since the range of switch targets now starts at zero and
dan597515d2014-02-28 18:39:51 +00004069 ** is contiguous) but does not cause any duplicate code to be generated
dan063d4a02014-02-28 09:48:30 +00004070 ** (as gcc is clever enough to combine the two like cases). Other
4071 ** compilers might be similar. */
4072 case 0: case 7:
drh75179de2014-09-16 14:37:35 +00004073 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
dan063d4a02014-02-28 09:48:30 +00004074
dan3b9330f2014-02-27 20:44:18 +00004075 default:
drh75179de2014-09-16 14:37:35 +00004076 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
dan3b9330f2014-02-27 20:44:18 +00004077 }
4078
4079 if( v>lhs ){
4080 res = pPKey2->r1;
4081 }else if( v<lhs ){
4082 res = pPKey2->r2;
4083 }else if( pPKey2->nField>1 ){
dan063d4a02014-02-28 09:48:30 +00004084 /* The first fields of the two keys are equal. Compare the trailing
4085 ** fields. */
dan7004f3f2015-03-30 12:06:26 +00004086 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
dan3b9330f2014-02-27 20:44:18 +00004087 }else{
dan063d4a02014-02-28 09:48:30 +00004088 /* The first fields of the two keys are equal and there are no trailing
4089 ** fields. Return pPKey2->default_rc in this case. */
dan3b9330f2014-02-27 20:44:18 +00004090 res = pPKey2->default_rc;
4091 }
4092
drh79211e12014-05-02 17:33:16 +00004093 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
dan3b9330f2014-02-27 20:44:18 +00004094 return res;
4095}
4096
dan3833e932014-03-01 19:44:56 +00004097/*
4098** This function is an optimized version of sqlite3VdbeRecordCompare()
4099** that (a) the first field of pPKey2 is a string, that (b) the first field
4100** uses the collation sequence BINARY and (c) that the size-of-header varint
4101** at the start of (pKey1/nKey1) fits in a single byte.
4102*/
dan3b9330f2014-02-27 20:44:18 +00004103static int vdbeRecordCompareString(
4104 int nKey1, const void *pKey1, /* Left key */
drh75179de2014-09-16 14:37:35 +00004105 UnpackedRecord *pPKey2 /* Right key */
dan3b9330f2014-02-27 20:44:18 +00004106){
4107 const u8 *aKey1 = (const u8*)pKey1;
4108 int serial_type;
4109 int res;
4110
drh2ab410a2015-11-06 14:59:07 +00004111 assert( pPKey2->aMem[0].flags & MEM_Str );
drhe1bb8022015-01-19 19:48:52 +00004112 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
dan3b9330f2014-02-27 20:44:18 +00004113 getVarint32(&aKey1[1], serial_type);
dan3b9330f2014-02-27 20:44:18 +00004114 if( serial_type<12 ){
4115 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4116 }else if( !(serial_type & 0x01) ){
4117 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4118 }else{
4119 int nCmp;
4120 int nStr;
dan3833e932014-03-01 19:44:56 +00004121 int szHdr = aKey1[0];
dan3b9330f2014-02-27 20:44:18 +00004122
4123 nStr = (serial_type-12) / 2;
drha1f7c0a2014-03-28 03:12:48 +00004124 if( (szHdr + nStr) > nKey1 ){
dan38fdead2014-04-01 10:19:02 +00004125 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00004126 return 0; /* Corruption */
4127 }
dan3b9330f2014-02-27 20:44:18 +00004128 nCmp = MIN( pPKey2->aMem[0].n, nStr );
dan3833e932014-03-01 19:44:56 +00004129 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
dan3b9330f2014-02-27 20:44:18 +00004130
4131 if( res==0 ){
4132 res = nStr - pPKey2->aMem[0].n;
4133 if( res==0 ){
4134 if( pPKey2->nField>1 ){
dan7004f3f2015-03-30 12:06:26 +00004135 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
dan3b9330f2014-02-27 20:44:18 +00004136 }else{
4137 res = pPKey2->default_rc;
4138 }
4139 }else if( res>0 ){
4140 res = pPKey2->r2;
4141 }else{
4142 res = pPKey2->r1;
4143 }
4144 }else if( res>0 ){
4145 res = pPKey2->r2;
4146 }else{
4147 res = pPKey2->r1;
4148 }
4149 }
4150
drh66141812014-06-30 20:25:03 +00004151 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
dan3b9330f2014-02-27 20:44:18 +00004152 || CORRUPT_DB
dan6696ba32014-06-28 19:06:49 +00004153 || pPKey2->pKeyInfo->db->mallocFailed
dan3b9330f2014-02-27 20:44:18 +00004154 );
4155 return res;
4156}
4157
dan3833e932014-03-01 19:44:56 +00004158/*
4159** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4160** suitable for comparing serialized records to the unpacked record passed
4161** as the only argument.
4162*/
dan1fed5da2014-02-25 21:01:25 +00004163RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
dan9b8afef2014-03-03 20:48:50 +00004164 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4165 ** that the size-of-header varint that occurs at the start of each record
4166 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4167 ** also assumes that it is safe to overread a buffer by at least the
4168 ** maximum possible legal header size plus 8 bytes. Because there is
4169 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4170 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4171 ** limit the size of the header to 64 bytes in cases where the first field
4172 ** is an integer.
4173 **
4174 ** The easiest way to enforce this limit is to consider only records with
4175 ** 13 fields or less. If the first field is an integer, the maximum legal
4176 ** header size is (12*5 + 1 + 1) bytes. */
4177 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
dan1fed5da2014-02-25 21:01:25 +00004178 int flags = p->aMem[0].flags;
dan3b9330f2014-02-27 20:44:18 +00004179 if( p->pKeyInfo->aSortOrder[0] ){
4180 p->r1 = 1;
4181 p->r2 = -1;
4182 }else{
4183 p->r1 = -1;
4184 p->r2 = 1;
4185 }
dan1fed5da2014-02-25 21:01:25 +00004186 if( (flags & MEM_Int) ){
4187 return vdbeRecordCompareInt;
dan3b9330f2014-02-27 20:44:18 +00004188 }
drhb6e8fd12014-03-06 01:56:33 +00004189 testcase( flags & MEM_Real );
4190 testcase( flags & MEM_Null );
4191 testcase( flags & MEM_Blob );
4192 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4193 assert( flags & MEM_Str );
dan1fed5da2014-02-25 21:01:25 +00004194 return vdbeRecordCompareString;
4195 }
4196 }
dan3b9330f2014-02-27 20:44:18 +00004197
dan3833e932014-03-01 19:44:56 +00004198 return sqlite3VdbeRecordCompare;
dan3b9330f2014-02-27 20:44:18 +00004199}
danielk1977eb015e02004-05-18 01:31:14 +00004200
4201/*
drh7a224de2004-06-02 01:22:02 +00004202** pCur points at an index entry created using the OP_MakeRecord opcode.
4203** Read the rowid (the last field in the record) and store it in *rowid.
4204** Return SQLITE_OK if everything works, or an error code otherwise.
drh88a003e2008-12-11 16:17:03 +00004205**
4206** pCur might be pointing to text obtained from a corrupt database file.
4207** So the content cannot be trusted. Do appropriate checks on the content.
danielk1977183f9f72004-05-13 05:20:26 +00004208*/
drh35f6b932009-06-23 14:15:04 +00004209int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
drh61fc5952007-04-01 23:49:51 +00004210 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00004211 int rc;
drhd5788202004-05-28 08:21:05 +00004212 u32 szHdr; /* Size of the header */
4213 u32 typeRowid; /* Serial type of the rowid */
4214 u32 lenRowid; /* Size of the rowid */
4215 Mem m, v;
danielk1977183f9f72004-05-13 05:20:26 +00004216
drh88a003e2008-12-11 16:17:03 +00004217 /* Get the size of the index entry. Only indices entries of less
drh7b746032009-06-26 12:15:22 +00004218 ** than 2GiB are support - anything large must be database corruption.
4219 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
drhc27ae612009-07-14 18:35:44 +00004220 ** this code can safely assume that nCellKey is 32-bits
4221 */
drhea8ffdf2009-07-22 00:35:23 +00004222 assert( sqlite3BtreeCursorIsValid(pCur) );
drhb07028f2011-10-14 21:49:18 +00004223 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
drhc27ae612009-07-14 18:35:44 +00004224 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
drh7b746032009-06-26 12:15:22 +00004225 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
drh88a003e2008-12-11 16:17:03 +00004226
4227 /* Read in the complete content of the index entry */
drhd3b74202014-09-17 16:41:15 +00004228 sqlite3VdbeMemInit(&m, db, 0);
drh501932c2013-11-21 21:59:53 +00004229 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
drhd5788202004-05-28 08:21:05 +00004230 if( rc ){
danielk1977183f9f72004-05-13 05:20:26 +00004231 return rc;
4232 }
drh88a003e2008-12-11 16:17:03 +00004233
4234 /* The index entry must begin with a header size */
shane3f8d5cf2008-04-24 19:15:09 +00004235 (void)getVarint32((u8*)m.z, szHdr);
drh7b746032009-06-26 12:15:22 +00004236 testcase( szHdr==3 );
drh88a003e2008-12-11 16:17:03 +00004237 testcase( szHdr==m.n );
drh7b746032009-06-26 12:15:22 +00004238 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
drh88a003e2008-12-11 16:17:03 +00004239 goto idx_rowid_corruption;
4240 }
4241
4242 /* The last field of the index should be an integer - the ROWID.
4243 ** Verify that the last entry really is an integer. */
shane3f8d5cf2008-04-24 19:15:09 +00004244 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
drh88a003e2008-12-11 16:17:03 +00004245 testcase( typeRowid==1 );
4246 testcase( typeRowid==2 );
4247 testcase( typeRowid==3 );
4248 testcase( typeRowid==4 );
4249 testcase( typeRowid==5 );
4250 testcase( typeRowid==6 );
4251 testcase( typeRowid==8 );
4252 testcase( typeRowid==9 );
4253 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4254 goto idx_rowid_corruption;
4255 }
drhc5ef7152015-06-28 02:58:51 +00004256 lenRowid = sqlite3SmallTypeSizes[typeRowid];
drheeb844a2009-08-08 18:01:07 +00004257 testcase( (u32)m.n==szHdr+lenRowid );
4258 if( unlikely((u32)m.n<szHdr+lenRowid) ){
drh88a003e2008-12-11 16:17:03 +00004259 goto idx_rowid_corruption;
4260 }
4261
4262 /* Fetch the integer off the end of the index record */
drh2646da72005-12-09 20:02:05 +00004263 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
drh3c024d62007-03-30 11:23:45 +00004264 *rowid = v.u.i;
danielk1977d8123362004-06-12 09:25:12 +00004265 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00004266 return SQLITE_OK;
drh88a003e2008-12-11 16:17:03 +00004267
4268 /* Jump here if database corruption is detected after m has been
4269 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4270idx_rowid_corruption:
drh17bcb102014-09-18 21:25:33 +00004271 testcase( m.szMalloc!=0 );
drh88a003e2008-12-11 16:17:03 +00004272 sqlite3VdbeMemRelease(&m);
4273 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00004274}
4275
drh7cf6e4d2004-05-19 14:56:55 +00004276/*
drh5f82e3c2009-07-06 00:44:08 +00004277** Compare the key of the index entry that cursor pC is pointing to against
4278** the key string in pUnpacked. Write into *pRes a number
drh7cf6e4d2004-05-19 14:56:55 +00004279** that is negative, zero, or positive if pC is less than, equal to,
drh5f82e3c2009-07-06 00:44:08 +00004280** or greater than pUnpacked. Return SQLITE_OK on success.
drhd3d39e92004-05-20 22:16:29 +00004281**
drh5f82e3c2009-07-06 00:44:08 +00004282** pUnpacked is either created without a rowid or is truncated so that it
drhd5788202004-05-28 08:21:05 +00004283** omits the rowid at the end. The rowid at the end of the index entry
drhec1fc802008-08-13 14:07:40 +00004284** is ignored as well. Hence, this routine only compares the prefixes
4285** of the keys prior to the final rowid, not the entire key.
drh7cf6e4d2004-05-19 14:56:55 +00004286*/
danielk1977183f9f72004-05-13 05:20:26 +00004287int sqlite3VdbeIdxKeyCompare(
drhd3b74202014-09-17 16:41:15 +00004288 sqlite3 *db, /* Database connection */
drh295aedf2014-03-03 18:25:24 +00004289 VdbeCursor *pC, /* The cursor to compare against */
drha1f7c0a2014-03-28 03:12:48 +00004290 UnpackedRecord *pUnpacked, /* Unpacked version of key */
drh295aedf2014-03-03 18:25:24 +00004291 int *res /* Write the comparison result here */
danielk1977183f9f72004-05-13 05:20:26 +00004292){
drh61fc5952007-04-01 23:49:51 +00004293 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00004294 int rc;
danielk19773d1bfea2004-05-14 11:00:53 +00004295 BtCursor *pCur = pC->pCursor;
drhd5788202004-05-28 08:21:05 +00004296 Mem m;
danielk1977183f9f72004-05-13 05:20:26 +00004297
drhea8ffdf2009-07-22 00:35:23 +00004298 assert( sqlite3BtreeCursorIsValid(pCur) );
drhb07028f2011-10-14 21:49:18 +00004299 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
drhc27ae612009-07-14 18:35:44 +00004300 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
drh56689692014-03-03 19:29:28 +00004301 /* nCellKey will always be between 0 and 0xffffffff because of the way
drh407414c2009-07-14 14:15:27 +00004302 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
drhc27ae612009-07-14 18:35:44 +00004303 if( nCellKey<=0 || nCellKey>0x7fffffff ){
danielk1977183f9f72004-05-13 05:20:26 +00004304 *res = 0;
drh9978c972010-02-23 17:36:32 +00004305 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00004306 }
drhd3b74202014-09-17 16:41:15 +00004307 sqlite3VdbeMemInit(&m, db, 0);
drh501932c2013-11-21 21:59:53 +00004308 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
drhec1fc802008-08-13 14:07:40 +00004309 if( rc ){
drhd5788202004-05-28 08:21:05 +00004310 return rc;
danielk1977183f9f72004-05-13 05:20:26 +00004311 }
drhe63d9992008-08-13 19:11:48 +00004312 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
danielk1977d8123362004-06-12 09:25:12 +00004313 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00004314 return SQLITE_OK;
4315}
danielk1977b28af712004-06-21 06:50:26 +00004316
4317/*
4318** This routine sets the value to be returned by subsequent calls to
4319** sqlite3_changes() on the database handle 'db'.
4320*/
4321void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
drhb21c8cd2007-08-21 19:33:56 +00004322 assert( sqlite3_mutex_held(db->mutex) );
danielk1977b28af712004-06-21 06:50:26 +00004323 db->nChange = nChange;
4324 db->nTotalChange += nChange;
4325}
4326
4327/*
4328** Set a flag in the vdbe to update the change counter when it is finalised
4329** or reset.
4330*/
drh4794f732004-11-05 17:17:50 +00004331void sqlite3VdbeCountChanges(Vdbe *v){
4332 v->changeCntOn = 1;
danielk1977b28af712004-06-21 06:50:26 +00004333}
drhd89bd002005-01-22 03:03:54 +00004334
4335/*
4336** Mark every prepared statement associated with a database connection
4337** as expired.
4338**
4339** An expired statement means that recompilation of the statement is
4340** recommend. Statements expire when things happen that make their
4341** programs obsolete. Removing user-defined functions or collating
4342** sequences, or changing an authorization function are the types of
4343** things that make prepared statements obsolete.
4344*/
4345void sqlite3ExpirePreparedStatements(sqlite3 *db){
4346 Vdbe *p;
4347 for(p = db->pVdbe; p; p=p->pNext){
4348 p->expired = 1;
4349 }
4350}
danielk1977aee18ef2005-03-09 12:26:50 +00004351
4352/*
4353** Return the database associated with the Vdbe.
4354*/
4355sqlite3 *sqlite3VdbeDb(Vdbe *v){
4356 return v->db;
4357}
dan937d0de2009-10-15 18:35:38 +00004358
4359/*
4360** Return a pointer to an sqlite3_value structure containing the value bound
4361** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4362** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4363** constants) to the value before returning it.
4364**
4365** The returned value must be freed by the caller using sqlite3ValueFree().
4366*/
drhcf0fd4a2013-08-01 12:21:58 +00004367sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
dan937d0de2009-10-15 18:35:38 +00004368 assert( iVar>0 );
4369 if( v ){
4370 Mem *pMem = &v->aVar[iVar-1];
4371 if( 0==(pMem->flags & MEM_Null) ){
4372 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4373 if( pRet ){
4374 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4375 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
dan937d0de2009-10-15 18:35:38 +00004376 }
4377 return pRet;
4378 }
4379 }
4380 return 0;
4381}
4382
4383/*
4384** Configure SQL variable iVar so that binding a new value to it signals
4385** to sqlite3_reoptimize() that re-preparing the statement may result
4386** in a better query plan.
4387*/
dan1d2ce4f2009-10-19 18:11:09 +00004388void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
dan937d0de2009-10-15 18:35:38 +00004389 assert( iVar>0 );
4390 if( iVar>32 ){
dan1d2ce4f2009-10-19 18:11:09 +00004391 v->expmask = 0xffffffff;
dan937d0de2009-10-15 18:35:38 +00004392 }else{
dan1d2ce4f2009-10-19 18:11:09 +00004393 v->expmask |= ((u32)1 << (iVar-1));
dan937d0de2009-10-15 18:35:38 +00004394 }
4395}
dan016f7812013-08-21 17:35:48 +00004396
4397#ifndef SQLITE_OMIT_VIRTUALTABLE
4398/*
4399** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4400** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4401** in memory obtained from sqlite3DbMalloc).
4402*/
4403void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4404 sqlite3 *db = p->db;
4405 sqlite3DbFree(db, p->zErrMsg);
4406 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4407 sqlite3_free(pVtab->zErrMsg);
4408 pVtab->zErrMsg = 0;
4409}
4410#endif /* SQLITE_OMIT_VIRTUALTABLE */