blob: 3a06cb05ec6f67a1ce3d42e0802fa8204f69ea9a [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
12** This module contains C code that generates VDBE code used to process
drh909626d2008-05-30 14:58:37 +000013** the WHERE clause of SQL statements. This module is responsible for
drh51669862004-12-18 18:40:26 +000014** generating the code that loops through a table looking for applicable
15** rows. Indices are selected and used to speed the search when doing
16** so is applicable. Because this module is responsible for selecting
17** indices, you might also think of this module as the "query optimizer".
drh75897232000-05-29 14:26:00 +000018*/
19#include "sqliteInt.h"
20
21/*
drh51147ba2005-07-23 22:59:55 +000022** Trace output macros
23*/
24#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
mlcreech3a00f902008-03-04 17:45:01 +000025int sqlite3WhereTrace = 0;
drhe8f52c52008-07-12 14:52:20 +000026#endif
drh85799a42009-04-07 13:48:11 +000027#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
mlcreech3a00f902008-03-04 17:45:01 +000028# define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
drh51147ba2005-07-23 22:59:55 +000029#else
drh4f0c5872007-03-26 22:05:01 +000030# define WHERETRACE(X)
drh51147ba2005-07-23 22:59:55 +000031#endif
32
drh0fcef5e2005-07-19 17:38:22 +000033/* Forward reference
34*/
35typedef struct WhereClause WhereClause;
drh111a6a72008-12-21 03:51:16 +000036typedef struct WhereMaskSet WhereMaskSet;
drh700a2262008-12-17 19:22:15 +000037typedef struct WhereOrInfo WhereOrInfo;
38typedef struct WhereAndInfo WhereAndInfo;
drh111a6a72008-12-21 03:51:16 +000039typedef struct WhereCost WhereCost;
drh0aa74ed2005-07-16 13:33:20 +000040
41/*
drh75897232000-05-29 14:26:00 +000042** The query generator uses an array of instances of this structure to
43** help it analyze the subexpressions of the WHERE clause. Each WHERE
drh61495262009-04-22 15:32:59 +000044** clause subexpression is separated from the others by AND operators,
45** usually, or sometimes subexpressions separated by OR.
drh51669862004-12-18 18:40:26 +000046**
drh0fcef5e2005-07-19 17:38:22 +000047** All WhereTerms are collected into a single WhereClause structure.
48** The following identity holds:
drh51669862004-12-18 18:40:26 +000049**
drh0fcef5e2005-07-19 17:38:22 +000050** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
drh51669862004-12-18 18:40:26 +000051**
drh0fcef5e2005-07-19 17:38:22 +000052** When a term is of the form:
53**
54** X <op> <expr>
55**
56** where X is a column name and <op> is one of certain operators,
drh700a2262008-12-17 19:22:15 +000057** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
58** cursor number and column number for X. WhereTerm.eOperator records
drh51147ba2005-07-23 22:59:55 +000059** the <op> using a bitmask encoding defined by WO_xxx below. The
60** use of a bitmask encoding for the operator allows us to search
61** quickly for terms that match any of several different operators.
drh0fcef5e2005-07-19 17:38:22 +000062**
drh700a2262008-12-17 19:22:15 +000063** A WhereTerm might also be two or more subterms connected by OR:
64**
65** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
66**
67** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
68** and the WhereTerm.u.pOrInfo field points to auxiliary information that
69** is collected about the
70**
71** If a term in the WHERE clause does not match either of the two previous
72** categories, then eOperator==0. The WhereTerm.pExpr field is still set
73** to the original subexpression content and wtFlags is set up appropriately
74** but no other fields in the WhereTerm object are meaningful.
75**
76** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
drh111a6a72008-12-21 03:51:16 +000077** but they do so indirectly. A single WhereMaskSet structure translates
drh51669862004-12-18 18:40:26 +000078** cursor number into bits and the translated bit is stored in the prereq
79** fields. The translation is used in order to maximize the number of
80** bits that will fit in a Bitmask. The VDBE cursor numbers might be
81** spread out over the non-negative integers. For example, the cursor
drh111a6a72008-12-21 03:51:16 +000082** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet
drh51669862004-12-18 18:40:26 +000083** translates these sparse cursor numbers into consecutive integers
84** beginning with 0 in order to make the best possible use of the available
85** bits in the Bitmask. So, in the example above, the cursor numbers
86** would be mapped into integers 0 through 7.
drh6a1e0712008-12-05 15:24:15 +000087**
88** The number of terms in a join is limited by the number of bits
89** in prereqRight and prereqAll. The default is 64 bits, hence SQLite
90** is only able to process joins with 64 or fewer tables.
drh75897232000-05-29 14:26:00 +000091*/
drh0aa74ed2005-07-16 13:33:20 +000092typedef struct WhereTerm WhereTerm;
93struct WhereTerm {
drh165be382008-12-05 02:36:33 +000094 Expr *pExpr; /* Pointer to the subexpression that is this term */
drhec1724e2008-12-09 01:32:03 +000095 int iParent; /* Disable pWC->a[iParent] when this term disabled */
96 int leftCursor; /* Cursor number of X in "X <op> <expr>" */
drh700a2262008-12-17 19:22:15 +000097 union {
98 int leftColumn; /* Column number of X in "X <op> <expr>" */
99 WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */
100 WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
101 } u;
drhb52076c2006-01-23 13:22:09 +0000102 u16 eOperator; /* A WO_xx value describing <op> */
drh165be382008-12-05 02:36:33 +0000103 u8 wtFlags; /* TERM_xxx bit flags. See below */
drh45b1ee42005-08-02 17:48:22 +0000104 u8 nChild; /* Number of children that must disable us */
drh0fcef5e2005-07-19 17:38:22 +0000105 WhereClause *pWC; /* The clause this term is part of */
drh165be382008-12-05 02:36:33 +0000106 Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */
107 Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */
drh75897232000-05-29 14:26:00 +0000108};
109
110/*
drh165be382008-12-05 02:36:33 +0000111** Allowed values of WhereTerm.wtFlags
drh0aa74ed2005-07-16 13:33:20 +0000112*/
drh633e6d52008-07-28 19:34:53 +0000113#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */
drh6c30be82005-07-29 15:10:17 +0000114#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
115#define TERM_CODED 0x04 /* This term is already coded */
drh45b1ee42005-08-02 17:48:22 +0000116#define TERM_COPIED 0x08 /* Has a child */
drh700a2262008-12-17 19:22:15 +0000117#define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */
118#define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */
119#define TERM_OR_OK 0x40 /* Used during OR-clause processing */
drh0aa74ed2005-07-16 13:33:20 +0000120
121/*
122** An instance of the following structure holds all information about a
123** WHERE clause. Mostly this is a container for one or more WhereTerms.
124*/
drh0aa74ed2005-07-16 13:33:20 +0000125struct WhereClause {
drhfe05af82005-07-21 03:14:59 +0000126 Parse *pParse; /* The parser context */
drh111a6a72008-12-21 03:51:16 +0000127 WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */
danielk1977e672c8e2009-05-22 15:43:26 +0000128 Bitmask vmask; /* Bitmask identifying virtual table cursors */
drh29435252008-12-28 18:35:08 +0000129 u8 op; /* Split operator. TK_AND or TK_OR */
drh0aa74ed2005-07-16 13:33:20 +0000130 int nTerm; /* Number of terms */
131 int nSlot; /* Number of entries in a[] */
drh51147ba2005-07-23 22:59:55 +0000132 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
drh50d654d2009-06-03 01:24:54 +0000133#if defined(SQLITE_SMALL_STACK)
134 WhereTerm aStatic[1]; /* Initial static space for a[] */
135#else
136 WhereTerm aStatic[8]; /* Initial static space for a[] */
137#endif
drhe23399f2005-07-22 00:31:39 +0000138};
139
140/*
drh700a2262008-12-17 19:22:15 +0000141** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
142** a dynamically allocated instance of the following structure.
143*/
144struct WhereOrInfo {
drh111a6a72008-12-21 03:51:16 +0000145 WhereClause wc; /* Decomposition into subterms */
drh1a58fe02008-12-20 02:06:13 +0000146 Bitmask indexable; /* Bitmask of all indexable tables in the clause */
drh700a2262008-12-17 19:22:15 +0000147};
148
149/*
150** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
151** a dynamically allocated instance of the following structure.
152*/
153struct WhereAndInfo {
drh29435252008-12-28 18:35:08 +0000154 WhereClause wc; /* The subexpression broken out */
drh700a2262008-12-17 19:22:15 +0000155};
156
157/*
drh6a3ea0e2003-05-02 14:32:12 +0000158** An instance of the following structure keeps track of a mapping
drh0aa74ed2005-07-16 13:33:20 +0000159** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
drh51669862004-12-18 18:40:26 +0000160**
161** The VDBE cursor numbers are small integers contained in
162** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
163** clause, the cursor numbers might not begin with 0 and they might
164** contain gaps in the numbering sequence. But we want to make maximum
165** use of the bits in our bitmasks. This structure provides a mapping
166** from the sparse cursor numbers into consecutive integers beginning
167** with 0.
168**
drh111a6a72008-12-21 03:51:16 +0000169** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
drh51669862004-12-18 18:40:26 +0000170** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
171**
172** For example, if the WHERE clause expression used these VDBE
drh111a6a72008-12-21 03:51:16 +0000173** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure
drh51669862004-12-18 18:40:26 +0000174** would map those cursor numbers into bits 0 through 5.
175**
176** Note that the mapping is not necessarily ordered. In the example
177** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
178** 57->5, 73->4. Or one of 719 other combinations might be used. It
179** does not really matter. What is important is that sparse cursor
180** numbers all get mapped into bit numbers that begin with 0 and contain
181** no gaps.
drh6a3ea0e2003-05-02 14:32:12 +0000182*/
drh111a6a72008-12-21 03:51:16 +0000183struct WhereMaskSet {
drh1398ad32005-01-19 23:24:50 +0000184 int n; /* Number of assigned cursor values */
danielk197723432972008-11-17 16:42:00 +0000185 int ix[BMS]; /* Cursor assigned to each bit */
drh6a3ea0e2003-05-02 14:32:12 +0000186};
187
drh111a6a72008-12-21 03:51:16 +0000188/*
189** A WhereCost object records a lookup strategy and the estimated
190** cost of pursuing that strategy.
191*/
192struct WhereCost {
193 WherePlan plan; /* The lookup strategy */
194 double rCost; /* Overall cost of pursuing this search strategy */
195 double nRow; /* Estimated number of output rows */
dan5236ac12009-08-13 07:09:33 +0000196 Bitmask used; /* Bitmask of cursors used by this plan */
drh111a6a72008-12-21 03:51:16 +0000197};
drh0aa74ed2005-07-16 13:33:20 +0000198
drh6a3ea0e2003-05-02 14:32:12 +0000199/*
drh51147ba2005-07-23 22:59:55 +0000200** Bitmasks for the operators that indices are able to exploit. An
201** OR-ed combination of these values can be used when searching for
202** terms in the where clause.
203*/
drh165be382008-12-05 02:36:33 +0000204#define WO_IN 0x001
205#define WO_EQ 0x002
drh51147ba2005-07-23 22:59:55 +0000206#define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
207#define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
208#define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
209#define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
drh165be382008-12-05 02:36:33 +0000210#define WO_MATCH 0x040
211#define WO_ISNULL 0x080
drh700a2262008-12-17 19:22:15 +0000212#define WO_OR 0x100 /* Two or more OR-connected terms */
213#define WO_AND 0x200 /* Two or more AND-connected terms */
drh51147ba2005-07-23 22:59:55 +0000214
drhec1724e2008-12-09 01:32:03 +0000215#define WO_ALL 0xfff /* Mask of all possible WO_* values */
drh1a58fe02008-12-20 02:06:13 +0000216#define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */
drhec1724e2008-12-09 01:32:03 +0000217
drh51147ba2005-07-23 22:59:55 +0000218/*
drh700a2262008-12-17 19:22:15 +0000219** Value for wsFlags returned by bestIndex() and stored in
220** WhereLevel.wsFlags. These flags determine which search
221** strategies are appropriate.
drhf2d315d2007-01-25 16:56:06 +0000222**
drh165be382008-12-05 02:36:33 +0000223** The least significant 12 bits is reserved as a mask for WO_ values above.
drh700a2262008-12-17 19:22:15 +0000224** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
225** But if the table is the right table of a left join, WhereLevel.wsFlags
226** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as
drhf2d315d2007-01-25 16:56:06 +0000227** the "op" parameter to findTerm when we are resolving equality constraints.
228** ISNULL constraints will then not be used on the right table of a left
229** join. Tickets #2177 and #2189.
drh51147ba2005-07-23 22:59:55 +0000230*/
drh165be382008-12-05 02:36:33 +0000231#define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */
232#define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */
drh46619d62009-04-24 14:51:42 +0000233#define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */
drh165be382008-12-05 02:36:33 +0000234#define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */
235#define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */
drh46619d62009-04-24 14:51:42 +0000236#define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */
237#define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */
drh8b307fb2010-04-06 15:57:05 +0000238#define WHERE_NOT_FULLSCAN 0x000f3000 /* Does not do a full table scan */
drh46619d62009-04-24 14:51:42 +0000239#define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */
drh165be382008-12-05 02:36:33 +0000240#define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */
241#define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */
242#define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */
243#define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */
244#define WHERE_REVERSE 0x02000000 /* Scan in reverse order */
245#define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */
246#define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */
247#define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */
drh8b307fb2010-04-06 15:57:05 +0000248#define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */
drh51147ba2005-07-23 22:59:55 +0000249
250/*
drh0aa74ed2005-07-16 13:33:20 +0000251** Initialize a preallocated WhereClause structure.
drh75897232000-05-29 14:26:00 +0000252*/
drh7b4fc6a2007-02-06 13:26:32 +0000253static void whereClauseInit(
254 WhereClause *pWC, /* The WhereClause to be initialized */
255 Parse *pParse, /* The parsing context */
drh111a6a72008-12-21 03:51:16 +0000256 WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */
drh7b4fc6a2007-02-06 13:26:32 +0000257){
drhfe05af82005-07-21 03:14:59 +0000258 pWC->pParse = pParse;
drh7b4fc6a2007-02-06 13:26:32 +0000259 pWC->pMaskSet = pMaskSet;
drh0aa74ed2005-07-16 13:33:20 +0000260 pWC->nTerm = 0;
drhcad651e2007-04-20 12:22:01 +0000261 pWC->nSlot = ArraySize(pWC->aStatic);
drh0aa74ed2005-07-16 13:33:20 +0000262 pWC->a = pWC->aStatic;
danielk1977e672c8e2009-05-22 15:43:26 +0000263 pWC->vmask = 0;
drh0aa74ed2005-07-16 13:33:20 +0000264}
265
drh700a2262008-12-17 19:22:15 +0000266/* Forward reference */
267static void whereClauseClear(WhereClause*);
268
269/*
270** Deallocate all memory associated with a WhereOrInfo object.
271*/
272static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
drh5bd98ae2009-01-07 18:24:03 +0000273 whereClauseClear(&p->wc);
274 sqlite3DbFree(db, p);
drh700a2262008-12-17 19:22:15 +0000275}
276
277/*
278** Deallocate all memory associated with a WhereAndInfo object.
279*/
280static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
drh5bd98ae2009-01-07 18:24:03 +0000281 whereClauseClear(&p->wc);
282 sqlite3DbFree(db, p);
drh700a2262008-12-17 19:22:15 +0000283}
284
drh0aa74ed2005-07-16 13:33:20 +0000285/*
286** Deallocate a WhereClause structure. The WhereClause structure
287** itself is not freed. This routine is the inverse of whereClauseInit().
288*/
289static void whereClauseClear(WhereClause *pWC){
290 int i;
291 WhereTerm *a;
drh633e6d52008-07-28 19:34:53 +0000292 sqlite3 *db = pWC->pParse->db;
drh0aa74ed2005-07-16 13:33:20 +0000293 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
drh165be382008-12-05 02:36:33 +0000294 if( a->wtFlags & TERM_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000295 sqlite3ExprDelete(db, a->pExpr);
drh0aa74ed2005-07-16 13:33:20 +0000296 }
drh700a2262008-12-17 19:22:15 +0000297 if( a->wtFlags & TERM_ORINFO ){
298 whereOrInfoDelete(db, a->u.pOrInfo);
299 }else if( a->wtFlags & TERM_ANDINFO ){
300 whereAndInfoDelete(db, a->u.pAndInfo);
301 }
drh0aa74ed2005-07-16 13:33:20 +0000302 }
303 if( pWC->a!=pWC->aStatic ){
drh633e6d52008-07-28 19:34:53 +0000304 sqlite3DbFree(db, pWC->a);
drh0aa74ed2005-07-16 13:33:20 +0000305 }
306}
307
308/*
drh6a1e0712008-12-05 15:24:15 +0000309** Add a single new WhereTerm entry to the WhereClause object pWC.
310** The new WhereTerm object is constructed from Expr p and with wtFlags.
311** The index in pWC->a[] of the new WhereTerm is returned on success.
312** 0 is returned if the new WhereTerm could not be added due to a memory
313** allocation error. The memory allocation failure will be recorded in
314** the db->mallocFailed flag so that higher-level functions can detect it.
315**
316** This routine will increase the size of the pWC->a[] array as necessary.
drh9eb20282005-08-24 03:52:18 +0000317**
drh165be382008-12-05 02:36:33 +0000318** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
drh6a1e0712008-12-05 15:24:15 +0000319** for freeing the expression p is assumed by the WhereClause object pWC.
320** This is true even if this routine fails to allocate a new WhereTerm.
drhb63a53d2007-03-31 01:34:44 +0000321**
drh9eb20282005-08-24 03:52:18 +0000322** WARNING: This routine might reallocate the space used to store
drh909626d2008-05-30 14:58:37 +0000323** WhereTerms. All pointers to WhereTerms should be invalidated after
drh9eb20282005-08-24 03:52:18 +0000324** calling this routine. Such pointers may be reinitialized by referencing
325** the pWC->a[] array.
drh0aa74ed2005-07-16 13:33:20 +0000326*/
drhec1724e2008-12-09 01:32:03 +0000327static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
drh0aa74ed2005-07-16 13:33:20 +0000328 WhereTerm *pTerm;
drh9eb20282005-08-24 03:52:18 +0000329 int idx;
drh0aa74ed2005-07-16 13:33:20 +0000330 if( pWC->nTerm>=pWC->nSlot ){
331 WhereTerm *pOld = pWC->a;
drh633e6d52008-07-28 19:34:53 +0000332 sqlite3 *db = pWC->pParse->db;
333 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
drhb63a53d2007-03-31 01:34:44 +0000334 if( pWC->a==0 ){
drh165be382008-12-05 02:36:33 +0000335 if( wtFlags & TERM_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000336 sqlite3ExprDelete(db, p);
drhb63a53d2007-03-31 01:34:44 +0000337 }
drhf998b732007-11-26 13:36:00 +0000338 pWC->a = pOld;
drhb63a53d2007-03-31 01:34:44 +0000339 return 0;
340 }
drh0aa74ed2005-07-16 13:33:20 +0000341 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
342 if( pOld!=pWC->aStatic ){
drh633e6d52008-07-28 19:34:53 +0000343 sqlite3DbFree(db, pOld);
drh0aa74ed2005-07-16 13:33:20 +0000344 }
drh6a1e0712008-12-05 15:24:15 +0000345 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
drh0aa74ed2005-07-16 13:33:20 +0000346 }
drh6a1e0712008-12-05 15:24:15 +0000347 pTerm = &pWC->a[idx = pWC->nTerm++];
drh0fcef5e2005-07-19 17:38:22 +0000348 pTerm->pExpr = p;
drh165be382008-12-05 02:36:33 +0000349 pTerm->wtFlags = wtFlags;
drh0fcef5e2005-07-19 17:38:22 +0000350 pTerm->pWC = pWC;
drh45b1ee42005-08-02 17:48:22 +0000351 pTerm->iParent = -1;
drh9eb20282005-08-24 03:52:18 +0000352 return idx;
drh0aa74ed2005-07-16 13:33:20 +0000353}
drh75897232000-05-29 14:26:00 +0000354
355/*
drh51669862004-12-18 18:40:26 +0000356** This routine identifies subexpressions in the WHERE clause where
drhb6fb62d2005-09-20 08:47:20 +0000357** each subexpression is separated by the AND operator or some other
drh6c30be82005-07-29 15:10:17 +0000358** operator specified in the op parameter. The WhereClause structure
359** is filled with pointers to subexpressions. For example:
drh75897232000-05-29 14:26:00 +0000360**
drh51669862004-12-18 18:40:26 +0000361** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
362** \________/ \_______________/ \________________/
363** slot[0] slot[1] slot[2]
364**
365** The original WHERE clause in pExpr is unaltered. All this routine
drh51147ba2005-07-23 22:59:55 +0000366** does is make slot[] entries point to substructure within pExpr.
drh51669862004-12-18 18:40:26 +0000367**
drh51147ba2005-07-23 22:59:55 +0000368** In the previous sentence and in the diagram, "slot[]" refers to
drh902b9ee2008-12-05 17:17:07 +0000369** the WhereClause.a[] array. The slot[] array grows as needed to contain
drh51147ba2005-07-23 22:59:55 +0000370** all terms of the WHERE clause.
drh75897232000-05-29 14:26:00 +0000371*/
drh6c30be82005-07-29 15:10:17 +0000372static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
drh29435252008-12-28 18:35:08 +0000373 pWC->op = (u8)op;
drh0aa74ed2005-07-16 13:33:20 +0000374 if( pExpr==0 ) return;
drh6c30be82005-07-29 15:10:17 +0000375 if( pExpr->op!=op ){
drh0aa74ed2005-07-16 13:33:20 +0000376 whereClauseInsert(pWC, pExpr, 0);
drh75897232000-05-29 14:26:00 +0000377 }else{
drh6c30be82005-07-29 15:10:17 +0000378 whereSplit(pWC, pExpr->pLeft, op);
379 whereSplit(pWC, pExpr->pRight, op);
drh75897232000-05-29 14:26:00 +0000380 }
drh75897232000-05-29 14:26:00 +0000381}
382
383/*
drh61495262009-04-22 15:32:59 +0000384** Initialize an expression mask set (a WhereMaskSet object)
drh6a3ea0e2003-05-02 14:32:12 +0000385*/
386#define initMaskSet(P) memset(P, 0, sizeof(*P))
387
388/*
drh1398ad32005-01-19 23:24:50 +0000389** Return the bitmask for the given cursor number. Return 0 if
390** iCursor is not in the set.
drh6a3ea0e2003-05-02 14:32:12 +0000391*/
drh111a6a72008-12-21 03:51:16 +0000392static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
drh6a3ea0e2003-05-02 14:32:12 +0000393 int i;
drh3500ed62009-05-05 15:46:43 +0000394 assert( pMaskSet->n<=sizeof(Bitmask)*8 );
drh6a3ea0e2003-05-02 14:32:12 +0000395 for(i=0; i<pMaskSet->n; i++){
drh51669862004-12-18 18:40:26 +0000396 if( pMaskSet->ix[i]==iCursor ){
397 return ((Bitmask)1)<<i;
398 }
drh6a3ea0e2003-05-02 14:32:12 +0000399 }
drh6a3ea0e2003-05-02 14:32:12 +0000400 return 0;
401}
402
403/*
drh1398ad32005-01-19 23:24:50 +0000404** Create a new mask for cursor iCursor.
drh0fcef5e2005-07-19 17:38:22 +0000405**
406** There is one cursor per table in the FROM clause. The number of
407** tables in the FROM clause is limited by a test early in the
drhb6fb62d2005-09-20 08:47:20 +0000408** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
drh0fcef5e2005-07-19 17:38:22 +0000409** array will never overflow.
drh1398ad32005-01-19 23:24:50 +0000410*/
drh111a6a72008-12-21 03:51:16 +0000411static void createMask(WhereMaskSet *pMaskSet, int iCursor){
drhcad651e2007-04-20 12:22:01 +0000412 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
drh0fcef5e2005-07-19 17:38:22 +0000413 pMaskSet->ix[pMaskSet->n++] = iCursor;
drh1398ad32005-01-19 23:24:50 +0000414}
415
416/*
drh75897232000-05-29 14:26:00 +0000417** This routine walks (recursively) an expression tree and generates
418** a bitmask indicating which tables are used in that expression
drh6a3ea0e2003-05-02 14:32:12 +0000419** tree.
drh75897232000-05-29 14:26:00 +0000420**
421** In order for this routine to work, the calling function must have
drh7d10d5a2008-08-20 16:35:10 +0000422** previously invoked sqlite3ResolveExprNames() on the expression. See
drh75897232000-05-29 14:26:00 +0000423** the header comment on that routine for additional information.
drh7d10d5a2008-08-20 16:35:10 +0000424** The sqlite3ResolveExprNames() routines looks for column names and
drh6a3ea0e2003-05-02 14:32:12 +0000425** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
drh51147ba2005-07-23 22:59:55 +0000426** the VDBE cursor number of the table. This routine just has to
427** translate the cursor numbers into bitmask values and OR all
428** the bitmasks together.
drh75897232000-05-29 14:26:00 +0000429*/
drh111a6a72008-12-21 03:51:16 +0000430static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
431static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
432static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
drh51669862004-12-18 18:40:26 +0000433 Bitmask mask = 0;
drh75897232000-05-29 14:26:00 +0000434 if( p==0 ) return 0;
drh967e8b72000-06-21 13:59:10 +0000435 if( p->op==TK_COLUMN ){
drh8feb4b12004-07-19 02:12:14 +0000436 mask = getMask(pMaskSet, p->iTable);
drh8feb4b12004-07-19 02:12:14 +0000437 return mask;
drh75897232000-05-29 14:26:00 +0000438 }
danielk1977b3bce662005-01-29 08:32:43 +0000439 mask = exprTableUsage(pMaskSet, p->pRight);
440 mask |= exprTableUsage(pMaskSet, p->pLeft);
danielk19776ab3a2e2009-02-19 14:39:25 +0000441 if( ExprHasProperty(p, EP_xIsSelect) ){
442 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
443 }else{
444 mask |= exprListTableUsage(pMaskSet, p->x.pList);
445 }
danielk1977b3bce662005-01-29 08:32:43 +0000446 return mask;
447}
drh111a6a72008-12-21 03:51:16 +0000448static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
danielk1977b3bce662005-01-29 08:32:43 +0000449 int i;
450 Bitmask mask = 0;
451 if( pList ){
452 for(i=0; i<pList->nExpr; i++){
453 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
drhdd579122002-04-02 01:58:57 +0000454 }
455 }
drh75897232000-05-29 14:26:00 +0000456 return mask;
457}
drh111a6a72008-12-21 03:51:16 +0000458static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
drha430ae82007-09-12 15:41:01 +0000459 Bitmask mask = 0;
460 while( pS ){
461 mask |= exprListTableUsage(pMaskSet, pS->pEList);
drhf5b11382005-09-17 13:07:13 +0000462 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
463 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
464 mask |= exprTableUsage(pMaskSet, pS->pWhere);
465 mask |= exprTableUsage(pMaskSet, pS->pHaving);
drha430ae82007-09-12 15:41:01 +0000466 pS = pS->pPrior;
drhf5b11382005-09-17 13:07:13 +0000467 }
468 return mask;
469}
drh75897232000-05-29 14:26:00 +0000470
471/*
drh487ab3c2001-11-08 00:45:21 +0000472** Return TRUE if the given operator is one of the operators that is
drh51669862004-12-18 18:40:26 +0000473** allowed for an indexable WHERE clause term. The allowed operators are
drhc27a1ce2002-06-14 20:58:45 +0000474** "=", "<", ">", "<=", ">=", and "IN".
drh487ab3c2001-11-08 00:45:21 +0000475*/
476static int allowedOp(int op){
drhfe05af82005-07-21 03:14:59 +0000477 assert( TK_GT>TK_EQ && TK_GT<TK_GE );
478 assert( TK_LT>TK_EQ && TK_LT<TK_GE );
479 assert( TK_LE>TK_EQ && TK_LE<TK_GE );
480 assert( TK_GE==TK_EQ+4 );
drh50b39962006-10-28 00:28:09 +0000481 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
drh487ab3c2001-11-08 00:45:21 +0000482}
483
484/*
drh902b9ee2008-12-05 17:17:07 +0000485** Swap two objects of type TYPE.
drh193bd772004-07-20 18:23:14 +0000486*/
487#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
488
489/*
drh909626d2008-05-30 14:58:37 +0000490** Commute a comparison operator. Expressions of the form "X op Y"
drh0fcef5e2005-07-19 17:38:22 +0000491** are converted into "Y op X".
danielk1977eb5453d2007-07-30 14:40:48 +0000492**
493** If a collation sequence is associated with either the left or right
494** side of the comparison, it remains associated with the same side after
495** the commutation. So "Y collate NOCASE op X" becomes
496** "X collate NOCASE op Y". This is because any collation sequence on
497** the left hand side of a comparison overrides any collation sequence
498** attached to the right. For the same reason the EP_ExpCollate flag
499** is not commuted.
drh193bd772004-07-20 18:23:14 +0000500*/
drh7d10d5a2008-08-20 16:35:10 +0000501static void exprCommute(Parse *pParse, Expr *pExpr){
danielk1977eb5453d2007-07-30 14:40:48 +0000502 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
503 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
drhfe05af82005-07-21 03:14:59 +0000504 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
drh7d10d5a2008-08-20 16:35:10 +0000505 pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
506 pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
drh0fcef5e2005-07-19 17:38:22 +0000507 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
danielk1977eb5453d2007-07-30 14:40:48 +0000508 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
509 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
drh0fcef5e2005-07-19 17:38:22 +0000510 SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
511 if( pExpr->op>=TK_GT ){
512 assert( TK_LT==TK_GT+2 );
513 assert( TK_GE==TK_LE+2 );
514 assert( TK_GT>TK_EQ );
515 assert( TK_GT<TK_LE );
516 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
517 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
drh193bd772004-07-20 18:23:14 +0000518 }
drh193bd772004-07-20 18:23:14 +0000519}
520
521/*
drhfe05af82005-07-21 03:14:59 +0000522** Translate from TK_xx operator to WO_xx bitmask.
523*/
drhec1724e2008-12-09 01:32:03 +0000524static u16 operatorMask(int op){
525 u16 c;
drhfe05af82005-07-21 03:14:59 +0000526 assert( allowedOp(op) );
527 if( op==TK_IN ){
drh51147ba2005-07-23 22:59:55 +0000528 c = WO_IN;
drh50b39962006-10-28 00:28:09 +0000529 }else if( op==TK_ISNULL ){
530 c = WO_ISNULL;
drhfe05af82005-07-21 03:14:59 +0000531 }else{
drhec1724e2008-12-09 01:32:03 +0000532 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
533 c = (u16)(WO_EQ<<(op-TK_EQ));
drhfe05af82005-07-21 03:14:59 +0000534 }
drh50b39962006-10-28 00:28:09 +0000535 assert( op!=TK_ISNULL || c==WO_ISNULL );
drh51147ba2005-07-23 22:59:55 +0000536 assert( op!=TK_IN || c==WO_IN );
537 assert( op!=TK_EQ || c==WO_EQ );
538 assert( op!=TK_LT || c==WO_LT );
539 assert( op!=TK_LE || c==WO_LE );
540 assert( op!=TK_GT || c==WO_GT );
541 assert( op!=TK_GE || c==WO_GE );
542 return c;
drhfe05af82005-07-21 03:14:59 +0000543}
544
545/*
546** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
547** where X is a reference to the iColumn of table iCur and <op> is one of
548** the WO_xx operator codes specified by the op parameter.
549** Return a pointer to the term. Return 0 if not found.
550*/
551static WhereTerm *findTerm(
552 WhereClause *pWC, /* The WHERE clause to be searched */
553 int iCur, /* Cursor number of LHS */
554 int iColumn, /* Column number of LHS */
555 Bitmask notReady, /* RHS must not overlap with this mask */
drhec1724e2008-12-09 01:32:03 +0000556 u32 op, /* Mask of WO_xx values describing operator */
drhfe05af82005-07-21 03:14:59 +0000557 Index *pIdx /* Must be compatible with this index, if not NULL */
558){
559 WhereTerm *pTerm;
560 int k;
drh22c24032008-07-09 13:28:53 +0000561 assert( iCur>=0 );
drhec1724e2008-12-09 01:32:03 +0000562 op &= WO_ALL;
drhfe05af82005-07-21 03:14:59 +0000563 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
564 if( pTerm->leftCursor==iCur
565 && (pTerm->prereqRight & notReady)==0
drh700a2262008-12-17 19:22:15 +0000566 && pTerm->u.leftColumn==iColumn
drhb52076c2006-01-23 13:22:09 +0000567 && (pTerm->eOperator & op)!=0
drhfe05af82005-07-21 03:14:59 +0000568 ){
drh22c24032008-07-09 13:28:53 +0000569 if( pIdx && pTerm->eOperator!=WO_ISNULL ){
drhfe05af82005-07-21 03:14:59 +0000570 Expr *pX = pTerm->pExpr;
571 CollSeq *pColl;
572 char idxaff;
danielk1977f0113002006-01-24 12:09:17 +0000573 int j;
drhfe05af82005-07-21 03:14:59 +0000574 Parse *pParse = pWC->pParse;
575
576 idxaff = pIdx->pTable->aCol[iColumn].affinity;
577 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
danielk1977bcbb04e2007-05-29 12:11:29 +0000578
579 /* Figure out the collation sequence required from an index for
580 ** it to be useful for optimising expression pX. Store this
581 ** value in variable pColl.
582 */
583 assert(pX->pLeft);
584 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
danielk197793574162008-12-30 15:26:29 +0000585 assert(pColl || pParse->nErr);
danielk1977bcbb04e2007-05-29 12:11:29 +0000586
drh22c24032008-07-09 13:28:53 +0000587 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
drh34004ce2008-07-11 16:15:17 +0000588 if( NEVER(j>=pIdx->nColumn) ) return 0;
drh22c24032008-07-09 13:28:53 +0000589 }
danielk197793574162008-12-30 15:26:29 +0000590 if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
drhfe05af82005-07-21 03:14:59 +0000591 }
592 return pTerm;
593 }
594 }
595 return 0;
596}
597
drh6c30be82005-07-29 15:10:17 +0000598/* Forward reference */
drh7b4fc6a2007-02-06 13:26:32 +0000599static void exprAnalyze(SrcList*, WhereClause*, int);
drh6c30be82005-07-29 15:10:17 +0000600
601/*
602** Call exprAnalyze on all terms in a WHERE clause.
603**
604**
605*/
606static void exprAnalyzeAll(
607 SrcList *pTabList, /* the FROM clause */
drh6c30be82005-07-29 15:10:17 +0000608 WhereClause *pWC /* the WHERE clause to be analyzed */
609){
drh6c30be82005-07-29 15:10:17 +0000610 int i;
drh9eb20282005-08-24 03:52:18 +0000611 for(i=pWC->nTerm-1; i>=0; i--){
drh7b4fc6a2007-02-06 13:26:32 +0000612 exprAnalyze(pTabList, pWC, i);
drh6c30be82005-07-29 15:10:17 +0000613 }
614}
615
drhd2687b72005-08-12 22:56:09 +0000616#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
617/*
618** Check to see if the given expression is a LIKE or GLOB operator that
619** can be optimized using inequality constraints. Return TRUE if it is
620** so and false if not.
621**
622** In order for the operator to be optimizible, the RHS must be a string
623** literal that does not begin with a wildcard.
624*/
625static int isLikeOrGlob(
drh7d10d5a2008-08-20 16:35:10 +0000626 Parse *pParse, /* Parsing and code generating context */
drhd2687b72005-08-12 22:56:09 +0000627 Expr *pExpr, /* Test this expression */
dan937d0de2009-10-15 18:35:38 +0000628 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */
drh9f504ea2008-02-23 21:55:39 +0000629 int *pisComplete, /* True if the only wildcard is % in the last character */
630 int *pnoCase /* True if uppercase is equivalent to lowercase */
drhd2687b72005-08-12 22:56:09 +0000631){
dan937d0de2009-10-15 18:35:38 +0000632 const char *z = 0; /* String on RHS of LIKE operator */
drh5bd98ae2009-01-07 18:24:03 +0000633 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
634 ExprList *pList; /* List of operands to the LIKE operator */
635 int c; /* One character in z[] */
636 int cnt; /* Number of non-wildcard prefix characters */
637 char wc[3]; /* Wildcard characters */
638 CollSeq *pColl; /* Collating sequence for LHS */
639 sqlite3 *db = pParse->db; /* Database connection */
dan937d0de2009-10-15 18:35:38 +0000640 sqlite3_value *pVal = 0;
641 int op; /* Opcode of pRight */
drhd64fe2f2005-08-28 17:00:23 +0000642
drh9f504ea2008-02-23 21:55:39 +0000643 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
drhd2687b72005-08-12 22:56:09 +0000644 return 0;
645 }
drh9f504ea2008-02-23 21:55:39 +0000646#ifdef SQLITE_EBCDIC
647 if( *pnoCase ) return 0;
648#endif
danielk19776ab3a2e2009-02-19 14:39:25 +0000649 pList = pExpr->x.pList;
drh55ef4d92005-08-14 01:20:37 +0000650 pLeft = pList->a[1].pExpr;
drhd91ca492009-10-22 20:50:36 +0000651 if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){
652 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
653 ** be the name of an indexed column with TEXT affinity. */
drhd2687b72005-08-12 22:56:09 +0000654 return 0;
655 }
drhd91ca492009-10-22 20:50:36 +0000656 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
drh7d10d5a2008-08-20 16:35:10 +0000657 pColl = sqlite3ExprCollSeq(pParse, pLeft);
drh5cb74342010-01-21 23:11:24 +0000658 if( pColl==0 ) return 0; /* Happens when LHS has an undefined collation */
drh9f504ea2008-02-23 21:55:39 +0000659 if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) &&
660 (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){
drhd91ca492009-10-22 20:50:36 +0000661 /* IMP: R-09003-32046 For the GLOB operator, the column must use the
662 ** default BINARY collating sequence.
663 ** IMP: R-41408-28306 For the LIKE operator, if case_sensitive_like mode
664 ** is enabled then the column must use the default BINARY collating
665 ** sequence, or if case_sensitive_like mode is disabled then the column
666 ** must use the built-in NOCASE collating sequence.
667 */
drhd64fe2f2005-08-28 17:00:23 +0000668 return 0;
669 }
dan937d0de2009-10-15 18:35:38 +0000670
671 pRight = pList->a[0].pExpr;
672 op = pRight->op;
673 if( op==TK_REGISTER ){
674 op = pRight->op2;
675 }
676 if( op==TK_VARIABLE ){
677 Vdbe *pReprepare = pParse->pReprepare;
678 pVal = sqlite3VdbeGetValue(pReprepare, pRight->iColumn, SQLITE_AFF_NONE);
679 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
680 z = (char *)sqlite3_value_text(pVal);
681 }
dan1d2ce4f2009-10-19 18:11:09 +0000682 sqlite3VdbeSetVarmask(pParse->pVdbe, pRight->iColumn);
dan937d0de2009-10-15 18:35:38 +0000683 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
684 }else if( op==TK_STRING ){
685 z = pRight->u.zToken;
686 }
687 if( z ){
shane85095702009-06-15 16:27:08 +0000688 cnt = 0;
drhb7916a72009-05-27 10:31:29 +0000689 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
drh24fb6272009-05-01 21:13:36 +0000690 cnt++;
691 }
shane85095702009-06-15 16:27:08 +0000692 if( cnt!=0 && c!=0 && 255!=(u8)z[cnt-1] ){
dan937d0de2009-10-15 18:35:38 +0000693 Expr *pPrefix;
shane85095702009-06-15 16:27:08 +0000694 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
dan937d0de2009-10-15 18:35:38 +0000695 pPrefix = sqlite3Expr(db, TK_STRING, z);
696 if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
697 *ppPrefix = pPrefix;
698 if( op==TK_VARIABLE ){
699 Vdbe *v = pParse->pVdbe;
dan1d2ce4f2009-10-19 18:11:09 +0000700 sqlite3VdbeSetVarmask(v, pRight->iColumn);
dan937d0de2009-10-15 18:35:38 +0000701 if( *pisComplete && pRight->u.zToken[1] ){
702 /* If the rhs of the LIKE expression is a variable, and the current
703 ** value of the variable means there is no need to invoke the LIKE
704 ** function, then no OP_Variable will be added to the program.
705 ** This causes problems for the sqlite3_bind_parameter_name()
drhbec451f2009-10-17 13:13:02 +0000706 ** API. To workaround them, add a dummy OP_Variable here.
707 */
708 int r1 = sqlite3GetTempReg(pParse);
709 sqlite3ExprCodeTarget(pParse, pRight, r1);
dan937d0de2009-10-15 18:35:38 +0000710 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
drhbec451f2009-10-17 13:13:02 +0000711 sqlite3ReleaseTempReg(pParse, r1);
dan937d0de2009-10-15 18:35:38 +0000712 }
713 }
714 }else{
715 z = 0;
shane85095702009-06-15 16:27:08 +0000716 }
drhf998b732007-11-26 13:36:00 +0000717 }
dan937d0de2009-10-15 18:35:38 +0000718
719 sqlite3ValueFree(pVal);
720 return (z!=0);
drhd2687b72005-08-12 22:56:09 +0000721}
722#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
723
drhedb193b2006-06-27 13:20:21 +0000724
725#ifndef SQLITE_OMIT_VIRTUALTABLE
drhfe05af82005-07-21 03:14:59 +0000726/*
drh7f375902006-06-13 17:38:59 +0000727** Check to see if the given expression is of the form
728**
729** column MATCH expr
730**
731** If it is then return TRUE. If not, return FALSE.
732*/
733static int isMatchOfColumn(
734 Expr *pExpr /* Test this expression */
735){
736 ExprList *pList;
737
738 if( pExpr->op!=TK_FUNCTION ){
739 return 0;
740 }
drh33e619f2009-05-28 01:00:55 +0000741 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
drh7f375902006-06-13 17:38:59 +0000742 return 0;
743 }
danielk19776ab3a2e2009-02-19 14:39:25 +0000744 pList = pExpr->x.pList;
drh7f375902006-06-13 17:38:59 +0000745 if( pList->nExpr!=2 ){
746 return 0;
747 }
748 if( pList->a[1].pExpr->op != TK_COLUMN ){
749 return 0;
750 }
751 return 1;
752}
drhedb193b2006-06-27 13:20:21 +0000753#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh7f375902006-06-13 17:38:59 +0000754
755/*
drh54a167d2005-11-26 14:08:07 +0000756** If the pBase expression originated in the ON or USING clause of
757** a join, then transfer the appropriate markings over to derived.
758*/
759static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
760 pDerived->flags |= pBase->flags & EP_FromJoin;
761 pDerived->iRightJoinTable = pBase->iRightJoinTable;
762}
763
drh3e355802007-02-23 23:13:33 +0000764#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
765/*
drh1a58fe02008-12-20 02:06:13 +0000766** Analyze a term that consists of two or more OR-connected
767** subterms. So in:
drh3e355802007-02-23 23:13:33 +0000768**
drh1a58fe02008-12-20 02:06:13 +0000769** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
770** ^^^^^^^^^^^^^^^^^^^^
drh3e355802007-02-23 23:13:33 +0000771**
drh1a58fe02008-12-20 02:06:13 +0000772** This routine analyzes terms such as the middle term in the above example.
773** A WhereOrTerm object is computed and attached to the term under
774** analysis, regardless of the outcome of the analysis. Hence:
drh3e355802007-02-23 23:13:33 +0000775**
drh1a58fe02008-12-20 02:06:13 +0000776** WhereTerm.wtFlags |= TERM_ORINFO
777** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
drh3e355802007-02-23 23:13:33 +0000778**
drh1a58fe02008-12-20 02:06:13 +0000779** The term being analyzed must have two or more of OR-connected subterms.
danielk1977fdc40192008-12-29 18:33:32 +0000780** A single subterm might be a set of AND-connected sub-subterms.
drh1a58fe02008-12-20 02:06:13 +0000781** Examples of terms under analysis:
drh3e355802007-02-23 23:13:33 +0000782**
drh1a58fe02008-12-20 02:06:13 +0000783** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
784** (B) x=expr1 OR expr2=x OR x=expr3
785** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
786** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
787** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
drh3e355802007-02-23 23:13:33 +0000788**
drh1a58fe02008-12-20 02:06:13 +0000789** CASE 1:
790**
791** If all subterms are of the form T.C=expr for some single column of C
792** a single table T (as shown in example B above) then create a new virtual
793** term that is an equivalent IN expression. In other words, if the term
794** being analyzed is:
795**
796** x = expr1 OR expr2 = x OR x = expr3
797**
798** then create a new virtual term like this:
799**
800** x IN (expr1,expr2,expr3)
801**
802** CASE 2:
803**
804** If all subterms are indexable by a single table T, then set
805**
806** WhereTerm.eOperator = WO_OR
807** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
808**
809** A subterm is "indexable" if it is of the form
810** "T.C <op> <expr>" where C is any column of table T and
811** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
812** A subterm is also indexable if it is an AND of two or more
813** subsubterms at least one of which is indexable. Indexable AND
814** subterms have their eOperator set to WO_AND and they have
815** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
816**
817** From another point of view, "indexable" means that the subterm could
818** potentially be used with an index if an appropriate index exists.
819** This analysis does not consider whether or not the index exists; that
820** is something the bestIndex() routine will determine. This analysis
821** only looks at whether subterms appropriate for indexing exist.
822**
823** All examples A through E above all satisfy case 2. But if a term
824** also statisfies case 1 (such as B) we know that the optimizer will
825** always prefer case 1, so in that case we pretend that case 2 is not
826** satisfied.
827**
828** It might be the case that multiple tables are indexable. For example,
829** (E) above is indexable on tables P, Q, and R.
830**
831** Terms that satisfy case 2 are candidates for lookup by using
832** separate indices to find rowids for each subterm and composing
833** the union of all rowids using a RowSet object. This is similar
834** to "bitmap indices" in other database engines.
835**
836** OTHERWISE:
837**
838** If neither case 1 nor case 2 apply, then leave the eOperator set to
839** zero. This term is not useful for search.
drh3e355802007-02-23 23:13:33 +0000840*/
drh1a58fe02008-12-20 02:06:13 +0000841static void exprAnalyzeOrTerm(
842 SrcList *pSrc, /* the FROM clause */
843 WhereClause *pWC, /* the complete WHERE clause */
844 int idxTerm /* Index of the OR-term to be analyzed */
845){
846 Parse *pParse = pWC->pParse; /* Parser context */
847 sqlite3 *db = pParse->db; /* Database connection */
848 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
849 Expr *pExpr = pTerm->pExpr; /* The expression of the term */
drh111a6a72008-12-21 03:51:16 +0000850 WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
drh1a58fe02008-12-20 02:06:13 +0000851 int i; /* Loop counters */
852 WhereClause *pOrWc; /* Breakup of pTerm into subterms */
853 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
854 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
855 Bitmask chngToIN; /* Tables that might satisfy case 1 */
856 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
drh3e355802007-02-23 23:13:33 +0000857
drh1a58fe02008-12-20 02:06:13 +0000858 /*
859 ** Break the OR clause into its separate subterms. The subterms are
860 ** stored in a WhereClause structure containing within the WhereOrInfo
861 ** object that is attached to the original OR clause term.
862 */
863 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
864 assert( pExpr->op==TK_OR );
drh954701a2008-12-29 23:45:07 +0000865 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
drh1a58fe02008-12-20 02:06:13 +0000866 if( pOrInfo==0 ) return;
867 pTerm->wtFlags |= TERM_ORINFO;
868 pOrWc = &pOrInfo->wc;
869 whereClauseInit(pOrWc, pWC->pParse, pMaskSet);
870 whereSplit(pOrWc, pExpr, TK_OR);
871 exprAnalyzeAll(pSrc, pOrWc);
872 if( db->mallocFailed ) return;
873 assert( pOrWc->nTerm>=2 );
874
875 /*
876 ** Compute the set of tables that might satisfy cases 1 or 2.
877 */
danielk1977e672c8e2009-05-22 15:43:26 +0000878 indexable = ~(Bitmask)0;
879 chngToIN = ~(pWC->vmask);
drh1a58fe02008-12-20 02:06:13 +0000880 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
881 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
drh29435252008-12-28 18:35:08 +0000882 WhereAndInfo *pAndInfo;
883 assert( pOrTerm->eOperator==0 );
884 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
drh1a58fe02008-12-20 02:06:13 +0000885 chngToIN = 0;
drh29435252008-12-28 18:35:08 +0000886 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
887 if( pAndInfo ){
888 WhereClause *pAndWC;
889 WhereTerm *pAndTerm;
890 int j;
891 Bitmask b = 0;
892 pOrTerm->u.pAndInfo = pAndInfo;
893 pOrTerm->wtFlags |= TERM_ANDINFO;
894 pOrTerm->eOperator = WO_AND;
895 pAndWC = &pAndInfo->wc;
896 whereClauseInit(pAndWC, pWC->pParse, pMaskSet);
897 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
898 exprAnalyzeAll(pSrc, pAndWC);
drh7c2fbde2009-01-07 20:58:57 +0000899 testcase( db->mallocFailed );
drh96c7a7d2009-01-10 15:34:12 +0000900 if( !db->mallocFailed ){
901 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
902 assert( pAndTerm->pExpr );
903 if( allowedOp(pAndTerm->pExpr->op) ){
904 b |= getMask(pMaskSet, pAndTerm->leftCursor);
905 }
drh29435252008-12-28 18:35:08 +0000906 }
907 }
908 indexable &= b;
909 }
drh1a58fe02008-12-20 02:06:13 +0000910 }else if( pOrTerm->wtFlags & TERM_COPIED ){
911 /* Skip this term for now. We revisit it when we process the
912 ** corresponding TERM_VIRTUAL term */
913 }else{
914 Bitmask b;
915 b = getMask(pMaskSet, pOrTerm->leftCursor);
916 if( pOrTerm->wtFlags & TERM_VIRTUAL ){
917 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
918 b |= getMask(pMaskSet, pOther->leftCursor);
919 }
920 indexable &= b;
921 if( pOrTerm->eOperator!=WO_EQ ){
922 chngToIN = 0;
923 }else{
924 chngToIN &= b;
925 }
926 }
drh3e355802007-02-23 23:13:33 +0000927 }
drh1a58fe02008-12-20 02:06:13 +0000928
929 /*
930 ** Record the set of tables that satisfy case 2. The set might be
drh111a6a72008-12-21 03:51:16 +0000931 ** empty.
drh1a58fe02008-12-20 02:06:13 +0000932 */
933 pOrInfo->indexable = indexable;
drh111a6a72008-12-21 03:51:16 +0000934 pTerm->eOperator = indexable==0 ? 0 : WO_OR;
drh1a58fe02008-12-20 02:06:13 +0000935
936 /*
937 ** chngToIN holds a set of tables that *might* satisfy case 1. But
938 ** we have to do some additional checking to see if case 1 really
939 ** is satisfied.
drh4e8be3b2009-06-08 17:11:08 +0000940 **
941 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
942 ** that there is no possibility of transforming the OR clause into an
943 ** IN operator because one or more terms in the OR clause contain
944 ** something other than == on a column in the single table. The 1-bit
945 ** case means that every term of the OR clause is of the form
946 ** "table.column=expr" for some single table. The one bit that is set
947 ** will correspond to the common table. We still need to check to make
948 ** sure the same column is used on all terms. The 2-bit case is when
949 ** the all terms are of the form "table1.column=table2.column". It
950 ** might be possible to form an IN operator with either table1.column
951 ** or table2.column as the LHS if either is common to every term of
952 ** the OR clause.
953 **
954 ** Note that terms of the form "table.column1=table.column2" (the
955 ** same table on both sizes of the ==) cannot be optimized.
drh1a58fe02008-12-20 02:06:13 +0000956 */
957 if( chngToIN ){
958 int okToChngToIN = 0; /* True if the conversion to IN is valid */
959 int iColumn = -1; /* Column index on lhs of IN operator */
shane63207ab2009-02-04 01:49:30 +0000960 int iCursor = -1; /* Table cursor common to all terms */
drh1a58fe02008-12-20 02:06:13 +0000961 int j = 0; /* Loop counter */
962
963 /* Search for a table and column that appears on one side or the
964 ** other of the == operator in every subterm. That table and column
965 ** will be recorded in iCursor and iColumn. There might not be any
966 ** such table and column. Set okToChngToIN if an appropriate table
967 ** and column is found but leave okToChngToIN false if not found.
968 */
969 for(j=0; j<2 && !okToChngToIN; j++){
970 pOrTerm = pOrWc->a;
971 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
972 assert( pOrTerm->eOperator==WO_EQ );
973 pOrTerm->wtFlags &= ~TERM_OR_OK;
drh4e8be3b2009-06-08 17:11:08 +0000974 if( pOrTerm->leftCursor==iCursor ){
975 /* This is the 2-bit case and we are on the second iteration and
976 ** current term is from the first iteration. So skip this term. */
977 assert( j==1 );
978 continue;
979 }
980 if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
981 /* This term must be of the form t1.a==t2.b where t2 is in the
982 ** chngToIN set but t1 is not. This term will be either preceeded
983 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
984 ** and use its inversion. */
985 testcase( pOrTerm->wtFlags & TERM_COPIED );
986 testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
987 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
988 continue;
989 }
drh1a58fe02008-12-20 02:06:13 +0000990 iColumn = pOrTerm->u.leftColumn;
991 iCursor = pOrTerm->leftCursor;
992 break;
993 }
994 if( i<0 ){
drh4e8be3b2009-06-08 17:11:08 +0000995 /* No candidate table+column was found. This can only occur
996 ** on the second iteration */
drh1a58fe02008-12-20 02:06:13 +0000997 assert( j==1 );
998 assert( (chngToIN&(chngToIN-1))==0 );
drh4e8be3b2009-06-08 17:11:08 +0000999 assert( chngToIN==getMask(pMaskSet, iCursor) );
drh1a58fe02008-12-20 02:06:13 +00001000 break;
1001 }
drh4e8be3b2009-06-08 17:11:08 +00001002 testcase( j==1 );
1003
1004 /* We have found a candidate table and column. Check to see if that
1005 ** table and column is common to every term in the OR clause */
drh1a58fe02008-12-20 02:06:13 +00001006 okToChngToIN = 1;
1007 for(; i>=0 && okToChngToIN; i--, pOrTerm++){
1008 assert( pOrTerm->eOperator==WO_EQ );
1009 if( pOrTerm->leftCursor!=iCursor ){
1010 pOrTerm->wtFlags &= ~TERM_OR_OK;
1011 }else if( pOrTerm->u.leftColumn!=iColumn ){
1012 okToChngToIN = 0;
1013 }else{
1014 int affLeft, affRight;
1015 /* If the right-hand side is also a column, then the affinities
1016 ** of both right and left sides must be such that no type
1017 ** conversions are required on the right. (Ticket #2249)
1018 */
1019 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
1020 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
1021 if( affRight!=0 && affRight!=affLeft ){
1022 okToChngToIN = 0;
1023 }else{
1024 pOrTerm->wtFlags |= TERM_OR_OK;
1025 }
1026 }
1027 }
1028 }
1029
1030 /* At this point, okToChngToIN is true if original pTerm satisfies
1031 ** case 1. In that case, construct a new virtual term that is
1032 ** pTerm converted into an IN operator.
1033 */
1034 if( okToChngToIN ){
1035 Expr *pDup; /* A transient duplicate expression */
1036 ExprList *pList = 0; /* The RHS of the IN operator */
1037 Expr *pLeft = 0; /* The LHS of the IN operator */
1038 Expr *pNew; /* The complete IN operator */
1039
1040 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
1041 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
1042 assert( pOrTerm->eOperator==WO_EQ );
1043 assert( pOrTerm->leftCursor==iCursor );
1044 assert( pOrTerm->u.leftColumn==iColumn );
danielk19776ab3a2e2009-02-19 14:39:25 +00001045 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
drhb7916a72009-05-27 10:31:29 +00001046 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
drh1a58fe02008-12-20 02:06:13 +00001047 pLeft = pOrTerm->pExpr->pLeft;
1048 }
1049 assert( pLeft!=0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001050 pDup = sqlite3ExprDup(db, pLeft, 0);
drhb7916a72009-05-27 10:31:29 +00001051 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
drh1a58fe02008-12-20 02:06:13 +00001052 if( pNew ){
1053 int idxNew;
1054 transferJoinMarkings(pNew, pExpr);
danielk19776ab3a2e2009-02-19 14:39:25 +00001055 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
1056 pNew->x.pList = pList;
drh1a58fe02008-12-20 02:06:13 +00001057 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
1058 testcase( idxNew==0 );
1059 exprAnalyze(pSrc, pWC, idxNew);
1060 pTerm = &pWC->a[idxTerm];
1061 pWC->a[idxNew].iParent = idxTerm;
1062 pTerm->nChild = 1;
1063 }else{
1064 sqlite3ExprListDelete(db, pList);
1065 }
1066 pTerm->eOperator = 0; /* case 1 trumps case 2 */
1067 }
drh3e355802007-02-23 23:13:33 +00001068 }
drh3e355802007-02-23 23:13:33 +00001069}
1070#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
drh54a167d2005-11-26 14:08:07 +00001071
drh1a58fe02008-12-20 02:06:13 +00001072
drh54a167d2005-11-26 14:08:07 +00001073/*
drh0aa74ed2005-07-16 13:33:20 +00001074** The input to this routine is an WhereTerm structure with only the
drh51147ba2005-07-23 22:59:55 +00001075** "pExpr" field filled in. The job of this routine is to analyze the
drh0aa74ed2005-07-16 13:33:20 +00001076** subexpression and populate all the other fields of the WhereTerm
drh75897232000-05-29 14:26:00 +00001077** structure.
drh51147ba2005-07-23 22:59:55 +00001078**
1079** If the expression is of the form "<expr> <op> X" it gets commuted
drh1a58fe02008-12-20 02:06:13 +00001080** to the standard form of "X <op> <expr>".
1081**
1082** If the expression is of the form "X <op> Y" where both X and Y are
1083** columns, then the original expression is unchanged and a new virtual
1084** term of the form "Y <op> X" is added to the WHERE clause and
1085** analyzed separately. The original term is marked with TERM_COPIED
1086** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1087** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1088** is a commuted copy of a prior term.) The original term has nChild=1
1089** and the copy has idxParent set to the index of the original term.
drh75897232000-05-29 14:26:00 +00001090*/
drh0fcef5e2005-07-19 17:38:22 +00001091static void exprAnalyze(
1092 SrcList *pSrc, /* the FROM clause */
drh9eb20282005-08-24 03:52:18 +00001093 WhereClause *pWC, /* the WHERE clause */
1094 int idxTerm /* Index of the term to be analyzed */
drh0fcef5e2005-07-19 17:38:22 +00001095){
drh1a58fe02008-12-20 02:06:13 +00001096 WhereTerm *pTerm; /* The term to be analyzed */
drh111a6a72008-12-21 03:51:16 +00001097 WhereMaskSet *pMaskSet; /* Set of table index masks */
drh1a58fe02008-12-20 02:06:13 +00001098 Expr *pExpr; /* The expression to be analyzed */
1099 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
1100 Bitmask prereqAll; /* Prerequesites of pExpr */
drh5e767c52010-02-25 04:15:47 +00001101 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */
drh1d452e12009-11-01 19:26:59 +00001102 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */
1103 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */
1104 int noCase = 0; /* LIKE/GLOB distinguishes case */
drh1a58fe02008-12-20 02:06:13 +00001105 int op; /* Top-level operator. pExpr->op */
1106 Parse *pParse = pWC->pParse; /* Parsing context */
1107 sqlite3 *db = pParse->db; /* Database connection */
drh0fcef5e2005-07-19 17:38:22 +00001108
drhf998b732007-11-26 13:36:00 +00001109 if( db->mallocFailed ){
1110 return;
1111 }
1112 pTerm = &pWC->a[idxTerm];
1113 pMaskSet = pWC->pMaskSet;
1114 pExpr = pTerm->pExpr;
drh0fcef5e2005-07-19 17:38:22 +00001115 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
drh50b39962006-10-28 00:28:09 +00001116 op = pExpr->op;
1117 if( op==TK_IN ){
drhf5b11382005-09-17 13:07:13 +00001118 assert( pExpr->pRight==0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001119 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1120 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
1121 }else{
1122 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
1123 }
drh50b39962006-10-28 00:28:09 +00001124 }else if( op==TK_ISNULL ){
1125 pTerm->prereqRight = 0;
drhf5b11382005-09-17 13:07:13 +00001126 }else{
1127 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
1128 }
drh22d6a532005-09-19 21:05:48 +00001129 prereqAll = exprTableUsage(pMaskSet, pExpr);
1130 if( ExprHasProperty(pExpr, EP_FromJoin) ){
drh42165be2008-03-26 14:56:34 +00001131 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
1132 prereqAll |= x;
drhdafc0ce2008-04-17 19:14:02 +00001133 extraRight = x-1; /* ON clause terms may not be used with an index
1134 ** on left table of a LEFT JOIN. Ticket #3015 */
drh22d6a532005-09-19 21:05:48 +00001135 }
1136 pTerm->prereqAll = prereqAll;
drh0fcef5e2005-07-19 17:38:22 +00001137 pTerm->leftCursor = -1;
drh45b1ee42005-08-02 17:48:22 +00001138 pTerm->iParent = -1;
drhb52076c2006-01-23 13:22:09 +00001139 pTerm->eOperator = 0;
drh50b39962006-10-28 00:28:09 +00001140 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
drh0fcef5e2005-07-19 17:38:22 +00001141 Expr *pLeft = pExpr->pLeft;
1142 Expr *pRight = pExpr->pRight;
1143 if( pLeft->op==TK_COLUMN ){
1144 pTerm->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001145 pTerm->u.leftColumn = pLeft->iColumn;
drh50b39962006-10-28 00:28:09 +00001146 pTerm->eOperator = operatorMask(op);
drh75897232000-05-29 14:26:00 +00001147 }
drh0fcef5e2005-07-19 17:38:22 +00001148 if( pRight && pRight->op==TK_COLUMN ){
1149 WhereTerm *pNew;
1150 Expr *pDup;
1151 if( pTerm->leftCursor>=0 ){
drh9eb20282005-08-24 03:52:18 +00001152 int idxNew;
danielk19776ab3a2e2009-02-19 14:39:25 +00001153 pDup = sqlite3ExprDup(db, pExpr, 0);
drh17435752007-08-16 04:30:38 +00001154 if( db->mallocFailed ){
drh633e6d52008-07-28 19:34:53 +00001155 sqlite3ExprDelete(db, pDup);
drh28f45912006-10-18 23:26:38 +00001156 return;
1157 }
drh9eb20282005-08-24 03:52:18 +00001158 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1159 if( idxNew==0 ) return;
1160 pNew = &pWC->a[idxNew];
1161 pNew->iParent = idxTerm;
1162 pTerm = &pWC->a[idxTerm];
drh45b1ee42005-08-02 17:48:22 +00001163 pTerm->nChild = 1;
drh165be382008-12-05 02:36:33 +00001164 pTerm->wtFlags |= TERM_COPIED;
drh0fcef5e2005-07-19 17:38:22 +00001165 }else{
1166 pDup = pExpr;
1167 pNew = pTerm;
1168 }
drh7d10d5a2008-08-20 16:35:10 +00001169 exprCommute(pParse, pDup);
drh0fcef5e2005-07-19 17:38:22 +00001170 pLeft = pDup->pLeft;
1171 pNew->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001172 pNew->u.leftColumn = pLeft->iColumn;
drh5e767c52010-02-25 04:15:47 +00001173 testcase( (prereqLeft | extraRight) != prereqLeft );
1174 pNew->prereqRight = prereqLeft | extraRight;
drh0fcef5e2005-07-19 17:38:22 +00001175 pNew->prereqAll = prereqAll;
drhb52076c2006-01-23 13:22:09 +00001176 pNew->eOperator = operatorMask(pDup->op);
drh75897232000-05-29 14:26:00 +00001177 }
1178 }
drhed378002005-07-28 23:12:08 +00001179
drhd2687b72005-08-12 22:56:09 +00001180#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
drhed378002005-07-28 23:12:08 +00001181 /* If a term is the BETWEEN operator, create two new virtual terms
drh1a58fe02008-12-20 02:06:13 +00001182 ** that define the range that the BETWEEN implements. For example:
1183 **
1184 ** a BETWEEN b AND c
1185 **
1186 ** is converted into:
1187 **
1188 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1189 **
1190 ** The two new terms are added onto the end of the WhereClause object.
1191 ** The new terms are "dynamic" and are children of the original BETWEEN
1192 ** term. That means that if the BETWEEN term is coded, the children are
1193 ** skipped. Or, if the children are satisfied by an index, the original
1194 ** BETWEEN term is skipped.
drhed378002005-07-28 23:12:08 +00001195 */
drh29435252008-12-28 18:35:08 +00001196 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
danielk19776ab3a2e2009-02-19 14:39:25 +00001197 ExprList *pList = pExpr->x.pList;
drhed378002005-07-28 23:12:08 +00001198 int i;
1199 static const u8 ops[] = {TK_GE, TK_LE};
1200 assert( pList!=0 );
1201 assert( pList->nExpr==2 );
1202 for(i=0; i<2; i++){
1203 Expr *pNewExpr;
drh9eb20282005-08-24 03:52:18 +00001204 int idxNew;
drhb7916a72009-05-27 10:31:29 +00001205 pNewExpr = sqlite3PExpr(pParse, ops[i],
1206 sqlite3ExprDup(db, pExpr->pLeft, 0),
danielk19776ab3a2e2009-02-19 14:39:25 +00001207 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
drh9eb20282005-08-24 03:52:18 +00001208 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001209 testcase( idxNew==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001210 exprAnalyze(pSrc, pWC, idxNew);
drh9eb20282005-08-24 03:52:18 +00001211 pTerm = &pWC->a[idxTerm];
1212 pWC->a[idxNew].iParent = idxTerm;
drhed378002005-07-28 23:12:08 +00001213 }
drh45b1ee42005-08-02 17:48:22 +00001214 pTerm->nChild = 2;
drhed378002005-07-28 23:12:08 +00001215 }
drhd2687b72005-08-12 22:56:09 +00001216#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
drhed378002005-07-28 23:12:08 +00001217
danielk19771576cd92006-01-14 08:02:28 +00001218#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
drh1a58fe02008-12-20 02:06:13 +00001219 /* Analyze a term that is composed of two or more subterms connected by
1220 ** an OR operator.
drh6c30be82005-07-29 15:10:17 +00001221 */
1222 else if( pExpr->op==TK_OR ){
drh29435252008-12-28 18:35:08 +00001223 assert( pWC->op==TK_AND );
drh1a58fe02008-12-20 02:06:13 +00001224 exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
danielk1977f51d1bd2009-07-31 06:14:51 +00001225 pTerm = &pWC->a[idxTerm];
drh6c30be82005-07-29 15:10:17 +00001226 }
drhd2687b72005-08-12 22:56:09 +00001227#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1228
1229#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1230 /* Add constraints to reduce the search space on a LIKE or GLOB
1231 ** operator.
drh9f504ea2008-02-23 21:55:39 +00001232 **
1233 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
1234 **
1235 ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
1236 **
1237 ** The last character of the prefix "abc" is incremented to form the
shane7bc71e52008-05-28 18:01:44 +00001238 ** termination condition "abd".
drhd2687b72005-08-12 22:56:09 +00001239 */
dan937d0de2009-10-15 18:35:38 +00001240 if( pWC->op==TK_AND
1241 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
1242 ){
drh1d452e12009-11-01 19:26:59 +00001243 Expr *pLeft; /* LHS of LIKE/GLOB operator */
1244 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1245 Expr *pNewExpr1;
1246 Expr *pNewExpr2;
1247 int idxNew1;
1248 int idxNew2;
drh9eb20282005-08-24 03:52:18 +00001249
danielk19776ab3a2e2009-02-19 14:39:25 +00001250 pLeft = pExpr->x.pList->a[1].pExpr;
danielk19776ab3a2e2009-02-19 14:39:25 +00001251 pStr2 = sqlite3ExprDup(db, pStr1, 0);
drhf998b732007-11-26 13:36:00 +00001252 if( !db->mallocFailed ){
drh254993e2009-06-08 19:44:36 +00001253 u8 c, *pC; /* Last character before the first wildcard */
dan937d0de2009-10-15 18:35:38 +00001254 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
drh9f504ea2008-02-23 21:55:39 +00001255 c = *pC;
drh02a50b72008-05-26 18:33:40 +00001256 if( noCase ){
drh254993e2009-06-08 19:44:36 +00001257 /* The point is to increment the last character before the first
1258 ** wildcard. But if we increment '@', that will push it into the
1259 ** alphabetic range where case conversions will mess up the
1260 ** inequality. To avoid this, make sure to also run the full
1261 ** LIKE on all candidate expressions by clearing the isComplete flag
1262 */
1263 if( c=='A'-1 ) isComplete = 0;
1264
drh02a50b72008-05-26 18:33:40 +00001265 c = sqlite3UpperToLower[c];
1266 }
drh9f504ea2008-02-23 21:55:39 +00001267 *pC = c + 1;
drhd2687b72005-08-12 22:56:09 +00001268 }
danielk19776ab3a2e2009-02-19 14:39:25 +00001269 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft,0),pStr1,0);
drh9eb20282005-08-24 03:52:18 +00001270 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001271 testcase( idxNew1==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001272 exprAnalyze(pSrc, pWC, idxNew1);
danielk19776ab3a2e2009-02-19 14:39:25 +00001273 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft,0),pStr2,0);
drh9eb20282005-08-24 03:52:18 +00001274 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001275 testcase( idxNew2==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001276 exprAnalyze(pSrc, pWC, idxNew2);
drh9eb20282005-08-24 03:52:18 +00001277 pTerm = &pWC->a[idxTerm];
drhd2687b72005-08-12 22:56:09 +00001278 if( isComplete ){
drh9eb20282005-08-24 03:52:18 +00001279 pWC->a[idxNew1].iParent = idxTerm;
1280 pWC->a[idxNew2].iParent = idxTerm;
drhd2687b72005-08-12 22:56:09 +00001281 pTerm->nChild = 2;
1282 }
1283 }
1284#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
drh7f375902006-06-13 17:38:59 +00001285
1286#ifndef SQLITE_OMIT_VIRTUALTABLE
1287 /* Add a WO_MATCH auxiliary term to the constraint set if the
1288 ** current expression is of the form: column MATCH expr.
1289 ** This information is used by the xBestIndex methods of
1290 ** virtual tables. The native query optimizer does not attempt
1291 ** to do anything with MATCH functions.
1292 */
1293 if( isMatchOfColumn(pExpr) ){
1294 int idxNew;
1295 Expr *pRight, *pLeft;
1296 WhereTerm *pNewTerm;
1297 Bitmask prereqColumn, prereqExpr;
1298
danielk19776ab3a2e2009-02-19 14:39:25 +00001299 pRight = pExpr->x.pList->a[0].pExpr;
1300 pLeft = pExpr->x.pList->a[1].pExpr;
drh7f375902006-06-13 17:38:59 +00001301 prereqExpr = exprTableUsage(pMaskSet, pRight);
1302 prereqColumn = exprTableUsage(pMaskSet, pLeft);
1303 if( (prereqExpr & prereqColumn)==0 ){
drh1a90e092006-06-14 22:07:10 +00001304 Expr *pNewExpr;
drhb7916a72009-05-27 10:31:29 +00001305 pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1306 0, sqlite3ExprDup(db, pRight, 0), 0);
drh1a90e092006-06-14 22:07:10 +00001307 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001308 testcase( idxNew==0 );
drh7f375902006-06-13 17:38:59 +00001309 pNewTerm = &pWC->a[idxNew];
1310 pNewTerm->prereqRight = prereqExpr;
1311 pNewTerm->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001312 pNewTerm->u.leftColumn = pLeft->iColumn;
drh7f375902006-06-13 17:38:59 +00001313 pNewTerm->eOperator = WO_MATCH;
1314 pNewTerm->iParent = idxTerm;
drhd2ca60d2006-06-27 02:36:58 +00001315 pTerm = &pWC->a[idxTerm];
drh7f375902006-06-13 17:38:59 +00001316 pTerm->nChild = 1;
drh165be382008-12-05 02:36:33 +00001317 pTerm->wtFlags |= TERM_COPIED;
drh7f375902006-06-13 17:38:59 +00001318 pNewTerm->prereqAll = pTerm->prereqAll;
1319 }
1320 }
1321#endif /* SQLITE_OMIT_VIRTUALTABLE */
drhdafc0ce2008-04-17 19:14:02 +00001322
1323 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1324 ** an index for tables to the left of the join.
1325 */
1326 pTerm->prereqRight |= extraRight;
drh75897232000-05-29 14:26:00 +00001327}
1328
drh7b4fc6a2007-02-06 13:26:32 +00001329/*
1330** Return TRUE if any of the expressions in pList->a[iFirst...] contain
1331** a reference to any table other than the iBase table.
1332*/
1333static int referencesOtherTables(
1334 ExprList *pList, /* Search expressions in ths list */
drh111a6a72008-12-21 03:51:16 +00001335 WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
drh7b4fc6a2007-02-06 13:26:32 +00001336 int iFirst, /* Be searching with the iFirst-th expression */
1337 int iBase /* Ignore references to this table */
1338){
1339 Bitmask allowed = ~getMask(pMaskSet, iBase);
1340 while( iFirst<pList->nExpr ){
1341 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
1342 return 1;
1343 }
1344 }
1345 return 0;
1346}
1347
drh0fcef5e2005-07-19 17:38:22 +00001348
drh75897232000-05-29 14:26:00 +00001349/*
drh51669862004-12-18 18:40:26 +00001350** This routine decides if pIdx can be used to satisfy the ORDER BY
1351** clause. If it can, it returns 1. If pIdx cannot satisfy the
1352** ORDER BY clause, this routine returns 0.
1353**
1354** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
1355** left-most table in the FROM clause of that same SELECT statement and
1356** the table has a cursor number of "base". pIdx is an index on pTab.
1357**
1358** nEqCol is the number of columns of pIdx that are used as equality
1359** constraints. Any of these columns may be missing from the ORDER BY
1360** clause and the match can still be a success.
1361**
drh51669862004-12-18 18:40:26 +00001362** All terms of the ORDER BY that match against the index must be either
1363** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
1364** index do not need to satisfy this constraint.) The *pbRev value is
1365** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
1366** the ORDER BY clause is all ASC.
1367*/
1368static int isSortingIndex(
1369 Parse *pParse, /* Parsing context */
drh111a6a72008-12-21 03:51:16 +00001370 WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */
drh51669862004-12-18 18:40:26 +00001371 Index *pIdx, /* The index we are testing */
drh74161702006-02-24 02:53:49 +00001372 int base, /* Cursor number for the table to be sorted */
drh51669862004-12-18 18:40:26 +00001373 ExprList *pOrderBy, /* The ORDER BY clause */
1374 int nEqCol, /* Number of index columns with == constraints */
1375 int *pbRev /* Set to 1 if ORDER BY is DESC */
1376){
drhb46b5772005-08-29 16:40:52 +00001377 int i, j; /* Loop counters */
drh85eeb692005-12-21 03:16:42 +00001378 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */
drhb46b5772005-08-29 16:40:52 +00001379 int nTerm; /* Number of ORDER BY terms */
1380 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
drh51669862004-12-18 18:40:26 +00001381 sqlite3 *db = pParse->db;
1382
1383 assert( pOrderBy!=0 );
1384 nTerm = pOrderBy->nExpr;
1385 assert( nTerm>0 );
1386
dan5236ac12009-08-13 07:09:33 +00001387 /* Argument pIdx must either point to a 'real' named index structure,
1388 ** or an index structure allocated on the stack by bestBtreeIndex() to
1389 ** represent the rowid index that is part of every table. */
1390 assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
1391
drh51669862004-12-18 18:40:26 +00001392 /* Match terms of the ORDER BY clause against columns of
1393 ** the index.
drhcc192542006-12-20 03:24:19 +00001394 **
1395 ** Note that indices have pIdx->nColumn regular columns plus
1396 ** one additional column containing the rowid. The rowid column
1397 ** of the index is also allowed to match against the ORDER BY
1398 ** clause.
drh51669862004-12-18 18:40:26 +00001399 */
drhcc192542006-12-20 03:24:19 +00001400 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
drh51669862004-12-18 18:40:26 +00001401 Expr *pExpr; /* The expression of the ORDER BY pTerm */
1402 CollSeq *pColl; /* The collating sequence of pExpr */
drh85eeb692005-12-21 03:16:42 +00001403 int termSortOrder; /* Sort order for this term */
drhcc192542006-12-20 03:24:19 +00001404 int iColumn; /* The i-th column of the index. -1 for rowid */
1405 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
1406 const char *zColl; /* Name of the collating sequence for i-th index term */
drh51669862004-12-18 18:40:26 +00001407
1408 pExpr = pTerm->pExpr;
1409 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
1410 /* Can not use an index sort on anything that is not a column in the
1411 ** left-most table of the FROM clause */
drh7b4fc6a2007-02-06 13:26:32 +00001412 break;
drh51669862004-12-18 18:40:26 +00001413 }
1414 pColl = sqlite3ExprCollSeq(pParse, pExpr);
drhcc192542006-12-20 03:24:19 +00001415 if( !pColl ){
1416 pColl = db->pDfltColl;
1417 }
dan5236ac12009-08-13 07:09:33 +00001418 if( pIdx->zName && i<pIdx->nColumn ){
drhcc192542006-12-20 03:24:19 +00001419 iColumn = pIdx->aiColumn[i];
1420 if( iColumn==pIdx->pTable->iPKey ){
1421 iColumn = -1;
1422 }
1423 iSortOrder = pIdx->aSortOrder[i];
1424 zColl = pIdx->azColl[i];
1425 }else{
1426 iColumn = -1;
1427 iSortOrder = 0;
1428 zColl = pColl->zName;
1429 }
1430 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
drh9012bcb2004-12-19 00:11:35 +00001431 /* Term j of the ORDER BY clause does not match column i of the index */
1432 if( i<nEqCol ){
drh51669862004-12-18 18:40:26 +00001433 /* If an index column that is constrained by == fails to match an
1434 ** ORDER BY term, that is OK. Just ignore that column of the index
1435 */
1436 continue;
drhff354e92008-06-25 02:47:57 +00001437 }else if( i==pIdx->nColumn ){
1438 /* Index column i is the rowid. All other terms match. */
1439 break;
drh51669862004-12-18 18:40:26 +00001440 }else{
1441 /* If an index column fails to match and is not constrained by ==
1442 ** then the index cannot satisfy the ORDER BY constraint.
1443 */
1444 return 0;
1445 }
1446 }
dan5236ac12009-08-13 07:09:33 +00001447 assert( pIdx->aSortOrder!=0 || iColumn==-1 );
drh85eeb692005-12-21 03:16:42 +00001448 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
drhcc192542006-12-20 03:24:19 +00001449 assert( iSortOrder==0 || iSortOrder==1 );
1450 termSortOrder = iSortOrder ^ pTerm->sortOrder;
drh51669862004-12-18 18:40:26 +00001451 if( i>nEqCol ){
drh85eeb692005-12-21 03:16:42 +00001452 if( termSortOrder!=sortOrder ){
drh51669862004-12-18 18:40:26 +00001453 /* Indices can only be used if all ORDER BY terms past the
1454 ** equality constraints are all either DESC or ASC. */
1455 return 0;
1456 }
1457 }else{
drh85eeb692005-12-21 03:16:42 +00001458 sortOrder = termSortOrder;
drh51669862004-12-18 18:40:26 +00001459 }
1460 j++;
1461 pTerm++;
drh7b4fc6a2007-02-06 13:26:32 +00001462 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
drhcc192542006-12-20 03:24:19 +00001463 /* If the indexed column is the primary key and everything matches
drh7b4fc6a2007-02-06 13:26:32 +00001464 ** so far and none of the ORDER BY terms to the right reference other
1465 ** tables in the join, then we are assured that the index can be used
1466 ** to sort because the primary key is unique and so none of the other
1467 ** columns will make any difference
drhcc192542006-12-20 03:24:19 +00001468 */
1469 j = nTerm;
1470 }
drh51669862004-12-18 18:40:26 +00001471 }
1472
drhcc192542006-12-20 03:24:19 +00001473 *pbRev = sortOrder!=0;
drh8718f522005-08-13 16:13:04 +00001474 if( j>=nTerm ){
drhcc192542006-12-20 03:24:19 +00001475 /* All terms of the ORDER BY clause are covered by this index so
1476 ** this index can be used for sorting. */
1477 return 1;
1478 }
drh7b4fc6a2007-02-06 13:26:32 +00001479 if( pIdx->onError!=OE_None && i==pIdx->nColumn
1480 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
drhcc192542006-12-20 03:24:19 +00001481 /* All terms of this index match some prefix of the ORDER BY clause
drh7b4fc6a2007-02-06 13:26:32 +00001482 ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1483 ** clause reference other tables in a join. If this is all true then
1484 ** the order by clause is superfluous. */
drh51669862004-12-18 18:40:26 +00001485 return 1;
1486 }
1487 return 0;
1488}
1489
1490/*
drhb6fb62d2005-09-20 08:47:20 +00001491** Prepare a crude estimate of the logarithm of the input value.
drh28c4cf42005-07-27 20:41:43 +00001492** The results need not be exact. This is only used for estimating
drh909626d2008-05-30 14:58:37 +00001493** the total cost of performing operations with O(logN) or O(NlogN)
drh28c4cf42005-07-27 20:41:43 +00001494** complexity. Because N is just a guess, it is no great tragedy if
1495** logN is a little off.
drh28c4cf42005-07-27 20:41:43 +00001496*/
1497static double estLog(double N){
drhb37df7b2005-10-13 02:09:49 +00001498 double logN = 1;
1499 double x = 10;
drh28c4cf42005-07-27 20:41:43 +00001500 while( N>x ){
drhb37df7b2005-10-13 02:09:49 +00001501 logN += 1;
drh28c4cf42005-07-27 20:41:43 +00001502 x *= 10;
1503 }
1504 return logN;
1505}
1506
drh6d209d82006-06-27 01:54:26 +00001507/*
1508** Two routines for printing the content of an sqlite3_index_info
1509** structure. Used for testing and debugging only. If neither
1510** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1511** are no-ops.
1512*/
drh77a2a5e2007-04-06 01:04:39 +00001513#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
drh6d209d82006-06-27 01:54:26 +00001514static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1515 int i;
mlcreech3a00f902008-03-04 17:45:01 +00001516 if( !sqlite3WhereTrace ) return;
drh6d209d82006-06-27 01:54:26 +00001517 for(i=0; i<p->nConstraint; i++){
1518 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1519 i,
1520 p->aConstraint[i].iColumn,
1521 p->aConstraint[i].iTermOffset,
1522 p->aConstraint[i].op,
1523 p->aConstraint[i].usable);
1524 }
1525 for(i=0; i<p->nOrderBy; i++){
1526 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
1527 i,
1528 p->aOrderBy[i].iColumn,
1529 p->aOrderBy[i].desc);
1530 }
1531}
1532static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1533 int i;
mlcreech3a00f902008-03-04 17:45:01 +00001534 if( !sqlite3WhereTrace ) return;
drh6d209d82006-06-27 01:54:26 +00001535 for(i=0; i<p->nConstraint; i++){
1536 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
1537 i,
1538 p->aConstraintUsage[i].argvIndex,
1539 p->aConstraintUsage[i].omit);
1540 }
1541 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
1542 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
1543 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
1544 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
1545}
1546#else
1547#define TRACE_IDX_INPUTS(A)
1548#define TRACE_IDX_OUTPUTS(A)
1549#endif
1550
danielk19771d461462009-04-21 09:02:45 +00001551/*
1552** Required because bestIndex() is called by bestOrClauseIndex()
1553*/
1554static void bestIndex(
1555 Parse*, WhereClause*, struct SrcList_item*, Bitmask, ExprList*, WhereCost*);
1556
1557/*
1558** This routine attempts to find an scanning strategy that can be used
1559** to optimize an 'OR' expression that is part of a WHERE clause.
1560**
1561** The table associated with FROM clause term pSrc may be either a
1562** regular B-Tree table or a virtual table.
1563*/
1564static void bestOrClauseIndex(
1565 Parse *pParse, /* The parsing context */
1566 WhereClause *pWC, /* The WHERE clause */
1567 struct SrcList_item *pSrc, /* The FROM clause term to search */
1568 Bitmask notReady, /* Mask of cursors that are not available */
1569 ExprList *pOrderBy, /* The ORDER BY clause */
1570 WhereCost *pCost /* Lowest cost query plan */
1571){
1572#ifndef SQLITE_OMIT_OR_OPTIMIZATION
1573 const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
1574 const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */
1575 WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */
1576 WhereTerm *pTerm; /* A single term of the WHERE clause */
1577
1578 /* Search the WHERE clause terms for a usable WO_OR term. */
1579 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1580 if( pTerm->eOperator==WO_OR
1581 && ((pTerm->prereqAll & ~maskSrc) & notReady)==0
1582 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0
1583 ){
1584 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
1585 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
1586 WhereTerm *pOrTerm;
1587 int flags = WHERE_MULTI_OR;
1588 double rTotal = 0;
1589 double nRow = 0;
dan5236ac12009-08-13 07:09:33 +00001590 Bitmask used = 0;
danielk19771d461462009-04-21 09:02:45 +00001591
1592 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
1593 WhereCost sTermCost;
1594 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
1595 (pOrTerm - pOrWC->a), (pTerm - pWC->a)
1596 ));
1597 if( pOrTerm->eOperator==WO_AND ){
1598 WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
1599 bestIndex(pParse, pAndWC, pSrc, notReady, 0, &sTermCost);
1600 }else if( pOrTerm->leftCursor==iCur ){
1601 WhereClause tempWC;
1602 tempWC.pParse = pWC->pParse;
1603 tempWC.pMaskSet = pWC->pMaskSet;
1604 tempWC.op = TK_AND;
1605 tempWC.a = pOrTerm;
1606 tempWC.nTerm = 1;
1607 bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost);
1608 }else{
1609 continue;
1610 }
1611 rTotal += sTermCost.rCost;
1612 nRow += sTermCost.nRow;
dan5236ac12009-08-13 07:09:33 +00001613 used |= sTermCost.used;
danielk19771d461462009-04-21 09:02:45 +00001614 if( rTotal>=pCost->rCost ) break;
1615 }
1616
1617 /* If there is an ORDER BY clause, increase the scan cost to account
1618 ** for the cost of the sort. */
1619 if( pOrderBy!=0 ){
1620 rTotal += nRow*estLog(nRow);
1621 WHERETRACE(("... sorting increases OR cost to %.9g\n", rTotal));
1622 }
1623
1624 /* If the cost of scanning using this OR term for optimization is
1625 ** less than the current cost stored in pCost, replace the contents
1626 ** of pCost. */
1627 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
1628 if( rTotal<pCost->rCost ){
1629 pCost->rCost = rTotal;
1630 pCost->nRow = nRow;
dan5236ac12009-08-13 07:09:33 +00001631 pCost->used = used;
danielk19771d461462009-04-21 09:02:45 +00001632 pCost->plan.wsFlags = flags;
1633 pCost->plan.u.pTerm = pTerm;
1634 }
1635 }
1636 }
1637#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1638}
1639
drhc6339082010-04-07 16:54:58 +00001640#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
drh8b307fb2010-04-06 15:57:05 +00001641/*
drh4139c992010-04-07 14:59:45 +00001642** Return TRUE if the WHERE clause term pTerm is of a form where it
1643** could be used with an index to access pSrc, assuming an appropriate
1644** index existed.
1645*/
1646static int termCanDriveIndex(
1647 WhereTerm *pTerm, /* WHERE clause term to check */
1648 struct SrcList_item *pSrc, /* Table we are trying to access */
1649 Bitmask notReady /* Tables in outer loops of the join */
1650){
1651 char aff;
1652 if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
1653 if( pTerm->eOperator!=WO_EQ ) return 0;
1654 if( (pTerm->prereqRight & notReady)!=0 ) return 0;
1655 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
1656 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
1657 return 1;
1658}
drhc6339082010-04-07 16:54:58 +00001659#endif
drh4139c992010-04-07 14:59:45 +00001660
drhc6339082010-04-07 16:54:58 +00001661#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
drh4139c992010-04-07 14:59:45 +00001662/*
drh8b307fb2010-04-06 15:57:05 +00001663** If the query plan for pSrc specified in pCost is a full table scan
drh4139c992010-04-07 14:59:45 +00001664** and indexing is allows (if there is no NOT INDEXED clause) and it
drh8b307fb2010-04-06 15:57:05 +00001665** possible to construct a transient index that would perform better
1666** than a full table scan even when the cost of constructing the index
1667** is taken into account, then alter the query plan to use the
1668** transient index.
1669*/
drhc6339082010-04-07 16:54:58 +00001670static void bestAutomaticIndex(
drh8b307fb2010-04-06 15:57:05 +00001671 Parse *pParse, /* The parsing context */
1672 WhereClause *pWC, /* The WHERE clause */
1673 struct SrcList_item *pSrc, /* The FROM clause term to search */
1674 Bitmask notReady, /* Mask of cursors that are not available */
1675 WhereCost *pCost /* Lowest cost query plan */
1676){
1677 double nTableRow; /* Rows in the input table */
1678 double logN; /* log(nTableRow) */
1679 double costTempIdx; /* per-query cost of the transient index */
1680 WhereTerm *pTerm; /* A single term of the WHERE clause */
1681 WhereTerm *pWCEnd; /* End of pWC->a[] */
drh424aab82010-04-06 18:28:20 +00001682 Table *pTable; /* Table tht might be indexed */
drh8b307fb2010-04-06 15:57:05 +00001683
drhc6339082010-04-07 16:54:58 +00001684 if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){
1685 /* Automatic indices are disabled at run-time */
1686 return;
1687 }
drh8b307fb2010-04-06 15:57:05 +00001688 if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){
1689 /* We already have some kind of index in use for this query. */
1690 return;
1691 }
1692 if( pSrc->notIndexed ){
1693 /* The NOT INDEXED clause appears in the SQL. */
1694 return;
1695 }
1696
1697 assert( pParse->nQueryLoop >= (double)1 );
drh8bd54122010-04-08 15:00:59 +00001698 pTable = pSrc->pTab;
1699 nTableRow = pTable->pIndex ? pTable->pIndex->aiRowEst[0] : 1000000;
drh8b307fb2010-04-06 15:57:05 +00001700 logN = estLog(nTableRow);
1701 costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);
1702 if( costTempIdx>=pCost->rCost ){
1703 /* The cost of creating the transient table would be greater than
1704 ** doing the full table scan */
1705 return;
1706 }
1707
1708 /* Search for any equality comparison term */
1709 pWCEnd = &pWC->a[pWC->nTerm];
1710 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
drh4139c992010-04-07 14:59:45 +00001711 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
drh8b307fb2010-04-06 15:57:05 +00001712 WHERETRACE(("auto-index reduces cost from %.2f to %.2f\n",
1713 pCost->rCost, costTempIdx));
1714 pCost->rCost = costTempIdx;
1715 pCost->nRow = logN + 1;
1716 pCost->plan.wsFlags = WHERE_TEMP_INDEX;
1717 pCost->used = pTerm->prereqRight;
1718 break;
1719 }
1720 }
1721}
drhc6339082010-04-07 16:54:58 +00001722#else
1723# define bestAutomaticIndex(A,B,C,D,E) /* no-op */
1724#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
drh8b307fb2010-04-06 15:57:05 +00001725
drhc6339082010-04-07 16:54:58 +00001726
1727#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
drh8b307fb2010-04-06 15:57:05 +00001728/*
drhc6339082010-04-07 16:54:58 +00001729** Generate code to construct the Index object for an automatic index
1730** and to set up the WhereLevel object pLevel so that the code generator
1731** makes use of the automatic index.
drh8b307fb2010-04-06 15:57:05 +00001732*/
drhc6339082010-04-07 16:54:58 +00001733static void constructAutomaticIndex(
drh8b307fb2010-04-06 15:57:05 +00001734 Parse *pParse, /* The parsing context */
1735 WhereClause *pWC, /* The WHERE clause */
1736 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */
1737 Bitmask notReady, /* Mask of cursors that are not available */
1738 WhereLevel *pLevel /* Write new index here */
1739){
1740 int nColumn; /* Number of columns in the constructed index */
1741 WhereTerm *pTerm; /* A single term of the WHERE clause */
1742 WhereTerm *pWCEnd; /* End of pWC->a[] */
1743 int nByte; /* Byte of memory needed for pIdx */
1744 Index *pIdx; /* Object describing the transient index */
1745 Vdbe *v; /* Prepared statement under construction */
1746 int regIsInit; /* Register set by initialization */
1747 int addrInit; /* Address of the initialization bypass jump */
1748 Table *pTable; /* The table being indexed */
1749 KeyInfo *pKeyinfo; /* Key information for the index */
1750 int addrTop; /* Top of the index fill loop */
1751 int regRecord; /* Register holding an index record */
1752 int n; /* Column counter */
drh4139c992010-04-07 14:59:45 +00001753 int i; /* Loop counter */
1754 int mxBitCol; /* Maximum column in pSrc->colUsed */
drh424aab82010-04-06 18:28:20 +00001755 CollSeq *pColl; /* Collating sequence to on a column */
drh4139c992010-04-07 14:59:45 +00001756 Bitmask idxCols; /* Bitmap of columns used for indexing */
1757 Bitmask extraCols; /* Bitmap of additional columns */
drh8b307fb2010-04-06 15:57:05 +00001758
1759 /* Generate code to skip over the creation and initialization of the
1760 ** transient index on 2nd and subsequent iterations of the loop. */
1761 v = pParse->pVdbe;
1762 assert( v!=0 );
1763 regIsInit = ++pParse->nMem;
1764 addrInit = sqlite3VdbeAddOp1(v, OP_If, regIsInit);
1765 sqlite3VdbeAddOp2(v, OP_Integer, 1, regIsInit);
1766
drh4139c992010-04-07 14:59:45 +00001767 /* Count the number of columns that will be added to the index
1768 ** and used to match WHERE clause constraints */
drh8b307fb2010-04-06 15:57:05 +00001769 nColumn = 0;
drh424aab82010-04-06 18:28:20 +00001770 pTable = pSrc->pTab;
drh8b307fb2010-04-06 15:57:05 +00001771 pWCEnd = &pWC->a[pWC->nTerm];
drh4139c992010-04-07 14:59:45 +00001772 idxCols = 0;
drh8b307fb2010-04-06 15:57:05 +00001773 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
drh4139c992010-04-07 14:59:45 +00001774 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
1775 int iCol = pTerm->u.leftColumn;
drh0013e722010-04-08 00:40:15 +00001776 Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
drh52ff8ea2010-04-08 14:15:56 +00001777 testcase( iCol==BMS );
1778 testcase( iCol==BMS-1 );
drh0013e722010-04-08 00:40:15 +00001779 if( (idxCols & cMask)==0 ){
1780 nColumn++;
1781 idxCols |= cMask;
1782 }
drh8b307fb2010-04-06 15:57:05 +00001783 }
1784 }
1785 assert( nColumn>0 );
drh424aab82010-04-06 18:28:20 +00001786 pLevel->plan.nEq = nColumn;
drh4139c992010-04-07 14:59:45 +00001787
1788 /* Count the number of additional columns needed to create a
1789 ** covering index. A "covering index" is an index that contains all
1790 ** columns that are needed by the query. With a covering index, the
1791 ** original table never needs to be accessed. Automatic indices must
1792 ** be a covering index because the index will not be updated if the
1793 ** original table changes and the index and table cannot both be used
1794 ** if they go out of sync.
1795 */
drh0013e722010-04-08 00:40:15 +00001796 extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1)));
drh4139c992010-04-07 14:59:45 +00001797 mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
drh52ff8ea2010-04-08 14:15:56 +00001798 testcase( pTable->nCol==BMS-1 );
1799 testcase( pTable->nCol==BMS-2 );
drh4139c992010-04-07 14:59:45 +00001800 for(i=0; i<mxBitCol; i++){
drh67ae0cb2010-04-08 14:38:51 +00001801 if( extraCols & (((Bitmask)1)<<i) ) nColumn++;
drh4139c992010-04-07 14:59:45 +00001802 }
1803 if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
1804 nColumn += pTable->nCol - BMS + 1;
1805 }
1806 pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ;
drh8b307fb2010-04-06 15:57:05 +00001807
1808 /* Construct the Index object to describe this index */
1809 nByte = sizeof(Index);
1810 nByte += nColumn*sizeof(int); /* Index.aiColumn */
1811 nByte += nColumn*sizeof(char*); /* Index.azColl */
1812 nByte += nColumn; /* Index.aSortOrder */
1813 pIdx = sqlite3DbMallocZero(pParse->db, nByte);
1814 if( pIdx==0 ) return;
1815 pLevel->plan.u.pIdx = pIdx;
1816 pIdx->azColl = (char**)&pIdx[1];
1817 pIdx->aiColumn = (int*)&pIdx->azColl[nColumn];
1818 pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn];
1819 pIdx->zName = "auto-index";
1820 pIdx->nColumn = nColumn;
drh424aab82010-04-06 18:28:20 +00001821 pIdx->pTable = pTable;
drh8b307fb2010-04-06 15:57:05 +00001822 n = 0;
drh0013e722010-04-08 00:40:15 +00001823 idxCols = 0;
drh8b307fb2010-04-06 15:57:05 +00001824 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
drh4139c992010-04-07 14:59:45 +00001825 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
drh0013e722010-04-08 00:40:15 +00001826 int iCol = pTerm->u.leftColumn;
1827 Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
1828 if( (idxCols & cMask)==0 ){
1829 Expr *pX = pTerm->pExpr;
1830 idxCols |= cMask;
1831 pIdx->aiColumn[n] = pTerm->u.leftColumn;
1832 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
1833 pIdx->azColl[n] = pColl->zName;
1834 n++;
1835 }
drh8b307fb2010-04-06 15:57:05 +00001836 }
1837 }
drh4139c992010-04-07 14:59:45 +00001838 assert( n==pLevel->plan.nEq );
1839
drhc6339082010-04-07 16:54:58 +00001840 /* Add additional columns needed to make the automatic index into
1841 ** a covering index */
drh4139c992010-04-07 14:59:45 +00001842 for(i=0; i<mxBitCol; i++){
drh67ae0cb2010-04-08 14:38:51 +00001843 if( extraCols & (((Bitmask)1)<<i) ){
drh4139c992010-04-07 14:59:45 +00001844 pIdx->aiColumn[n] = i;
1845 pIdx->azColl[n] = "BINARY";
1846 n++;
1847 }
1848 }
1849 if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
1850 for(i=BMS-1; i<pTable->nCol; i++){
1851 pIdx->aiColumn[n] = i;
1852 pIdx->azColl[n] = "BINARY";
1853 n++;
1854 }
1855 }
1856 assert( n==nColumn );
drh8b307fb2010-04-06 15:57:05 +00001857
drhc6339082010-04-07 16:54:58 +00001858 /* Create the automatic index */
drh8b307fb2010-04-06 15:57:05 +00001859 pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx);
1860 assert( pLevel->iIdxCur>=0 );
drha21a64d2010-04-06 22:33:55 +00001861 sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0,
drh8b307fb2010-04-06 15:57:05 +00001862 (char*)pKeyinfo, P4_KEYINFO_HANDOFF);
drha21a64d2010-04-06 22:33:55 +00001863 VdbeComment((v, "for %s", pTable->zName));
drh8b307fb2010-04-06 15:57:05 +00001864
drhc6339082010-04-07 16:54:58 +00001865 /* Fill the automatic index with content */
drh8b307fb2010-04-06 15:57:05 +00001866 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur);
1867 regRecord = sqlite3GetTempReg(pParse);
1868 sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1);
1869 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
1870 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1871 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
drha21a64d2010-04-06 22:33:55 +00001872 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
drh8b307fb2010-04-06 15:57:05 +00001873 sqlite3VdbeJumpHere(v, addrTop);
1874 sqlite3ReleaseTempReg(pParse, regRecord);
1875
1876 /* Jump here when skipping the initialization */
1877 sqlite3VdbeJumpHere(v, addrInit);
1878}
drhc6339082010-04-07 16:54:58 +00001879#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
drh8b307fb2010-04-06 15:57:05 +00001880
drh9eff6162006-06-12 21:59:13 +00001881#ifndef SQLITE_OMIT_VIRTUALTABLE
1882/*
danielk19771d461462009-04-21 09:02:45 +00001883** Allocate and populate an sqlite3_index_info structure. It is the
1884** responsibility of the caller to eventually release the structure
1885** by passing the pointer returned by this function to sqlite3_free().
1886*/
1887static sqlite3_index_info *allocateIndexInfo(
1888 Parse *pParse,
1889 WhereClause *pWC,
1890 struct SrcList_item *pSrc,
1891 ExprList *pOrderBy
1892){
1893 int i, j;
1894 int nTerm;
1895 struct sqlite3_index_constraint *pIdxCons;
1896 struct sqlite3_index_orderby *pIdxOrderBy;
1897 struct sqlite3_index_constraint_usage *pUsage;
1898 WhereTerm *pTerm;
1899 int nOrderBy;
1900 sqlite3_index_info *pIdxInfo;
1901
1902 WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));
1903
1904 /* Count the number of possible WHERE clause constraints referring
1905 ** to this virtual table */
1906 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1907 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1908 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1909 testcase( pTerm->eOperator==WO_IN );
1910 testcase( pTerm->eOperator==WO_ISNULL );
1911 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1912 nTerm++;
1913 }
1914
1915 /* If the ORDER BY clause contains only columns in the current
1916 ** virtual table then allocate space for the aOrderBy part of
1917 ** the sqlite3_index_info structure.
1918 */
1919 nOrderBy = 0;
1920 if( pOrderBy ){
1921 for(i=0; i<pOrderBy->nExpr; i++){
1922 Expr *pExpr = pOrderBy->a[i].pExpr;
1923 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1924 }
1925 if( i==pOrderBy->nExpr ){
1926 nOrderBy = pOrderBy->nExpr;
1927 }
1928 }
1929
1930 /* Allocate the sqlite3_index_info structure
1931 */
1932 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1933 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1934 + sizeof(*pIdxOrderBy)*nOrderBy );
1935 if( pIdxInfo==0 ){
1936 sqlite3ErrorMsg(pParse, "out of memory");
1937 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1938 return 0;
1939 }
1940
1941 /* Initialize the structure. The sqlite3_index_info structure contains
1942 ** many fields that are declared "const" to prevent xBestIndex from
1943 ** changing them. We have to do some funky casting in order to
1944 ** initialize those fields.
1945 */
1946 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
1947 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1948 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1949 *(int*)&pIdxInfo->nConstraint = nTerm;
1950 *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1951 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
1952 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
1953 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
1954 pUsage;
1955
1956 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1957 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1958 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1959 testcase( pTerm->eOperator==WO_IN );
1960 testcase( pTerm->eOperator==WO_ISNULL );
1961 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1962 pIdxCons[j].iColumn = pTerm->u.leftColumn;
1963 pIdxCons[j].iTermOffset = i;
1964 pIdxCons[j].op = (u8)pTerm->eOperator;
1965 /* The direct assignment in the previous line is possible only because
1966 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1967 ** following asserts verify this fact. */
1968 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1969 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1970 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1971 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1972 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1973 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
1974 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
1975 j++;
1976 }
1977 for(i=0; i<nOrderBy; i++){
1978 Expr *pExpr = pOrderBy->a[i].pExpr;
1979 pIdxOrderBy[i].iColumn = pExpr->iColumn;
1980 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1981 }
1982
1983 return pIdxInfo;
1984}
1985
1986/*
1987** The table object reference passed as the second argument to this function
1988** must represent a virtual table. This function invokes the xBestIndex()
1989** method of the virtual table with the sqlite3_index_info pointer passed
1990** as the argument.
1991**
1992** If an error occurs, pParse is populated with an error message and a
1993** non-zero value is returned. Otherwise, 0 is returned and the output
1994** part of the sqlite3_index_info structure is left populated.
1995**
1996** Whether or not an error is returned, it is the responsibility of the
1997** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1998** that this is required.
1999*/
2000static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
danielk1977595a5232009-07-24 17:58:53 +00002001 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
danielk19771d461462009-04-21 09:02:45 +00002002 int i;
2003 int rc;
2004
danielk19771d461462009-04-21 09:02:45 +00002005 WHERETRACE(("xBestIndex for %s\n", pTab->zName));
2006 TRACE_IDX_INPUTS(p);
2007 rc = pVtab->pModule->xBestIndex(pVtab, p);
2008 TRACE_IDX_OUTPUTS(p);
danielk19771d461462009-04-21 09:02:45 +00002009
2010 if( rc!=SQLITE_OK ){
2011 if( rc==SQLITE_NOMEM ){
2012 pParse->db->mallocFailed = 1;
2013 }else if( !pVtab->zErrMsg ){
2014 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
2015 }else{
2016 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
2017 }
2018 }
2019 sqlite3DbFree(pParse->db, pVtab->zErrMsg);
2020 pVtab->zErrMsg = 0;
2021
2022 for(i=0; i<p->nConstraint; i++){
2023 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
2024 sqlite3ErrorMsg(pParse,
2025 "table %s: xBestIndex returned an invalid plan", pTab->zName);
2026 }
2027 }
2028
2029 return pParse->nErr;
2030}
2031
2032
2033/*
drh7f375902006-06-13 17:38:59 +00002034** Compute the best index for a virtual table.
2035**
2036** The best index is computed by the xBestIndex method of the virtual
2037** table module. This routine is really just a wrapper that sets up
2038** the sqlite3_index_info structure that is used to communicate with
2039** xBestIndex.
2040**
2041** In a join, this routine might be called multiple times for the
2042** same virtual table. The sqlite3_index_info structure is created
2043** and initialized on the first invocation and reused on all subsequent
2044** invocations. The sqlite3_index_info structure is also used when
2045** code is generated to access the virtual table. The whereInfoDelete()
2046** routine takes care of freeing the sqlite3_index_info structure after
2047** everybody has finished with it.
drh9eff6162006-06-12 21:59:13 +00002048*/
danielk19771d461462009-04-21 09:02:45 +00002049static void bestVirtualIndex(
2050 Parse *pParse, /* The parsing context */
2051 WhereClause *pWC, /* The WHERE clause */
2052 struct SrcList_item *pSrc, /* The FROM clause term to search */
2053 Bitmask notReady, /* Mask of cursors that are not available */
2054 ExprList *pOrderBy, /* The order by clause */
2055 WhereCost *pCost, /* Lowest cost query plan */
2056 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
drh9eff6162006-06-12 21:59:13 +00002057){
2058 Table *pTab = pSrc->pTab;
2059 sqlite3_index_info *pIdxInfo;
2060 struct sqlite3_index_constraint *pIdxCons;
drh9eff6162006-06-12 21:59:13 +00002061 struct sqlite3_index_constraint_usage *pUsage;
2062 WhereTerm *pTerm;
2063 int i, j;
2064 int nOrderBy;
danc26c0042010-03-27 09:44:42 +00002065 double rCost;
drh9eff6162006-06-12 21:59:13 +00002066
danielk19776eacd282009-04-29 11:50:53 +00002067 /* Make sure wsFlags is initialized to some sane value. Otherwise, if the
2068 ** malloc in allocateIndexInfo() fails and this function returns leaving
2069 ** wsFlags in an uninitialized state, the caller may behave unpredictably.
2070 */
drh6a863cd2009-05-06 18:42:21 +00002071 memset(pCost, 0, sizeof(*pCost));
danielk19776eacd282009-04-29 11:50:53 +00002072 pCost->plan.wsFlags = WHERE_VIRTUALTABLE;
2073
drh9eff6162006-06-12 21:59:13 +00002074 /* If the sqlite3_index_info structure has not been previously
danielk19771d461462009-04-21 09:02:45 +00002075 ** allocated and initialized, then allocate and initialize it now.
drh9eff6162006-06-12 21:59:13 +00002076 */
2077 pIdxInfo = *ppIdxInfo;
2078 if( pIdxInfo==0 ){
danielk19771d461462009-04-21 09:02:45 +00002079 *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy);
drh9eff6162006-06-12 21:59:13 +00002080 }
danielk1977732dc552009-04-21 17:23:04 +00002081 if( pIdxInfo==0 ){
2082 return;
2083 }
drh9eff6162006-06-12 21:59:13 +00002084
drh7f375902006-06-13 17:38:59 +00002085 /* At this point, the sqlite3_index_info structure that pIdxInfo points
2086 ** to will have been initialized, either during the current invocation or
2087 ** during some prior invocation. Now we just have to customize the
2088 ** details of pIdxInfo for the current invocation and pass it to
2089 ** xBestIndex.
2090 */
2091
danielk1977935ed5e2007-03-30 09:13:13 +00002092 /* The module name must be defined. Also, by this point there must
2093 ** be a pointer to an sqlite3_vtab structure. Otherwise
2094 ** sqlite3ViewGetColumnNames() would have picked up the error.
2095 */
drh9eff6162006-06-12 21:59:13 +00002096 assert( pTab->azModuleArg && pTab->azModuleArg[0] );
danielk1977595a5232009-07-24 17:58:53 +00002097 assert( sqlite3GetVTable(pParse->db, pTab) );
drh9eff6162006-06-12 21:59:13 +00002098
2099 /* Set the aConstraint[].usable fields and initialize all
drh7f375902006-06-13 17:38:59 +00002100 ** output variables to zero.
2101 **
2102 ** aConstraint[].usable is true for constraints where the right-hand
2103 ** side contains only references to tables to the left of the current
2104 ** table. In other words, if the constraint is of the form:
2105 **
2106 ** column = expr
2107 **
2108 ** and we are evaluating a join, then the constraint on column is
2109 ** only valid if all tables referenced in expr occur to the left
2110 ** of the table containing column.
2111 **
2112 ** The aConstraints[] array contains entries for all constraints
2113 ** on the current table. That way we only have to compute it once
2114 ** even though we might try to pick the best index multiple times.
2115 ** For each attempt at picking an index, the order of tables in the
2116 ** join might be different so we have to recompute the usable flag
2117 ** each time.
drh9eff6162006-06-12 21:59:13 +00002118 */
2119 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2120 pUsage = pIdxInfo->aConstraintUsage;
2121 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
2122 j = pIdxCons->iTermOffset;
2123 pTerm = &pWC->a[j];
dan5236ac12009-08-13 07:09:33 +00002124 pIdxCons->usable = (pTerm->prereqRight&notReady) ? 0 : 1;
drh9eff6162006-06-12 21:59:13 +00002125 }
2126 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
drh4be8b512006-06-13 23:51:34 +00002127 if( pIdxInfo->needToFreeIdxStr ){
2128 sqlite3_free(pIdxInfo->idxStr);
2129 }
2130 pIdxInfo->idxStr = 0;
2131 pIdxInfo->idxNum = 0;
2132 pIdxInfo->needToFreeIdxStr = 0;
drh9eff6162006-06-12 21:59:13 +00002133 pIdxInfo->orderByConsumed = 0;
shanefbd60f82009-02-04 03:59:25 +00002134 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
2135 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
drh9eff6162006-06-12 21:59:13 +00002136 nOrderBy = pIdxInfo->nOrderBy;
danielk19771d461462009-04-21 09:02:45 +00002137 if( !pOrderBy ){
2138 pIdxInfo->nOrderBy = 0;
drh9eff6162006-06-12 21:59:13 +00002139 }
danielk197774cdba42006-06-19 12:02:58 +00002140
danielk19771d461462009-04-21 09:02:45 +00002141 if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
2142 return;
danielk197739359dc2008-03-17 09:36:44 +00002143 }
2144
dan5236ac12009-08-13 07:09:33 +00002145 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2146 for(i=0; i<pIdxInfo->nConstraint; i++){
2147 if( pUsage[i].argvIndex>0 ){
2148 pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
2149 }
2150 }
2151
danc26c0042010-03-27 09:44:42 +00002152 /* If there is an ORDER BY clause, and the selected virtual table index
2153 ** does not satisfy it, increase the cost of the scan accordingly. This
2154 ** matches the processing for non-virtual tables in bestBtreeIndex().
2155 */
2156 rCost = pIdxInfo->estimatedCost;
2157 if( pOrderBy && pIdxInfo->orderByConsumed==0 ){
2158 rCost += estLog(rCost)*rCost;
2159 }
2160
danielk19771d461462009-04-21 09:02:45 +00002161 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
2162 ** inital value of lowestCost in this loop. If it is, then the
2163 ** (cost<lowestCost) test below will never be true.
2164 **
2165 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
2166 ** is defined.
2167 */
danc26c0042010-03-27 09:44:42 +00002168 if( (SQLITE_BIG_DBL/((double)2))<rCost ){
danielk19771d461462009-04-21 09:02:45 +00002169 pCost->rCost = (SQLITE_BIG_DBL/((double)2));
2170 }else{
danc26c0042010-03-27 09:44:42 +00002171 pCost->rCost = rCost;
danielk19771d461462009-04-21 09:02:45 +00002172 }
danielk19771d461462009-04-21 09:02:45 +00002173 pCost->plan.u.pVtabIdx = pIdxInfo;
drh5901b572009-06-10 19:33:28 +00002174 if( pIdxInfo->orderByConsumed ){
danielk19771d461462009-04-21 09:02:45 +00002175 pCost->plan.wsFlags |= WHERE_ORDERBY;
2176 }
2177 pCost->plan.nEq = 0;
2178 pIdxInfo->nOrderBy = nOrderBy;
2179
2180 /* Try to find a more efficient access pattern by using multiple indexes
2181 ** to optimize an OR expression within the WHERE clause.
2182 */
2183 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
drh9eff6162006-06-12 21:59:13 +00002184}
2185#endif /* SQLITE_OMIT_VIRTUALTABLE */
2186
drh28c4cf42005-07-27 20:41:43 +00002187/*
dan02fa4692009-08-17 17:06:58 +00002188** Argument pIdx is a pointer to an index structure that has an array of
2189** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column
2190** stored in Index.aSample. The domain of values stored in said column
2191** may be thought of as divided into (SQLITE_INDEX_SAMPLES+1) regions.
2192** Region 0 contains all values smaller than the first sample value. Region
2193** 1 contains values larger than or equal to the value of the first sample,
2194** but smaller than the value of the second. And so on.
2195**
2196** If successful, this function determines which of the regions value
drh98cdf622009-08-20 18:14:42 +00002197** pVal lies in, sets *piRegion to the region index (a value between 0
2198** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK.
dan02fa4692009-08-17 17:06:58 +00002199** Or, if an OOM occurs while converting text values between encodings,
drh98cdf622009-08-20 18:14:42 +00002200** SQLITE_NOMEM is returned and *piRegion is undefined.
dan02fa4692009-08-17 17:06:58 +00002201*/
dan69188d92009-08-19 08:18:32 +00002202#ifdef SQLITE_ENABLE_STAT2
dan02fa4692009-08-17 17:06:58 +00002203static int whereRangeRegion(
2204 Parse *pParse, /* Database connection */
2205 Index *pIdx, /* Index to consider domain of */
2206 sqlite3_value *pVal, /* Value to consider */
2207 int *piRegion /* OUT: Region of domain in which value lies */
2208){
drhdaf4a9f2009-08-20 20:05:55 +00002209 if( ALWAYS(pVal) ){
dan02fa4692009-08-17 17:06:58 +00002210 IndexSample *aSample = pIdx->aSample;
2211 int i = 0;
2212 int eType = sqlite3_value_type(pVal);
2213
2214 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
2215 double r = sqlite3_value_double(pVal);
2216 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
2217 if( aSample[i].eType==SQLITE_NULL ) continue;
2218 if( aSample[i].eType>=SQLITE_TEXT || aSample[i].u.r>r ) break;
2219 }
drhcdaca552009-08-20 13:45:07 +00002220 }else{
dan02fa4692009-08-17 17:06:58 +00002221 sqlite3 *db = pParse->db;
2222 CollSeq *pColl;
2223 const u8 *z;
2224 int n;
drhcdaca552009-08-20 13:45:07 +00002225
2226 /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */
2227 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
2228
dan02fa4692009-08-17 17:06:58 +00002229 if( eType==SQLITE_BLOB ){
2230 z = (const u8 *)sqlite3_value_blob(pVal);
2231 pColl = db->pDfltColl;
dane275dc32009-08-18 16:24:58 +00002232 assert( pColl->enc==SQLITE_UTF8 );
dan02fa4692009-08-17 17:06:58 +00002233 }else{
drh9aeda792009-08-20 02:34:15 +00002234 pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
2235 if( pColl==0 ){
2236 sqlite3ErrorMsg(pParse, "no such collation sequence: %s",
2237 *pIdx->azColl);
dane275dc32009-08-18 16:24:58 +00002238 return SQLITE_ERROR;
2239 }
dan02fa4692009-08-17 17:06:58 +00002240 z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
dane275dc32009-08-18 16:24:58 +00002241 if( !z ){
2242 return SQLITE_NOMEM;
2243 }
dan02fa4692009-08-17 17:06:58 +00002244 assert( z && pColl && pColl->xCmp );
2245 }
2246 n = sqlite3ValueBytes(pVal, pColl->enc);
2247
2248 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
dane275dc32009-08-18 16:24:58 +00002249 int r;
dan02fa4692009-08-17 17:06:58 +00002250 int eSampletype = aSample[i].eType;
2251 if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue;
2252 if( (eSampletype!=eType) ) break;
dane83c4f32009-09-21 16:34:24 +00002253#ifndef SQLITE_OMIT_UTF16
2254 if( pColl->enc!=SQLITE_UTF8 ){
dane275dc32009-08-18 16:24:58 +00002255 int nSample;
2256 char *zSample = sqlite3Utf8to16(
dan02fa4692009-08-17 17:06:58 +00002257 db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
2258 );
dane275dc32009-08-18 16:24:58 +00002259 if( !zSample ){
2260 assert( db->mallocFailed );
2261 return SQLITE_NOMEM;
2262 }
2263 r = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
2264 sqlite3DbFree(db, zSample);
dane83c4f32009-09-21 16:34:24 +00002265 }else
2266#endif
2267 {
2268 r = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
dan02fa4692009-08-17 17:06:58 +00002269 }
dane275dc32009-08-18 16:24:58 +00002270 if( r>0 ) break;
dan02fa4692009-08-17 17:06:58 +00002271 }
2272 }
2273
drha8f57612009-08-25 16:28:14 +00002274 assert( i>=0 && i<=SQLITE_INDEX_SAMPLES );
dan02fa4692009-08-17 17:06:58 +00002275 *piRegion = i;
2276 }
2277 return SQLITE_OK;
2278}
dan69188d92009-08-19 08:18:32 +00002279#endif /* #ifdef SQLITE_ENABLE_STAT2 */
dan02fa4692009-08-17 17:06:58 +00002280
2281/*
dan937d0de2009-10-15 18:35:38 +00002282** If expression pExpr represents a literal value, set *pp to point to
2283** an sqlite3_value structure containing the same value, with affinity
2284** aff applied to it, before returning. It is the responsibility of the
2285** caller to eventually release this structure by passing it to
2286** sqlite3ValueFree().
2287**
2288** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
2289** is an SQL variable that currently has a non-NULL value bound to it,
2290** create an sqlite3_value structure containing this value, again with
2291** affinity aff applied to it, instead.
2292**
2293** If neither of the above apply, set *pp to NULL.
2294**
2295** If an error occurs, return an error code. Otherwise, SQLITE_OK.
2296*/
danf7b0b0a2009-10-19 15:52:32 +00002297#ifdef SQLITE_ENABLE_STAT2
dan937d0de2009-10-15 18:35:38 +00002298static int valueFromExpr(
2299 Parse *pParse,
2300 Expr *pExpr,
2301 u8 aff,
2302 sqlite3_value **pp
2303){
drhb4138de2009-10-19 22:41:06 +00002304 /* The evalConstExpr() function will have already converted any TK_VARIABLE
2305 ** expression involved in an comparison into a TK_REGISTER. */
2306 assert( pExpr->op!=TK_VARIABLE );
2307 if( pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE ){
dan937d0de2009-10-15 18:35:38 +00002308 int iVar = pExpr->iColumn;
dan1d2ce4f2009-10-19 18:11:09 +00002309 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
dan937d0de2009-10-15 18:35:38 +00002310 *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff);
2311 return SQLITE_OK;
2312 }
2313 return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp);
2314}
danf7b0b0a2009-10-19 15:52:32 +00002315#endif
dan937d0de2009-10-15 18:35:38 +00002316
2317/*
dan02fa4692009-08-17 17:06:58 +00002318** This function is used to estimate the number of rows that will be visited
2319** by scanning an index for a range of values. The range may have an upper
2320** bound, a lower bound, or both. The WHERE clause terms that set the upper
2321** and lower bounds are represented by pLower and pUpper respectively. For
2322** example, assuming that index p is on t1(a):
2323**
2324** ... FROM t1 WHERE a > ? AND a < ? ...
2325** |_____| |_____|
2326** | |
2327** pLower pUpper
2328**
drh98cdf622009-08-20 18:14:42 +00002329** If either of the upper or lower bound is not present, then NULL is passed in
drhcdaca552009-08-20 13:45:07 +00002330** place of the corresponding WhereTerm.
dan02fa4692009-08-17 17:06:58 +00002331**
2332** The nEq parameter is passed the index of the index column subject to the
2333** range constraint. Or, equivalently, the number of equality constraints
2334** optimized by the proposed index scan. For example, assuming index p is
2335** on t1(a, b), and the SQL query is:
2336**
2337** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
2338**
2339** then nEq should be passed the value 1 (as the range restricted column,
2340** b, is the second left-most column of the index). Or, if the query is:
2341**
2342** ... FROM t1 WHERE a > ? AND a < ? ...
2343**
2344** then nEq should be passed 0.
2345**
drh98cdf622009-08-20 18:14:42 +00002346** The returned value is an integer between 1 and 100, inclusive. A return
dan02fa4692009-08-17 17:06:58 +00002347** value of 1 indicates that the proposed range scan is expected to visit
drh98cdf622009-08-20 18:14:42 +00002348** approximately 1/100th (1%) of the rows selected by the nEq equality
2349** constraints (if any). A return value of 100 indicates that it is expected
2350** that the range scan will visit every row (100%) selected by the equality
dan02fa4692009-08-17 17:06:58 +00002351** constraints.
drh98cdf622009-08-20 18:14:42 +00002352**
2353** In the absence of sqlite_stat2 ANALYZE data, each range inequality
2354** reduces the search space by 2/3rds. Hence a single constraint (x>?)
2355** results in a return of 33 and a range constraint (x>? AND x<?) results
2356** in a return of 11.
dan02fa4692009-08-17 17:06:58 +00002357*/
2358static int whereRangeScanEst(
drhcdaca552009-08-20 13:45:07 +00002359 Parse *pParse, /* Parsing & code generating context */
2360 Index *p, /* The index containing the range-compared column; "x" */
2361 int nEq, /* index into p->aCol[] of the range-compared column */
2362 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
2363 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
2364 int *piEst /* OUT: Return value */
dan02fa4692009-08-17 17:06:58 +00002365){
dan69188d92009-08-19 08:18:32 +00002366 int rc = SQLITE_OK;
2367
2368#ifdef SQLITE_ENABLE_STAT2
dan02fa4692009-08-17 17:06:58 +00002369
2370 if( nEq==0 && p->aSample ){
dan937d0de2009-10-15 18:35:38 +00002371 sqlite3_value *pLowerVal = 0;
2372 sqlite3_value *pUpperVal = 0;
dan02fa4692009-08-17 17:06:58 +00002373 int iEst;
drh011cfca2009-08-25 15:56:51 +00002374 int iLower = 0;
2375 int iUpper = SQLITE_INDEX_SAMPLES;
dan937d0de2009-10-15 18:35:38 +00002376 u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
drh98cdf622009-08-20 18:14:42 +00002377
dan02fa4692009-08-17 17:06:58 +00002378 if( pLower ){
2379 Expr *pExpr = pLower->pExpr->pRight;
dan937d0de2009-10-15 18:35:38 +00002380 rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal);
dan02fa4692009-08-17 17:06:58 +00002381 }
drh98cdf622009-08-20 18:14:42 +00002382 if( rc==SQLITE_OK && pUpper ){
dan02fa4692009-08-17 17:06:58 +00002383 Expr *pExpr = pUpper->pExpr->pRight;
dan937d0de2009-10-15 18:35:38 +00002384 rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal);
drh98cdf622009-08-20 18:14:42 +00002385 }
2386
2387 if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){
2388 sqlite3ValueFree(pLowerVal);
2389 sqlite3ValueFree(pUpperVal);
2390 goto range_est_fallback;
2391 }else if( pLowerVal==0 ){
2392 rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
drh011cfca2009-08-25 15:56:51 +00002393 if( pLower ) iLower = iUpper/2;
drh98cdf622009-08-20 18:14:42 +00002394 }else if( pUpperVal==0 ){
2395 rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
drh011cfca2009-08-25 15:56:51 +00002396 if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2;
drh98cdf622009-08-20 18:14:42 +00002397 }else{
2398 rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
2399 if( rc==SQLITE_OK ){
2400 rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
dan02fa4692009-08-17 17:06:58 +00002401 }
2402 }
2403
dan02fa4692009-08-17 17:06:58 +00002404 iEst = iUpper - iLower;
drha8f57612009-08-25 16:28:14 +00002405 testcase( iEst==SQLITE_INDEX_SAMPLES );
2406 assert( iEst<=SQLITE_INDEX_SAMPLES );
2407 if( iEst<1 ){
drh98cdf622009-08-20 18:14:42 +00002408 iEst = 1;
2409 }
dan02fa4692009-08-17 17:06:58 +00002410
2411 sqlite3ValueFree(pLowerVal);
2412 sqlite3ValueFree(pUpperVal);
drh98cdf622009-08-20 18:14:42 +00002413 *piEst = (iEst * 100)/SQLITE_INDEX_SAMPLES;
dan02fa4692009-08-17 17:06:58 +00002414 return rc;
2415 }
drh98cdf622009-08-20 18:14:42 +00002416range_est_fallback:
drh3f022182009-09-09 16:10:50 +00002417#else
2418 UNUSED_PARAMETER(pParse);
2419 UNUSED_PARAMETER(p);
2420 UNUSED_PARAMETER(nEq);
dan69188d92009-08-19 08:18:32 +00002421#endif
dan02fa4692009-08-17 17:06:58 +00002422 assert( pLower || pUpper );
drh98cdf622009-08-20 18:14:42 +00002423 if( pLower && pUpper ){
2424 *piEst = 11;
2425 }else{
2426 *piEst = 33;
2427 }
dan02fa4692009-08-17 17:06:58 +00002428 return rc;
2429}
2430
2431
2432/*
drh111a6a72008-12-21 03:51:16 +00002433** Find the query plan for accessing a particular table. Write the
2434** best query plan and its cost into the WhereCost object supplied as the
2435** last parameter.
drh51147ba2005-07-23 22:59:55 +00002436**
drh111a6a72008-12-21 03:51:16 +00002437** The lowest cost plan wins. The cost is an estimate of the amount of
2438** CPU and disk I/O need to process the request using the selected plan.
drh51147ba2005-07-23 22:59:55 +00002439** Factors that influence cost include:
2440**
2441** * The estimated number of rows that will be retrieved. (The
2442** fewer the better.)
2443**
2444** * Whether or not sorting must occur.
2445**
2446** * Whether or not there must be separate lookups in the
2447** index and in the main table.
2448**
danielk1977e2d7b242009-02-23 17:33:49 +00002449** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
2450** the SQL statement, then this function only considers plans using the
drh296a4832009-03-22 20:36:18 +00002451** named index. If no such plan is found, then the returned cost is
2452** SQLITE_BIG_DBL. If a plan is found that uses the named index,
danielk197785574e32008-10-06 05:32:18 +00002453** then the cost is calculated in the usual way.
2454**
danielk1977e2d7b242009-02-23 17:33:49 +00002455** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table
2456** in the SELECT statement, then no indexes are considered. However, the
2457** selected plan may still take advantage of the tables built-in rowid
danielk197785574e32008-10-06 05:32:18 +00002458** index.
drhfe05af82005-07-21 03:14:59 +00002459*/
danielk19771d461462009-04-21 09:02:45 +00002460static void bestBtreeIndex(
drhfe05af82005-07-21 03:14:59 +00002461 Parse *pParse, /* The parsing context */
2462 WhereClause *pWC, /* The WHERE clause */
2463 struct SrcList_item *pSrc, /* The FROM clause term to search */
2464 Bitmask notReady, /* Mask of cursors that are not available */
drh111a6a72008-12-21 03:51:16 +00002465 ExprList *pOrderBy, /* The ORDER BY clause */
2466 WhereCost *pCost /* Lowest cost query plan */
drhfe05af82005-07-21 03:14:59 +00002467){
drh51147ba2005-07-23 22:59:55 +00002468 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
2469 Index *pProbe; /* An index we are evaluating */
dan5236ac12009-08-13 07:09:33 +00002470 Index *pIdx; /* Copy of pProbe, or zero for IPK index */
2471 int eqTermMask; /* Current mask of valid equality operators */
2472 int idxEqTermMask; /* Index mask of valid equality operators */
drhcdaca552009-08-20 13:45:07 +00002473 Index sPk; /* A fake index object for the primary key */
2474 unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */
2475 int aiColumnPk = -1; /* The aColumn[] value for the sPk index */
2476 int wsFlagMask; /* Allowed flags in pCost->plan.wsFlag */
drhfe05af82005-07-21 03:14:59 +00002477
drhcdaca552009-08-20 13:45:07 +00002478 /* Initialize the cost to a worst-case value */
drh111a6a72008-12-21 03:51:16 +00002479 memset(pCost, 0, sizeof(*pCost));
drh111a6a72008-12-21 03:51:16 +00002480 pCost->rCost = SQLITE_BIG_DBL;
drh51147ba2005-07-23 22:59:55 +00002481
drhc49de5d2007-01-19 01:06:01 +00002482 /* If the pSrc table is the right table of a LEFT JOIN then we may not
2483 ** use an index to satisfy IS NULL constraints on that table. This is
2484 ** because columns might end up being NULL if the table does not match -
2485 ** a circumstance which the index cannot help us discover. Ticket #2177.
2486 */
dan5236ac12009-08-13 07:09:33 +00002487 if( pSrc->jointype & JT_LEFT ){
2488 idxEqTermMask = WO_EQ|WO_IN;
drhc49de5d2007-01-19 01:06:01 +00002489 }else{
dan5236ac12009-08-13 07:09:33 +00002490 idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
drhc49de5d2007-01-19 01:06:01 +00002491 }
2492
danielk197785574e32008-10-06 05:32:18 +00002493 if( pSrc->pIndex ){
drhcdaca552009-08-20 13:45:07 +00002494 /* An INDEXED BY clause specifies a particular index to use */
dan5236ac12009-08-13 07:09:33 +00002495 pIdx = pProbe = pSrc->pIndex;
2496 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
2497 eqTermMask = idxEqTermMask;
2498 }else{
drhcdaca552009-08-20 13:45:07 +00002499 /* There is no INDEXED BY clause. Create a fake Index object to
2500 ** represent the primary key */
2501 Index *pFirst; /* Any other index on the table */
2502 memset(&sPk, 0, sizeof(Index));
2503 sPk.nColumn = 1;
2504 sPk.aiColumn = &aiColumnPk;
2505 sPk.aiRowEst = aiRowEstPk;
2506 aiRowEstPk[1] = 1;
2507 sPk.onError = OE_Replace;
2508 sPk.pTable = pSrc->pTab;
2509 pFirst = pSrc->pTab->pIndex;
dan5236ac12009-08-13 07:09:33 +00002510 if( pSrc->notIndexed==0 ){
drhcdaca552009-08-20 13:45:07 +00002511 sPk.pNext = pFirst;
dan5236ac12009-08-13 07:09:33 +00002512 }
drhcdaca552009-08-20 13:45:07 +00002513 /* The aiRowEstPk[0] is an estimate of the total number of rows in the
2514 ** table. Get this information from the ANALYZE information if it is
2515 ** available. If not available, assume the table 1 million rows in size.
2516 */
2517 if( pFirst ){
2518 assert( pFirst->aiRowEst!=0 ); /* Allocated together with pFirst */
2519 aiRowEstPk[0] = pFirst->aiRowEst[0];
2520 }else{
2521 aiRowEstPk[0] = 1000000;
dan5236ac12009-08-13 07:09:33 +00002522 }
drhcdaca552009-08-20 13:45:07 +00002523 pProbe = &sPk;
dan5236ac12009-08-13 07:09:33 +00002524 wsFlagMask = ~(
2525 WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
2526 );
2527 eqTermMask = WO_EQ|WO_IN;
2528 pIdx = 0;
danielk197785574e32008-10-06 05:32:18 +00002529 }
drh51147ba2005-07-23 22:59:55 +00002530
drhcdaca552009-08-20 13:45:07 +00002531 /* Loop over all indices looking for the best one to use
2532 */
dan5236ac12009-08-13 07:09:33 +00002533 for(; pProbe; pIdx=pProbe=pProbe->pNext){
2534 const unsigned int * const aiRowEst = pProbe->aiRowEst;
2535 double cost; /* Cost of using pProbe */
2536 double nRow; /* Estimated number of rows in result set */
2537 int rev; /* True to scan in reverse order */
2538 int wsFlags = 0;
2539 Bitmask used = 0;
2540
2541 /* The following variables are populated based on the properties of
2542 ** scan being evaluated. They are then used to determine the expected
2543 ** cost and number of rows returned.
2544 **
2545 ** nEq:
2546 ** Number of equality terms that can be implemented using the index.
2547 **
2548 ** nInMul:
2549 ** The "in-multiplier". This is an estimate of how many seek operations
2550 ** SQLite must perform on the index in question. For example, if the
2551 ** WHERE clause is:
2552 **
2553 ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
2554 **
2555 ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is
2556 ** set to 9. Given the same schema and either of the following WHERE
2557 ** clauses:
2558 **
2559 ** WHERE a = 1
2560 ** WHERE a >= 2
2561 **
2562 ** nInMul is set to 1.
2563 **
2564 ** If there exists a WHERE term of the form "x IN (SELECT ...)", then
2565 ** the sub-select is assumed to return 25 rows for the purposes of
2566 ** determining nInMul.
2567 **
2568 ** bInEst:
2569 ** Set to true if there was at least one "x IN (SELECT ...)" term used
2570 ** in determining the value of nInMul.
2571 **
drhcdaca552009-08-20 13:45:07 +00002572 ** nBound:
drh98cdf622009-08-20 18:14:42 +00002573 ** An estimate on the amount of the table that must be searched. A
2574 ** value of 100 means the entire table is searched. Range constraints
2575 ** might reduce this to a value less than 100 to indicate that only
2576 ** a fraction of the table needs searching. In the absence of
2577 ** sqlite_stat2 ANALYZE data, a single inequality reduces the search
2578 ** space to 1/3rd its original size. So an x>? constraint reduces
2579 ** nBound to 33. Two constraints (x>? AND x<?) reduce nBound to 11.
dan5236ac12009-08-13 07:09:33 +00002580 **
2581 ** bSort:
2582 ** Boolean. True if there is an ORDER BY clause that will require an
2583 ** external sort (i.e. scanning the index being evaluated will not
2584 ** correctly order records).
2585 **
2586 ** bLookup:
2587 ** Boolean. True if for each index entry visited a lookup on the
2588 ** corresponding table b-tree is required. This is always false
2589 ** for the rowid index. For other indexes, it is true unless all the
2590 ** columns of the table used by the SELECT statement are present in
2591 ** the index (such an index is sometimes described as a covering index).
2592 ** For example, given the index on (a, b), the second of the following
2593 ** two queries requires table b-tree lookups, but the first does not.
2594 **
2595 ** SELECT a, b FROM tbl WHERE a = 1;
2596 ** SELECT a, b, c FROM tbl WHERE a = 1;
drhfe05af82005-07-21 03:14:59 +00002597 */
dan5236ac12009-08-13 07:09:33 +00002598 int nEq;
2599 int bInEst = 0;
2600 int nInMul = 1;
drh98cdf622009-08-20 18:14:42 +00002601 int nBound = 100;
dan5236ac12009-08-13 07:09:33 +00002602 int bSort = 0;
2603 int bLookup = 0;
2604
2605 /* Determine the values of nEq and nInMul */
2606 for(nEq=0; nEq<pProbe->nColumn; nEq++){
2607 WhereTerm *pTerm; /* A single term of the WHERE clause */
2608 int j = pProbe->aiColumn[nEq];
2609 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
drhfe05af82005-07-21 03:14:59 +00002610 if( pTerm==0 ) break;
dan5236ac12009-08-13 07:09:33 +00002611 wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
drhb52076c2006-01-23 13:22:09 +00002612 if( pTerm->eOperator & WO_IN ){
drha6110402005-07-28 20:51:19 +00002613 Expr *pExpr = pTerm->pExpr;
drh165be382008-12-05 02:36:33 +00002614 wsFlags |= WHERE_COLUMN_IN;
danielk19776ab3a2e2009-02-19 14:39:25 +00002615 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
dan5236ac12009-08-13 07:09:33 +00002616 nInMul *= 25;
2617 bInEst = 1;
danielk19776ab3a2e2009-02-19 14:39:25 +00002618 }else if( pExpr->x.pList ){
dan5236ac12009-08-13 07:09:33 +00002619 nInMul *= pExpr->x.pList->nExpr + 1;
drhfe05af82005-07-21 03:14:59 +00002620 }
drh46619d62009-04-24 14:51:42 +00002621 }else if( pTerm->eOperator & WO_ISNULL ){
2622 wsFlags |= WHERE_COLUMN_NULL;
drhfe05af82005-07-21 03:14:59 +00002623 }
dan5236ac12009-08-13 07:09:33 +00002624 used |= pTerm->prereqRight;
drhfe05af82005-07-21 03:14:59 +00002625 }
dan5236ac12009-08-13 07:09:33 +00002626
2627 /* Determine the value of nBound. */
2628 if( nEq<pProbe->nColumn ){
2629 int j = pProbe->aiColumn[nEq];
2630 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
2631 WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
2632 WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
dane275dc32009-08-18 16:24:58 +00002633 whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &nBound);
dan5236ac12009-08-13 07:09:33 +00002634 if( pTop ){
2635 wsFlags |= WHERE_TOP_LIMIT;
dan5236ac12009-08-13 07:09:33 +00002636 used |= pTop->prereqRight;
2637 }
2638 if( pBtm ){
2639 wsFlags |= WHERE_BTM_LIMIT;
dan5236ac12009-08-13 07:09:33 +00002640 used |= pBtm->prereqRight;
2641 }
2642 wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
2643 }
2644 }else if( pProbe->onError!=OE_None ){
drh46619d62009-04-24 14:51:42 +00002645 testcase( wsFlags & WHERE_COLUMN_IN );
2646 testcase( wsFlags & WHERE_COLUMN_NULL );
2647 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
2648 wsFlags |= WHERE_UNIQUE;
2649 }
drh943af3c2005-07-29 19:43:58 +00002650 }
drhfe05af82005-07-21 03:14:59 +00002651
dan5236ac12009-08-13 07:09:33 +00002652 /* If there is an ORDER BY clause and the index being considered will
2653 ** naturally scan rows in the required order, set the appropriate flags
2654 ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
2655 ** will scan rows in a different order, set the bSort variable. */
drh28c4cf42005-07-27 20:41:43 +00002656 if( pOrderBy ){
drh46619d62009-04-24 14:51:42 +00002657 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0
dan5236ac12009-08-13 07:09:33 +00002658 && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev)
drh46619d62009-04-24 14:51:42 +00002659 ){
dan5236ac12009-08-13 07:09:33 +00002660 wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
2661 wsFlags |= (rev ? WHERE_REVERSE : 0);
drh28c4cf42005-07-27 20:41:43 +00002662 }else{
dan5236ac12009-08-13 07:09:33 +00002663 bSort = 1;
drh51147ba2005-07-23 22:59:55 +00002664 }
drhfe05af82005-07-21 03:14:59 +00002665 }
2666
dan5236ac12009-08-13 07:09:33 +00002667 /* If currently calculating the cost of using an index (not the IPK
2668 ** index), determine if all required column data may be obtained without
drh4139c992010-04-07 14:59:45 +00002669 ** using the main table (i.e. if the index is a covering
dan5236ac12009-08-13 07:09:33 +00002670 ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
2671 ** wsFlags. Otherwise, set the bLookup variable to true. */
2672 if( pIdx && wsFlags ){
drhfe05af82005-07-21 03:14:59 +00002673 Bitmask m = pSrc->colUsed;
2674 int j;
dan5236ac12009-08-13 07:09:33 +00002675 for(j=0; j<pIdx->nColumn; j++){
2676 int x = pIdx->aiColumn[j];
drhfe05af82005-07-21 03:14:59 +00002677 if( x<BMS-1 ){
2678 m &= ~(((Bitmask)1)<<x);
2679 }
2680 }
2681 if( m==0 ){
drh165be382008-12-05 02:36:33 +00002682 wsFlags |= WHERE_IDX_ONLY;
dan5236ac12009-08-13 07:09:33 +00002683 }else{
2684 bLookup = 1;
drhfe05af82005-07-21 03:14:59 +00002685 }
2686 }
2687
drhcdaca552009-08-20 13:45:07 +00002688 /**** Begin adding up the cost of using this index (Needs improvements)
2689 **
2690 ** Estimate the number of rows of output. For an IN operator,
2691 ** do not let the estimate exceed half the rows in the table.
2692 */
dan5236ac12009-08-13 07:09:33 +00002693 nRow = (double)(aiRowEst[nEq] * nInMul);
2694 if( bInEst && nRow*2>aiRowEst[0] ){
2695 nRow = aiRowEst[0]/2;
shanecea72b22009-09-07 04:38:36 +00002696 nInMul = (int)(nRow / aiRowEst[nEq]);
dan5236ac12009-08-13 07:09:33 +00002697 }
drhcdaca552009-08-20 13:45:07 +00002698
2699 /* Assume constant cost to access a row and logarithmic cost to
2700 ** do a binary search. Hence, the initial cost is the number of output
2701 ** rows plus log2(table-size) times the number of binary searches.
2702 */
dan5236ac12009-08-13 07:09:33 +00002703 cost = nRow + nInMul*estLog(aiRowEst[0]);
drhcdaca552009-08-20 13:45:07 +00002704
2705 /* Adjust the number of rows and the cost downward to reflect rows
2706 ** that are excluded by range constraints.
2707 */
drh98cdf622009-08-20 18:14:42 +00002708 nRow = (nRow * (double)nBound) / (double)100;
2709 cost = (cost * (double)nBound) / (double)100;
drhcdaca552009-08-20 13:45:07 +00002710
2711 /* Add in the estimated cost of sorting the result
2712 */
dan5236ac12009-08-13 07:09:33 +00002713 if( bSort ){
2714 cost += cost*estLog(cost);
2715 }
drhcdaca552009-08-20 13:45:07 +00002716
2717 /* If all information can be taken directly from the index, we avoid
2718 ** doing table lookups. This reduces the cost by half. (Not really -
2719 ** this needs to be fixed.)
2720 */
dan5236ac12009-08-13 07:09:33 +00002721 if( pIdx && bLookup==0 ){
drhcdaca552009-08-20 13:45:07 +00002722 cost /= (double)2;
dan5236ac12009-08-13 07:09:33 +00002723 }
drhcdaca552009-08-20 13:45:07 +00002724 /**** Cost of using this index has now been computed ****/
dan5236ac12009-08-13 07:09:33 +00002725
2726 WHERETRACE((
drh8b307fb2010-04-06 15:57:05 +00002727 "%s(%s): nEq=%d nInMul=%d nBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n"
2728 " notReady=0x%llx nRow=%.2f cost=%.2f used=0x%llx\n",
dan5236ac12009-08-13 07:09:33 +00002729 pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"),
drh8b307fb2010-04-06 15:57:05 +00002730 nEq, nInMul, nBound, bSort, bLookup, wsFlags, notReady, nRow, cost, used
dan5236ac12009-08-13 07:09:33 +00002731 ));
2732
drhcdaca552009-08-20 13:45:07 +00002733 /* If this index is the best we have seen so far, then record this
2734 ** index and its cost in the pCost structure.
2735 */
dan5236ac12009-08-13 07:09:33 +00002736 if( (!pIdx || wsFlags) && cost<pCost->rCost ){
drh111a6a72008-12-21 03:51:16 +00002737 pCost->rCost = cost;
2738 pCost->nRow = nRow;
dan5236ac12009-08-13 07:09:33 +00002739 pCost->used = used;
2740 pCost->plan.wsFlags = (wsFlags&wsFlagMask);
drh111a6a72008-12-21 03:51:16 +00002741 pCost->plan.nEq = nEq;
dan5236ac12009-08-13 07:09:33 +00002742 pCost->plan.u.pIdx = pIdx;
drhfe05af82005-07-21 03:14:59 +00002743 }
dan5236ac12009-08-13 07:09:33 +00002744
drhcdaca552009-08-20 13:45:07 +00002745 /* If there was an INDEXED BY clause, then only that one index is
2746 ** considered. */
dan5236ac12009-08-13 07:09:33 +00002747 if( pSrc->pIndex ) break;
drhcdaca552009-08-20 13:45:07 +00002748
2749 /* Reset masks for the next index in the loop */
dan5236ac12009-08-13 07:09:33 +00002750 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
2751 eqTermMask = idxEqTermMask;
drhfe05af82005-07-21 03:14:59 +00002752 }
2753
dan5236ac12009-08-13 07:09:33 +00002754 /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
2755 ** is set, then reverse the order that the index will be scanned
2756 ** in. This is used for application testing, to help find cases
2757 ** where application behaviour depends on the (undefined) order that
2758 ** SQLite outputs rows in in the absence of an ORDER BY clause. */
2759 if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
2760 pCost->plan.wsFlags |= WHERE_REVERSE;
2761 }
2762
2763 assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 );
2764 assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 );
2765 assert( pSrc->pIndex==0
2766 || pCost->plan.u.pIdx==0
2767 || pCost->plan.u.pIdx==pSrc->pIndex
2768 );
2769
2770 WHERETRACE(("best index is: %s\n",
2771 (pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
2772 ));
2773
2774 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
drhc6339082010-04-07 16:54:58 +00002775 bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost);
drh111a6a72008-12-21 03:51:16 +00002776 pCost->plan.wsFlags |= eqTermMask;
drhfe05af82005-07-21 03:14:59 +00002777}
2778
danielk19771d461462009-04-21 09:02:45 +00002779/*
2780** Find the query plan for accessing table pSrc->pTab. Write the
2781** best query plan and its cost into the WhereCost object supplied
2782** as the last parameter. This function may calculate the cost of
2783** both real and virtual table scans.
2784*/
2785static void bestIndex(
2786 Parse *pParse, /* The parsing context */
2787 WhereClause *pWC, /* The WHERE clause */
2788 struct SrcList_item *pSrc, /* The FROM clause term to search */
2789 Bitmask notReady, /* Mask of cursors that are not available */
2790 ExprList *pOrderBy, /* The ORDER BY clause */
2791 WhereCost *pCost /* Lowest cost query plan */
2792){
shanee26fa4c2009-06-16 14:15:22 +00002793#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19771d461462009-04-21 09:02:45 +00002794 if( IsVirtual(pSrc->pTab) ){
2795 sqlite3_index_info *p = 0;
2796 bestVirtualIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost, &p);
2797 if( p->needToFreeIdxStr ){
2798 sqlite3_free(p->idxStr);
2799 }
2800 sqlite3DbFree(pParse->db, p);
shanee26fa4c2009-06-16 14:15:22 +00002801 }else
2802#endif
2803 {
danielk19771d461462009-04-21 09:02:45 +00002804 bestBtreeIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
2805 }
2806}
drhb6c29892004-11-22 19:12:19 +00002807
2808/*
drh2ffb1182004-07-19 19:14:01 +00002809** Disable a term in the WHERE clause. Except, do not disable the term
2810** if it controls a LEFT OUTER JOIN and it did not originate in the ON
2811** or USING clause of that join.
2812**
2813** Consider the term t2.z='ok' in the following queries:
2814**
2815** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
2816** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
2817** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
2818**
drh23bf66d2004-12-14 03:34:34 +00002819** The t2.z='ok' is disabled in the in (2) because it originates
drh2ffb1182004-07-19 19:14:01 +00002820** in the ON clause. The term is disabled in (3) because it is not part
2821** of a LEFT OUTER JOIN. In (1), the term is not disabled.
2822**
2823** Disabling a term causes that term to not be tested in the inner loop
drhb6fb62d2005-09-20 08:47:20 +00002824** of the join. Disabling is an optimization. When terms are satisfied
2825** by indices, we disable them to prevent redundant tests in the inner
2826** loop. We would get the correct results if nothing were ever disabled,
2827** but joins might run a little slower. The trick is to disable as much
2828** as we can without disabling too much. If we disabled in (1), we'd get
2829** the wrong answer. See ticket #813.
drh2ffb1182004-07-19 19:14:01 +00002830*/
drh0fcef5e2005-07-19 17:38:22 +00002831static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
2832 if( pTerm
drh165be382008-12-05 02:36:33 +00002833 && ALWAYS((pTerm->wtFlags & TERM_CODED)==0)
drh0fcef5e2005-07-19 17:38:22 +00002834 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
2835 ){
drh165be382008-12-05 02:36:33 +00002836 pTerm->wtFlags |= TERM_CODED;
drh45b1ee42005-08-02 17:48:22 +00002837 if( pTerm->iParent>=0 ){
2838 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
2839 if( (--pOther->nChild)==0 ){
drhed378002005-07-28 23:12:08 +00002840 disableTerm(pLevel, pOther);
2841 }
drh0fcef5e2005-07-19 17:38:22 +00002842 }
drh2ffb1182004-07-19 19:14:01 +00002843 }
2844}
2845
2846/*
dan69f8bb92009-08-13 19:21:16 +00002847** Code an OP_Affinity opcode to apply the column affinity string zAff
2848** to the n registers starting at base.
2849**
drh039fc322009-11-17 18:31:47 +00002850** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
2851** beginning and end of zAff are ignored. If all entries in zAff are
2852** SQLITE_AFF_NONE, then no code gets generated.
2853**
2854** This routine makes its own copy of zAff so that the caller is free
2855** to modify zAff after this routine returns.
drh94a11212004-09-25 13:12:14 +00002856*/
dan69f8bb92009-08-13 19:21:16 +00002857static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
2858 Vdbe *v = pParse->pVdbe;
drh039fc322009-11-17 18:31:47 +00002859 if( zAff==0 ){
2860 assert( pParse->db->mallocFailed );
2861 return;
2862 }
dan69f8bb92009-08-13 19:21:16 +00002863 assert( v!=0 );
drh039fc322009-11-17 18:31:47 +00002864
2865 /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
2866 ** and end of the affinity string.
2867 */
2868 while( n>0 && zAff[0]==SQLITE_AFF_NONE ){
2869 n--;
2870 base++;
2871 zAff++;
2872 }
2873 while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){
2874 n--;
2875 }
2876
2877 /* Code the OP_Affinity opcode if there is anything left to do. */
2878 if( n>0 ){
2879 sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
2880 sqlite3VdbeChangeP4(v, -1, zAff, n);
2881 sqlite3ExprCacheAffinityChange(pParse, base, n);
2882 }
drh94a11212004-09-25 13:12:14 +00002883}
2884
drhe8b97272005-07-19 22:22:12 +00002885
2886/*
drh51147ba2005-07-23 22:59:55 +00002887** Generate code for a single equality term of the WHERE clause. An equality
2888** term can be either X=expr or X IN (...). pTerm is the term to be
2889** coded.
2890**
drh1db639c2008-01-17 02:36:28 +00002891** The current value for the constraint is left in register iReg.
drh51147ba2005-07-23 22:59:55 +00002892**
2893** For a constraint of the form X=expr, the expression is evaluated and its
2894** result is left on the stack. For constraints of the form X IN (...)
2895** this routine sets up a loop that will iterate over all values of X.
drh94a11212004-09-25 13:12:14 +00002896*/
drh678ccce2008-03-31 18:19:54 +00002897static int codeEqualityTerm(
drh94a11212004-09-25 13:12:14 +00002898 Parse *pParse, /* The parsing context */
drhe23399f2005-07-22 00:31:39 +00002899 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
drh1db639c2008-01-17 02:36:28 +00002900 WhereLevel *pLevel, /* When level of the FROM clause we are working on */
drh678ccce2008-03-31 18:19:54 +00002901 int iTarget /* Attempt to leave results in this register */
drh94a11212004-09-25 13:12:14 +00002902){
drh0fcef5e2005-07-19 17:38:22 +00002903 Expr *pX = pTerm->pExpr;
drh50b39962006-10-28 00:28:09 +00002904 Vdbe *v = pParse->pVdbe;
drh678ccce2008-03-31 18:19:54 +00002905 int iReg; /* Register holding results */
drh1db639c2008-01-17 02:36:28 +00002906
danielk19772d605492008-10-01 08:43:03 +00002907 assert( iTarget>0 );
drh50b39962006-10-28 00:28:09 +00002908 if( pX->op==TK_EQ ){
drh678ccce2008-03-31 18:19:54 +00002909 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
drh50b39962006-10-28 00:28:09 +00002910 }else if( pX->op==TK_ISNULL ){
drh678ccce2008-03-31 18:19:54 +00002911 iReg = iTarget;
drh1db639c2008-01-17 02:36:28 +00002912 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
danielk1977b3bce662005-01-29 08:32:43 +00002913#ifndef SQLITE_OMIT_SUBQUERY
drh94a11212004-09-25 13:12:14 +00002914 }else{
danielk19779a96b662007-11-29 17:05:18 +00002915 int eType;
danielk1977b3bce662005-01-29 08:32:43 +00002916 int iTab;
drh72e8fa42007-03-28 14:30:06 +00002917 struct InLoop *pIn;
danielk1977b3bce662005-01-29 08:32:43 +00002918
drh50b39962006-10-28 00:28:09 +00002919 assert( pX->op==TK_IN );
drh678ccce2008-03-31 18:19:54 +00002920 iReg = iTarget;
danielk19770cdc0222008-06-26 18:04:03 +00002921 eType = sqlite3FindInIndex(pParse, pX, 0);
danielk1977b3bce662005-01-29 08:32:43 +00002922 iTab = pX->iTable;
drh66a51672008-01-03 00:01:23 +00002923 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
drh111a6a72008-12-21 03:51:16 +00002924 assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
2925 if( pLevel->u.in.nIn==0 ){
drhb3190c12008-12-08 21:37:14 +00002926 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
drh72e8fa42007-03-28 14:30:06 +00002927 }
drh111a6a72008-12-21 03:51:16 +00002928 pLevel->u.in.nIn++;
2929 pLevel->u.in.aInLoop =
2930 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
2931 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
2932 pIn = pLevel->u.in.aInLoop;
drh72e8fa42007-03-28 14:30:06 +00002933 if( pIn ){
drh111a6a72008-12-21 03:51:16 +00002934 pIn += pLevel->u.in.nIn - 1;
drh72e8fa42007-03-28 14:30:06 +00002935 pIn->iCur = iTab;
drh1db639c2008-01-17 02:36:28 +00002936 if( eType==IN_INDEX_ROWID ){
drhb3190c12008-12-08 21:37:14 +00002937 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
drh1db639c2008-01-17 02:36:28 +00002938 }else{
drhb3190c12008-12-08 21:37:14 +00002939 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
drh1db639c2008-01-17 02:36:28 +00002940 }
2941 sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
drha6110402005-07-28 20:51:19 +00002942 }else{
drh111a6a72008-12-21 03:51:16 +00002943 pLevel->u.in.nIn = 0;
drhe23399f2005-07-22 00:31:39 +00002944 }
danielk1977b3bce662005-01-29 08:32:43 +00002945#endif
drh94a11212004-09-25 13:12:14 +00002946 }
drh0fcef5e2005-07-19 17:38:22 +00002947 disableTerm(pLevel, pTerm);
drh678ccce2008-03-31 18:19:54 +00002948 return iReg;
drh94a11212004-09-25 13:12:14 +00002949}
2950
drh51147ba2005-07-23 22:59:55 +00002951/*
2952** Generate code that will evaluate all == and IN constraints for an
drh039fc322009-11-17 18:31:47 +00002953** index.
drh51147ba2005-07-23 22:59:55 +00002954**
2955** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
2956** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
2957** The index has as many as three equality constraints, but in this
2958** example, the third "c" value is an inequality. So only two
2959** constraints are coded. This routine will generate code to evaluate
drh6df2acd2008-12-28 16:55:25 +00002960** a==5 and b IN (1,2,3). The current values for a and b will be stored
2961** in consecutive registers and the index of the first register is returned.
drh51147ba2005-07-23 22:59:55 +00002962**
2963** In the example above nEq==2. But this subroutine works for any value
2964** of nEq including 0. If nEq==0, this routine is nearly a no-op.
drh039fc322009-11-17 18:31:47 +00002965** The only thing it does is allocate the pLevel->iMem memory cell and
2966** compute the affinity string.
drh51147ba2005-07-23 22:59:55 +00002967**
drh700a2262008-12-17 19:22:15 +00002968** This routine always allocates at least one memory cell and returns
2969** the index of that memory cell. The code that
2970** calls this routine will use that memory cell to store the termination
drh51147ba2005-07-23 22:59:55 +00002971** key value of the loop. If one or more IN operators appear, then
2972** this routine allocates an additional nEq memory cells for internal
2973** use.
dan69f8bb92009-08-13 19:21:16 +00002974**
2975** Before returning, *pzAff is set to point to a buffer containing a
2976** copy of the column affinity string of the index allocated using
2977** sqlite3DbMalloc(). Except, entries in the copy of the string associated
2978** with equality constraints that use NONE affinity are set to
2979** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
2980**
2981** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
2982** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
2983**
2984** In the example above, the index on t1(a) has TEXT affinity. But since
2985** the right hand side of the equality constraint (t2.b) has NONE affinity,
2986** no conversion should be attempted before using a t2.b value as part of
2987** a key to search the index. Hence the first byte in the returned affinity
2988** string in this example would be set to SQLITE_AFF_NONE.
drh51147ba2005-07-23 22:59:55 +00002989*/
drh1db639c2008-01-17 02:36:28 +00002990static int codeAllEqualityTerms(
drh51147ba2005-07-23 22:59:55 +00002991 Parse *pParse, /* Parsing context */
2992 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
2993 WhereClause *pWC, /* The WHERE clause */
drh1db639c2008-01-17 02:36:28 +00002994 Bitmask notReady, /* Which parts of FROM have not yet been coded */
dan69f8bb92009-08-13 19:21:16 +00002995 int nExtraReg, /* Number of extra registers to allocate */
2996 char **pzAff /* OUT: Set to point to affinity string */
drh51147ba2005-07-23 22:59:55 +00002997){
drh111a6a72008-12-21 03:51:16 +00002998 int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */
2999 Vdbe *v = pParse->pVdbe; /* The vm under construction */
3000 Index *pIdx; /* The index being used for this loop */
drh51147ba2005-07-23 22:59:55 +00003001 int iCur = pLevel->iTabCur; /* The cursor of the table */
3002 WhereTerm *pTerm; /* A single constraint term */
3003 int j; /* Loop counter */
drh1db639c2008-01-17 02:36:28 +00003004 int regBase; /* Base register */
drh6df2acd2008-12-28 16:55:25 +00003005 int nReg; /* Number of registers to allocate */
dan69f8bb92009-08-13 19:21:16 +00003006 char *zAff; /* Affinity string to return */
drh51147ba2005-07-23 22:59:55 +00003007
drh111a6a72008-12-21 03:51:16 +00003008 /* This module is only called on query plans that use an index. */
3009 assert( pLevel->plan.wsFlags & WHERE_INDEXED );
3010 pIdx = pLevel->plan.u.pIdx;
3011
drh51147ba2005-07-23 22:59:55 +00003012 /* Figure out how many memory cells we will need then allocate them.
drh51147ba2005-07-23 22:59:55 +00003013 */
drh700a2262008-12-17 19:22:15 +00003014 regBase = pParse->nMem + 1;
drh6df2acd2008-12-28 16:55:25 +00003015 nReg = pLevel->plan.nEq + nExtraReg;
3016 pParse->nMem += nReg;
drh51147ba2005-07-23 22:59:55 +00003017
dan69f8bb92009-08-13 19:21:16 +00003018 zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
3019 if( !zAff ){
3020 pParse->db->mallocFailed = 1;
3021 }
3022
drh51147ba2005-07-23 22:59:55 +00003023 /* Evaluate the equality constraints
3024 */
drhc49de5d2007-01-19 01:06:01 +00003025 assert( pIdx->nColumn>=nEq );
3026 for(j=0; j<nEq; j++){
drh678ccce2008-03-31 18:19:54 +00003027 int r1;
drh51147ba2005-07-23 22:59:55 +00003028 int k = pIdx->aiColumn[j];
drh111a6a72008-12-21 03:51:16 +00003029 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
drh34004ce2008-07-11 16:15:17 +00003030 if( NEVER(pTerm==0) ) break;
drh165be382008-12-05 02:36:33 +00003031 assert( (pTerm->wtFlags & TERM_CODED)==0 );
drh678ccce2008-03-31 18:19:54 +00003032 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
3033 if( r1!=regBase+j ){
drh6df2acd2008-12-28 16:55:25 +00003034 if( nReg==1 ){
3035 sqlite3ReleaseTempReg(pParse, regBase);
3036 regBase = r1;
3037 }else{
3038 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
3039 }
drh678ccce2008-03-31 18:19:54 +00003040 }
drh981642f2008-04-19 14:40:43 +00003041 testcase( pTerm->eOperator & WO_ISNULL );
3042 testcase( pTerm->eOperator & WO_IN );
drh72e8fa42007-03-28 14:30:06 +00003043 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
drh039fc322009-11-17 18:31:47 +00003044 Expr *pRight = pTerm->pExpr->pRight;
drh2f2855b2009-11-18 01:25:26 +00003045 sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk);
drh039fc322009-11-17 18:31:47 +00003046 if( zAff ){
3047 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){
3048 zAff[j] = SQLITE_AFF_NONE;
3049 }
3050 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
3051 zAff[j] = SQLITE_AFF_NONE;
3052 }
dan69f8bb92009-08-13 19:21:16 +00003053 }
drh51147ba2005-07-23 22:59:55 +00003054 }
3055 }
dan69f8bb92009-08-13 19:21:16 +00003056 *pzAff = zAff;
drh1db639c2008-01-17 02:36:28 +00003057 return regBase;
drh51147ba2005-07-23 22:59:55 +00003058}
3059
drh111a6a72008-12-21 03:51:16 +00003060/*
3061** Generate code for the start of the iLevel-th loop in the WHERE clause
3062** implementation described by pWInfo.
3063*/
3064static Bitmask codeOneLoopStart(
3065 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
3066 int iLevel, /* Which level of pWInfo->a[] should be coded */
drh336a5302009-04-24 15:46:21 +00003067 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */
drh111a6a72008-12-21 03:51:16 +00003068 Bitmask notReady /* Which tables are currently available */
3069){
3070 int j, k; /* Loop counters */
3071 int iCur; /* The VDBE cursor for the table */
3072 int addrNxt; /* Where to jump to continue with the next IN case */
3073 int omitTable; /* True if we use the index only */
3074 int bRev; /* True if we need to scan in reverse order */
3075 WhereLevel *pLevel; /* The where level to be coded */
3076 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
3077 WhereTerm *pTerm; /* A WHERE clause term */
3078 Parse *pParse; /* Parsing context */
3079 Vdbe *v; /* The prepared stmt under constructions */
3080 struct SrcList_item *pTabItem; /* FROM clause term being coded */
drh23d04d52008-12-23 23:56:22 +00003081 int addrBrk; /* Jump here to break out of the loop */
3082 int addrCont; /* Jump here to continue with next cycle */
drh61495262009-04-22 15:32:59 +00003083 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
3084 int iReleaseReg = 0; /* Temp register to free before returning */
drh111a6a72008-12-21 03:51:16 +00003085
3086 pParse = pWInfo->pParse;
3087 v = pParse->pVdbe;
3088 pWC = pWInfo->pWC;
3089 pLevel = &pWInfo->a[iLevel];
3090 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
3091 iCur = pTabItem->iCursor;
3092 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
danielk19771d461462009-04-21 09:02:45 +00003093 omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0
drh336a5302009-04-24 15:46:21 +00003094 && (wctrlFlags & WHERE_FORCE_TABLE)==0;
drh111a6a72008-12-21 03:51:16 +00003095
3096 /* Create labels for the "break" and "continue" instructions
3097 ** for the current loop. Jump to addrBrk to break out of a loop.
3098 ** Jump to cont to go immediately to the next iteration of the
3099 ** loop.
3100 **
3101 ** When there is an IN operator, we also have a "addrNxt" label that
3102 ** means to continue with the next IN value combination. When
3103 ** there are no IN operators in the constraints, the "addrNxt" label
3104 ** is the same as "addrBrk".
3105 */
3106 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
3107 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
3108
3109 /* If this is the right table of a LEFT OUTER JOIN, allocate and
3110 ** initialize a memory cell that records if this table matches any
3111 ** row of the left table of the join.
3112 */
3113 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
3114 pLevel->iLeftJoin = ++pParse->nMem;
3115 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
3116 VdbeComment((v, "init LEFT JOIN no-match flag"));
3117 }
3118
3119#ifndef SQLITE_OMIT_VIRTUALTABLE
3120 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
3121 /* Case 0: The table is a virtual-table. Use the VFilter and VNext
3122 ** to access the data.
3123 */
3124 int iReg; /* P3 Value for OP_VFilter */
3125 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
3126 int nConstraint = pVtabIdx->nConstraint;
3127 struct sqlite3_index_constraint_usage *aUsage =
3128 pVtabIdx->aConstraintUsage;
3129 const struct sqlite3_index_constraint *aConstraint =
3130 pVtabIdx->aConstraint;
3131
drha62bb8d2009-11-23 21:23:45 +00003132 sqlite3ExprCachePush(pParse);
drh111a6a72008-12-21 03:51:16 +00003133 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
drh111a6a72008-12-21 03:51:16 +00003134 for(j=1; j<=nConstraint; j++){
3135 for(k=0; k<nConstraint; k++){
3136 if( aUsage[k].argvIndex==j ){
3137 int iTerm = aConstraint[k].iTermOffset;
drh111a6a72008-12-21 03:51:16 +00003138 sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);
3139 break;
3140 }
3141 }
3142 if( k==nConstraint ) break;
3143 }
drh111a6a72008-12-21 03:51:16 +00003144 sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
3145 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
3146 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
3147 pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
drh111a6a72008-12-21 03:51:16 +00003148 pVtabIdx->needToFreeIdxStr = 0;
3149 for(j=0; j<nConstraint; j++){
3150 if( aUsage[j].omit ){
3151 int iTerm = aConstraint[j].iTermOffset;
3152 disableTerm(pLevel, &pWC->a[iTerm]);
3153 }
3154 }
3155 pLevel->op = OP_VNext;
3156 pLevel->p1 = iCur;
3157 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
drh23d04d52008-12-23 23:56:22 +00003158 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
drha62bb8d2009-11-23 21:23:45 +00003159 sqlite3ExprCachePop(pParse, 1);
drh111a6a72008-12-21 03:51:16 +00003160 }else
3161#endif /* SQLITE_OMIT_VIRTUALTABLE */
3162
3163 if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
3164 /* Case 1: We can directly reference a single row using an
3165 ** equality comparison against the ROWID field. Or
3166 ** we reference multiple rows using a "rowid IN (...)"
3167 ** construct.
3168 */
danielk19771d461462009-04-21 09:02:45 +00003169 iReleaseReg = sqlite3GetTempReg(pParse);
drh111a6a72008-12-21 03:51:16 +00003170 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
3171 assert( pTerm!=0 );
3172 assert( pTerm->pExpr!=0 );
3173 assert( pTerm->leftCursor==iCur );
3174 assert( omitTable==0 );
danielk19771d461462009-04-21 09:02:45 +00003175 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
drh111a6a72008-12-21 03:51:16 +00003176 addrNxt = pLevel->addrNxt;
danielk19771d461462009-04-21 09:02:45 +00003177 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
3178 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
drhceea3322009-04-23 13:22:42 +00003179 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
drh111a6a72008-12-21 03:51:16 +00003180 VdbeComment((v, "pk"));
3181 pLevel->op = OP_Noop;
3182 }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
3183 /* Case 2: We have an inequality comparison against the ROWID field.
3184 */
3185 int testOp = OP_Noop;
3186 int start;
3187 int memEndValue = 0;
3188 WhereTerm *pStart, *pEnd;
3189
3190 assert( omitTable==0 );
3191 pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
3192 pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
3193 if( bRev ){
3194 pTerm = pStart;
3195 pStart = pEnd;
3196 pEnd = pTerm;
3197 }
3198 if( pStart ){
3199 Expr *pX; /* The expression that defines the start bound */
3200 int r1, rTemp; /* Registers for holding the start boundary */
3201
3202 /* The following constant maps TK_xx codes into corresponding
3203 ** seek opcodes. It depends on a particular ordering of TK_xx
3204 */
3205 const u8 aMoveOp[] = {
3206 /* TK_GT */ OP_SeekGt,
3207 /* TK_LE */ OP_SeekLe,
3208 /* TK_LT */ OP_SeekLt,
3209 /* TK_GE */ OP_SeekGe
3210 };
3211 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
3212 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
3213 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
3214
3215 pX = pStart->pExpr;
3216 assert( pX!=0 );
3217 assert( pStart->leftCursor==iCur );
3218 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
3219 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
3220 VdbeComment((v, "pk"));
3221 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
3222 sqlite3ReleaseTempReg(pParse, rTemp);
3223 disableTerm(pLevel, pStart);
3224 }else{
3225 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
3226 }
3227 if( pEnd ){
3228 Expr *pX;
3229 pX = pEnd->pExpr;
3230 assert( pX!=0 );
3231 assert( pEnd->leftCursor==iCur );
3232 memEndValue = ++pParse->nMem;
3233 sqlite3ExprCode(pParse, pX->pRight, memEndValue);
3234 if( pX->op==TK_LT || pX->op==TK_GT ){
3235 testOp = bRev ? OP_Le : OP_Ge;
3236 }else{
3237 testOp = bRev ? OP_Lt : OP_Gt;
3238 }
3239 disableTerm(pLevel, pEnd);
3240 }
3241 start = sqlite3VdbeCurrentAddr(v);
3242 pLevel->op = bRev ? OP_Prev : OP_Next;
3243 pLevel->p1 = iCur;
3244 pLevel->p2 = start;
drhafc266a2010-03-31 17:47:44 +00003245 if( pStart==0 && pEnd==0 ){
3246 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
3247 }else{
3248 assert( pLevel->p5==0 );
3249 }
danielk19771d461462009-04-21 09:02:45 +00003250 if( testOp!=OP_Noop ){
3251 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
3252 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
drhceea3322009-04-23 13:22:42 +00003253 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
danielk19771d461462009-04-21 09:02:45 +00003254 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
3255 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
drh111a6a72008-12-21 03:51:16 +00003256 }
3257 }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
3258 /* Case 3: A scan using an index.
3259 **
3260 ** The WHERE clause may contain zero or more equality
3261 ** terms ("==" or "IN" operators) that refer to the N
3262 ** left-most columns of the index. It may also contain
3263 ** inequality constraints (>, <, >= or <=) on the indexed
3264 ** column that immediately follows the N equalities. Only
3265 ** the right-most column can be an inequality - the rest must
3266 ** use the "==" and "IN" operators. For example, if the
3267 ** index is on (x,y,z), then the following clauses are all
3268 ** optimized:
3269 **
3270 ** x=5
3271 ** x=5 AND y=10
3272 ** x=5 AND y<10
3273 ** x=5 AND y>5 AND y<10
3274 ** x=5 AND y=5 AND z<=10
3275 **
3276 ** The z<10 term of the following cannot be used, only
3277 ** the x=5 term:
3278 **
3279 ** x=5 AND z<10
3280 **
3281 ** N may be zero if there are inequality constraints.
3282 ** If there are no inequality constraints, then N is at
3283 ** least one.
3284 **
3285 ** This case is also used when there are no WHERE clause
3286 ** constraints but an index is selected anyway, in order
3287 ** to force the output order to conform to an ORDER BY.
3288 */
3289 int aStartOp[] = {
3290 0,
3291 0,
3292 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
3293 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
3294 OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */
3295 OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */
3296 OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */
3297 OP_SeekLe /* 7: (start_constraints && startEq && bRev) */
3298 };
3299 int aEndOp[] = {
3300 OP_Noop, /* 0: (!end_constraints) */
3301 OP_IdxGE, /* 1: (end_constraints && !bRev) */
3302 OP_IdxLT /* 2: (end_constraints && bRev) */
3303 };
3304 int nEq = pLevel->plan.nEq;
3305 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
3306 int regBase; /* Base register holding constraint values */
3307 int r1; /* Temp register */
3308 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
3309 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
3310 int startEq; /* True if range start uses ==, >= or <= */
3311 int endEq; /* True if range end uses ==, >= or <= */
3312 int start_constraints; /* Start of range is constrained */
3313 int nConstraint; /* Number of constraint terms */
3314 Index *pIdx; /* The index we will be using */
3315 int iIdxCur; /* The VDBE cursor for the index */
drh6df2acd2008-12-28 16:55:25 +00003316 int nExtraReg = 0; /* Number of extra registers needed */
3317 int op; /* Instruction opcode */
dan69f8bb92009-08-13 19:21:16 +00003318 char *zAff;
drh111a6a72008-12-21 03:51:16 +00003319
3320 pIdx = pLevel->plan.u.pIdx;
3321 iIdxCur = pLevel->iIdxCur;
3322 k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
3323
drh111a6a72008-12-21 03:51:16 +00003324 /* If this loop satisfies a sort order (pOrderBy) request that
3325 ** was passed to this function to implement a "SELECT min(x) ..."
3326 ** query, then the caller will only allow the loop to run for
3327 ** a single iteration. This means that the first row returned
3328 ** should not have a NULL value stored in 'x'. If column 'x' is
3329 ** the first one after the nEq equality constraints in the index,
3330 ** this requires some special handling.
3331 */
3332 if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
3333 && (pLevel->plan.wsFlags&WHERE_ORDERBY)
3334 && (pIdx->nColumn>nEq)
3335 ){
3336 /* assert( pOrderBy->nExpr==1 ); */
3337 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
3338 isMinQuery = 1;
drh6df2acd2008-12-28 16:55:25 +00003339 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00003340 }
3341
3342 /* Find any inequality constraint terms for the start and end
3343 ** of the range.
3344 */
3345 if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
3346 pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
drh6df2acd2008-12-28 16:55:25 +00003347 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00003348 }
3349 if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
3350 pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
drh6df2acd2008-12-28 16:55:25 +00003351 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00003352 }
3353
drh6df2acd2008-12-28 16:55:25 +00003354 /* Generate code to evaluate all constraint terms using == or IN
3355 ** and store the values of those terms in an array of registers
3356 ** starting at regBase.
3357 */
dan69f8bb92009-08-13 19:21:16 +00003358 regBase = codeAllEqualityTerms(
3359 pParse, pLevel, pWC, notReady, nExtraReg, &zAff
3360 );
drh6df2acd2008-12-28 16:55:25 +00003361 addrNxt = pLevel->addrNxt;
3362
drh111a6a72008-12-21 03:51:16 +00003363 /* If we are doing a reverse order scan on an ascending index, or
3364 ** a forward order scan on a descending index, interchange the
3365 ** start and end terms (pRangeStart and pRangeEnd).
3366 */
3367 if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
3368 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
3369 }
3370
3371 testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
3372 testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
3373 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
3374 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
3375 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
3376 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
3377 start_constraints = pRangeStart || nEq>0;
3378
3379 /* Seek the index cursor to the start of the range. */
3380 nConstraint = nEq;
3381 if( pRangeStart ){
dan69f8bb92009-08-13 19:21:16 +00003382 Expr *pRight = pRangeStart->pExpr->pRight;
3383 sqlite3ExprCode(pParse, pRight, regBase+nEq);
drh2f2855b2009-11-18 01:25:26 +00003384 sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
drh039fc322009-11-17 18:31:47 +00003385 if( zAff ){
3386 if( sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE){
3387 /* Since the comparison is to be performed with no conversions
3388 ** applied to the operands, set the affinity to apply to pRight to
3389 ** SQLITE_AFF_NONE. */
3390 zAff[nConstraint] = SQLITE_AFF_NONE;
3391 }
3392 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[nConstraint]) ){
3393 zAff[nConstraint] = SQLITE_AFF_NONE;
3394 }
3395 }
drh111a6a72008-12-21 03:51:16 +00003396 nConstraint++;
3397 }else if( isMinQuery ){
3398 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
3399 nConstraint++;
3400 startEq = 0;
3401 start_constraints = 1;
3402 }
dan69f8bb92009-08-13 19:21:16 +00003403 codeApplyAffinity(pParse, regBase, nConstraint, zAff);
drh111a6a72008-12-21 03:51:16 +00003404 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
3405 assert( op!=0 );
3406 testcase( op==OP_Rewind );
3407 testcase( op==OP_Last );
3408 testcase( op==OP_SeekGt );
3409 testcase( op==OP_SeekGe );
3410 testcase( op==OP_SeekLe );
3411 testcase( op==OP_SeekLt );
drh8cff69d2009-11-12 19:59:44 +00003412 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
drh111a6a72008-12-21 03:51:16 +00003413
3414 /* Load the value for the inequality constraint at the end of the
3415 ** range (if any).
3416 */
3417 nConstraint = nEq;
3418 if( pRangeEnd ){
dan69f8bb92009-08-13 19:21:16 +00003419 Expr *pRight = pRangeEnd->pExpr->pRight;
drhf49f3522009-12-30 14:12:38 +00003420 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
dan69f8bb92009-08-13 19:21:16 +00003421 sqlite3ExprCode(pParse, pRight, regBase+nEq);
drh2f2855b2009-11-18 01:25:26 +00003422 sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
drh039fc322009-11-17 18:31:47 +00003423 if( zAff ){
3424 if( sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE){
3425 /* Since the comparison is to be performed with no conversions
3426 ** applied to the operands, set the affinity to apply to pRight to
3427 ** SQLITE_AFF_NONE. */
3428 zAff[nConstraint] = SQLITE_AFF_NONE;
3429 }
3430 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[nConstraint]) ){
3431 zAff[nConstraint] = SQLITE_AFF_NONE;
3432 }
3433 }
dan69f8bb92009-08-13 19:21:16 +00003434 codeApplyAffinity(pParse, regBase, nEq+1, zAff);
drh111a6a72008-12-21 03:51:16 +00003435 nConstraint++;
3436 }
drhf6a82032009-11-16 22:54:50 +00003437 sqlite3DbFree(pParse->db, zAff);
drh111a6a72008-12-21 03:51:16 +00003438
3439 /* Top of the loop body */
3440 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
3441
3442 /* Check if the index cursor is past the end of the range. */
3443 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
3444 testcase( op==OP_Noop );
3445 testcase( op==OP_IdxGE );
3446 testcase( op==OP_IdxLT );
drh6df2acd2008-12-28 16:55:25 +00003447 if( op!=OP_Noop ){
drh8cff69d2009-11-12 19:59:44 +00003448 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
drh6df2acd2008-12-28 16:55:25 +00003449 sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
3450 }
drh111a6a72008-12-21 03:51:16 +00003451
3452 /* If there are inequality constraints, check that the value
3453 ** of the table column that the inequality contrains is not NULL.
3454 ** If it is, jump to the next iteration of the loop.
3455 */
3456 r1 = sqlite3GetTempReg(pParse);
3457 testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
3458 testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
3459 if( pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){
3460 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
3461 sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
3462 }
danielk19771d461462009-04-21 09:02:45 +00003463 sqlite3ReleaseTempReg(pParse, r1);
drh111a6a72008-12-21 03:51:16 +00003464
3465 /* Seek the table cursor, if required */
drh23d04d52008-12-23 23:56:22 +00003466 disableTerm(pLevel, pRangeStart);
3467 disableTerm(pLevel, pRangeEnd);
danielk19771d461462009-04-21 09:02:45 +00003468 if( !omitTable ){
3469 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
3470 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
drhceea3322009-04-23 13:22:42 +00003471 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
danielk19771d461462009-04-21 09:02:45 +00003472 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
drh111a6a72008-12-21 03:51:16 +00003473 }
drh111a6a72008-12-21 03:51:16 +00003474
3475 /* Record the instruction used to terminate the loop. Disable
3476 ** WHERE clause terms made redundant by the index range scan.
3477 */
3478 pLevel->op = bRev ? OP_Prev : OP_Next;
3479 pLevel->p1 = iIdxCur;
drhdd5f5a62008-12-23 13:35:23 +00003480 }else
3481
drh23d04d52008-12-23 23:56:22 +00003482#ifndef SQLITE_OMIT_OR_OPTIMIZATION
drhdd5f5a62008-12-23 13:35:23 +00003483 if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
drh111a6a72008-12-21 03:51:16 +00003484 /* Case 4: Two or more separately indexed terms connected by OR
3485 **
3486 ** Example:
3487 **
3488 ** CREATE TABLE t1(a,b,c,d);
3489 ** CREATE INDEX i1 ON t1(a);
3490 ** CREATE INDEX i2 ON t1(b);
3491 ** CREATE INDEX i3 ON t1(c);
3492 **
3493 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
3494 **
3495 ** In the example, there are three indexed terms connected by OR.
danielk19771d461462009-04-21 09:02:45 +00003496 ** The top of the loop looks like this:
drh111a6a72008-12-21 03:51:16 +00003497 **
drh1b26c7c2009-04-22 02:15:47 +00003498 ** Null 1 # Zero the rowset in reg 1
drh111a6a72008-12-21 03:51:16 +00003499 **
danielk19771d461462009-04-21 09:02:45 +00003500 ** Then, for each indexed term, the following. The arguments to
drh1b26c7c2009-04-22 02:15:47 +00003501 ** RowSetTest are such that the rowid of the current row is inserted
3502 ** into the RowSet. If it is already present, control skips the
danielk19771d461462009-04-21 09:02:45 +00003503 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
drh111a6a72008-12-21 03:51:16 +00003504 **
danielk19771d461462009-04-21 09:02:45 +00003505 ** sqlite3WhereBegin(<term>)
drh1b26c7c2009-04-22 02:15:47 +00003506 ** RowSetTest # Insert rowid into rowset
danielk19771d461462009-04-21 09:02:45 +00003507 ** Gosub 2 A
3508 ** sqlite3WhereEnd()
3509 **
3510 ** Following the above, code to terminate the loop. Label A, the target
3511 ** of the Gosub above, jumps to the instruction right after the Goto.
3512 **
drh1b26c7c2009-04-22 02:15:47 +00003513 ** Null 1 # Zero the rowset in reg 1
danielk19771d461462009-04-21 09:02:45 +00003514 ** Goto B # The loop is finished.
3515 **
3516 ** A: <loop body> # Return data, whatever.
3517 **
3518 ** Return 2 # Jump back to the Gosub
3519 **
3520 ** B: <after the loop>
3521 **
drh111a6a72008-12-21 03:51:16 +00003522 */
drh111a6a72008-12-21 03:51:16 +00003523 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
danielk19771d461462009-04-21 09:02:45 +00003524 WhereTerm *pFinal; /* Final subterm within the OR-clause. */
drhc01a3c12009-12-16 22:10:49 +00003525 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
danielk19771d461462009-04-21 09:02:45 +00003526
3527 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
shane85095702009-06-15 16:27:08 +00003528 int regRowset = 0; /* Register for RowSet object */
3529 int regRowid = 0; /* Register holding rowid */
danielk19771d461462009-04-21 09:02:45 +00003530 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
3531 int iRetInit; /* Address of regReturn init */
drhc01a3c12009-12-16 22:10:49 +00003532 int untestedTerms = 0; /* Some terms not completely tested */
danielk19771d461462009-04-21 09:02:45 +00003533 int ii;
drh111a6a72008-12-21 03:51:16 +00003534
3535 pTerm = pLevel->plan.u.pTerm;
3536 assert( pTerm!=0 );
3537 assert( pTerm->eOperator==WO_OR );
3538 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
3539 pOrWc = &pTerm->u.pOrInfo->wc;
danielk19771d461462009-04-21 09:02:45 +00003540 pFinal = &pOrWc->a[pOrWc->nTerm-1];
drhc01a3c12009-12-16 22:10:49 +00003541 pLevel->op = OP_Return;
3542 pLevel->p1 = regReturn;
drh23d04d52008-12-23 23:56:22 +00003543
drhc01a3c12009-12-16 22:10:49 +00003544 /* Set up a new SrcList ni pOrTab containing the table being scanned
3545 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
3546 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
3547 */
3548 if( pWInfo->nLevel>1 ){
3549 int nNotReady; /* The number of notReady tables */
3550 struct SrcList_item *origSrc; /* Original list of tables */
3551 nNotReady = pWInfo->nLevel - iLevel - 1;
3552 pOrTab = sqlite3StackAllocRaw(pParse->db,
3553 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
3554 if( pOrTab==0 ) return notReady;
shaneh46aae3c2009-12-31 19:06:23 +00003555 pOrTab->nAlloc = (i16)(nNotReady + 1);
3556 pOrTab->nSrc = pOrTab->nAlloc;
drhc01a3c12009-12-16 22:10:49 +00003557 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
3558 origSrc = pWInfo->pTabList->a;
3559 for(k=1; k<=nNotReady; k++){
3560 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
3561 }
3562 }else{
3563 pOrTab = pWInfo->pTabList;
3564 }
danielk19771d461462009-04-21 09:02:45 +00003565
drh1b26c7c2009-04-22 02:15:47 +00003566 /* Initialize the rowset register to contain NULL. An SQL NULL is
3567 ** equivalent to an empty rowset.
danielk19771d461462009-04-21 09:02:45 +00003568 **
3569 ** Also initialize regReturn to contain the address of the instruction
3570 ** immediately following the OP_Return at the bottom of the loop. This
3571 ** is required in a few obscure LEFT JOIN cases where control jumps
3572 ** over the top of the loop into the body of it. In this case the
3573 ** correct response for the end-of-loop code (the OP_Return) is to
3574 ** fall through to the next instruction, just as an OP_Next does if
3575 ** called on an uninitialized cursor.
3576 */
drh336a5302009-04-24 15:46:21 +00003577 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
3578 regRowset = ++pParse->nMem;
3579 regRowid = ++pParse->nMem;
3580 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
3581 }
danielk19771d461462009-04-21 09:02:45 +00003582 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
3583
danielk19771d461462009-04-21 09:02:45 +00003584 for(ii=0; ii<pOrWc->nTerm; ii++){
3585 WhereTerm *pOrTerm = &pOrWc->a[ii];
3586 if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
3587 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
danielk19771d461462009-04-21 09:02:45 +00003588 /* Loop through table entries that match term pOrTerm. */
drhc01a3c12009-12-16 22:10:49 +00003589 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrTerm->pExpr, 0,
3590 WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE |
3591 WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY);
danielk19771d461462009-04-21 09:02:45 +00003592 if( pSubWInfo ){
drh336a5302009-04-24 15:46:21 +00003593 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
3594 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
3595 int r;
3596 r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur,
drhb6da74e2009-12-24 16:00:28 +00003597 regRowid);
drh8cff69d2009-11-12 19:59:44 +00003598 sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
3599 sqlite3VdbeCurrentAddr(v)+2, r, iSet);
drh336a5302009-04-24 15:46:21 +00003600 }
danielk19771d461462009-04-21 09:02:45 +00003601 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
3602
drhc01a3c12009-12-16 22:10:49 +00003603 /* The pSubWInfo->untestedTerms flag means that this OR term
3604 ** contained one or more AND term from a notReady table. The
3605 ** terms from the notReady table could not be tested and will
3606 ** need to be tested later.
3607 */
3608 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
3609
danielk19771d461462009-04-21 09:02:45 +00003610 /* Finish the loop through table entries that match term pOrTerm. */
3611 sqlite3WhereEnd(pSubWInfo);
3612 }
drhdd5f5a62008-12-23 13:35:23 +00003613 }
3614 }
danielk19771d461462009-04-21 09:02:45 +00003615 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
danielk19771d461462009-04-21 09:02:45 +00003616 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
3617 sqlite3VdbeResolveLabel(v, iLoopBody);
3618
drhc01a3c12009-12-16 22:10:49 +00003619 if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);
3620 if( !untestedTerms ) disableTerm(pLevel, pTerm);
drhdd5f5a62008-12-23 13:35:23 +00003621 }else
drh23d04d52008-12-23 23:56:22 +00003622#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
drhdd5f5a62008-12-23 13:35:23 +00003623
3624 {
drh111a6a72008-12-21 03:51:16 +00003625 /* Case 5: There is no usable index. We must do a complete
3626 ** scan of the entire table.
3627 */
drh699b3d42009-02-23 16:52:07 +00003628 static const u8 aStep[] = { OP_Next, OP_Prev };
3629 static const u8 aStart[] = { OP_Rewind, OP_Last };
3630 assert( bRev==0 || bRev==1 );
drh111a6a72008-12-21 03:51:16 +00003631 assert( omitTable==0 );
drh699b3d42009-02-23 16:52:07 +00003632 pLevel->op = aStep[bRev];
drh111a6a72008-12-21 03:51:16 +00003633 pLevel->p1 = iCur;
drh699b3d42009-02-23 16:52:07 +00003634 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
drh111a6a72008-12-21 03:51:16 +00003635 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
3636 }
3637 notReady &= ~getMask(pWC->pMaskSet, iCur);
3638
3639 /* Insert code to test every subexpression that can be completely
3640 ** computed using the current set of tables.
3641 */
3642 k = 0;
3643 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
3644 Expr *pE;
3645 testcase( pTerm->wtFlags & TERM_VIRTUAL );
3646 testcase( pTerm->wtFlags & TERM_CODED );
3647 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
drhc01a3c12009-12-16 22:10:49 +00003648 if( (pTerm->prereqAll & notReady)!=0 ){
3649 testcase( pWInfo->untestedTerms==0
3650 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
3651 pWInfo->untestedTerms = 1;
3652 continue;
3653 }
drh111a6a72008-12-21 03:51:16 +00003654 pE = pTerm->pExpr;
3655 assert( pE!=0 );
3656 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
3657 continue;
3658 }
drh111a6a72008-12-21 03:51:16 +00003659 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
drh111a6a72008-12-21 03:51:16 +00003660 k = 1;
3661 pTerm->wtFlags |= TERM_CODED;
3662 }
3663
3664 /* For a LEFT OUTER JOIN, generate code that will record the fact that
3665 ** at least one row of the right table has matched the left table.
3666 */
3667 if( pLevel->iLeftJoin ){
3668 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
3669 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
3670 VdbeComment((v, "record LEFT JOIN hit"));
drhceea3322009-04-23 13:22:42 +00003671 sqlite3ExprCacheClear(pParse);
drh111a6a72008-12-21 03:51:16 +00003672 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
3673 testcase( pTerm->wtFlags & TERM_VIRTUAL );
3674 testcase( pTerm->wtFlags & TERM_CODED );
3675 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
drhc01a3c12009-12-16 22:10:49 +00003676 if( (pTerm->prereqAll & notReady)!=0 ){
drhb057e562009-12-16 23:43:55 +00003677 assert( pWInfo->untestedTerms );
drhc01a3c12009-12-16 22:10:49 +00003678 continue;
3679 }
drh111a6a72008-12-21 03:51:16 +00003680 assert( pTerm->pExpr );
3681 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
3682 pTerm->wtFlags |= TERM_CODED;
3683 }
3684 }
danielk19771d461462009-04-21 09:02:45 +00003685 sqlite3ReleaseTempReg(pParse, iReleaseReg);
drh23d04d52008-12-23 23:56:22 +00003686
drh111a6a72008-12-21 03:51:16 +00003687 return notReady;
3688}
3689
drh549c8b62005-09-19 13:15:23 +00003690#if defined(SQLITE_TEST)
drh84bfda42005-07-15 13:05:21 +00003691/*
3692** The following variable holds a text description of query plan generated
3693** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
3694** overwrites the previous. This information is used for testing and
3695** analysis only.
3696*/
3697char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
3698static int nQPlan = 0; /* Next free slow in _query_plan[] */
3699
3700#endif /* SQLITE_TEST */
3701
3702
drh9eff6162006-06-12 21:59:13 +00003703/*
3704** Free a WhereInfo structure
3705*/
drh10fe8402008-10-11 16:47:35 +00003706static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
drh52ff8ea2010-04-08 14:15:56 +00003707 if( ALWAYS(pWInfo) ){
drh9eff6162006-06-12 21:59:13 +00003708 int i;
3709 for(i=0; i<pWInfo->nLevel; i++){
drh4be8b512006-06-13 23:51:34 +00003710 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
3711 if( pInfo ){
danielk19771d461462009-04-21 09:02:45 +00003712 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
danielk197780442942008-12-24 11:25:39 +00003713 if( pInfo->needToFreeIdxStr ){
3714 sqlite3_free(pInfo->idxStr);
danielk1977be229652009-03-20 14:18:51 +00003715 }
drh633e6d52008-07-28 19:34:53 +00003716 sqlite3DbFree(db, pInfo);
danielk1977be8a7832006-06-13 15:00:54 +00003717 }
drh8b307fb2010-04-06 15:57:05 +00003718 if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){
drha21a64d2010-04-06 22:33:55 +00003719 Index *pIdx = pWInfo->a[i].plan.u.pIdx;
3720 if( pIdx ){
3721 sqlite3DbFree(db, pIdx->zColAff);
3722 sqlite3DbFree(db, pIdx);
3723 }
drh8b307fb2010-04-06 15:57:05 +00003724 }
drh9eff6162006-06-12 21:59:13 +00003725 }
drh111a6a72008-12-21 03:51:16 +00003726 whereClauseClear(pWInfo->pWC);
drh633e6d52008-07-28 19:34:53 +00003727 sqlite3DbFree(db, pWInfo);
drh9eff6162006-06-12 21:59:13 +00003728 }
3729}
3730
drh94a11212004-09-25 13:12:14 +00003731
3732/*
drhe3184742002-06-19 14:27:05 +00003733** Generate the beginning of the loop used for WHERE clause processing.
drhacf3b982005-01-03 01:27:18 +00003734** The return value is a pointer to an opaque structure that contains
drh75897232000-05-29 14:26:00 +00003735** information needed to terminate the loop. Later, the calling routine
danielk19774adee202004-05-08 08:23:19 +00003736** should invoke sqlite3WhereEnd() with the return value of this function
drh75897232000-05-29 14:26:00 +00003737** in order to complete the WHERE clause processing.
3738**
3739** If an error occurs, this routine returns NULL.
drhc27a1ce2002-06-14 20:58:45 +00003740**
3741** The basic idea is to do a nested loop, one loop for each table in
3742** the FROM clause of a select. (INSERT and UPDATE statements are the
3743** same as a SELECT with only a single table in the FROM clause.) For
3744** example, if the SQL is this:
3745**
3746** SELECT * FROM t1, t2, t3 WHERE ...;
3747**
3748** Then the code generated is conceptually like the following:
3749**
3750** foreach row1 in t1 do \ Code generated
danielk19774adee202004-05-08 08:23:19 +00003751** foreach row2 in t2 do |-- by sqlite3WhereBegin()
drhc27a1ce2002-06-14 20:58:45 +00003752** foreach row3 in t3 do /
3753** ...
3754** end \ Code generated
danielk19774adee202004-05-08 08:23:19 +00003755** end |-- by sqlite3WhereEnd()
drhc27a1ce2002-06-14 20:58:45 +00003756** end /
3757**
drh29dda4a2005-07-21 18:23:20 +00003758** Note that the loops might not be nested in the order in which they
3759** appear in the FROM clause if a different order is better able to make
drh51147ba2005-07-23 22:59:55 +00003760** use of indices. Note also that when the IN operator appears in
3761** the WHERE clause, it might result in additional nested loops for
3762** scanning through all values on the right-hand side of the IN.
drh29dda4a2005-07-21 18:23:20 +00003763**
drhc27a1ce2002-06-14 20:58:45 +00003764** There are Btree cursors associated with each table. t1 uses cursor
drh6a3ea0e2003-05-02 14:32:12 +00003765** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
3766** And so forth. This routine generates code to open those VDBE cursors
danielk19774adee202004-05-08 08:23:19 +00003767** and sqlite3WhereEnd() generates the code to close them.
drhc27a1ce2002-06-14 20:58:45 +00003768**
drhe6f85e72004-12-25 01:03:13 +00003769** The code that sqlite3WhereBegin() generates leaves the cursors named
3770** in pTabList pointing at their appropriate entries. The [...] code
drhf0863fe2005-06-12 21:35:51 +00003771** can use OP_Column and OP_Rowid opcodes on these cursors to extract
drhe6f85e72004-12-25 01:03:13 +00003772** data from the various tables of the loop.
3773**
drhc27a1ce2002-06-14 20:58:45 +00003774** If the WHERE clause is empty, the foreach loops must each scan their
3775** entire tables. Thus a three-way join is an O(N^3) operation. But if
3776** the tables have indices and there are terms in the WHERE clause that
3777** refer to those indices, a complete table scan can be avoided and the
3778** code will run much faster. Most of the work of this routine is checking
3779** to see if there are indices that can be used to speed up the loop.
3780**
3781** Terms of the WHERE clause are also used to limit which rows actually
3782** make it to the "..." in the middle of the loop. After each "foreach",
3783** terms of the WHERE clause that use only terms in that loop and outer
3784** loops are evaluated and if false a jump is made around all subsequent
3785** inner loops (or around the "..." if the test occurs within the inner-
3786** most loop)
3787**
3788** OUTER JOINS
3789**
3790** An outer join of tables t1 and t2 is conceptally coded as follows:
3791**
3792** foreach row1 in t1 do
3793** flag = 0
3794** foreach row2 in t2 do
3795** start:
3796** ...
3797** flag = 1
3798** end
drhe3184742002-06-19 14:27:05 +00003799** if flag==0 then
3800** move the row2 cursor to a null row
3801** goto start
3802** fi
drhc27a1ce2002-06-14 20:58:45 +00003803** end
3804**
drhe3184742002-06-19 14:27:05 +00003805** ORDER BY CLAUSE PROCESSING
3806**
3807** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
3808** if there is one. If there is no ORDER BY clause or if this routine
3809** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
3810**
3811** If an index can be used so that the natural output order of the table
3812** scan is correct for the ORDER BY clause, then that index is used and
3813** *ppOrderBy is set to NULL. This is an optimization that prevents an
3814** unnecessary sort of the result set if an index appropriate for the
3815** ORDER BY clause already exists.
3816**
3817** If the where clause loops cannot be arranged to provide the correct
3818** output order, then the *ppOrderBy is unchanged.
drh75897232000-05-29 14:26:00 +00003819*/
danielk19774adee202004-05-08 08:23:19 +00003820WhereInfo *sqlite3WhereBegin(
danielk1977ed326d72004-11-16 15:50:19 +00003821 Parse *pParse, /* The parser context */
3822 SrcList *pTabList, /* A list of all tables to be scanned */
3823 Expr *pWhere, /* The WHERE clause */
danielk1977a9d1ccb2008-01-05 17:39:29 +00003824 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
drh336a5302009-04-24 15:46:21 +00003825 u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */
drh75897232000-05-29 14:26:00 +00003826){
3827 int i; /* Loop counter */
danielk1977be229652009-03-20 14:18:51 +00003828 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
drhc01a3c12009-12-16 22:10:49 +00003829 int nTabList; /* Number of elements in pTabList */
drh75897232000-05-29 14:26:00 +00003830 WhereInfo *pWInfo; /* Will become the return value of this function */
3831 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
drhfe05af82005-07-21 03:14:59 +00003832 Bitmask notReady; /* Cursors that are not yet positioned */
drh111a6a72008-12-21 03:51:16 +00003833 WhereMaskSet *pMaskSet; /* The expression mask set */
drh111a6a72008-12-21 03:51:16 +00003834 WhereClause *pWC; /* Decomposition of the WHERE clause */
drh9012bcb2004-12-19 00:11:35 +00003835 struct SrcList_item *pTabItem; /* A single entry from pTabList */
3836 WhereLevel *pLevel; /* A single level in the pWInfo list */
drh29dda4a2005-07-21 18:23:20 +00003837 int iFrom; /* First unused FROM clause element */
drh111a6a72008-12-21 03:51:16 +00003838 int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */
drh17435752007-08-16 04:30:38 +00003839 sqlite3 *db; /* Database connection */
drh75897232000-05-29 14:26:00 +00003840
drh29dda4a2005-07-21 18:23:20 +00003841 /* The number of tables in the FROM clause is limited by the number of
drh1398ad32005-01-19 23:24:50 +00003842 ** bits in a Bitmask
3843 */
drh67ae0cb2010-04-08 14:38:51 +00003844 testcase( pTabList->nSrc==BMS );
drh29dda4a2005-07-21 18:23:20 +00003845 if( pTabList->nSrc>BMS ){
3846 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
drh1398ad32005-01-19 23:24:50 +00003847 return 0;
3848 }
3849
drhc01a3c12009-12-16 22:10:49 +00003850 /* This function normally generates a nested loop for all tables in
3851 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should
3852 ** only generate code for the first table in pTabList and assume that
3853 ** any cursors associated with subsequent tables are uninitialized.
3854 */
3855 nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
3856
drh75897232000-05-29 14:26:00 +00003857 /* Allocate and initialize the WhereInfo structure that will become the
danielk1977be229652009-03-20 14:18:51 +00003858 ** return value. A single allocation is used to store the WhereInfo
3859 ** struct, the contents of WhereInfo.a[], the WhereClause structure
3860 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
3861 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
3862 ** some architectures. Hence the ROUND8() below.
drh75897232000-05-29 14:26:00 +00003863 */
drh17435752007-08-16 04:30:38 +00003864 db = pParse->db;
drhc01a3c12009-12-16 22:10:49 +00003865 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
danielk1977be229652009-03-20 14:18:51 +00003866 pWInfo = sqlite3DbMallocZero(db,
3867 nByteWInfo +
3868 sizeof(WhereClause) +
3869 sizeof(WhereMaskSet)
3870 );
drh17435752007-08-16 04:30:38 +00003871 if( db->mallocFailed ){
drh8b307fb2010-04-06 15:57:05 +00003872 sqlite3DbFree(db, pWInfo);
3873 pWInfo = 0;
danielk197785574e32008-10-06 05:32:18 +00003874 goto whereBeginError;
drh75897232000-05-29 14:26:00 +00003875 }
drhc01a3c12009-12-16 22:10:49 +00003876 pWInfo->nLevel = nTabList;
drh75897232000-05-29 14:26:00 +00003877 pWInfo->pParse = pParse;
3878 pWInfo->pTabList = pTabList;
danielk19774adee202004-05-08 08:23:19 +00003879 pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
danielk1977be229652009-03-20 14:18:51 +00003880 pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
drh6df2acd2008-12-28 16:55:25 +00003881 pWInfo->wctrlFlags = wctrlFlags;
drh8b307fb2010-04-06 15:57:05 +00003882 pWInfo->savedNQueryLoop = pParse->nQueryLoop;
drh111a6a72008-12-21 03:51:16 +00003883 pMaskSet = (WhereMaskSet*)&pWC[1];
drh08192d52002-04-30 19:20:28 +00003884
drh111a6a72008-12-21 03:51:16 +00003885 /* Split the WHERE clause into separate subexpressions where each
3886 ** subexpression is separated by an AND operator.
3887 */
3888 initMaskSet(pMaskSet);
3889 whereClauseInit(pWC, pParse, pMaskSet);
3890 sqlite3ExprCodeConstants(pParse, pWhere);
3891 whereSplit(pWC, pWhere, TK_AND);
3892
drh08192d52002-04-30 19:20:28 +00003893 /* Special case: a WHERE clause that is constant. Evaluate the
3894 ** expression and either jump over all of the code or fall thru.
3895 */
drhc01a3c12009-12-16 22:10:49 +00003896 if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
drh35573352008-01-08 23:54:25 +00003897 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
drhdf199a22002-06-14 22:38:41 +00003898 pWhere = 0;
drh08192d52002-04-30 19:20:28 +00003899 }
drh75897232000-05-29 14:26:00 +00003900
drh42165be2008-03-26 14:56:34 +00003901 /* Assign a bit from the bitmask to every term in the FROM clause.
3902 **
3903 ** When assigning bitmask values to FROM clause cursors, it must be
3904 ** the case that if X is the bitmask for the N-th FROM clause term then
3905 ** the bitmask for all FROM clause terms to the left of the N-th term
3906 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
3907 ** its Expr.iRightJoinTable value to find the bitmask of the right table
3908 ** of the join. Subtracting one from the right table bitmask gives a
3909 ** bitmask for all tables to the left of the join. Knowing the bitmask
3910 ** for all tables to the left of a left join is important. Ticket #3015.
danielk1977e672c8e2009-05-22 15:43:26 +00003911 **
3912 ** Configure the WhereClause.vmask variable so that bits that correspond
3913 ** to virtual table cursors are set. This is used to selectively disable
3914 ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful
3915 ** with virtual tables.
drhc01a3c12009-12-16 22:10:49 +00003916 **
3917 ** Note that bitmasks are created for all pTabList->nSrc tables in
3918 ** pTabList, not just the first nTabList tables. nTabList is normally
3919 ** equal to pTabList->nSrc but might be shortened to 1 if the
3920 ** WHERE_ONETABLE_ONLY flag is set.
drh42165be2008-03-26 14:56:34 +00003921 */
danielk1977e672c8e2009-05-22 15:43:26 +00003922 assert( pWC->vmask==0 && pMaskSet->n==0 );
drh42165be2008-03-26 14:56:34 +00003923 for(i=0; i<pTabList->nSrc; i++){
drh111a6a72008-12-21 03:51:16 +00003924 createMask(pMaskSet, pTabList->a[i].iCursor);
shanee26fa4c2009-06-16 14:15:22 +00003925#ifndef SQLITE_OMIT_VIRTUALTABLE
drh2c1a0c52009-06-11 17:04:28 +00003926 if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
danielk1977e672c8e2009-05-22 15:43:26 +00003927 pWC->vmask |= ((Bitmask)1 << i);
3928 }
shanee26fa4c2009-06-16 14:15:22 +00003929#endif
drh42165be2008-03-26 14:56:34 +00003930 }
3931#ifndef NDEBUG
3932 {
3933 Bitmask toTheLeft = 0;
3934 for(i=0; i<pTabList->nSrc; i++){
drh111a6a72008-12-21 03:51:16 +00003935 Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor);
drh42165be2008-03-26 14:56:34 +00003936 assert( (m-1)==toTheLeft );
3937 toTheLeft |= m;
3938 }
3939 }
3940#endif
3941
drh29dda4a2005-07-21 18:23:20 +00003942 /* Analyze all of the subexpressions. Note that exprAnalyze() might
3943 ** add new virtual terms onto the end of the WHERE clause. We do not
3944 ** want to analyze these virtual terms, so start analyzing at the end
drhb6fb62d2005-09-20 08:47:20 +00003945 ** and work forward so that the added virtual terms are never processed.
drh75897232000-05-29 14:26:00 +00003946 */
drh111a6a72008-12-21 03:51:16 +00003947 exprAnalyzeAll(pTabList, pWC);
drh17435752007-08-16 04:30:38 +00003948 if( db->mallocFailed ){
danielk197785574e32008-10-06 05:32:18 +00003949 goto whereBeginError;
drh0bbaa1b2005-08-19 19:14:12 +00003950 }
drh75897232000-05-29 14:26:00 +00003951
drh29dda4a2005-07-21 18:23:20 +00003952 /* Chose the best index to use for each table in the FROM clause.
3953 **
drh51147ba2005-07-23 22:59:55 +00003954 ** This loop fills in the following fields:
3955 **
3956 ** pWInfo->a[].pIdx The index to use for this level of the loop.
drh165be382008-12-05 02:36:33 +00003957 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx
drh51147ba2005-07-23 22:59:55 +00003958 ** pWInfo->a[].nEq The number of == and IN constraints
danielk197785574e32008-10-06 05:32:18 +00003959 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded
drh51147ba2005-07-23 22:59:55 +00003960 ** pWInfo->a[].iTabCur The VDBE cursor for the database table
3961 ** pWInfo->a[].iIdxCur The VDBE cursor for the index
drh111a6a72008-12-21 03:51:16 +00003962 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term
drh51147ba2005-07-23 22:59:55 +00003963 **
3964 ** This loop also figures out the nesting order of tables in the FROM
3965 ** clause.
drh75897232000-05-29 14:26:00 +00003966 */
drhfe05af82005-07-21 03:14:59 +00003967 notReady = ~(Bitmask)0;
drh9012bcb2004-12-19 00:11:35 +00003968 pTabItem = pTabList->a;
3969 pLevel = pWInfo->a;
drh943af3c2005-07-29 19:43:58 +00003970 andFlags = ~0;
drh4f0c5872007-03-26 22:05:01 +00003971 WHERETRACE(("*** Optimizer Start ***\n"));
drhc01a3c12009-12-16 22:10:49 +00003972 for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
drh111a6a72008-12-21 03:51:16 +00003973 WhereCost bestPlan; /* Most efficient plan seen so far */
drh29dda4a2005-07-21 18:23:20 +00003974 Index *pIdx; /* Index for FROM table at pTabItem */
drh29dda4a2005-07-21 18:23:20 +00003975 int j; /* For looping over FROM tables */
dan5236ac12009-08-13 07:09:33 +00003976 int bestJ = -1; /* The value of j */
drh29dda4a2005-07-21 18:23:20 +00003977 Bitmask m; /* Bitmask value for j or bestJ */
dan5236ac12009-08-13 07:09:33 +00003978 int isOptimal; /* Iterator for optimal/non-optimal search */
drh29dda4a2005-07-21 18:23:20 +00003979
drh111a6a72008-12-21 03:51:16 +00003980 memset(&bestPlan, 0, sizeof(bestPlan));
3981 bestPlan.rCost = SQLITE_BIG_DBL;
drhdf26fd52006-06-06 11:45:54 +00003982
dan5236ac12009-08-13 07:09:33 +00003983 /* Loop through the remaining entries in the FROM clause to find the
3984 ** next nested loop. The FROM clause entries may be iterated through
3985 ** either once or twice.
3986 **
3987 ** The first iteration, which is always performed, searches for the
3988 ** FROM clause entry that permits the lowest-cost, "optimal" scan. In
3989 ** this context an optimal scan is one that uses the same strategy
3990 ** for the given FROM clause entry as would be selected if the entry
drhd0015162009-08-21 13:22:25 +00003991 ** were used as the innermost nested loop. In other words, a table
3992 ** is chosen such that the cost of running that table cannot be reduced
3993 ** by waiting for other tables to run first.
dan5236ac12009-08-13 07:09:33 +00003994 **
3995 ** The second iteration is only performed if no optimal scan strategies
3996 ** were found by the first. This iteration is used to search for the
3997 ** lowest cost scan overall.
3998 **
3999 ** Previous versions of SQLite performed only the second iteration -
4000 ** the next outermost loop was always that with the lowest overall
4001 ** cost. However, this meant that SQLite could select the wrong plan
4002 ** for scripts such as the following:
4003 **
4004 ** CREATE TABLE t1(a, b);
4005 ** CREATE TABLE t2(c, d);
4006 ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
4007 **
4008 ** The best strategy is to iterate through table t1 first. However it
4009 ** is not possible to determine this with a simple greedy algorithm.
4010 ** However, since the cost of a linear scan through table t2 is the same
4011 ** as the cost of a linear scan through table t1, a simple greedy
4012 ** algorithm may choose to use t2 for the outer loop, which is a much
4013 ** costlier approach.
4014 */
4015 for(isOptimal=1; isOptimal>=0 && bestJ<0; isOptimal--){
4016 Bitmask mask = (isOptimal ? 0 : notReady);
drhc01a3c12009-12-16 22:10:49 +00004017 assert( (nTabList-iFrom)>1 || isOptimal );
4018 for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){
dan5236ac12009-08-13 07:09:33 +00004019 int doNotReorder; /* True if this table should not be reordered */
4020 WhereCost sCost; /* Cost information from best[Virtual]Index() */
4021 ExprList *pOrderBy; /* ORDER BY clause for index to optimize */
4022
4023 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
4024 if( j!=iFrom && doNotReorder ) break;
4025 m = getMask(pMaskSet, pTabItem->iCursor);
4026 if( (m & notReady)==0 ){
4027 if( j==iFrom ) iFrom++;
4028 continue;
4029 }
4030 pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
4031
4032 assert( pTabItem->pTab );
drh9eff6162006-06-12 21:59:13 +00004033#ifndef SQLITE_OMIT_VIRTUALTABLE
dan5236ac12009-08-13 07:09:33 +00004034 if( IsVirtual(pTabItem->pTab) ){
4035 sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
4036 bestVirtualIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost, pp);
4037 }else
drh9eff6162006-06-12 21:59:13 +00004038#endif
dan5236ac12009-08-13 07:09:33 +00004039 {
4040 bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost);
4041 }
4042 assert( isOptimal || (sCost.used&notReady)==0 );
4043
4044 if( (sCost.used&notReady)==0
4045 && (j==iFrom || sCost.rCost<bestPlan.rCost)
4046 ){
4047 bestPlan = sCost;
4048 bestJ = j;
4049 }
4050 if( doNotReorder ) break;
drh9eff6162006-06-12 21:59:13 +00004051 }
drh29dda4a2005-07-21 18:23:20 +00004052 }
dan5236ac12009-08-13 07:09:33 +00004053 assert( bestJ>=0 );
danielk1977992347f2008-12-30 09:45:45 +00004054 assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
drhcb041342008-06-12 00:07:29 +00004055 WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ,
drh3dec2232005-09-10 15:28:09 +00004056 pLevel-pWInfo->a));
drh111a6a72008-12-21 03:51:16 +00004057 if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){
drhfe05af82005-07-21 03:14:59 +00004058 *ppOrderBy = 0;
drhc4a3c772001-04-04 11:48:57 +00004059 }
drh111a6a72008-12-21 03:51:16 +00004060 andFlags &= bestPlan.plan.wsFlags;
4061 pLevel->plan = bestPlan.plan;
drh8b307fb2010-04-06 15:57:05 +00004062 testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
4063 testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
4064 if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
drh9012bcb2004-12-19 00:11:35 +00004065 pLevel->iIdxCur = pParse->nTab++;
drhfe05af82005-07-21 03:14:59 +00004066 }else{
4067 pLevel->iIdxCur = -1;
drh6b563442001-11-07 16:48:26 +00004068 }
drh111a6a72008-12-21 03:51:16 +00004069 notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
shaned87897d2009-01-30 05:40:27 +00004070 pLevel->iFrom = (u8)bestJ;
drh8b307fb2010-04-06 15:57:05 +00004071 if( bestPlan.nRow>=(double)1 ) pParse->nQueryLoop *= bestPlan.nRow;
danielk197785574e32008-10-06 05:32:18 +00004072
4073 /* Check that if the table scanned by this loop iteration had an
4074 ** INDEXED BY clause attached to it, that the named index is being
4075 ** used for the scan. If not, then query compilation has failed.
4076 ** Return an error.
4077 */
4078 pIdx = pTabList->a[bestJ].pIndex;
drh171256c2009-01-08 03:11:19 +00004079 if( pIdx ){
4080 if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
4081 sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
4082 goto whereBeginError;
4083 }else{
4084 /* If an INDEXED BY clause is used, the bestIndex() function is
4085 ** guaranteed to find the index specified in the INDEXED BY clause
4086 ** if it find an index at all. */
4087 assert( bestPlan.plan.u.pIdx==pIdx );
4088 }
danielk197785574e32008-10-06 05:32:18 +00004089 }
drh75897232000-05-29 14:26:00 +00004090 }
drh4f0c5872007-03-26 22:05:01 +00004091 WHERETRACE(("*** Optimizer Finished ***\n"));
danielk19771d461462009-04-21 09:02:45 +00004092 if( pParse->nErr || db->mallocFailed ){
danielk197780442942008-12-24 11:25:39 +00004093 goto whereBeginError;
4094 }
drh75897232000-05-29 14:26:00 +00004095
drh943af3c2005-07-29 19:43:58 +00004096 /* If the total query only selects a single row, then the ORDER BY
4097 ** clause is irrelevant.
4098 */
4099 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
4100 *ppOrderBy = 0;
4101 }
4102
drh08c88eb2008-04-10 13:33:18 +00004103 /* If the caller is an UPDATE or DELETE statement that is requesting
4104 ** to use a one-pass algorithm, determine if this is appropriate.
4105 ** The one-pass algorithm only works if the WHERE clause constraints
4106 ** the statement to update a single row.
4107 */
drh165be382008-12-05 02:36:33 +00004108 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4109 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
drh08c88eb2008-04-10 13:33:18 +00004110 pWInfo->okOnePass = 1;
drh111a6a72008-12-21 03:51:16 +00004111 pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
drh08c88eb2008-04-10 13:33:18 +00004112 }
4113
drh9012bcb2004-12-19 00:11:35 +00004114 /* Open all tables in the pTabList and any indices selected for
4115 ** searching those tables.
4116 */
4117 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
drh8b307fb2010-04-06 15:57:05 +00004118 notReady = ~(Bitmask)0;
drhc01a3c12009-12-16 22:10:49 +00004119 for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
danielk1977da184232006-01-05 11:34:32 +00004120 Table *pTab; /* Table to open */
danielk1977da184232006-01-05 11:34:32 +00004121 int iDb; /* Index of database containing table/index */
drh9012bcb2004-12-19 00:11:35 +00004122
drhecc92422005-09-10 16:46:12 +00004123#ifndef SQLITE_OMIT_EXPLAIN
4124 if( pParse->explain==2 ){
4125 char *zMsg;
4126 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
danielk19771e536952007-08-16 10:09:01 +00004127 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
drhecc92422005-09-10 16:46:12 +00004128 if( pItem->zAlias ){
drh633e6d52008-07-28 19:34:53 +00004129 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
drhecc92422005-09-10 16:46:12 +00004130 }
drh8b307fb2010-04-06 15:57:05 +00004131 if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
4132 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH AUTOMATIC INDEX", zMsg);
4133 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
drh111a6a72008-12-21 03:51:16 +00004134 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s",
4135 zMsg, pLevel->plan.u.pIdx->zName);
drh46129af2008-12-30 16:18:47 +00004136 }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
4137 zMsg = sqlite3MAppendf(db, zMsg, "%s VIA MULTI-INDEX UNION", zMsg);
drh111a6a72008-12-21 03:51:16 +00004138 }else if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
drh633e6d52008-07-28 19:34:53 +00004139 zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg);
drhecc92422005-09-10 16:46:12 +00004140 }
drh9eff6162006-06-12 21:59:13 +00004141#ifndef SQLITE_OMIT_VIRTUALTABLE
drh111a6a72008-12-21 03:51:16 +00004142 else if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4143 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
drh633e6d52008-07-28 19:34:53 +00004144 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
drh111a6a72008-12-21 03:51:16 +00004145 pVtabIdx->idxNum, pVtabIdx->idxStr);
drh9eff6162006-06-12 21:59:13 +00004146 }
4147#endif
drh111a6a72008-12-21 03:51:16 +00004148 if( pLevel->plan.wsFlags & WHERE_ORDERBY ){
drh633e6d52008-07-28 19:34:53 +00004149 zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg);
drhe2b39092006-04-21 09:38:36 +00004150 }
drh66a51672008-01-03 00:01:23 +00004151 sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
drhecc92422005-09-10 16:46:12 +00004152 }
4153#endif /* SQLITE_OMIT_EXPLAIN */
drh29dda4a2005-07-21 18:23:20 +00004154 pTabItem = &pTabList->a[pLevel->iFrom];
drh9012bcb2004-12-19 00:11:35 +00004155 pTab = pTabItem->pTab;
drh424aab82010-04-06 18:28:20 +00004156 pLevel->iTabCur = pTabItem->iCursor;
danielk1977595a5232009-07-24 17:58:53 +00004157 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
drh424aab82010-04-06 18:28:20 +00004158 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
drh75bb9f52010-04-06 18:51:42 +00004159 /* Do nothing */
4160 }else
drh9eff6162006-06-12 21:59:13 +00004161#ifndef SQLITE_OMIT_VIRTUALTABLE
drh111a6a72008-12-21 03:51:16 +00004162 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
danielk1977595a5232009-07-24 17:58:53 +00004163 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
danielk197793626f42006-06-20 13:07:27 +00004164 int iCur = pTabItem->iCursor;
danielk1977595a5232009-07-24 17:58:53 +00004165 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
drh9eff6162006-06-12 21:59:13 +00004166 }else
4167#endif
drh6df2acd2008-12-28 16:55:25 +00004168 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4169 && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){
drh08c88eb2008-04-10 13:33:18 +00004170 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
4171 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
drh67ae0cb2010-04-08 14:38:51 +00004172 testcase( pTab->nCol==BMS-1 );
4173 testcase( pTab->nCol==BMS );
danielk197723432972008-11-17 16:42:00 +00004174 if( !pWInfo->okOnePass && pTab->nCol<BMS ){
danielk19779792eef2006-01-13 15:58:43 +00004175 Bitmask b = pTabItem->colUsed;
4176 int n = 0;
drh74161702006-02-24 02:53:49 +00004177 for(; b; b=b>>1, n++){}
drh8cff69d2009-11-12 19:59:44 +00004178 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1,
4179 SQLITE_INT_TO_PTR(n), P4_INT32);
danielk19779792eef2006-01-13 15:58:43 +00004180 assert( n<=pTab->nCol );
4181 }
danielk1977c00da102006-01-07 13:21:04 +00004182 }else{
4183 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
drh9012bcb2004-12-19 00:11:35 +00004184 }
drhc6339082010-04-07 16:54:58 +00004185#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
drh8b307fb2010-04-06 15:57:05 +00004186 if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
drhc6339082010-04-07 16:54:58 +00004187 constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel);
4188 }else
4189#endif
4190 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
drh111a6a72008-12-21 03:51:16 +00004191 Index *pIx = pLevel->plan.u.pIdx;
danielk1977b3bf5562006-01-10 17:58:23 +00004192 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
drh111a6a72008-12-21 03:51:16 +00004193 int iIdxCur = pLevel->iIdxCur;
danielk1977da184232006-01-05 11:34:32 +00004194 assert( pIx->pSchema==pTab->pSchema );
drh111a6a72008-12-21 03:51:16 +00004195 assert( iIdxCur>=0 );
danielk1977207872a2008-01-03 07:54:23 +00004196 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
drh66a51672008-01-03 00:01:23 +00004197 (char*)pKey, P4_KEYINFO_HANDOFF);
danielk1977207872a2008-01-03 07:54:23 +00004198 VdbeComment((v, "%s", pIx->zName));
drh9012bcb2004-12-19 00:11:35 +00004199 }
danielk1977da184232006-01-05 11:34:32 +00004200 sqlite3CodeVerifySchema(pParse, iDb);
drh8b307fb2010-04-06 15:57:05 +00004201 notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor);
drh9012bcb2004-12-19 00:11:35 +00004202 }
4203 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
drha21a64d2010-04-06 22:33:55 +00004204 if( db->mallocFailed ) goto whereBeginError;
drh9012bcb2004-12-19 00:11:35 +00004205
drh29dda4a2005-07-21 18:23:20 +00004206 /* Generate the code to do the search. Each iteration of the for
4207 ** loop below generates code for a single nested loop of the VM
4208 ** program.
drh75897232000-05-29 14:26:00 +00004209 */
drhfe05af82005-07-21 03:14:59 +00004210 notReady = ~(Bitmask)0;
drhc01a3c12009-12-16 22:10:49 +00004211 for(i=0; i<nTabList; i++){
drh111a6a72008-12-21 03:51:16 +00004212 notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady);
drh813f31e2009-01-06 00:08:02 +00004213 pWInfo->iContinue = pWInfo->a[i].addrCont;
drh75897232000-05-29 14:26:00 +00004214 }
drh7ec764a2005-07-21 03:48:20 +00004215
4216#ifdef SQLITE_TEST /* For testing and debugging use only */
4217 /* Record in the query plan information about the current table
4218 ** and the index used to access it (if any). If the table itself
4219 ** is not used, its name is just '{}'. If no index is used
4220 ** the index is listed as "{}". If the primary key is used the
4221 ** index name is '*'.
4222 */
drhc01a3c12009-12-16 22:10:49 +00004223 for(i=0; i<nTabList; i++){
drh7ec764a2005-07-21 03:48:20 +00004224 char *z;
4225 int n;
drh7ec764a2005-07-21 03:48:20 +00004226 pLevel = &pWInfo->a[i];
drh29dda4a2005-07-21 18:23:20 +00004227 pTabItem = &pTabList->a[pLevel->iFrom];
drh7ec764a2005-07-21 03:48:20 +00004228 z = pTabItem->zAlias;
4229 if( z==0 ) z = pTabItem->pTab->zName;
drhea678832008-12-10 19:26:22 +00004230 n = sqlite3Strlen30(z);
drh7ec764a2005-07-21 03:48:20 +00004231 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
drh111a6a72008-12-21 03:51:16 +00004232 if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){
drh5bb3eb92007-05-04 13:15:55 +00004233 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
drh7ec764a2005-07-21 03:48:20 +00004234 nQPlan += 2;
4235 }else{
drh5bb3eb92007-05-04 13:15:55 +00004236 memcpy(&sqlite3_query_plan[nQPlan], z, n);
drh7ec764a2005-07-21 03:48:20 +00004237 nQPlan += n;
4238 }
4239 sqlite3_query_plan[nQPlan++] = ' ';
4240 }
drh111a6a72008-12-21 03:51:16 +00004241 testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ );
4242 testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE );
4243 if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
drh5bb3eb92007-05-04 13:15:55 +00004244 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
drh7ec764a2005-07-21 03:48:20 +00004245 nQPlan += 2;
drh111a6a72008-12-21 03:51:16 +00004246 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
4247 n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
drh7ec764a2005-07-21 03:48:20 +00004248 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
drh111a6a72008-12-21 03:51:16 +00004249 memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
drh7ec764a2005-07-21 03:48:20 +00004250 nQPlan += n;
4251 sqlite3_query_plan[nQPlan++] = ' ';
4252 }
drh111a6a72008-12-21 03:51:16 +00004253 }else{
4254 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
4255 nQPlan += 3;
drh7ec764a2005-07-21 03:48:20 +00004256 }
4257 }
4258 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
4259 sqlite3_query_plan[--nQPlan] = 0;
4260 }
4261 sqlite3_query_plan[nQPlan] = 0;
4262 nQPlan = 0;
4263#endif /* SQLITE_TEST // Testing and debugging use only */
4264
drh29dda4a2005-07-21 18:23:20 +00004265 /* Record the continuation address in the WhereInfo structure. Then
4266 ** clean up and return.
4267 */
drh75897232000-05-29 14:26:00 +00004268 return pWInfo;
drhe23399f2005-07-22 00:31:39 +00004269
4270 /* Jump here if malloc fails */
danielk197785574e32008-10-06 05:32:18 +00004271whereBeginError:
drh8b307fb2010-04-06 15:57:05 +00004272 if( pWInfo ){
4273 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4274 whereInfoFree(db, pWInfo);
4275 }
drhe23399f2005-07-22 00:31:39 +00004276 return 0;
drh75897232000-05-29 14:26:00 +00004277}
4278
4279/*
drhc27a1ce2002-06-14 20:58:45 +00004280** Generate the end of the WHERE loop. See comments on
danielk19774adee202004-05-08 08:23:19 +00004281** sqlite3WhereBegin() for additional information.
drh75897232000-05-29 14:26:00 +00004282*/
danielk19774adee202004-05-08 08:23:19 +00004283void sqlite3WhereEnd(WhereInfo *pWInfo){
drh633e6d52008-07-28 19:34:53 +00004284 Parse *pParse = pWInfo->pParse;
4285 Vdbe *v = pParse->pVdbe;
drh19a775c2000-06-05 18:54:46 +00004286 int i;
drh6b563442001-11-07 16:48:26 +00004287 WhereLevel *pLevel;
drhad3cab52002-05-24 02:04:32 +00004288 SrcList *pTabList = pWInfo->pTabList;
drh633e6d52008-07-28 19:34:53 +00004289 sqlite3 *db = pParse->db;
drh19a775c2000-06-05 18:54:46 +00004290
drh9012bcb2004-12-19 00:11:35 +00004291 /* Generate loop termination code.
4292 */
drhceea3322009-04-23 13:22:42 +00004293 sqlite3ExprCacheClear(pParse);
drhc01a3c12009-12-16 22:10:49 +00004294 for(i=pWInfo->nLevel-1; i>=0; i--){
drh6b563442001-11-07 16:48:26 +00004295 pLevel = &pWInfo->a[i];
drhb3190c12008-12-08 21:37:14 +00004296 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
drh6b563442001-11-07 16:48:26 +00004297 if( pLevel->op!=OP_Noop ){
drh66a51672008-01-03 00:01:23 +00004298 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
drhd1d38482008-10-07 23:46:38 +00004299 sqlite3VdbeChangeP5(v, pLevel->p5);
drh19a775c2000-06-05 18:54:46 +00004300 }
drh111a6a72008-12-21 03:51:16 +00004301 if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
drh72e8fa42007-03-28 14:30:06 +00004302 struct InLoop *pIn;
drhe23399f2005-07-22 00:31:39 +00004303 int j;
drhb3190c12008-12-08 21:37:14 +00004304 sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
drh111a6a72008-12-21 03:51:16 +00004305 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
drhb3190c12008-12-08 21:37:14 +00004306 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
4307 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
4308 sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
drhe23399f2005-07-22 00:31:39 +00004309 }
drh111a6a72008-12-21 03:51:16 +00004310 sqlite3DbFree(db, pLevel->u.in.aInLoop);
drhd99f7062002-06-08 23:25:08 +00004311 }
drhb3190c12008-12-08 21:37:14 +00004312 sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
drhad2d8302002-05-24 20:31:36 +00004313 if( pLevel->iLeftJoin ){
4314 int addr;
drh3c84ddf2008-01-09 02:15:38 +00004315 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
drh35451c62009-11-12 04:26:39 +00004316 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4317 || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 );
4318 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
4319 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
4320 }
drh9012bcb2004-12-19 00:11:35 +00004321 if( pLevel->iIdxCur>=0 ){
drh3c84ddf2008-01-09 02:15:38 +00004322 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
drh7f09b3e2002-08-13 13:15:49 +00004323 }
drh336a5302009-04-24 15:46:21 +00004324 if( pLevel->op==OP_Return ){
4325 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
4326 }else{
4327 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
4328 }
drhd654be82005-09-20 17:42:23 +00004329 sqlite3VdbeJumpHere(v, addr);
drhad2d8302002-05-24 20:31:36 +00004330 }
drh19a775c2000-06-05 18:54:46 +00004331 }
drh9012bcb2004-12-19 00:11:35 +00004332
4333 /* The "break" point is here, just past the end of the outer loop.
4334 ** Set it.
4335 */
danielk19774adee202004-05-08 08:23:19 +00004336 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
drh9012bcb2004-12-19 00:11:35 +00004337
drh29dda4a2005-07-21 18:23:20 +00004338 /* Close all of the cursors that were opened by sqlite3WhereBegin.
drh9012bcb2004-12-19 00:11:35 +00004339 */
drhc01a3c12009-12-16 22:10:49 +00004340 assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
4341 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
drh29dda4a2005-07-21 18:23:20 +00004342 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
drh9012bcb2004-12-19 00:11:35 +00004343 Table *pTab = pTabItem->pTab;
drh5cf590c2003-04-24 01:45:04 +00004344 assert( pTab!=0 );
drh4139c992010-04-07 14:59:45 +00004345 if( (pTab->tabFlags & TF_Ephemeral)==0
4346 && pTab->pSelect==0
4347 && (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0
4348 ){
drh8b307fb2010-04-06 15:57:05 +00004349 int ws = pLevel->plan.wsFlags;
4350 if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
drh6df2acd2008-12-28 16:55:25 +00004351 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
4352 }
drhf12cde52010-04-08 17:28:00 +00004353 if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){
drh6df2acd2008-12-28 16:55:25 +00004354 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
4355 }
drh9012bcb2004-12-19 00:11:35 +00004356 }
4357
danielk197721de2e72007-11-29 17:43:27 +00004358 /* If this scan uses an index, make code substitutions to read data
4359 ** from the index in preference to the table. Sometimes, this means
4360 ** the table need never be read from. This is a performance boost,
4361 ** as the vdbe level waits until the table is read before actually
4362 ** seeking the table cursor to the record corresponding to the current
4363 ** position in the index.
drh9012bcb2004-12-19 00:11:35 +00004364 **
4365 ** Calls to the code generator in between sqlite3WhereBegin and
4366 ** sqlite3WhereEnd will have created code that references the table
4367 ** directly. This loop scans all that code looking for opcodes
4368 ** that reference the table and converts them into opcodes that
4369 ** reference the index.
4370 */
drh125feff2009-06-06 15:17:27 +00004371 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){
danielk1977f0113002006-01-24 12:09:17 +00004372 int k, j, last;
drh9012bcb2004-12-19 00:11:35 +00004373 VdbeOp *pOp;
drh111a6a72008-12-21 03:51:16 +00004374 Index *pIdx = pLevel->plan.u.pIdx;
drh9012bcb2004-12-19 00:11:35 +00004375
4376 assert( pIdx!=0 );
4377 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
4378 last = sqlite3VdbeCurrentAddr(v);
danielk1977f0113002006-01-24 12:09:17 +00004379 for(k=pWInfo->iTop; k<last; k++, pOp++){
drh9012bcb2004-12-19 00:11:35 +00004380 if( pOp->p1!=pLevel->iTabCur ) continue;
4381 if( pOp->opcode==OP_Column ){
drh9012bcb2004-12-19 00:11:35 +00004382 for(j=0; j<pIdx->nColumn; j++){
4383 if( pOp->p2==pIdx->aiColumn[j] ){
4384 pOp->p2 = j;
danielk197721de2e72007-11-29 17:43:27 +00004385 pOp->p1 = pLevel->iIdxCur;
drh9012bcb2004-12-19 00:11:35 +00004386 break;
4387 }
4388 }
drh35451c62009-11-12 04:26:39 +00004389 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4390 || j<pIdx->nColumn );
drhf0863fe2005-06-12 21:35:51 +00004391 }else if( pOp->opcode==OP_Rowid ){
drh9012bcb2004-12-19 00:11:35 +00004392 pOp->p1 = pLevel->iIdxCur;
drhf0863fe2005-06-12 21:35:51 +00004393 pOp->opcode = OP_IdxRowid;
drh9012bcb2004-12-19 00:11:35 +00004394 }
4395 }
drh6b563442001-11-07 16:48:26 +00004396 }
drh19a775c2000-06-05 18:54:46 +00004397 }
drh9012bcb2004-12-19 00:11:35 +00004398
4399 /* Final cleanup
4400 */
drhf12cde52010-04-08 17:28:00 +00004401 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4402 whereInfoFree(db, pWInfo);
drh75897232000-05-29 14:26:00 +00004403 return;
4404}