| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains code for implementations of the r-tree and r*-tree |
| ** algorithms packaged as an SQLite virtual table module. |
| ** |
| ** $Id: rtree.c,v 1.1 2008/05/26 18:41:54 danielk1977 Exp $ |
| */ |
| |
| #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE) |
| |
| /* |
| ** This file contains an implementation of a couple of different variants |
| ** of the r-tree algorithm. See the README file for further details. The |
| ** same data-structure is used for all, but the algorithms for insert and |
| ** delete operations vary. The variants used are selected at compile time |
| ** by defining the following symbols: |
| */ |
| |
| /* Either, both or none of the following may be set to activate |
| ** r*tree variant algorithms. |
| */ |
| #define VARIANT_RSTARTREE_CHOOSESUBTREE 0 |
| #define VARIANT_RSTARTREE_REINSERT 1 |
| |
| /* |
| ** Exactly one of the following must be set to 1. |
| */ |
| #define VARIANT_GUTTMAN_QUADRATIC_SPLIT 0 |
| #define VARIANT_GUTTMAN_LINEAR_SPLIT 0 |
| #define VARIANT_RSTARTREE_SPLIT 1 |
| |
| #define VARIANT_GUTTMAN_SPLIT \ |
| (VARIANT_GUTTMAN_LINEAR_SPLIT||VARIANT_GUTTMAN_QUADRATIC_SPLIT) |
| |
| #if VARIANT_GUTTMAN_QUADRATIC_SPLIT |
| #define PickNext QuadraticPickNext |
| #define PickSeeds QuadraticPickSeeds |
| #define AssignCells splitNodeGuttman |
| #endif |
| #if VARIANT_GUTTMAN_LINEAR_SPLIT |
| #define PickNext LinearPickNext |
| #define PickSeeds LinearPickSeeds |
| #define AssignCells splitNodeGuttman |
| #endif |
| #if VARIANT_RSTARTREE_SPLIT |
| #define AssignCells splitNodeStartree |
| #endif |
| |
| |
| #ifndef SQLITE_CORE |
| #include "sqlite3ext.h" |
| SQLITE_EXTENSION_INIT1 |
| #else |
| #include "sqlite3.h" |
| #endif |
| |
| #include <string.h> |
| #include <assert.h> |
| |
| typedef sqlite3_int64 i64; |
| typedef unsigned char u8; |
| typedef unsigned int u32; |
| |
| typedef struct Rtree Rtree; |
| typedef struct RtreeCursor RtreeCursor; |
| typedef struct RtreeNode RtreeNode; |
| typedef struct RtreeCell RtreeCell; |
| typedef struct RtreeConstraint RtreeConstraint; |
| |
| /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ |
| #define RTREE_MAX_DIMENSIONS 5 |
| |
| /* Size of hash table Rtree.aHash. This hash table is not expected to |
| ** ever contain very many entries, so a fixed number of buckets is |
| ** used. |
| */ |
| #define HASHSIZE 128 |
| |
| /* |
| ** An rtree virtual-table object. |
| */ |
| struct Rtree { |
| sqlite3_vtab base; |
| sqlite3 *db; /* Host database connection */ |
| int iNodeSize; /* Size in bytes of each node in the node table */ |
| int nDim; /* Number of dimensions */ |
| int nBytesPerCell; /* Bytes consumed per cell */ |
| int iDepth; /* Current depth of the r-tree structure */ |
| char *zDb; /* Name of database containing r-tree table */ |
| char *zName; /* Name of r-tree table */ |
| RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ |
| int nBusy; /* Current number of users of this structure */ |
| |
| /* List of nodes removed during a CondenseTree operation. List is |
| ** linked together via the pointer normally used for hash chains - |
| ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree |
| ** headed by the node (leaf nodes have RtreeNode.iNode==0). |
| */ |
| RtreeNode *pDeleted; |
| int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */ |
| |
| /* Statements to read/write/delete a record from xxx_node */ |
| sqlite3_stmt *pReadNode; |
| sqlite3_stmt *pWriteNode; |
| sqlite3_stmt *pDeleteNode; |
| |
| /* Statements to read/write/delete a record from xxx_rowid */ |
| sqlite3_stmt *pReadRowid; |
| sqlite3_stmt *pWriteRowid; |
| sqlite3_stmt *pDeleteRowid; |
| |
| /* Statements to read/write/delete a record from xxx_parent */ |
| sqlite3_stmt *pReadParent; |
| sqlite3_stmt *pWriteParent; |
| sqlite3_stmt *pDeleteParent; |
| }; |
| |
| /* |
| ** The minimum number of cells allowed for a node is a third of the |
| ** maximum. In Gutman's notation: |
| ** |
| ** m = M/3 |
| ** |
| ** If an R*-tree "Reinsert" operation is required, the same number of |
| ** cells are removed from the overfull node and reinserted into the tree. |
| */ |
| #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) |
| #define RTREE_REINSERT(p) RTREE_MINCELLS(p) |
| #define RTREE_MAXCELLS 51 |
| |
| /* |
| ** An rtree cursor object. |
| */ |
| struct RtreeCursor { |
| sqlite3_vtab_cursor base; |
| RtreeNode *pNode; /* Node cursor is currently pointing at */ |
| int iCell; /* Index of current cell in pNode */ |
| int iStrategy; /* Copy of idxNum search parameter */ |
| int nConstraint; /* Number of entries in aConstraint */ |
| RtreeConstraint *aConstraint; /* Search constraints. */ |
| }; |
| |
| /* |
| ** A search constraint. |
| */ |
| struct RtreeConstraint { |
| int iCoord; /* Index of constrained coordinate */ |
| int op; /* Constraining operation */ |
| float rValue; /* Constraint value. */ |
| }; |
| |
| /* Possible values for RtreeConstraint.op */ |
| #define RTREE_EQ 0x41 |
| #define RTREE_LE 0x42 |
| #define RTREE_LT 0x43 |
| #define RTREE_GE 0x44 |
| #define RTREE_GT 0x45 |
| |
| /* |
| ** An rtree structure node. |
| ** |
| ** Data format (RtreeNode.zData): |
| ** |
| ** 1. If the node is the root node (node 1), then the first 2 bytes |
| ** of the node contain the tree depth as a big-endian integer. |
| ** For non-root nodes, the first 2 bytes are left unused. |
| ** |
| ** 2. The next 2 bytes contain the number of entries currently |
| ** stored in the node. |
| ** |
| ** 3. The remainder of the node contains the node entries. Each entry |
| ** consists of a single 8-byte integer followed by an even number |
| ** of 4-byte coordinates. For leaf nodes the integer is the rowid |
| ** of a record. For internal nodes it is the node number of a |
| ** child page. |
| */ |
| struct RtreeNode { |
| RtreeNode *pParent; /* Parent node */ |
| i64 iNode; |
| int nRef; |
| int isDirty; |
| u8 *zData; |
| RtreeNode *pNext; /* Next node in this hash chain */ |
| }; |
| #define NCELL(pNode) readInt16(&(pNode)->zData[2]) |
| |
| /* |
| ** Structure to store a deserialized rtree record. |
| */ |
| struct RtreeCell { |
| i64 iRowid; |
| float aCoord[RTREE_MAX_DIMENSIONS*2]; |
| }; |
| |
| #define MAX(x,y) ((x) < (y) ? (y) : (x)) |
| #define MIN(x,y) ((x) > (y) ? (y) : (x)) |
| |
| /* |
| ** Functions to deserialize a 16 bit integer, 32 bit real number and |
| ** 64 bit integer. The deserialized value is returned. |
| */ |
| static int readInt16(u8 *p){ |
| return (p[0]<<8) + p[1]; |
| } |
| static float readReal32(u8 *p){ |
| u32 i = ( |
| (((u32)p[0]) << 24) + |
| (((u32)p[1]) << 16) + |
| (((u32)p[2]) << 8) + |
| (((u32)p[3]) << 0) |
| ); |
| return *(float *)&i; |
| } |
| static i64 readInt64(u8 *p){ |
| return ( |
| (((i64)p[0]) << 56) + |
| (((i64)p[1]) << 48) + |
| (((i64)p[2]) << 40) + |
| (((i64)p[3]) << 32) + |
| (((i64)p[4]) << 24) + |
| (((i64)p[5]) << 16) + |
| (((i64)p[6]) << 8) + |
| (((i64)p[7]) << 0) |
| ); |
| } |
| |
| /* |
| ** Functions to serialize a 16 bit integer, 32 bit real number and |
| ** 64 bit integer. The value returned is the number of bytes written |
| ** to the argument buffer (always 2, 4 and 8 respectively). |
| */ |
| static int writeInt16(u8 *p, int i){ |
| p[0] = (i>> 8)&0xFF; |
| p[1] = (i>> 0)&0xFF; |
| return 2; |
| } |
| static int writeReal32(u8 *p, float f){ |
| u32 i; |
| assert( sizeof(float)==4 ); |
| assert( sizeof(u32)==4 ); |
| i = *(u32 *)&f; |
| p[0] = (i>>24)&0xFF; |
| p[1] = (i>>16)&0xFF; |
| p[2] = (i>> 8)&0xFF; |
| p[3] = (i>> 0)&0xFF; |
| return 4; |
| } |
| static int writeInt64(u8 *p, i64 i){ |
| p[0] = (i>>56)&0xFF; |
| p[1] = (i>>48)&0xFF; |
| p[2] = (i>>40)&0xFF; |
| p[3] = (i>>32)&0xFF; |
| p[4] = (i>>24)&0xFF; |
| p[5] = (i>>16)&0xFF; |
| p[6] = (i>> 8)&0xFF; |
| p[7] = (i>> 0)&0xFF; |
| return 8; |
| } |
| |
| /* |
| ** Increment the reference count of node p. |
| */ |
| static void nodeReference(RtreeNode *p){ |
| if( p ){ |
| p->nRef++; |
| } |
| } |
| |
| /* |
| ** Clear the content of node p (set all bytes to 0x00). |
| */ |
| static void nodeZero(Rtree *pRtree, RtreeNode *p){ |
| if( p ){ |
| memset(&p->zData[2], 0, pRtree->iNodeSize-2); |
| p->isDirty = 1; |
| } |
| } |
| |
| /* |
| ** Given a node number iNode, return the corresponding key to use |
| ** in the Rtree.aHash table. |
| */ |
| static int nodeHash(i64 iNode){ |
| return ( |
| (iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^ |
| (iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0) |
| ) % HASHSIZE; |
| } |
| |
| /* |
| ** Search the node hash table for node iNode. If found, return a pointer |
| ** to it. Otherwise, return 0. |
| */ |
| static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ |
| RtreeNode *p; |
| assert( iNode!=0 ); |
| for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); |
| return p; |
| } |
| |
| /* |
| ** Add node pNode to the node hash table. |
| */ |
| static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ |
| if( pNode ){ |
| int iHash; |
| assert( pNode->pNext==0 ); |
| iHash = nodeHash(pNode->iNode); |
| pNode->pNext = pRtree->aHash[iHash]; |
| pRtree->aHash[iHash] = pNode; |
| } |
| } |
| |
| /* |
| ** Remove node pNode from the node hash table. |
| */ |
| static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ |
| RtreeNode **pp; |
| if( pNode->iNode!=0 ){ |
| pp = &pRtree->aHash[nodeHash(pNode->iNode)]; |
| for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); } |
| *pp = pNode->pNext; |
| pNode->pNext = 0; |
| } |
| } |
| |
| /* |
| ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0), |
| ** indicating that node has not yet been assigned a node number. It is |
| ** assigned a node number when nodeWrite() is called to write the |
| ** node contents out to the database. |
| */ |
| static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent, int zero){ |
| RtreeNode *pNode; |
| pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); |
| if( pNode ){ |
| memset(pNode, 0, sizeof(RtreeNode) + (zero?pRtree->iNodeSize:0)); |
| pNode->zData = (u8 *)&pNode[1]; |
| pNode->nRef = 1; |
| pNode->pParent = pParent; |
| pNode->isDirty = 1; |
| nodeReference(pParent); |
| } |
| return pNode; |
| } |
| |
| /* |
| ** Obtain a reference to an r-tree node. |
| */ |
| static int |
| nodeAcquire( |
| Rtree *pRtree, /* R-tree structure */ |
| i64 iNode, /* Node number to load */ |
| RtreeNode *pParent, /* Either the parent node or NULL */ |
| RtreeNode **ppNode /* OUT: Acquired node */ |
| ){ |
| int rc; |
| RtreeNode *pNode; |
| |
| /* Check if the requested node is already in the hash table. If so, |
| ** increase its reference count and return it. |
| */ |
| if( (pNode = nodeHashLookup(pRtree, iNode)) ){ |
| assert( !pParent || !pNode->pParent || pNode->pParent==pParent ); |
| if( pParent ){ |
| pNode->pParent = pParent; |
| } |
| pNode->nRef++; |
| *ppNode = pNode; |
| return SQLITE_OK; |
| } |
| |
| pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); |
| if( !pNode ){ |
| *ppNode = 0; |
| return SQLITE_NOMEM; |
| } |
| pNode->pParent = pParent; |
| pNode->zData = (u8 *)&pNode[1]; |
| pNode->nRef = 1; |
| pNode->iNode = iNode; |
| pNode->isDirty = 0; |
| pNode->pNext = 0; |
| |
| sqlite3_bind_int64(pRtree->pReadNode, 1, iNode); |
| rc = sqlite3_step(pRtree->pReadNode); |
| if( rc==SQLITE_ROW ){ |
| const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0); |
| memcpy(pNode->zData, zBlob, pRtree->iNodeSize); |
| nodeReference(pParent); |
| }else{ |
| sqlite3_free(pNode); |
| pNode = 0; |
| } |
| |
| *ppNode = pNode; |
| rc = sqlite3_reset(pRtree->pReadNode); |
| |
| if( rc==SQLITE_OK && iNode==1 ){ |
| pRtree->iDepth = readInt16(pNode->zData); |
| } |
| |
| assert( (rc==SQLITE_OK && pNode) || (pNode==0 && rc!=SQLITE_OK) ); |
| nodeHashInsert(pRtree, pNode); |
| |
| return rc; |
| } |
| |
| /* |
| ** Overwrite cell iCell of node pNode with the contents of pCell. |
| */ |
| static void nodeOverwriteCell( |
| Rtree *pRtree, |
| RtreeNode *pNode, |
| RtreeCell *pCell, |
| int iCell |
| ){ |
| int ii; |
| u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; |
| p += writeInt64(p, pCell->iRowid); |
| for(ii=0; ii<(pRtree->nDim*2); ii++){ |
| p += writeReal32(p, pCell->aCoord[ii]); |
| } |
| pNode->isDirty = 1; |
| } |
| |
| /* |
| ** Remove cell the cell with index iCell from node pNode. |
| */ |
| static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ |
| u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; |
| u8 *pSrc = &pDst[pRtree->nBytesPerCell]; |
| int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; |
| memmove(pDst, pSrc, nByte); |
| writeInt16(&pNode->zData[2], NCELL(pNode)-1); |
| pNode->isDirty = 1; |
| } |
| |
| /* |
| ** Insert the contents of cell pCell into node pNode. If the insert |
| ** is successful, return SQLITE_OK. |
| ** |
| ** If there is not enough free space in pNode, return SQLITE_FULL. |
| */ |
| static int |
| nodeInsertCell( |
| Rtree *pRtree, |
| RtreeNode *pNode, |
| RtreeCell *pCell |
| ){ |
| int nCell; /* Current number of cells in pNode */ |
| int nMaxCell; /* Maximum number of cells for pNode */ |
| |
| nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; |
| nCell = NCELL(pNode); |
| |
| assert(nCell<=nMaxCell); |
| |
| if( nCell<nMaxCell ){ |
| nodeOverwriteCell(pRtree, pNode, pCell, nCell); |
| writeInt16(&pNode->zData[2], nCell+1); |
| pNode->isDirty = 1; |
| } |
| |
| return (nCell==nMaxCell); |
| } |
| |
| /* |
| ** If the node is dirty, write it out to the database. |
| */ |
| static int |
| nodeWrite(Rtree *pRtree, RtreeNode *pNode){ |
| int rc = SQLITE_OK; |
| if( pNode->isDirty ){ |
| sqlite3_stmt *p = pRtree->pWriteNode; |
| if( pNode->iNode ){ |
| sqlite3_bind_int64(p, 1, pNode->iNode); |
| }else{ |
| sqlite3_bind_null(p, 1); |
| } |
| sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); |
| sqlite3_step(p); |
| pNode->isDirty = 0; |
| rc = sqlite3_reset(p); |
| if( pNode->iNode==0 && rc==SQLITE_OK ){ |
| pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); |
| nodeHashInsert(pRtree, pNode); |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Release a reference to a node. If the node is dirty and the reference |
| ** count drops to zero, the node data is written to the database. |
| */ |
| static int |
| nodeRelease(Rtree *pRtree, RtreeNode *pNode){ |
| int rc = SQLITE_OK; |
| if( pNode ){ |
| assert( pNode->nRef>0 ); |
| pNode->nRef--; |
| if( pNode->nRef==0 ){ |
| if( pNode->iNode==1 ){ |
| pRtree->iDepth = -1; |
| } |
| if( pNode->pParent ){ |
| rc = nodeRelease(pRtree, pNode->pParent); |
| } |
| if( rc==SQLITE_OK ){ |
| rc = nodeWrite(pRtree, pNode); |
| } |
| nodeHashDelete(pRtree, pNode); |
| sqlite3_free(pNode); |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Return the 64-bit integer value associated with cell iCell of |
| ** node pNode. If pNode is a leaf node, this is a rowid. If it is |
| ** an internal node, then the 64-bit integer is a child page number. |
| */ |
| static i64 nodeGetRowid( |
| Rtree *pRtree, |
| RtreeNode *pNode, |
| int iCell |
| ){ |
| assert( iCell<NCELL(pNode) ); |
| return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]); |
| } |
| |
| /* |
| ** Return coordinate iCoord from cell iCell in node pNode. |
| */ |
| static float nodeGetCoord( |
| Rtree *pRtree, |
| RtreeNode *pNode, |
| int iCell, |
| int iCoord |
| ){ |
| return readReal32(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord]); |
| } |
| |
| /* |
| ** Deserialize cell iCell of node pNode. Populate the structure pointed |
| ** to by pCell with the results. |
| */ |
| static void nodeGetCell( |
| Rtree *pRtree, |
| RtreeNode *pNode, |
| int iCell, |
| RtreeCell *pCell |
| ){ |
| int ii; |
| pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); |
| for(ii=0; ii<pRtree->nDim*2; ii++){ |
| pCell->aCoord[ii] = nodeGetCoord(pRtree, pNode, iCell, ii); |
| } |
| } |
| |
| |
| /* Forward declaration for the function that does the work of |
| ** the virtual table module xCreate() and xConnect() methods. |
| */ |
| static int rtreeInit( |
| sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int |
| ); |
| |
| /* |
| ** Rtree virtual table module xCreate method. |
| */ |
| static int rtreeCreate( |
| sqlite3 *db, |
| void *pAux, |
| int argc, const char *const*argv, |
| sqlite3_vtab **ppVtab, |
| char **pzErr |
| ){ |
| return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1); |
| } |
| |
| /* |
| ** Rtree virtual table module xConnect method. |
| */ |
| static int rtreeConnect( |
| sqlite3 *db, |
| void *pAux, |
| int argc, const char *const*argv, |
| sqlite3_vtab **ppVtab, |
| char **pzErr |
| ){ |
| return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0); |
| } |
| |
| /* |
| ** Increment the r-tree reference count. |
| */ |
| static void rtreeReference(Rtree *pRtree){ |
| pRtree->nBusy++; |
| } |
| |
| /* |
| ** Decrement the r-tree reference count. When the reference count reaches |
| ** zero the structure is deleted. |
| */ |
| static void rtreeRelease(Rtree *pRtree){ |
| pRtree->nBusy--; |
| if( pRtree->nBusy==0 ){ |
| sqlite3_finalize(pRtree->pReadNode); |
| sqlite3_finalize(pRtree->pWriteNode); |
| sqlite3_finalize(pRtree->pDeleteNode); |
| sqlite3_finalize(pRtree->pReadRowid); |
| sqlite3_finalize(pRtree->pWriteRowid); |
| sqlite3_finalize(pRtree->pDeleteRowid); |
| sqlite3_finalize(pRtree->pReadParent); |
| sqlite3_finalize(pRtree->pWriteParent); |
| sqlite3_finalize(pRtree->pDeleteParent); |
| sqlite3_free(pRtree); |
| } |
| } |
| |
| /* |
| ** Rtree virtual table module xDisconnect method. |
| */ |
| static int rtreeDisconnect(sqlite3_vtab *pVtab){ |
| rtreeRelease((Rtree *)pVtab); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Rtree virtual table module xDestroy method. |
| */ |
| static int rtreeDestroy(sqlite3_vtab *pVtab){ |
| Rtree *pRtree = (Rtree *)pVtab; |
| int rc; |
| char *zCreate = sqlite3_mprintf( |
| "DROP TABLE '%q'.'%q_node';" |
| "DROP TABLE '%q'.'%q_rowid';" |
| "DROP TABLE '%q'.'%q_parent';", |
| pRtree->zDb, pRtree->zName, |
| pRtree->zDb, pRtree->zName, |
| pRtree->zDb, pRtree->zName |
| ); |
| if( !zCreate ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0); |
| sqlite3_free(zCreate); |
| } |
| if( rc==SQLITE_OK ){ |
| rtreeRelease(pRtree); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Rtree virtual table module xOpen method. |
| */ |
| static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
| int rc = SQLITE_NOMEM; |
| RtreeCursor *pCsr; |
| |
| pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor)); |
| if( pCsr ){ |
| memset(pCsr, 0, sizeof(RtreeCursor)); |
| pCsr->base.pVtab = pVTab; |
| rc = SQLITE_OK; |
| } |
| *ppCursor = (sqlite3_vtab_cursor *)pCsr; |
| |
| return rc; |
| } |
| |
| /* |
| ** Rtree virtual table module xClose method. |
| */ |
| static int rtreeClose(sqlite3_vtab_cursor *cur){ |
| Rtree *pRtree = (Rtree *)(cur->pVtab); |
| int rc; |
| RtreeCursor *pCsr = (RtreeCursor *)cur; |
| sqlite3_free(pCsr->aConstraint); |
| rc = nodeRelease(pRtree, pCsr->pNode); |
| sqlite3_free(pCsr); |
| return rc; |
| } |
| |
| /* |
| ** Rtree virtual table module xEof method. |
| ** |
| ** Return non-zero if the cursor does not currently point to a valid |
| ** record (i.e if the scan has finished), or zero otherwise. |
| */ |
| static int rtreeEof(sqlite3_vtab_cursor *cur){ |
| RtreeCursor *pCsr = (RtreeCursor *)cur; |
| return (pCsr->pNode==0); |
| } |
| |
| /* |
| ** Cursor pCursor currently points to a cell in a non-leaf page. |
| ** Return true if the sub-tree headed by the cell is filtered |
| ** (excluded) by the constraints in the pCursor->aConstraint[] |
| ** array, or false otherwise. |
| */ |
| static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor){ |
| RtreeCell cell; |
| int ii; |
| |
| nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); |
| for(ii=0; ii<pCursor->nConstraint; ii++){ |
| RtreeConstraint *p = &pCursor->aConstraint[ii]; |
| |
| float cell_min = cell.aCoord[(p->iCoord>>1)*2]; |
| float cell_max = cell.aCoord[(p->iCoord>>1)*2+1]; |
| assert( cell_min<=cell_max ); |
| |
| switch( p->op ){ |
| case RTREE_LE: case RTREE_LT: { |
| if( p->rValue<cell_min ){ |
| return 1; |
| } |
| break; |
| } |
| |
| case RTREE_GE: case RTREE_GT: { |
| if( p->rValue>cell_max ){ |
| return 1; |
| } |
| break; |
| } |
| |
| case RTREE_EQ: { |
| if( p->rValue>cell_max || p->rValue<cell_min ){ |
| return 1; |
| } |
| break; |
| } |
| #ifndef NDEBUG |
| default: assert(!"Internal error"); |
| #endif |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| ** Return true if the cell that cursor pCursor currently points to |
| ** would be filtered (excluded) by the constraints in the |
| ** pCursor->aConstraint[] array, or false otherwise. |
| ** |
| ** This function assumes that the cell is part of a leaf node. |
| */ |
| static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor){ |
| RtreeCell cell; |
| int ii; |
| |
| nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); |
| for(ii=0; ii<pCursor->nConstraint; ii++){ |
| RtreeConstraint *p = &pCursor->aConstraint[ii]; |
| float cell_val = cell.aCoord[p->iCoord]; |
| int res; |
| switch( p->op ){ |
| case RTREE_LE: res = (cell_val<=p->rValue); break; |
| case RTREE_LT: res = (cell_val<p->rValue); break; |
| case RTREE_GE: res = (cell_val>=p->rValue); break; |
| case RTREE_GT: res = (cell_val>p->rValue); break; |
| case RTREE_EQ: res = (cell_val==p->rValue); break; |
| #ifndef NDEBUG |
| default: assert(!"Internal error"); |
| #endif |
| } |
| if( !res ) return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| ** Cursor pCursor currently points at a node that heads a sub-tree of |
| ** height iHeight (if iHeight==0, then the node is a leaf). Descend |
| ** to point to the left-most cell of the sub-tree that matches the |
| ** configured constraints. |
| */ |
| static int descendToCell( |
| Rtree *pRtree, |
| RtreeCursor *pCursor, |
| int iHeight, |
| int *pEof /* OUT: Set to true if cannot descend */ |
| ){ |
| int isEof; |
| int rc; |
| int ii; |
| RtreeNode *pChild; |
| sqlite3_int64 iRowid; |
| |
| RtreeNode *pSavedNode = pCursor->pNode; |
| int iSavedCell = pCursor->iCell; |
| |
| assert( iHeight>=0 ); |
| |
| if( iHeight==0 ){ |
| isEof = testRtreeEntry(pRtree, pCursor); |
| }else{ |
| isEof = testRtreeCell(pRtree, pCursor); |
| } |
| if( isEof || iHeight==0 ){ |
| *pEof = isEof; |
| return SQLITE_OK; |
| } |
| |
| iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell); |
| rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| nodeRelease(pRtree, pCursor->pNode); |
| pCursor->pNode = pChild; |
| isEof = 1; |
| for(ii=0; isEof && ii<NCELL(pChild); ii++){ |
| pCursor->iCell = ii; |
| rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| } |
| |
| if( isEof ){ |
| assert( pCursor->pNode==pChild ); |
| nodeReference(pSavedNode); |
| nodeRelease(pRtree, pChild); |
| pCursor->pNode = pSavedNode; |
| pCursor->iCell = iSavedCell; |
| } |
| |
| *pEof = isEof; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** One of the cells in node pNode is guaranteed to have a 64-bit |
| ** integer value equal to iRowid. Return the index of this cell. |
| */ |
| static int nodeRowidIndex(Rtree *pRtree, RtreeNode *pNode, i64 iRowid){ |
| int ii; |
| for(ii=0; nodeGetRowid(pRtree, pNode, ii)!=iRowid; ii++){ |
| assert( ii<(NCELL(pNode)-1) ); |
| } |
| return ii; |
| } |
| |
| /* |
| ** Return the index of the cell containing a pointer to node pNode |
| ** in its parent. If pNode is the root node, return -1. |
| */ |
| static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode){ |
| RtreeNode *pParent = pNode->pParent; |
| if( pParent ){ |
| return nodeRowidIndex(pRtree, pParent, pNode->iNode); |
| } |
| return -1; |
| } |
| |
| /* |
| ** Rtree virtual table module xNext method. |
| */ |
| static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ |
| Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab); |
| RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
| int rc = SQLITE_OK; |
| |
| if( pCsr->iStrategy==1 ){ |
| /* This "scan" is a direct lookup by rowid. There is no next entry. */ |
| nodeRelease(pRtree, pCsr->pNode); |
| pCsr->pNode = 0; |
| } |
| |
| else if( pCsr->pNode ){ |
| /* Move to the next entry that matches the configured constraints. */ |
| int iHeight = 0; |
| while( pCsr->pNode ){ |
| RtreeNode *pNode = pCsr->pNode; |
| int nCell = NCELL(pNode); |
| for(pCsr->iCell++; pCsr->iCell<nCell; pCsr->iCell++){ |
| int isEof; |
| rc = descendToCell(pRtree, pCsr, iHeight, &isEof); |
| if( rc!=SQLITE_OK || !isEof ){ |
| return rc; |
| } |
| } |
| pCsr->pNode = pNode->pParent; |
| pCsr->iCell = nodeParentIndex(pRtree, pNode); |
| nodeReference(pCsr->pNode); |
| nodeRelease(pRtree, pNode); |
| iHeight++; |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Rtree virtual table module xRowid method. |
| */ |
| static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ |
| Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; |
| RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
| |
| assert(pCsr->pNode); |
| *pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); |
| |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Rtree virtual table module xColumn method. |
| */ |
| static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ |
| Rtree *pRtree = (Rtree *)cur->pVtab; |
| RtreeCursor *pCsr = (RtreeCursor *)cur; |
| |
| if( i==0 ){ |
| i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); |
| sqlite3_result_int64(ctx, iRowid); |
| }else{ |
| float fCoord = nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1); |
| sqlite3_result_double(ctx, fCoord); |
| } |
| |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Use nodeAcquire() to obtain the leaf node containing the record with |
| ** rowid iRowid. If successful, set *ppLeaf to point to the node and |
| ** return SQLITE_OK. If there is no such record in the table, set |
| ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf |
| ** to zero and return an SQLite error code. |
| */ |
| static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){ |
| int rc; |
| *ppLeaf = 0; |
| sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); |
| if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ |
| i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); |
| rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); |
| sqlite3_reset(pRtree->pReadRowid); |
| }else{ |
| rc = sqlite3_reset(pRtree->pReadRowid); |
| } |
| return rc; |
| } |
| |
| |
| /* |
| ** Rtree virtual table module xFilter method. |
| */ |
| static int rtreeFilter( |
| sqlite3_vtab_cursor *pVtabCursor, |
| int idxNum, const char *idxStr, |
| int argc, sqlite3_value **argv |
| ){ |
| Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; |
| RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
| |
| RtreeNode *pRoot = 0; |
| int ii; |
| int rc = SQLITE_OK; |
| |
| rtreeReference(pRtree); |
| |
| sqlite3_free(pCsr->aConstraint); |
| pCsr->aConstraint = 0; |
| pCsr->iStrategy = idxNum; |
| |
| if( idxNum==1 ){ |
| /* Special case - lookup by rowid. */ |
| RtreeNode *pLeaf; /* Leaf on which the required cell resides */ |
| i64 iRowid = sqlite3_value_int64(argv[0]); |
| rc = findLeafNode(pRtree, iRowid, &pLeaf); |
| pCsr->pNode = pLeaf; |
| if( pLeaf && rc==SQLITE_OK ){ |
| pCsr->iCell = nodeRowidIndex(pRtree, pLeaf, iRowid); |
| } |
| }else{ |
| /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array |
| ** with the configured constraints. |
| */ |
| if( argc>0 ){ |
| pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc); |
| pCsr->nConstraint = argc; |
| if( !pCsr->aConstraint ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| assert( (idxStr==0 && argc==0) || strlen(idxStr)==argc*2 ); |
| for(ii=0; ii<argc; ii++){ |
| RtreeConstraint *p = &pCsr->aConstraint[ii]; |
| p->op = idxStr[ii*2]; |
| p->iCoord = idxStr[ii*2+1]-'a'; |
| p->rValue = sqlite3_value_double(argv[ii]); |
| } |
| } |
| } |
| |
| if( rc==SQLITE_OK ){ |
| pCsr->pNode = 0; |
| rc = nodeAcquire(pRtree, 1, 0, &pRoot); |
| } |
| if( rc==SQLITE_OK ){ |
| int isEof = 1; |
| int nCell = NCELL(pRoot); |
| pCsr->pNode = pRoot; |
| for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCell<nCell; pCsr->iCell++){ |
| assert( pCsr->pNode==pRoot ); |
| rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof); |
| if( !isEof ){ |
| break; |
| } |
| } |
| if( rc==SQLITE_OK && isEof ){ |
| assert( pCsr->pNode==pRoot ); |
| nodeRelease(pRtree, pRoot); |
| pCsr->pNode = 0; |
| } |
| assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCell<NCELL(pCsr->pNode) ); |
| } |
| } |
| |
| rtreeRelease(pRtree); |
| return rc; |
| } |
| |
| /* |
| ** Rtree virtual table module xBestIndex method. There are three |
| ** table scan strategies to choose from (in order from most to |
| ** least desirable): |
| ** |
| ** idxNum idxStr Strategy |
| ** ------------------------------------------------ |
| ** 1 Unused Direct lookup by rowid. |
| ** 2 See below R-tree query. |
| ** 3 Unused Full table scan. |
| ** ------------------------------------------------ |
| ** |
| ** If strategy 1 or 3 is used, then idxStr is not meaningful. If strategy |
| ** 2 is used, idxStr is formatted to contain 2 bytes for each |
| ** constraint used. The first two bytes of idxStr correspond to |
| ** the constraint in sqlite3_index_info.aConstraintUsage[] with |
| ** (argvIndex==1) etc. |
| ** |
| ** The first of each pair of bytes in idxStr identifies the constraint |
| ** operator as follows: |
| ** |
| ** Operator Byte Value |
| ** ---------------------- |
| ** = 0x41 ('A') |
| ** <= 0x42 ('B') |
| ** < 0x43 ('C') |
| ** >= 0x44 ('D') |
| ** > 0x45 ('E') |
| ** ---------------------- |
| ** |
| ** The second of each pair of bytes identifies the coordinate column |
| ** to which the constraint applies. The leftmost coordinate column |
| ** is 'a', the second from the left 'b' etc. |
| */ |
| static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
| int rc = SQLITE_OK; |
| int ii; |
| |
| int iIdx = 0; |
| char zIdxStr[RTREE_MAX_DIMENSIONS*2+1]; |
| memset(zIdxStr, 0, RTREE_MAX_DIMENSIONS*2+1); |
| |
| assert( pIdxInfo->idxStr==0 ); |
| for(ii=0; ii<pIdxInfo->nConstraint; ii++){ |
| struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; |
| |
| if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ |
| /* We have an equality constraint on the rowid. Use strategy 1. */ |
| int jj; |
| for(jj=0; jj<ii; jj++){ |
| pIdxInfo->aConstraintUsage[jj].argvIndex = 0; |
| pIdxInfo->aConstraintUsage[jj].omit = 0; |
| } |
| pIdxInfo->idxNum = 1; |
| pIdxInfo->aConstraintUsage[ii].argvIndex = 1; |
| pIdxInfo->aConstraintUsage[jj].omit = 1; |
| return SQLITE_OK; |
| } |
| |
| if( p->usable && p->iColumn>0 ){ |
| u8 op = 0; |
| switch( p->op ){ |
| case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; |
| case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; |
| case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; |
| case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; |
| case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; |
| } |
| if( op ){ |
| zIdxStr[iIdx++] = op; |
| zIdxStr[iIdx++] = (char)(p->iColumn-1) + 'a'; |
| pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); |
| pIdxInfo->aConstraintUsage[ii].omit = 1; |
| } |
| } |
| } |
| |
| pIdxInfo->idxNum = 2; |
| pIdxInfo->needToFreeIdxStr = 1; |
| if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ |
| return SQLITE_NOMEM; |
| } |
| return rc; |
| } |
| |
| /* |
| ** Return the N-dimensional volumn of the cell stored in *p. |
| */ |
| static float cellArea(Rtree *pRtree, RtreeCell *p){ |
| float area = 1.0; |
| int ii; |
| for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
| area = area * (p->aCoord[ii+1] - p->aCoord[ii]); |
| } |
| return area; |
| } |
| |
| /* |
| ** Return the margin length of cell p. The margin length is the sum |
| ** of the objects size in each dimension. |
| */ |
| static float cellMargin(Rtree *pRtree, RtreeCell *p){ |
| float margin = 0.0; |
| int ii; |
| for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
| margin += (p->aCoord[ii+1] - p->aCoord[ii]); |
| } |
| return margin; |
| } |
| |
| /* |
| ** Store the union of cells p1 and p2 in p1. |
| */ |
| static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ |
| int ii; |
| for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
| p1->aCoord[ii] = MIN(p1->aCoord[ii], p2->aCoord[ii]); |
| p1->aCoord[ii+1] = MAX(p1->aCoord[ii+1], p2->aCoord[ii+1]); |
| } |
| } |
| |
| /* |
| ** Return the amount cell p would grow by if it were unioned with pCell. |
| */ |
| static float cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){ |
| float area; |
| RtreeCell cell; |
| memcpy(&cell, p, sizeof(RtreeCell)); |
| area = cellArea(pRtree, &cell); |
| cellUnion(pRtree, &cell, pCell); |
| return (cellArea(pRtree, &cell)-area); |
| } |
| |
| #if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT |
| static float cellOverlap( |
| Rtree *pRtree, |
| RtreeCell *p, |
| RtreeCell *aCell, |
| int nCell, |
| int iExclude |
| ){ |
| int ii; |
| float overlap = 0.0; |
| for(ii=0; ii<nCell; ii++){ |
| if( ii!=iExclude ){ |
| int jj; |
| float o = 1.0; |
| for(jj=0; jj<(pRtree->nDim*2); jj+=2){ |
| |
| float x1 = MAX(p->aCoord[jj], aCell[ii].aCoord[jj]); |
| float x2 = MIN(p->aCoord[jj+1], aCell[ii].aCoord[jj+1]); |
| |
| if( x2<x1 ){ |
| o = 0.0; |
| break; |
| }else{ |
| o = o * (x2-x1); |
| } |
| } |
| overlap += o; |
| } |
| } |
| return overlap; |
| } |
| #endif |
| |
| #if VARIANT_RSTARTREE_CHOOSESUBTREE |
| static float cellOverlapEnlargement( |
| Rtree *pRtree, |
| RtreeCell *p, |
| RtreeCell *pInsert, |
| RtreeCell *aCell, |
| int nCell, |
| int iExclude |
| ){ |
| float before; |
| float after; |
| before = cellOverlap(pRtree, p, aCell, nCell, iExclude); |
| cellUnion(pRtree, p, pInsert); |
| after = cellOverlap(pRtree, p, aCell, nCell, iExclude); |
| return after-before; |
| } |
| #endif |
| |
| |
| /* |
| ** This function implements the ChooseLeaf algorithm from Gutman[84]. |
| ** ChooseSubTree in r*tree terminology. |
| */ |
| static int ChooseLeaf( |
| Rtree *pRtree, /* Rtree table */ |
| RtreeCell *pCell, /* Cell to insert into rtree */ |
| int iHeight, /* Height of sub-tree rooted at pCell */ |
| RtreeNode **ppLeaf /* OUT: Selected leaf page */ |
| ){ |
| int rc; |
| int ii; |
| RtreeNode *pNode; |
| rc = nodeAcquire(pRtree, 1, 0, &pNode); |
| |
| for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){ |
| int iCell; |
| sqlite3_int64 iBest; |
| |
| float fMinGrowth; |
| float fMinArea; |
| float fMinOverlap; |
| |
| int nCell = NCELL(pNode); |
| RtreeCell cell; |
| RtreeNode *pChild; |
| |
| RtreeCell *aCell = 0; |
| |
| #if VARIANT_RSTARTREE_CHOOSESUBTREE |
| if( ii==(pRtree->iDepth-1) ){ |
| int jj; |
| aCell = sqlite3_malloc(sizeof(RtreeCell)*nCell); |
| if( !aCell ){ |
| rc = SQLITE_NOMEM; |
| nodeRelease(pRtree, pNode); |
| pNode = 0; |
| continue; |
| } |
| for(jj=0; jj<nCell; jj++){ |
| nodeGetCell(pRtree, pNode, jj, &aCell[jj]); |
| } |
| } |
| #endif |
| |
| /* Select the child node which will be enlarged the least if pCell |
| ** is inserted into it. Resolve ties by choosing the entry with |
| ** the smallest area. |
| */ |
| for(iCell=0; iCell<nCell; iCell++){ |
| float growth; |
| float area; |
| float overlap = 0.0; |
| nodeGetCell(pRtree, pNode, iCell, &cell); |
| growth = cellGrowth(pRtree, &cell, pCell); |
| area = cellArea(pRtree, &cell); |
| #if VARIANT_RSTARTREE_CHOOSESUBTREE |
| if( ii==(pRtree->iDepth-1) ){ |
| overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell); |
| } |
| #endif |
| if( (iCell==0) |
| || (overlap<fMinOverlap) |
| || (overlap==fMinOverlap && growth<fMinGrowth) |
| || (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea) |
| ){ |
| fMinOverlap = overlap; |
| fMinGrowth = growth; |
| fMinArea = area; |
| iBest = cell.iRowid; |
| } |
| } |
| |
| sqlite3_free(aCell); |
| rc = nodeAcquire(pRtree, iBest, pNode, &pChild); |
| nodeRelease(pRtree, pNode); |
| pNode = pChild; |
| } |
| |
| *ppLeaf = pNode; |
| return rc; |
| } |
| |
| /* |
| ** A cell with the same content as pCell has just been inserted into |
| ** the node pNode. This function updates the bounding box cells in |
| ** all ancestor elements. |
| */ |
| static void AdjustTree( |
| Rtree *pRtree, /* Rtree table */ |
| RtreeNode *pNode, /* Adjust ancestry of this node. */ |
| RtreeCell *pCell /* This cell was just inserted */ |
| ){ |
| RtreeNode *p = pNode; |
| while( p->pParent ){ |
| RtreeCell cell; |
| RtreeNode *pParent = p->pParent; |
| int iCell = nodeParentIndex(pRtree, p); |
| |
| nodeGetCell(pRtree, pParent, iCell, &cell); |
| if( cellGrowth(pRtree, &cell, pCell)>0.0 ){ |
| cellUnion(pRtree, &cell, pCell); |
| nodeOverwriteCell(pRtree, pParent, &cell, iCell); |
| } |
| |
| p = pParent; |
| } |
| } |
| |
| /* |
| ** Write mapping (iRowid->iNode) to the <rtree>_rowid table. |
| */ |
| static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){ |
| sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid); |
| sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode); |
| sqlite3_step(pRtree->pWriteRowid); |
| return sqlite3_reset(pRtree->pWriteRowid); |
| } |
| |
| /* |
| ** Write mapping (iNode->iPar) to the <rtree>_parent table. |
| */ |
| static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ |
| sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); |
| sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); |
| sqlite3_step(pRtree->pWriteParent); |
| return sqlite3_reset(pRtree->pWriteParent); |
| } |
| |
| static int insertCell(Rtree *, RtreeNode *, RtreeCell *, int); |
| |
| #if VARIANT_GUTTMAN_LINEAR_SPLIT |
| /* |
| ** Implementation of the linear variant of the PickNext() function from |
| ** Guttman[84]. |
| */ |
| static RtreeCell *LinearPickNext( |
| Rtree *pRtree, |
| RtreeCell *aCell, |
| int nCell, |
| RtreeCell *pLeftBox, |
| RtreeCell *pRightBox, |
| int *aiUsed |
| ){ |
| int ii; |
| for(ii=0; aiUsed[ii]; ii++); |
| aiUsed[ii] = 1; |
| return &aCell[ii]; |
| } |
| |
| /* |
| ** Implementation of the linear variant of the PickSeeds() function from |
| ** Guttman[84]. |
| */ |
| static void LinearPickSeeds( |
| Rtree *pRtree, |
| RtreeCell *aCell, |
| int nCell, |
| int *piLeftSeed, |
| int *piRightSeed |
| ){ |
| int i; |
| int iLeftSeed = 0; |
| int iRightSeed = 1; |
| float maxNormalInnerWidth = 0.0; |
| |
| /* Pick two "seed" cells from the array of cells. The algorithm used |
| ** here is the LinearPickSeeds algorithm from Gutman[1984]. The |
| ** indices of the two seed cells in the array are stored in local |
| ** variables iLeftSeek and iRightSeed. |
| */ |
| for(i=0; i<pRtree->nDim; i++){ |
| float x1 = aCell[0].aCoord[i*2]; |
| float x2 = aCell[0].aCoord[i*2+1]; |
| float x3 = x1; |
| float x4 = x2; |
| int jj; |
| |
| int iCellLeft = 0; |
| int iCellRight = 0; |
| |
| for(jj=1; jj<nCell; jj++){ |
| float left = aCell[jj].aCoord[i*2]; |
| float right = aCell[jj].aCoord[i*2+1]; |
| |
| if( left<x1 ) x1 = left; |
| if( right>x4 ) x4 = right; |
| if( left>x3 ){ |
| x3 = left; |
| iCellRight = jj; |
| } |
| if( right<x2 ){ |
| x2 = right; |
| iCellLeft = jj; |
| } |
| } |
| |
| if( x4!=x1 ){ |
| float normalwidth = (x3 - x2) / (x4 - x1); |
| if( normalwidth>maxNormalInnerWidth ){ |
| iLeftSeed = iCellLeft; |
| iRightSeed = iCellRight; |
| } |
| } |
| } |
| |
| *piLeftSeed = iLeftSeed; |
| *piRightSeed = iRightSeed; |
| } |
| #endif /* VARIANT_GUTTMAN_LINEAR_SPLIT */ |
| |
| #if VARIANT_GUTTMAN_QUADRATIC_SPLIT |
| /* |
| ** Implementation of the quadratic variant of the PickNext() function from |
| ** Guttman[84]. |
| */ |
| static RtreeCell *QuadraticPickNext( |
| Rtree *pRtree, |
| RtreeCell *aCell, |
| int nCell, |
| RtreeCell *pLeftBox, |
| RtreeCell *pRightBox, |
| int *aiUsed |
| ){ |
| #define FABS(a) ((a)<0.0?-1.0*(a):(a)) |
| |
| int iSelect = -1; |
| float fDiff; |
| int ii; |
| for(ii=0; ii<nCell; ii++){ |
| if( aiUsed[ii]==0 ){ |
| float left = cellGrowth(pRtree, pLeftBox, &aCell[ii]); |
| float right = cellGrowth(pRtree, pLeftBox, &aCell[ii]); |
| float diff = FABS(right-left); |
| if( iSelect<0 || diff>fDiff ){ |
| fDiff = diff; |
| iSelect = ii; |
| } |
| } |
| } |
| aiUsed[iSelect] = 1; |
| return &aCell[iSelect]; |
| } |
| |
| /* |
| ** Implementation of the quadratic variant of the PickSeeds() function from |
| ** Guttman[84]. |
| */ |
| static void QuadraticPickSeeds( |
| Rtree *pRtree, |
| RtreeCell *aCell, |
| int nCell, |
| int *piLeftSeed, |
| int *piRightSeed |
| ){ |
| int ii; |
| int jj; |
| |
| int iLeftSeed = 0; |
| int iRightSeed = 1; |
| float fWaste = 0.0; |
| |
| for(ii=0; ii<nCell; ii++){ |
| for(jj=ii+1; jj<nCell; jj++){ |
| float right = cellArea(pRtree, &aCell[jj]); |
| float growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]); |
| float waste = growth - right; |
| |
| if( waste>fWaste ){ |
| iLeftSeed = ii; |
| iRightSeed = jj; |
| fWaste = waste; |
| } |
| } |
| } |
| |
| *piLeftSeed = iLeftSeed; |
| *piRightSeed = iRightSeed; |
| } |
| #endif /* VARIANT_GUTTMAN_QUADRATIC_SPLIT */ |
| |
| /* |
| ** Arguments aIdx, aDistance and aSpare all point to arrays of size |
| ** nIdx. The aIdx array contains the set of integers from 0 to |
| ** (nIdx-1) in no particular order. This function sorts the values |
| ** in aIdx according to the indexed values in aDistance. For |
| ** example, assuming the inputs: |
| ** |
| ** aIdx = { 0, 1, 2, 3 } |
| ** aDistance = { 5.0, 2.0, 7.0, 6.0 } |
| ** |
| ** this function sets the aIdx array to contain: |
| ** |
| ** aIdx = { 0, 1, 2, 3 } |
| ** |
| ** The aSpare array is used as temporary working space by the |
| ** sorting algorithm. |
| */ |
| static void SortByDistance( |
| int *aIdx, |
| int nIdx, |
| float *aDistance, |
| int *aSpare |
| ){ |
| if( nIdx>1 ){ |
| int iLeft = 0; |
| int iRight = 0; |
| |
| int nLeft = nIdx/2; |
| int nRight = nIdx-nLeft; |
| int *aLeft = aIdx; |
| int *aRight = &aIdx[nLeft]; |
| |
| SortByDistance(aLeft, nLeft, aDistance, aSpare); |
| SortByDistance(aRight, nRight, aDistance, aSpare); |
| |
| memcpy(aSpare, aLeft, sizeof(int)*nLeft); |
| aLeft = aSpare; |
| |
| while( iLeft<nLeft || iRight<nRight ){ |
| if( iLeft==nLeft ){ |
| aIdx[iLeft+iRight] = aRight[iRight]; |
| iRight++; |
| }else if( iRight==nRight ){ |
| aIdx[iLeft+iRight] = aLeft[iLeft]; |
| iLeft++; |
| }else{ |
| float fLeft = aDistance[aLeft[iLeft]]; |
| float fRight = aDistance[aRight[iRight]]; |
| if( fLeft<fRight ){ |
| aIdx[iLeft+iRight] = aLeft[iLeft]; |
| iLeft++; |
| }else{ |
| aIdx[iLeft+iRight] = aRight[iRight]; |
| iRight++; |
| } |
| } |
| } |
| |
| #if 0 |
| /* Check that the sort worked */ |
| { |
| int jj; |
| for(jj=1; jj<nIdx; jj++){ |
| float left = aDistance[aIdx[jj-1]]; |
| float right = aDistance[aIdx[jj]]; |
| assert( left<=right ); |
| } |
| } |
| #endif |
| } |
| } |
| |
| /* |
| ** Arguments aIdx, aCell and aSpare all point to arrays of size |
| ** nIdx. The aIdx array contains the set of integers from 0 to |
| ** (nIdx-1) in no particular order. This function sorts the values |
| ** in aIdx according to dimension iDim of the cells in aCell. The |
| ** minimum value of dimension iDim is considered first, the |
| ** maximum used to break ties. |
| ** |
| ** The aSpare array is used as temporary working space by the |
| ** sorting algorithm. |
| */ |
| static void SortByDimension( |
| int *aIdx, |
| int nIdx, |
| int iDim, |
| RtreeCell *aCell, |
| int *aSpare |
| ){ |
| if( nIdx>1 ){ |
| |
| int iLeft = 0; |
| int iRight = 0; |
| |
| int nLeft = nIdx/2; |
| int nRight = nIdx-nLeft; |
| int *aLeft = aIdx; |
| int *aRight = &aIdx[nLeft]; |
| |
| SortByDimension(aLeft, nLeft, iDim, aCell, aSpare); |
| SortByDimension(aRight, nRight, iDim, aCell, aSpare); |
| |
| memcpy(aSpare, aLeft, sizeof(int)*nLeft); |
| aLeft = aSpare; |
| while( iLeft<nLeft || iRight<nRight ){ |
| float xleft1 = aCell[aLeft[iLeft]].aCoord[iDim*2]; |
| float xleft2 = aCell[aLeft[iLeft]].aCoord[iDim*2+1]; |
| float xright1 = aCell[aRight[iRight]].aCoord[iDim*2]; |
| float xright2 = aCell[aRight[iRight]].aCoord[iDim*2+1]; |
| |
| if( (iLeft!=nLeft) && ((iRight==nRight) |
| || (xleft1<xright1) |
| || (xleft1==xright1 && xleft2<xright2) |
| )){ |
| aIdx[iLeft+iRight] = aLeft[iLeft]; |
| iLeft++; |
| }else{ |
| aIdx[iLeft+iRight] = aRight[iRight]; |
| iRight++; |
| } |
| } |
| |
| #if 0 |
| /* Check that the sort worked */ |
| { |
| int jj; |
| for(jj=1; jj<nIdx; jj++){ |
| float xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2]; |
| float xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1]; |
| float xright1 = aCell[aIdx[jj]].aCoord[iDim*2]; |
| float xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1]; |
| assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) ); |
| } |
| } |
| #endif |
| } |
| } |
| |
| #if VARIANT_RSTARTREE_SPLIT |
| /* |
| ** Implementation of the R*-tree variant of SplitNode from Beckman[1990]. |
| */ |
| static int splitNodeStartree( |
| Rtree *pRtree, |
| RtreeCell *aCell, |
| int nCell, |
| RtreeNode *pLeft, |
| RtreeNode *pRight, |
| RtreeCell *pBboxLeft, |
| RtreeCell *pBboxRight |
| ){ |
| int **aaSorted; |
| int *aSpare; |
| int ii; |
| |
| int iBestDim; |
| int iBestSplit; |
| float fBestMargin; |
| |
| int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int)); |
| |
| aaSorted = (int **)sqlite3_malloc(nByte); |
| if( !aaSorted ){ |
| return SQLITE_NOMEM; |
| } |
| |
| aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; |
| memset(aaSorted, 0, nByte); |
| for(ii=0; ii<pRtree->nDim; ii++){ |
| int jj; |
| aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; |
| for(jj=0; jj<nCell; jj++){ |
| aaSorted[ii][jj] = jj; |
| } |
| SortByDimension(aaSorted[ii], nCell, ii, aCell, aSpare); |
| } |
| |
| for(ii=0; ii<pRtree->nDim; ii++){ |
| float margin = 0.0; |
| float fBestOverlap; |
| float fBestArea; |
| int iBestLeft; |
| int nLeft; |
| |
| for( |
| nLeft=RTREE_MINCELLS(pRtree); |
| nLeft<=(nCell-RTREE_MINCELLS(pRtree)); |
| nLeft++ |
| ){ |
| RtreeCell left; |
| RtreeCell right; |
| int kk; |
| float overlap; |
| float area; |
| |
| memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); |
| memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); |
| for(kk=1; kk<(nCell-1); kk++){ |
| if( kk<nLeft ){ |
| cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]); |
| }else{ |
| cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]); |
| } |
| } |
| margin += cellMargin(pRtree, &left); |
| margin += cellMargin(pRtree, &right); |
| overlap = cellOverlap(pRtree, &left, &right, 1, -1); |
| area = cellArea(pRtree, &left) + cellArea(pRtree, &right); |
| if( (nLeft==RTREE_MINCELLS(pRtree)) |
| || (overlap<fBestOverlap) |
| || (overlap==fBestOverlap && area<fBestArea) |
| ){ |
| iBestLeft = nLeft; |
| fBestOverlap = overlap; |
| fBestArea = area; |
| } |
| } |
| |
| if( ii==0 || margin<fBestMargin ){ |
| iBestDim = ii; |
| fBestMargin = margin; |
| iBestSplit = iBestLeft; |
| } |
| } |
| |
| memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell)); |
| memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell)); |
| for(ii=0; ii<nCell; ii++){ |
| RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight; |
| RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight; |
| RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]]; |
| nodeInsertCell(pRtree, pTarget, pCell); |
| cellUnion(pRtree, pBbox, pCell); |
| } |
| |
| sqlite3_free(aaSorted); |
| return SQLITE_OK; |
| } |
| #endif |
| |
| #if VARIANT_GUTTMAN_SPLIT |
| /* |
| ** Implementation of the regular R-tree SplitNode from Guttman[1984]. |
| */ |
| static int splitNodeGuttman( |
| Rtree *pRtree, |
| RtreeCell *aCell, |
| int nCell, |
| RtreeNode *pLeft, |
| RtreeNode *pRight, |
| RtreeCell *pBboxLeft, |
| RtreeCell *pBboxRight |
| ){ |
| int iLeftSeed = 0; |
| int iRightSeed = 1; |
| int *aiUsed; |
| int i; |
| |
| aiUsed = sqlite3_malloc(sizeof(int)*nCell); |
| memset(aiUsed, 0, sizeof(int)*nCell); |
| |
| PickSeeds(pRtree, aCell, nCell, &iLeftSeed, &iRightSeed); |
| |
| memcpy(pBboxLeft, &aCell[iLeftSeed], sizeof(RtreeCell)); |
| memcpy(pBboxRight, &aCell[iRightSeed], sizeof(RtreeCell)); |
| nodeInsertCell(pRtree, pLeft, &aCell[iLeftSeed]); |
| nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]); |
| aiUsed[iLeftSeed] = 1; |
| aiUsed[iRightSeed] = 1; |
| |
| for(i=nCell-2; i>0; i--){ |
| RtreeCell *pNext; |
| pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed); |
| float diff = |
| cellGrowth(pRtree, pBboxLeft, pNext) - |
| cellGrowth(pRtree, pBboxRight, pNext) |
| ; |
| if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i) |
| || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i)) |
| ){ |
| nodeInsertCell(pRtree, pRight, pNext); |
| cellUnion(pRtree, pBboxRight, pNext); |
| }else{ |
| nodeInsertCell(pRtree, pLeft, pNext); |
| cellUnion(pRtree, pBboxLeft, pNext); |
| } |
| } |
| |
| sqlite3_free(aiUsed); |
| return SQLITE_OK; |
| } |
| #endif |
| |
| static int updateMapping( |
| Rtree *pRtree, |
| i64 iRowid, |
| RtreeNode *pNode, |
| int iHeight |
| ){ |
| int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64); |
| xSetMapping = ((iHeight==0)?rowidWrite:parentWrite); |
| if( iHeight>0 ){ |
| RtreeNode *pChild = nodeHashLookup(pRtree, iRowid); |
| if( pChild ){ |
| nodeRelease(pRtree, pChild->pParent); |
| nodeReference(pNode); |
| pChild->pParent = pNode; |
| } |
| } |
| return xSetMapping(pRtree, iRowid, pNode->iNode); |
| } |
| |
| static int SplitNode( |
| Rtree *pRtree, |
| RtreeNode *pNode, |
| RtreeCell *pCell, |
| int iHeight |
| ){ |
| int i; |
| int newCellIsRight = 0; |
| |
| int rc = SQLITE_OK; |
| int nCell = NCELL(pNode); |
| RtreeCell *aCell; |
| int *aiUsed; |
| |
| RtreeNode *pLeft = 0; |
| RtreeNode *pRight = 0; |
| |
| RtreeCell leftbbox; |
| RtreeCell rightbbox; |
| |
| /* Allocate an array and populate it with a copy of pCell and |
| ** all cells from node pLeft. Then zero the original node. |
| */ |
| aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1)); |
| if( !aCell ){ |
| rc = SQLITE_NOMEM; |
| goto splitnode_out; |
| } |
| aiUsed = (int *)&aCell[nCell+1]; |
| memset(aiUsed, 0, sizeof(int)*(nCell+1)); |
| for(i=0; i<nCell; i++){ |
| nodeGetCell(pRtree, pNode, i, &aCell[i]); |
| } |
| nodeZero(pRtree, pNode); |
| memcpy(&aCell[nCell], pCell, sizeof(RtreeCell)); |
| nCell++; |
| |
| if( pNode->iNode==1 ){ |
| pRight = nodeNew(pRtree, pNode, 1); |
| pLeft = nodeNew(pRtree, pNode, 1); |
| pRtree->iDepth++; |
| pNode->isDirty = 1; |
| writeInt16(pNode->zData, pRtree->iDepth); |
| }else{ |
| pLeft = pNode; |
| pRight = nodeNew(pRtree, pLeft->pParent, 1); |
| nodeReference(pLeft); |
| } |
| |
| if( !pLeft || !pRight ){ |
| rc = SQLITE_NOMEM; |
| goto splitnode_out; |
| } |
| |
| memset(pLeft->zData, 0, pRtree->iNodeSize); |
| memset(pRight->zData, 0, pRtree->iNodeSize); |
| |
| rc = AssignCells(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox); |
| if( rc!=SQLITE_OK ){ |
| goto splitnode_out; |
| } |
| |
| /* Ensure both child nodes have node numbers assigned to them. */ |
| if( (0==pRight->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))) |
| || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) |
| ){ |
| goto splitnode_out; |
| } |
| |
| rightbbox.iRowid = pRight->iNode; |
| leftbbox.iRowid = pLeft->iNode; |
| |
| if( pNode->iNode==1 ){ |
| rc = insertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1); |
| if( rc!=SQLITE_OK ){ |
| goto splitnode_out; |
| } |
| }else{ |
| RtreeNode *pParent = pLeft->pParent; |
| int iCell = nodeParentIndex(pRtree, pLeft); |
| nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); |
| AdjustTree(pRtree, pParent, &leftbbox); |
| } |
| if( (rc = insertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ |
| goto splitnode_out; |
| } |
| |
| for(i=0; i<NCELL(pRight); i++){ |
| i64 iRowid = nodeGetRowid(pRtree, pRight, i); |
| rc = updateMapping(pRtree, iRowid, pRight, iHeight); |
| if( iRowid==pCell->iRowid ){ |
| newCellIsRight = 1; |
| } |
| if( rc!=SQLITE_OK ){ |
| goto splitnode_out; |
| } |
| } |
| if( pNode->iNode==1 ){ |
| for(i=0; i<NCELL(pLeft); i++){ |
| i64 iRowid = nodeGetRowid(pRtree, pLeft, i); |
| rc = updateMapping(pRtree, iRowid, pLeft, iHeight); |
| if( rc!=SQLITE_OK ){ |
| goto splitnode_out; |
| } |
| } |
| }else if( newCellIsRight==0 ){ |
| rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight); |
| } |
| |
| if( rc==SQLITE_OK ){ |
| rc = nodeRelease(pRtree, pRight); |
| pRight = 0; |
| } |
| if( rc==SQLITE_OK ){ |
| rc = nodeRelease(pRtree, pLeft); |
| pLeft = 0; |
| } |
| |
| splitnode_out: |
| nodeRelease(pRtree, pRight); |
| nodeRelease(pRtree, pLeft); |
| sqlite3_free(aCell); |
| return rc; |
| } |
| |
| static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ |
| int rc = SQLITE_OK; |
| if( pLeaf->iNode!=1 && pLeaf->pParent==0 ){ |
| sqlite3_bind_int64(pRtree->pReadParent, 1, pLeaf->iNode); |
| if( sqlite3_step(pRtree->pReadParent)==SQLITE_ROW ){ |
| i64 iNode = sqlite3_column_int64(pRtree->pReadParent, 0); |
| rc = nodeAcquire(pRtree, iNode, 0, &pLeaf->pParent); |
| }else{ |
| rc = SQLITE_ERROR; |
| } |
| sqlite3_reset(pRtree->pReadParent); |
| if( rc==SQLITE_OK ){ |
| rc = fixLeafParent(pRtree, pLeaf->pParent); |
| } |
| } |
| return rc; |
| } |
| |
| static int deleteCell(Rtree *, RtreeNode *, int, int); |
| |
| static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ |
| int rc; |
| RtreeNode *pParent; |
| int iCell; |
| |
| assert( pNode->nRef==1 ); |
| |
| /* Remove the entry in the parent cell. */ |
| iCell = nodeParentIndex(pRtree, pNode); |
| pParent = pNode->pParent; |
| pNode->pParent = 0; |
| if( SQLITE_OK!=(rc = deleteCell(pRtree, pParent, iCell, iHeight+1)) |
| || SQLITE_OK!=(rc = nodeRelease(pRtree, pParent)) |
| ){ |
| return rc; |
| } |
| |
| /* Remove the xxx_node entry. */ |
| sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode); |
| sqlite3_step(pRtree->pDeleteNode); |
| if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){ |
| return rc; |
| } |
| |
| /* Remove the xxx_parent entry. */ |
| sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode); |
| sqlite3_step(pRtree->pDeleteParent); |
| if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){ |
| return rc; |
| } |
| |
| /* Remove the node from the in-memory hash table and link it into |
| ** the Rtree.pDeleted list. Its contents will be re-inserted later on. |
| */ |
| nodeHashDelete(pRtree, pNode); |
| pNode->iNode = iHeight; |
| pNode->pNext = pRtree->pDeleted; |
| pNode->nRef++; |
| pRtree->pDeleted = pNode; |
| |
| return SQLITE_OK; |
| } |
| |
| static void fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ |
| RtreeNode *pParent = pNode->pParent; |
| if( pParent ){ |
| int ii; |
| int nCell = NCELL(pNode); |
| RtreeCell box; /* Bounding box for pNode */ |
| nodeGetCell(pRtree, pNode, 0, &box); |
| for(ii=1; ii<nCell; ii++){ |
| RtreeCell cell; |
| nodeGetCell(pRtree, pNode, ii, &cell); |
| cellUnion(pRtree, &box, &cell); |
| } |
| box.iRowid = pNode->iNode; |
| ii = nodeParentIndex(pRtree, pNode); |
| nodeOverwriteCell(pRtree, pParent, &box, ii); |
| fixBoundingBox(pRtree, pParent); |
| } |
| } |
| |
| /* |
| ** Delete the cell at index iCell of node pNode. After removing the |
| ** cell, adjust the r-tree data structure if required. |
| */ |
| static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ |
| int rc; |
| |
| if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ |
| return rc; |
| } |
| |
| /* Remove the cell from the node. This call just moves bytes around |
| ** the in-memory node image, so it cannot fail. |
| */ |
| nodeDeleteCell(pRtree, pNode, iCell); |
| |
| /* If the node is not the tree root and now has less than the minimum |
| ** number of cells, remove it from the tree. Otherwise, update the |
| ** cell in the parent node so that it tightly contains the updated |
| ** node. |
| */ |
| if( pNode->iNode!=1 ){ |
| RtreeNode *pParent = pNode->pParent; |
| if( (pParent->iNode!=1 || NCELL(pParent)!=1) |
| && (NCELL(pNode)<RTREE_MINCELLS(pRtree)) |
| ){ |
| rc = removeNode(pRtree, pNode, iHeight); |
| }else{ |
| fixBoundingBox(pRtree, pNode); |
| } |
| } |
| |
| return rc; |
| } |
| |
| static int Reinsert( |
| Rtree *pRtree, |
| RtreeNode *pNode, |
| RtreeCell *pCell, |
| int iHeight |
| ){ |
| int *aOrder; |
| int *aSpare; |
| RtreeCell *aCell; |
| float *aDistance; |
| int nCell; |
| float aCenterCoord[RTREE_MAX_DIMENSIONS]; |
| int iDim; |
| int ii; |
| int rc = SQLITE_OK; |
| |
| memset(aCenterCoord, 0, sizeof(float)*RTREE_MAX_DIMENSIONS); |
| |
| nCell = NCELL(pNode)+1; |
| |
| /* Allocate the buffers used by this operation. The allocation is |
| ** relinquished before this function returns. |
| */ |
| aCell = (RtreeCell *)sqlite3_malloc(nCell * ( |
| sizeof(RtreeCell) + /* aCell array */ |
| sizeof(int) + /* aOrder array */ |
| sizeof(int) + /* aSpare array */ |
| sizeof(float) /* aDistance array */ |
| )); |
| if( !aCell ){ |
| return SQLITE_NOMEM; |
| } |
| aOrder = (int *)&aCell[nCell]; |
| aSpare = (int *)&aOrder[nCell]; |
| aDistance = (float *)&aSpare[nCell]; |
| |
| for(ii=0; ii<nCell; ii++){ |
| if( ii==(nCell-1) ){ |
| memcpy(&aCell[ii], pCell, sizeof(RtreeCell)); |
| }else{ |
| nodeGetCell(pRtree, pNode, ii, &aCell[ii]); |
| } |
| aOrder[ii] = ii; |
| for(iDim=0; iDim<pRtree->nDim; iDim++){ |
| aCenterCoord[iDim] += aCell[ii].aCoord[iDim*2]; |
| aCenterCoord[iDim] += aCell[ii].aCoord[iDim*2+1]; |
| } |
| } |
| for(iDim=0; iDim<pRtree->nDim; iDim++){ |
| aCenterCoord[iDim] = aCenterCoord[iDim]/((float)nCell*2.0); |
| } |
| |
| for(ii=0; ii<nCell; ii++){ |
| aDistance[ii] = 0.0; |
| for(iDim=0; iDim<pRtree->nDim; iDim++){ |
| float coord = aCell[ii].aCoord[iDim*2+1] - aCell[ii].aCoord[iDim*2]; |
| aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); |
| } |
| } |
| |
| SortByDistance(aOrder, nCell, aDistance, aSpare); |
| nodeZero(pRtree, pNode); |
| |
| for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){ |
| RtreeCell *p = &aCell[aOrder[ii]]; |
| nodeInsertCell(pRtree, pNode, p); |
| if( p->iRowid==pCell->iRowid ){ |
| if( iHeight==0 ){ |
| rc = rowidWrite(pRtree, p->iRowid, pNode->iNode); |
| }else{ |
| rc = parentWrite(pRtree, p->iRowid, pNode->iNode); |
| } |
| } |
| } |
| if( rc==SQLITE_OK ){ |
| fixBoundingBox(pRtree, pNode); |
| } |
| for(; rc==SQLITE_OK && ii<nCell; ii++){ |
| /* Find a node to store this cell in. pNode->iNode currently contains |
| ** the height of the sub-tree headed by the cell. |
| */ |
| RtreeNode *pInsert; |
| RtreeCell *p = &aCell[aOrder[ii]]; |
| rc = ChooseLeaf(pRtree, p, iHeight, &pInsert); |
| if( rc==SQLITE_OK ){ |
| int rc2; |
| rc = insertCell(pRtree, pInsert, p, iHeight); |
| rc2 = nodeRelease(pRtree, pInsert); |
| if( rc==SQLITE_OK ){ |
| rc = rc2; |
| } |
| } |
| } |
| |
| sqlite3_free(aCell); |
| return rc; |
| } |
| |
| /* |
| ** Insert cell pCell into node pNode. Node pNode is the head of a |
| ** subtree iHeight high (leaf nodes have iHeight==0). |
| */ |
| static int insertCell( |
| Rtree *pRtree, |
| RtreeNode *pNode, |
| RtreeCell *pCell, |
| int iHeight |
| ){ |
| int rc = SQLITE_OK; |
| if( iHeight>0 ){ |
| RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); |
| if( pChild ){ |
| nodeRelease(pRtree, pChild->pParent); |
| nodeReference(pNode); |
| pChild->pParent = pNode; |
| } |
| } |
| if( nodeInsertCell(pRtree, pNode, pCell) ){ |
| #if VARIANT_RSTARTREE_REINSERT |
| if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){ |
| rc = SplitNode(pRtree, pNode, pCell, iHeight); |
| }else{ |
| pRtree->iReinsertHeight = iHeight; |
| rc = Reinsert(pRtree, pNode, pCell, iHeight); |
| } |
| #else |
| rc = SplitNode(pRtree, pNode, pCell, iHeight); |
| #endif |
| }else{ |
| AdjustTree(pRtree, pNode, pCell); |
| if( iHeight==0 ){ |
| rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); |
| }else{ |
| rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); |
| } |
| } |
| return rc; |
| } |
| |
| static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ |
| int ii; |
| int rc = SQLITE_OK; |
| int nCell = NCELL(pNode); |
| |
| for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){ |
| RtreeNode *pInsert; |
| RtreeCell cell; |
| nodeGetCell(pRtree, pNode, ii, &cell); |
| |
| /* Find a node to store this cell in. pNode->iNode currently contains |
| ** the height of the sub-tree headed by the cell. |
| */ |
| rc = ChooseLeaf(pRtree, &cell, pNode->iNode, &pInsert); |
| if( rc==SQLITE_OK ){ |
| int rc2; |
| rc = insertCell(pRtree, pInsert, &cell, pNode->iNode); |
| rc2 = nodeRelease(pRtree, pInsert); |
| if( rc==SQLITE_OK ){ |
| rc = rc2; |
| } |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Select a currently unused rowid for a new r-tree record. |
| */ |
| static int newRowid(Rtree *pRtree, i64 *piRowid){ |
| int rc; |
| sqlite3_bind_null(pRtree->pWriteRowid, 1); |
| sqlite3_bind_null(pRtree->pWriteRowid, 2); |
| sqlite3_step(pRtree->pWriteRowid); |
| rc = sqlite3_reset(pRtree->pWriteRowid); |
| *piRowid = sqlite3_last_insert_rowid(pRtree->db); |
| return rc; |
| } |
| |
| #ifndef NDEBUG |
| static int hashIsEmpty(Rtree *pRtree){ |
| int ii; |
| for(ii=0; ii<HASHSIZE; ii++){ |
| assert( !pRtree->aHash[ii] ); |
| } |
| return 1; |
| } |
| #endif |
| |
| /* |
| ** The xUpdate method for rtree module virtual tables. |
| */ |
| int rtreeUpdate( |
| sqlite3_vtab *pVtab, |
| int nData, |
| sqlite3_value **azData, |
| sqlite_int64 *pRowid |
| ){ |
| Rtree *pRtree = (Rtree *)pVtab; |
| int rc = SQLITE_OK; |
| |
| rtreeReference(pRtree); |
| |
| assert(nData>=1); |
| assert(hashIsEmpty(pRtree)); |
| |
| /* If azData[0] is not an SQL NULL value, it is the rowid of a |
| ** record to delete from the r-tree table. The following block does |
| ** just that. |
| */ |
| if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){ |
| i64 iDelete; /* The rowid to delete */ |
| RtreeNode *pLeaf; /* Leaf node containing record iDelete */ |
| int iCell; /* Index of iDelete cell in pLeaf */ |
| RtreeNode *pRoot; |
| |
| /* Obtain a reference to the root node to initialise Rtree.iDepth */ |
| rc = nodeAcquire(pRtree, 1, 0, &pRoot); |
| |
| /* Obtain a reference to the leaf node that contains the entry |
| ** about to be deleted. |
| */ |
| if( rc==SQLITE_OK ){ |
| iDelete = sqlite3_value_int64(azData[0]); |
| rc = findLeafNode(pRtree, iDelete, &pLeaf); |
| } |
| |
| /* Delete the cell in question from the leaf node. */ |
| if( rc==SQLITE_OK ){ |
| int rc2; |
| iCell = nodeRowidIndex(pRtree, pLeaf, iDelete); |
| rc = deleteCell(pRtree, pLeaf, iCell, 0); |
| rc2 = nodeRelease(pRtree, pLeaf); |
| if( rc==SQLITE_OK ){ |
| rc = rc2; |
| } |
| } |
| |
| /* Delete the corresponding entry in the <rtree>_rowid table. */ |
| if( rc==SQLITE_OK ){ |
| sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); |
| sqlite3_step(pRtree->pDeleteRowid); |
| rc = sqlite3_reset(pRtree->pDeleteRowid); |
| } |
| |
| /* Check if the root node now has exactly one child. If so, remove |
| ** it, schedule the contents of the child for reinsertion and |
| ** reduce the tree height by one. |
| ** |
| ** This is equivalent to copying the contents of the child into |
| ** the root node (the operation that Gutman's paper says to perform |
| ** in this scenario). |
| */ |
| if( rc==SQLITE_OK && pRtree->iDepth>0 ){ |
| if( rc==SQLITE_OK && NCELL(pRoot)==1 ){ |
| RtreeNode *pChild; |
| i64 iChild = nodeGetRowid(pRtree, pRoot, 0); |
| rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); |
| if( rc==SQLITE_OK ){ |
| rc = removeNode(pRtree, pChild, pRtree->iDepth-1); |
| } |
| if( rc==SQLITE_OK ){ |
| pRtree->iDepth--; |
| writeInt16(pRoot->zData, pRtree->iDepth); |
| pRoot->isDirty = 1; |
| } |
| } |
| } |
| |
| /* Re-insert the contents of any underfull nodes removed from the tree. */ |
| for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ |
| if( rc==SQLITE_OK ){ |
| rc = reinsertNodeContent(pRtree, pLeaf); |
| } |
| pRtree->pDeleted = pLeaf->pNext; |
| sqlite3_free(pLeaf); |
| } |
| |
| /* Release the reference to the root node. */ |
| if( rc==SQLITE_OK ){ |
| rc = nodeRelease(pRtree, pRoot); |
| }else{ |
| nodeRelease(pRtree, pRoot); |
| } |
| } |
| |
| /* If the azData[] array contains more than one element, elements |
| ** (azData[2]..azData[argc-1]) contain a new record to insert into |
| ** the r-tree structure. |
| */ |
| if( rc==SQLITE_OK && nData>1 ){ |
| /* Insert a new record into the r-tree */ |
| RtreeCell cell; |
| int ii; |
| RtreeNode *pLeaf; |
| |
| /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */ |
| assert( nData==(pRtree->nDim*2 + 3) ); |
| for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
| cell.aCoord[ii] = (float)sqlite3_value_double(azData[ii+3]); |
| cell.aCoord[ii+1] = (float)sqlite3_value_double(azData[ii+4]); |
| if( cell.aCoord[ii]>cell.aCoord[ii+1] ){ |
| rc = SQLITE_CONSTRAINT; |
| goto constraint; |
| } |
| } |
| |
| /* Figure out the rowid of the new row. */ |
| if( sqlite3_value_type(azData[2])==SQLITE_NULL ){ |
| rc = newRowid(pRtree, &cell.iRowid); |
| }else{ |
| cell.iRowid = sqlite3_value_int64(azData[2]); |
| sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); |
| if( SQLITE_ROW==sqlite3_step(pRtree->pReadRowid) ){ |
| sqlite3_reset(pRtree->pReadRowid); |
| rc = SQLITE_CONSTRAINT; |
| goto constraint; |
| } |
| rc = sqlite3_reset(pRtree->pReadRowid); |
| } |
| |
| if( rc==SQLITE_OK ){ |
| rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); |
| } |
| if( rc==SQLITE_OK ){ |
| int rc2; |
| pRtree->iReinsertHeight = -1; |
| rc = insertCell(pRtree, pLeaf, &cell, 0); |
| rc2 = nodeRelease(pRtree, pLeaf); |
| if( rc==SQLITE_OK ){ |
| rc = rc2; |
| } |
| } |
| } |
| |
| constraint: |
| rtreeRelease(pRtree); |
| return rc; |
| } |
| |
| /* |
| ** The xRename method for rtree module virtual tables. |
| */ |
| static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){ |
| Rtree *pRtree = (Rtree *)pVtab; |
| int rc = SQLITE_NOMEM; |
| char *zSql = sqlite3_mprintf( |
| "ALTER TABLE %Q.'%q_node' RENAME TO '%q_node';" |
| "ALTER TABLE %Q.'%q_parent' RENAME TO '%q_parent';" |
| "ALTER TABLE %Q.'%q_rowid' RENAME TO '%q_rowid';" |
| , pRtree->zDb, pRtree->zName, zNewName |
| , pRtree->zDb, pRtree->zName, zNewName |
| , pRtree->zDb, pRtree->zName, zNewName |
| ); |
| if( zSql ){ |
| rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); |
| sqlite3_free(zSql); |
| } |
| return rc; |
| } |
| |
| static sqlite3_module rtreeModule = { |
| 0, /* iVersion */ |
| rtreeCreate, /* xCreate - create a table */ |
| rtreeConnect, /* xConnect - connect to an existing table */ |
| rtreeBestIndex, /* xBestIndex - Determine search strategy */ |
| rtreeDisconnect, /* xDisconnect - Disconnect from a table */ |
| rtreeDestroy, /* xDestroy - Drop a table */ |
| rtreeOpen, /* xOpen - open a cursor */ |
| rtreeClose, /* xClose - close a cursor */ |
| rtreeFilter, /* xFilter - configure scan constraints */ |
| rtreeNext, /* xNext - advance a cursor */ |
| rtreeEof, /* xEof */ |
| rtreeColumn, /* xColumn - read data */ |
| rtreeRowid, /* xRowid - read data */ |
| rtreeUpdate, /* xUpdate - write data */ |
| 0, /* xBegin - begin transaction */ |
| 0, /* xSync - sync transaction */ |
| 0, /* xCommit - commit transaction */ |
| 0, /* xRollback - rollback transaction */ |
| 0, /* xFindFunction - function overloading */ |
| rtreeRename /* xRename - rename the table */ |
| }; |
| |
| static int rtreeSqlInit( |
| Rtree *pRtree, |
| sqlite3 *db, |
| const char *zDb, |
| const char *zPrefix, |
| int isCreate |
| ){ |
| int rc = SQLITE_OK; |
| |
| #define N_STATEMENT 9 |
| static const char *azSql[N_STATEMENT] = { |
| /* Read and write the xxx_node table */ |
| "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1", |
| "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)", |
| "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1", |
| |
| /* Read and write the xxx_rowid table */ |
| "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1", |
| "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)", |
| "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1", |
| |
| /* Read and write the xxx_parent table */ |
| "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1", |
| "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)", |
| "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1" |
| }; |
| sqlite3_stmt **appStmt[N_STATEMENT]; |
| int i; |
| |
| pRtree->db = db; |
| |
| if( isCreate ){ |
| char *zCreate = sqlite3_mprintf( |
| "CREATE TABLE '%q'.'%q_node'(nodeno INTEGER PRIMARY KEY, data BLOB);" |
| "CREATE TABLE '%q'.'%q_rowid'(rowid INTEGER PRIMARY KEY, nodeno INTEGER);" |
| "CREATE TABLE '%q'.'%q_parent'(nodeno INTEGER PRIMARY KEY, parentnode INTEGER);" |
| "INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))", |
| zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize |
| ); |
| if( !zCreate ){ |
| return SQLITE_NOMEM; |
| } |
| rc = sqlite3_exec(db, zCreate, 0, 0, 0); |
| sqlite3_free(zCreate); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| } |
| |
| appStmt[0] = &pRtree->pReadNode; |
| appStmt[1] = &pRtree->pWriteNode; |
| appStmt[2] = &pRtree->pDeleteNode; |
| appStmt[3] = &pRtree->pReadRowid; |
| appStmt[4] = &pRtree->pWriteRowid; |
| appStmt[5] = &pRtree->pDeleteRowid; |
| appStmt[6] = &pRtree->pReadParent; |
| appStmt[7] = &pRtree->pWriteParent; |
| appStmt[8] = &pRtree->pDeleteParent; |
| |
| for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){ |
| char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix); |
| if( zSql ){ |
| rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0); |
| }else{ |
| rc = SQLITE_NOMEM; |
| } |
| sqlite3_free(zSql); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** This routine queries database handle db for the page-size used by |
| ** database zDb. If successful, the page-size in bytes is written to |
| ** *piPageSize and SQLITE_OK returned. Otherwise, and an SQLite error |
| ** code is returned. |
| */ |
| static int getPageSize(sqlite3 *db, const char *zDb, int *piPageSize){ |
| int rc = SQLITE_NOMEM; |
| char *zSql; |
| sqlite3_stmt *pStmt = 0; |
| |
| zSql = sqlite3_mprintf("PRAGMA %Q.page_size", zDb); |
| if( !zSql ){ |
| return SQLITE_NOMEM; |
| } |
| |
| rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); |
| sqlite3_free(zSql); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| *piPageSize = sqlite3_column_int(pStmt, 0); |
| } |
| return sqlite3_finalize(pStmt); |
| } |
| |
| /* |
| ** This function is the implementation of both the xConnect and xCreate |
| ** methods of the r-tree virtual table. |
| ** |
| ** argv[0] -> module name |
| ** argv[1] -> database name |
| ** argv[2] -> table name |
| ** argv[...] -> column names... |
| */ |
| static int rtreeInit( |
| sqlite3 *db, /* Database connection */ |
| void *pAux, /* Pointer to head of rtree list */ |
| int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ |
| sqlite3_vtab **ppVtab, /* OUT: New virtual table */ |
| char **pzErr, /* OUT: Error message, if any */ |
| int isCreate /* True for xCreate, false for xConnect */ |
| ){ |
| int rc = SQLITE_OK; |
| int iPageSize = 0; |
| Rtree *pRtree; |
| int nDb; /* Length of string argv[1] */ |
| int nName; /* Length of string argv[2] */ |
| |
| const char *aErrMsg[] = { |
| 0, /* 0 */ |
| "Wrong number of columns for an rtree table", /* 1 */ |
| "Too few columns for an rtree table", /* 2 */ |
| "Too many columns for an rtree table" /* 3 */ |
| }; |
| |
| int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2; |
| if( aErrMsg[iErr] ){ |
| *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); |
| return SQLITE_ERROR; |
| } |
| |
| rc = getPageSize(db, argv[1], &iPageSize); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| /* Allocate the sqlite3_vtab structure */ |
| nDb = strlen(argv[1]); |
| nName = strlen(argv[2]); |
| pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2); |
| if( !pRtree ){ |
| return SQLITE_NOMEM; |
| } |
| memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); |
| pRtree->nBusy = 1; |
| pRtree->base.pModule = &rtreeModule; |
| pRtree->zDb = (char *)&pRtree[1]; |
| pRtree->zName = &pRtree->zDb[nDb+1]; |
| pRtree->nDim = (argc-4)/2; |
| pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2; |
| memcpy(pRtree->zDb, argv[1], nDb); |
| memcpy(pRtree->zName, argv[2], nName); |
| |
| /* Figure out the node size to use. By default, use 64 bytes less than |
| ** the database page-size. This ensures that each node is stored on |
| ** a single database page. |
| ** |
| ** If the databasd page-size is so large that more than RTREE_MAXCELLS |
| ** entries would fit in a single node, use a smaller node-size. |
| */ |
| pRtree->iNodeSize = iPageSize-64; |
| if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){ |
| pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; |
| } |
| |
| /* Create/Connect to the underlying relational database schema. If |
| ** that is successful, call sqlite3_declare_vtab() to configure |
| ** the r-tree table schema. |
| */ |
| if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){ |
| *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
| }else{ |
| char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]); |
| char *zTmp; |
| int ii; |
| for(ii=4; zSql && ii<argc; ii++){ |
| zTmp = zSql; |
| zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]); |
| sqlite3_free(zTmp); |
| } |
| if( zSql ){ |
| zTmp = zSql; |
| zSql = sqlite3_mprintf("%s);", zTmp); |
| sqlite3_free(zTmp); |
| } |
| if( !zSql || sqlite3_declare_vtab(db, zSql) ){ |
| rc = SQLITE_NOMEM; |
| } |
| sqlite3_free(zSql); |
| } |
| |
| if( rc==SQLITE_OK ){ |
| *ppVtab = (sqlite3_vtab *)pRtree; |
| }else{ |
| rtreeRelease(pRtree); |
| } |
| return rc; |
| } |
| |
| |
| /* |
| ** Implementation of a scalar function that decodes r-tree nodes to |
| ** human readable strings. This can be used for debugging and analysis. |
| ** |
| ** The scalar function takes two arguments, a blob of data containing |
| ** an r-tree node, and the number of dimensions the r-tree indexes. |
| ** For a two-dimensional r-tree structure called "rt", to deserialize |
| ** all nodes, a statement like: |
| ** |
| ** SELECT rtreenode(2, data) FROM rt_node; |
| ** |
| ** The human readable string takes the form of a Tcl list with one |
| ** entry for each cell in the r-tree node. Each entry is itself a |
| ** list, containing the 8-byte rowid/pageno followed by the |
| ** <num-dimension>*2 coordinates. |
| */ |
| static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
| char *zText = 0; |
| RtreeNode node; |
| Rtree tree; |
| int ii; |
| |
| memset(&node, 0, sizeof(RtreeNode)); |
| memset(&tree, 0, sizeof(Rtree)); |
| tree.nDim = sqlite3_value_int(apArg[0]); |
| tree.nBytesPerCell = 8 + 8 * tree.nDim; |
| node.zData = (u8 *)sqlite3_value_blob(apArg[1]); |
| |
| for(ii=0; ii<NCELL(&node); ii++){ |
| char zCell[512]; |
| int nCell = 0; |
| RtreeCell cell; |
| int jj; |
| |
| nodeGetCell(&tree, &node, ii, &cell); |
| sqlite3_snprintf(512-nCell,&zCell[nCell],"%d", cell.iRowid); |
| nCell = strlen(zCell); |
| for(jj=0; jj<tree.nDim*2; jj++){ |
| sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj]); |
| nCell = strlen(zCell); |
| } |
| |
| if( zText ){ |
| char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell); |
| sqlite3_free(zText); |
| zText = zTextNew; |
| }else{ |
| zText = sqlite3_mprintf("{%s}", zCell); |
| } |
| } |
| |
| sqlite3_result_text(ctx, zText, -1, sqlite3_free); |
| } |
| |
| static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
| if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB |
| || sqlite3_value_bytes(apArg[0])<2 |
| ){ |
| sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1); |
| }else{ |
| u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]); |
| sqlite3_result_int(ctx, readInt16(zBlob)); |
| } |
| } |
| |
| /* |
| ** Register the r-tree module with database handle db. This creates the |
| ** virtual table module "rtree" and the debugging/analysis scalar |
| ** function "rtreenode". |
| */ |
| int sqlite3RtreeInit(sqlite3 *db){ |
| int rc = SQLITE_OK; |
| |
| if( rc==SQLITE_OK ){ |
| int utf8 = SQLITE_UTF8; |
| rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); |
| } |
| if( rc==SQLITE_OK ){ |
| int utf8 = SQLITE_UTF8; |
| rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); |
| } |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, 0, 0); |
| } |
| |
| return rc; |
| } |
| |
| #if !SQLITE_CORE |
| int sqlite3_extension_init( |
| sqlite3 *db, |
| char **pzErrMsg, |
| const sqlite3_api_routines *pApi |
| ){ |
| SQLITE_EXTENSION_INIT2(pApi) |
| return sqlite3RtreeInit(db); |
| } |
| #endif |
| |
| #endif |