danielk1977 | ebaecc1 | 2008-05-26 18:41:54 +0000 | [diff] [blame^] | 1 | /* |
| 2 | ** 2001 September 15 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
| 12 | ** This file contains code for implementations of the r-tree and r*-tree |
| 13 | ** algorithms packaged as an SQLite virtual table module. |
| 14 | ** |
| 15 | ** $Id: rtree.c,v 1.1 2008/05/26 18:41:54 danielk1977 Exp $ |
| 16 | */ |
| 17 | |
| 18 | #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE) |
| 19 | |
| 20 | /* |
| 21 | ** This file contains an implementation of a couple of different variants |
| 22 | ** of the r-tree algorithm. See the README file for further details. The |
| 23 | ** same data-structure is used for all, but the algorithms for insert and |
| 24 | ** delete operations vary. The variants used are selected at compile time |
| 25 | ** by defining the following symbols: |
| 26 | */ |
| 27 | |
| 28 | /* Either, both or none of the following may be set to activate |
| 29 | ** r*tree variant algorithms. |
| 30 | */ |
| 31 | #define VARIANT_RSTARTREE_CHOOSESUBTREE 0 |
| 32 | #define VARIANT_RSTARTREE_REINSERT 1 |
| 33 | |
| 34 | /* |
| 35 | ** Exactly one of the following must be set to 1. |
| 36 | */ |
| 37 | #define VARIANT_GUTTMAN_QUADRATIC_SPLIT 0 |
| 38 | #define VARIANT_GUTTMAN_LINEAR_SPLIT 0 |
| 39 | #define VARIANT_RSTARTREE_SPLIT 1 |
| 40 | |
| 41 | #define VARIANT_GUTTMAN_SPLIT \ |
| 42 | (VARIANT_GUTTMAN_LINEAR_SPLIT||VARIANT_GUTTMAN_QUADRATIC_SPLIT) |
| 43 | |
| 44 | #if VARIANT_GUTTMAN_QUADRATIC_SPLIT |
| 45 | #define PickNext QuadraticPickNext |
| 46 | #define PickSeeds QuadraticPickSeeds |
| 47 | #define AssignCells splitNodeGuttman |
| 48 | #endif |
| 49 | #if VARIANT_GUTTMAN_LINEAR_SPLIT |
| 50 | #define PickNext LinearPickNext |
| 51 | #define PickSeeds LinearPickSeeds |
| 52 | #define AssignCells splitNodeGuttman |
| 53 | #endif |
| 54 | #if VARIANT_RSTARTREE_SPLIT |
| 55 | #define AssignCells splitNodeStartree |
| 56 | #endif |
| 57 | |
| 58 | |
| 59 | #ifndef SQLITE_CORE |
| 60 | #include "sqlite3ext.h" |
| 61 | SQLITE_EXTENSION_INIT1 |
| 62 | #else |
| 63 | #include "sqlite3.h" |
| 64 | #endif |
| 65 | |
| 66 | #include <string.h> |
| 67 | #include <assert.h> |
| 68 | |
| 69 | typedef sqlite3_int64 i64; |
| 70 | typedef unsigned char u8; |
| 71 | typedef unsigned int u32; |
| 72 | |
| 73 | typedef struct Rtree Rtree; |
| 74 | typedef struct RtreeCursor RtreeCursor; |
| 75 | typedef struct RtreeNode RtreeNode; |
| 76 | typedef struct RtreeCell RtreeCell; |
| 77 | typedef struct RtreeConstraint RtreeConstraint; |
| 78 | |
| 79 | /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ |
| 80 | #define RTREE_MAX_DIMENSIONS 5 |
| 81 | |
| 82 | /* Size of hash table Rtree.aHash. This hash table is not expected to |
| 83 | ** ever contain very many entries, so a fixed number of buckets is |
| 84 | ** used. |
| 85 | */ |
| 86 | #define HASHSIZE 128 |
| 87 | |
| 88 | /* |
| 89 | ** An rtree virtual-table object. |
| 90 | */ |
| 91 | struct Rtree { |
| 92 | sqlite3_vtab base; |
| 93 | sqlite3 *db; /* Host database connection */ |
| 94 | int iNodeSize; /* Size in bytes of each node in the node table */ |
| 95 | int nDim; /* Number of dimensions */ |
| 96 | int nBytesPerCell; /* Bytes consumed per cell */ |
| 97 | int iDepth; /* Current depth of the r-tree structure */ |
| 98 | char *zDb; /* Name of database containing r-tree table */ |
| 99 | char *zName; /* Name of r-tree table */ |
| 100 | RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ |
| 101 | int nBusy; /* Current number of users of this structure */ |
| 102 | |
| 103 | /* List of nodes removed during a CondenseTree operation. List is |
| 104 | ** linked together via the pointer normally used for hash chains - |
| 105 | ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree |
| 106 | ** headed by the node (leaf nodes have RtreeNode.iNode==0). |
| 107 | */ |
| 108 | RtreeNode *pDeleted; |
| 109 | int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */ |
| 110 | |
| 111 | /* Statements to read/write/delete a record from xxx_node */ |
| 112 | sqlite3_stmt *pReadNode; |
| 113 | sqlite3_stmt *pWriteNode; |
| 114 | sqlite3_stmt *pDeleteNode; |
| 115 | |
| 116 | /* Statements to read/write/delete a record from xxx_rowid */ |
| 117 | sqlite3_stmt *pReadRowid; |
| 118 | sqlite3_stmt *pWriteRowid; |
| 119 | sqlite3_stmt *pDeleteRowid; |
| 120 | |
| 121 | /* Statements to read/write/delete a record from xxx_parent */ |
| 122 | sqlite3_stmt *pReadParent; |
| 123 | sqlite3_stmt *pWriteParent; |
| 124 | sqlite3_stmt *pDeleteParent; |
| 125 | }; |
| 126 | |
| 127 | /* |
| 128 | ** The minimum number of cells allowed for a node is a third of the |
| 129 | ** maximum. In Gutman's notation: |
| 130 | ** |
| 131 | ** m = M/3 |
| 132 | ** |
| 133 | ** If an R*-tree "Reinsert" operation is required, the same number of |
| 134 | ** cells are removed from the overfull node and reinserted into the tree. |
| 135 | */ |
| 136 | #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) |
| 137 | #define RTREE_REINSERT(p) RTREE_MINCELLS(p) |
| 138 | #define RTREE_MAXCELLS 51 |
| 139 | |
| 140 | /* |
| 141 | ** An rtree cursor object. |
| 142 | */ |
| 143 | struct RtreeCursor { |
| 144 | sqlite3_vtab_cursor base; |
| 145 | RtreeNode *pNode; /* Node cursor is currently pointing at */ |
| 146 | int iCell; /* Index of current cell in pNode */ |
| 147 | int iStrategy; /* Copy of idxNum search parameter */ |
| 148 | int nConstraint; /* Number of entries in aConstraint */ |
| 149 | RtreeConstraint *aConstraint; /* Search constraints. */ |
| 150 | }; |
| 151 | |
| 152 | /* |
| 153 | ** A search constraint. |
| 154 | */ |
| 155 | struct RtreeConstraint { |
| 156 | int iCoord; /* Index of constrained coordinate */ |
| 157 | int op; /* Constraining operation */ |
| 158 | float rValue; /* Constraint value. */ |
| 159 | }; |
| 160 | |
| 161 | /* Possible values for RtreeConstraint.op */ |
| 162 | #define RTREE_EQ 0x41 |
| 163 | #define RTREE_LE 0x42 |
| 164 | #define RTREE_LT 0x43 |
| 165 | #define RTREE_GE 0x44 |
| 166 | #define RTREE_GT 0x45 |
| 167 | |
| 168 | /* |
| 169 | ** An rtree structure node. |
| 170 | ** |
| 171 | ** Data format (RtreeNode.zData): |
| 172 | ** |
| 173 | ** 1. If the node is the root node (node 1), then the first 2 bytes |
| 174 | ** of the node contain the tree depth as a big-endian integer. |
| 175 | ** For non-root nodes, the first 2 bytes are left unused. |
| 176 | ** |
| 177 | ** 2. The next 2 bytes contain the number of entries currently |
| 178 | ** stored in the node. |
| 179 | ** |
| 180 | ** 3. The remainder of the node contains the node entries. Each entry |
| 181 | ** consists of a single 8-byte integer followed by an even number |
| 182 | ** of 4-byte coordinates. For leaf nodes the integer is the rowid |
| 183 | ** of a record. For internal nodes it is the node number of a |
| 184 | ** child page. |
| 185 | */ |
| 186 | struct RtreeNode { |
| 187 | RtreeNode *pParent; /* Parent node */ |
| 188 | i64 iNode; |
| 189 | int nRef; |
| 190 | int isDirty; |
| 191 | u8 *zData; |
| 192 | RtreeNode *pNext; /* Next node in this hash chain */ |
| 193 | }; |
| 194 | #define NCELL(pNode) readInt16(&(pNode)->zData[2]) |
| 195 | |
| 196 | /* |
| 197 | ** Structure to store a deserialized rtree record. |
| 198 | */ |
| 199 | struct RtreeCell { |
| 200 | i64 iRowid; |
| 201 | float aCoord[RTREE_MAX_DIMENSIONS*2]; |
| 202 | }; |
| 203 | |
| 204 | #define MAX(x,y) ((x) < (y) ? (y) : (x)) |
| 205 | #define MIN(x,y) ((x) > (y) ? (y) : (x)) |
| 206 | |
| 207 | /* |
| 208 | ** Functions to deserialize a 16 bit integer, 32 bit real number and |
| 209 | ** 64 bit integer. The deserialized value is returned. |
| 210 | */ |
| 211 | static int readInt16(u8 *p){ |
| 212 | return (p[0]<<8) + p[1]; |
| 213 | } |
| 214 | static float readReal32(u8 *p){ |
| 215 | u32 i = ( |
| 216 | (((u32)p[0]) << 24) + |
| 217 | (((u32)p[1]) << 16) + |
| 218 | (((u32)p[2]) << 8) + |
| 219 | (((u32)p[3]) << 0) |
| 220 | ); |
| 221 | return *(float *)&i; |
| 222 | } |
| 223 | static i64 readInt64(u8 *p){ |
| 224 | return ( |
| 225 | (((i64)p[0]) << 56) + |
| 226 | (((i64)p[1]) << 48) + |
| 227 | (((i64)p[2]) << 40) + |
| 228 | (((i64)p[3]) << 32) + |
| 229 | (((i64)p[4]) << 24) + |
| 230 | (((i64)p[5]) << 16) + |
| 231 | (((i64)p[6]) << 8) + |
| 232 | (((i64)p[7]) << 0) |
| 233 | ); |
| 234 | } |
| 235 | |
| 236 | /* |
| 237 | ** Functions to serialize a 16 bit integer, 32 bit real number and |
| 238 | ** 64 bit integer. The value returned is the number of bytes written |
| 239 | ** to the argument buffer (always 2, 4 and 8 respectively). |
| 240 | */ |
| 241 | static int writeInt16(u8 *p, int i){ |
| 242 | p[0] = (i>> 8)&0xFF; |
| 243 | p[1] = (i>> 0)&0xFF; |
| 244 | return 2; |
| 245 | } |
| 246 | static int writeReal32(u8 *p, float f){ |
| 247 | u32 i; |
| 248 | assert( sizeof(float)==4 ); |
| 249 | assert( sizeof(u32)==4 ); |
| 250 | i = *(u32 *)&f; |
| 251 | p[0] = (i>>24)&0xFF; |
| 252 | p[1] = (i>>16)&0xFF; |
| 253 | p[2] = (i>> 8)&0xFF; |
| 254 | p[3] = (i>> 0)&0xFF; |
| 255 | return 4; |
| 256 | } |
| 257 | static int writeInt64(u8 *p, i64 i){ |
| 258 | p[0] = (i>>56)&0xFF; |
| 259 | p[1] = (i>>48)&0xFF; |
| 260 | p[2] = (i>>40)&0xFF; |
| 261 | p[3] = (i>>32)&0xFF; |
| 262 | p[4] = (i>>24)&0xFF; |
| 263 | p[5] = (i>>16)&0xFF; |
| 264 | p[6] = (i>> 8)&0xFF; |
| 265 | p[7] = (i>> 0)&0xFF; |
| 266 | return 8; |
| 267 | } |
| 268 | |
| 269 | /* |
| 270 | ** Increment the reference count of node p. |
| 271 | */ |
| 272 | static void nodeReference(RtreeNode *p){ |
| 273 | if( p ){ |
| 274 | p->nRef++; |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | /* |
| 279 | ** Clear the content of node p (set all bytes to 0x00). |
| 280 | */ |
| 281 | static void nodeZero(Rtree *pRtree, RtreeNode *p){ |
| 282 | if( p ){ |
| 283 | memset(&p->zData[2], 0, pRtree->iNodeSize-2); |
| 284 | p->isDirty = 1; |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | /* |
| 289 | ** Given a node number iNode, return the corresponding key to use |
| 290 | ** in the Rtree.aHash table. |
| 291 | */ |
| 292 | static int nodeHash(i64 iNode){ |
| 293 | return ( |
| 294 | (iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^ |
| 295 | (iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0) |
| 296 | ) % HASHSIZE; |
| 297 | } |
| 298 | |
| 299 | /* |
| 300 | ** Search the node hash table for node iNode. If found, return a pointer |
| 301 | ** to it. Otherwise, return 0. |
| 302 | */ |
| 303 | static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ |
| 304 | RtreeNode *p; |
| 305 | assert( iNode!=0 ); |
| 306 | for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); |
| 307 | return p; |
| 308 | } |
| 309 | |
| 310 | /* |
| 311 | ** Add node pNode to the node hash table. |
| 312 | */ |
| 313 | static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ |
| 314 | if( pNode ){ |
| 315 | int iHash; |
| 316 | assert( pNode->pNext==0 ); |
| 317 | iHash = nodeHash(pNode->iNode); |
| 318 | pNode->pNext = pRtree->aHash[iHash]; |
| 319 | pRtree->aHash[iHash] = pNode; |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | /* |
| 324 | ** Remove node pNode from the node hash table. |
| 325 | */ |
| 326 | static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ |
| 327 | RtreeNode **pp; |
| 328 | if( pNode->iNode!=0 ){ |
| 329 | pp = &pRtree->aHash[nodeHash(pNode->iNode)]; |
| 330 | for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); } |
| 331 | *pp = pNode->pNext; |
| 332 | pNode->pNext = 0; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | /* |
| 337 | ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0), |
| 338 | ** indicating that node has not yet been assigned a node number. It is |
| 339 | ** assigned a node number when nodeWrite() is called to write the |
| 340 | ** node contents out to the database. |
| 341 | */ |
| 342 | static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent, int zero){ |
| 343 | RtreeNode *pNode; |
| 344 | pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); |
| 345 | if( pNode ){ |
| 346 | memset(pNode, 0, sizeof(RtreeNode) + (zero?pRtree->iNodeSize:0)); |
| 347 | pNode->zData = (u8 *)&pNode[1]; |
| 348 | pNode->nRef = 1; |
| 349 | pNode->pParent = pParent; |
| 350 | pNode->isDirty = 1; |
| 351 | nodeReference(pParent); |
| 352 | } |
| 353 | return pNode; |
| 354 | } |
| 355 | |
| 356 | /* |
| 357 | ** Obtain a reference to an r-tree node. |
| 358 | */ |
| 359 | static int |
| 360 | nodeAcquire( |
| 361 | Rtree *pRtree, /* R-tree structure */ |
| 362 | i64 iNode, /* Node number to load */ |
| 363 | RtreeNode *pParent, /* Either the parent node or NULL */ |
| 364 | RtreeNode **ppNode /* OUT: Acquired node */ |
| 365 | ){ |
| 366 | int rc; |
| 367 | RtreeNode *pNode; |
| 368 | |
| 369 | /* Check if the requested node is already in the hash table. If so, |
| 370 | ** increase its reference count and return it. |
| 371 | */ |
| 372 | if( (pNode = nodeHashLookup(pRtree, iNode)) ){ |
| 373 | assert( !pParent || !pNode->pParent || pNode->pParent==pParent ); |
| 374 | if( pParent ){ |
| 375 | pNode->pParent = pParent; |
| 376 | } |
| 377 | pNode->nRef++; |
| 378 | *ppNode = pNode; |
| 379 | return SQLITE_OK; |
| 380 | } |
| 381 | |
| 382 | pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); |
| 383 | if( !pNode ){ |
| 384 | *ppNode = 0; |
| 385 | return SQLITE_NOMEM; |
| 386 | } |
| 387 | pNode->pParent = pParent; |
| 388 | pNode->zData = (u8 *)&pNode[1]; |
| 389 | pNode->nRef = 1; |
| 390 | pNode->iNode = iNode; |
| 391 | pNode->isDirty = 0; |
| 392 | pNode->pNext = 0; |
| 393 | |
| 394 | sqlite3_bind_int64(pRtree->pReadNode, 1, iNode); |
| 395 | rc = sqlite3_step(pRtree->pReadNode); |
| 396 | if( rc==SQLITE_ROW ){ |
| 397 | const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0); |
| 398 | memcpy(pNode->zData, zBlob, pRtree->iNodeSize); |
| 399 | nodeReference(pParent); |
| 400 | }else{ |
| 401 | sqlite3_free(pNode); |
| 402 | pNode = 0; |
| 403 | } |
| 404 | |
| 405 | *ppNode = pNode; |
| 406 | rc = sqlite3_reset(pRtree->pReadNode); |
| 407 | |
| 408 | if( rc==SQLITE_OK && iNode==1 ){ |
| 409 | pRtree->iDepth = readInt16(pNode->zData); |
| 410 | } |
| 411 | |
| 412 | assert( (rc==SQLITE_OK && pNode) || (pNode==0 && rc!=SQLITE_OK) ); |
| 413 | nodeHashInsert(pRtree, pNode); |
| 414 | |
| 415 | return rc; |
| 416 | } |
| 417 | |
| 418 | /* |
| 419 | ** Overwrite cell iCell of node pNode with the contents of pCell. |
| 420 | */ |
| 421 | static void nodeOverwriteCell( |
| 422 | Rtree *pRtree, |
| 423 | RtreeNode *pNode, |
| 424 | RtreeCell *pCell, |
| 425 | int iCell |
| 426 | ){ |
| 427 | int ii; |
| 428 | u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; |
| 429 | p += writeInt64(p, pCell->iRowid); |
| 430 | for(ii=0; ii<(pRtree->nDim*2); ii++){ |
| 431 | p += writeReal32(p, pCell->aCoord[ii]); |
| 432 | } |
| 433 | pNode->isDirty = 1; |
| 434 | } |
| 435 | |
| 436 | /* |
| 437 | ** Remove cell the cell with index iCell from node pNode. |
| 438 | */ |
| 439 | static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ |
| 440 | u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; |
| 441 | u8 *pSrc = &pDst[pRtree->nBytesPerCell]; |
| 442 | int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; |
| 443 | memmove(pDst, pSrc, nByte); |
| 444 | writeInt16(&pNode->zData[2], NCELL(pNode)-1); |
| 445 | pNode->isDirty = 1; |
| 446 | } |
| 447 | |
| 448 | /* |
| 449 | ** Insert the contents of cell pCell into node pNode. If the insert |
| 450 | ** is successful, return SQLITE_OK. |
| 451 | ** |
| 452 | ** If there is not enough free space in pNode, return SQLITE_FULL. |
| 453 | */ |
| 454 | static int |
| 455 | nodeInsertCell( |
| 456 | Rtree *pRtree, |
| 457 | RtreeNode *pNode, |
| 458 | RtreeCell *pCell |
| 459 | ){ |
| 460 | int nCell; /* Current number of cells in pNode */ |
| 461 | int nMaxCell; /* Maximum number of cells for pNode */ |
| 462 | |
| 463 | nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; |
| 464 | nCell = NCELL(pNode); |
| 465 | |
| 466 | assert(nCell<=nMaxCell); |
| 467 | |
| 468 | if( nCell<nMaxCell ){ |
| 469 | nodeOverwriteCell(pRtree, pNode, pCell, nCell); |
| 470 | writeInt16(&pNode->zData[2], nCell+1); |
| 471 | pNode->isDirty = 1; |
| 472 | } |
| 473 | |
| 474 | return (nCell==nMaxCell); |
| 475 | } |
| 476 | |
| 477 | /* |
| 478 | ** If the node is dirty, write it out to the database. |
| 479 | */ |
| 480 | static int |
| 481 | nodeWrite(Rtree *pRtree, RtreeNode *pNode){ |
| 482 | int rc = SQLITE_OK; |
| 483 | if( pNode->isDirty ){ |
| 484 | sqlite3_stmt *p = pRtree->pWriteNode; |
| 485 | if( pNode->iNode ){ |
| 486 | sqlite3_bind_int64(p, 1, pNode->iNode); |
| 487 | }else{ |
| 488 | sqlite3_bind_null(p, 1); |
| 489 | } |
| 490 | sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); |
| 491 | sqlite3_step(p); |
| 492 | pNode->isDirty = 0; |
| 493 | rc = sqlite3_reset(p); |
| 494 | if( pNode->iNode==0 && rc==SQLITE_OK ){ |
| 495 | pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); |
| 496 | nodeHashInsert(pRtree, pNode); |
| 497 | } |
| 498 | } |
| 499 | return rc; |
| 500 | } |
| 501 | |
| 502 | /* |
| 503 | ** Release a reference to a node. If the node is dirty and the reference |
| 504 | ** count drops to zero, the node data is written to the database. |
| 505 | */ |
| 506 | static int |
| 507 | nodeRelease(Rtree *pRtree, RtreeNode *pNode){ |
| 508 | int rc = SQLITE_OK; |
| 509 | if( pNode ){ |
| 510 | assert( pNode->nRef>0 ); |
| 511 | pNode->nRef--; |
| 512 | if( pNode->nRef==0 ){ |
| 513 | if( pNode->iNode==1 ){ |
| 514 | pRtree->iDepth = -1; |
| 515 | } |
| 516 | if( pNode->pParent ){ |
| 517 | rc = nodeRelease(pRtree, pNode->pParent); |
| 518 | } |
| 519 | if( rc==SQLITE_OK ){ |
| 520 | rc = nodeWrite(pRtree, pNode); |
| 521 | } |
| 522 | nodeHashDelete(pRtree, pNode); |
| 523 | sqlite3_free(pNode); |
| 524 | } |
| 525 | } |
| 526 | return rc; |
| 527 | } |
| 528 | |
| 529 | /* |
| 530 | ** Return the 64-bit integer value associated with cell iCell of |
| 531 | ** node pNode. If pNode is a leaf node, this is a rowid. If it is |
| 532 | ** an internal node, then the 64-bit integer is a child page number. |
| 533 | */ |
| 534 | static i64 nodeGetRowid( |
| 535 | Rtree *pRtree, |
| 536 | RtreeNode *pNode, |
| 537 | int iCell |
| 538 | ){ |
| 539 | assert( iCell<NCELL(pNode) ); |
| 540 | return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]); |
| 541 | } |
| 542 | |
| 543 | /* |
| 544 | ** Return coordinate iCoord from cell iCell in node pNode. |
| 545 | */ |
| 546 | static float nodeGetCoord( |
| 547 | Rtree *pRtree, |
| 548 | RtreeNode *pNode, |
| 549 | int iCell, |
| 550 | int iCoord |
| 551 | ){ |
| 552 | return readReal32(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord]); |
| 553 | } |
| 554 | |
| 555 | /* |
| 556 | ** Deserialize cell iCell of node pNode. Populate the structure pointed |
| 557 | ** to by pCell with the results. |
| 558 | */ |
| 559 | static void nodeGetCell( |
| 560 | Rtree *pRtree, |
| 561 | RtreeNode *pNode, |
| 562 | int iCell, |
| 563 | RtreeCell *pCell |
| 564 | ){ |
| 565 | int ii; |
| 566 | pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); |
| 567 | for(ii=0; ii<pRtree->nDim*2; ii++){ |
| 568 | pCell->aCoord[ii] = nodeGetCoord(pRtree, pNode, iCell, ii); |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | |
| 573 | /* Forward declaration for the function that does the work of |
| 574 | ** the virtual table module xCreate() and xConnect() methods. |
| 575 | */ |
| 576 | static int rtreeInit( |
| 577 | sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int |
| 578 | ); |
| 579 | |
| 580 | /* |
| 581 | ** Rtree virtual table module xCreate method. |
| 582 | */ |
| 583 | static int rtreeCreate( |
| 584 | sqlite3 *db, |
| 585 | void *pAux, |
| 586 | int argc, const char *const*argv, |
| 587 | sqlite3_vtab **ppVtab, |
| 588 | char **pzErr |
| 589 | ){ |
| 590 | return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1); |
| 591 | } |
| 592 | |
| 593 | /* |
| 594 | ** Rtree virtual table module xConnect method. |
| 595 | */ |
| 596 | static int rtreeConnect( |
| 597 | sqlite3 *db, |
| 598 | void *pAux, |
| 599 | int argc, const char *const*argv, |
| 600 | sqlite3_vtab **ppVtab, |
| 601 | char **pzErr |
| 602 | ){ |
| 603 | return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0); |
| 604 | } |
| 605 | |
| 606 | /* |
| 607 | ** Increment the r-tree reference count. |
| 608 | */ |
| 609 | static void rtreeReference(Rtree *pRtree){ |
| 610 | pRtree->nBusy++; |
| 611 | } |
| 612 | |
| 613 | /* |
| 614 | ** Decrement the r-tree reference count. When the reference count reaches |
| 615 | ** zero the structure is deleted. |
| 616 | */ |
| 617 | static void rtreeRelease(Rtree *pRtree){ |
| 618 | pRtree->nBusy--; |
| 619 | if( pRtree->nBusy==0 ){ |
| 620 | sqlite3_finalize(pRtree->pReadNode); |
| 621 | sqlite3_finalize(pRtree->pWriteNode); |
| 622 | sqlite3_finalize(pRtree->pDeleteNode); |
| 623 | sqlite3_finalize(pRtree->pReadRowid); |
| 624 | sqlite3_finalize(pRtree->pWriteRowid); |
| 625 | sqlite3_finalize(pRtree->pDeleteRowid); |
| 626 | sqlite3_finalize(pRtree->pReadParent); |
| 627 | sqlite3_finalize(pRtree->pWriteParent); |
| 628 | sqlite3_finalize(pRtree->pDeleteParent); |
| 629 | sqlite3_free(pRtree); |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | /* |
| 634 | ** Rtree virtual table module xDisconnect method. |
| 635 | */ |
| 636 | static int rtreeDisconnect(sqlite3_vtab *pVtab){ |
| 637 | rtreeRelease((Rtree *)pVtab); |
| 638 | return SQLITE_OK; |
| 639 | } |
| 640 | |
| 641 | /* |
| 642 | ** Rtree virtual table module xDestroy method. |
| 643 | */ |
| 644 | static int rtreeDestroy(sqlite3_vtab *pVtab){ |
| 645 | Rtree *pRtree = (Rtree *)pVtab; |
| 646 | int rc; |
| 647 | char *zCreate = sqlite3_mprintf( |
| 648 | "DROP TABLE '%q'.'%q_node';" |
| 649 | "DROP TABLE '%q'.'%q_rowid';" |
| 650 | "DROP TABLE '%q'.'%q_parent';", |
| 651 | pRtree->zDb, pRtree->zName, |
| 652 | pRtree->zDb, pRtree->zName, |
| 653 | pRtree->zDb, pRtree->zName |
| 654 | ); |
| 655 | if( !zCreate ){ |
| 656 | rc = SQLITE_NOMEM; |
| 657 | }else{ |
| 658 | rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0); |
| 659 | sqlite3_free(zCreate); |
| 660 | } |
| 661 | if( rc==SQLITE_OK ){ |
| 662 | rtreeRelease(pRtree); |
| 663 | } |
| 664 | |
| 665 | return rc; |
| 666 | } |
| 667 | |
| 668 | /* |
| 669 | ** Rtree virtual table module xOpen method. |
| 670 | */ |
| 671 | static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
| 672 | int rc = SQLITE_NOMEM; |
| 673 | RtreeCursor *pCsr; |
| 674 | |
| 675 | pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor)); |
| 676 | if( pCsr ){ |
| 677 | memset(pCsr, 0, sizeof(RtreeCursor)); |
| 678 | pCsr->base.pVtab = pVTab; |
| 679 | rc = SQLITE_OK; |
| 680 | } |
| 681 | *ppCursor = (sqlite3_vtab_cursor *)pCsr; |
| 682 | |
| 683 | return rc; |
| 684 | } |
| 685 | |
| 686 | /* |
| 687 | ** Rtree virtual table module xClose method. |
| 688 | */ |
| 689 | static int rtreeClose(sqlite3_vtab_cursor *cur){ |
| 690 | Rtree *pRtree = (Rtree *)(cur->pVtab); |
| 691 | int rc; |
| 692 | RtreeCursor *pCsr = (RtreeCursor *)cur; |
| 693 | sqlite3_free(pCsr->aConstraint); |
| 694 | rc = nodeRelease(pRtree, pCsr->pNode); |
| 695 | sqlite3_free(pCsr); |
| 696 | return rc; |
| 697 | } |
| 698 | |
| 699 | /* |
| 700 | ** Rtree virtual table module xEof method. |
| 701 | ** |
| 702 | ** Return non-zero if the cursor does not currently point to a valid |
| 703 | ** record (i.e if the scan has finished), or zero otherwise. |
| 704 | */ |
| 705 | static int rtreeEof(sqlite3_vtab_cursor *cur){ |
| 706 | RtreeCursor *pCsr = (RtreeCursor *)cur; |
| 707 | return (pCsr->pNode==0); |
| 708 | } |
| 709 | |
| 710 | /* |
| 711 | ** Cursor pCursor currently points to a cell in a non-leaf page. |
| 712 | ** Return true if the sub-tree headed by the cell is filtered |
| 713 | ** (excluded) by the constraints in the pCursor->aConstraint[] |
| 714 | ** array, or false otherwise. |
| 715 | */ |
| 716 | static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor){ |
| 717 | RtreeCell cell; |
| 718 | int ii; |
| 719 | |
| 720 | nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); |
| 721 | for(ii=0; ii<pCursor->nConstraint; ii++){ |
| 722 | RtreeConstraint *p = &pCursor->aConstraint[ii]; |
| 723 | |
| 724 | float cell_min = cell.aCoord[(p->iCoord>>1)*2]; |
| 725 | float cell_max = cell.aCoord[(p->iCoord>>1)*2+1]; |
| 726 | assert( cell_min<=cell_max ); |
| 727 | |
| 728 | switch( p->op ){ |
| 729 | case RTREE_LE: case RTREE_LT: { |
| 730 | if( p->rValue<cell_min ){ |
| 731 | return 1; |
| 732 | } |
| 733 | break; |
| 734 | } |
| 735 | |
| 736 | case RTREE_GE: case RTREE_GT: { |
| 737 | if( p->rValue>cell_max ){ |
| 738 | return 1; |
| 739 | } |
| 740 | break; |
| 741 | } |
| 742 | |
| 743 | case RTREE_EQ: { |
| 744 | if( p->rValue>cell_max || p->rValue<cell_min ){ |
| 745 | return 1; |
| 746 | } |
| 747 | break; |
| 748 | } |
| 749 | #ifndef NDEBUG |
| 750 | default: assert(!"Internal error"); |
| 751 | #endif |
| 752 | } |
| 753 | } |
| 754 | |
| 755 | return 0; |
| 756 | } |
| 757 | |
| 758 | /* |
| 759 | ** Return true if the cell that cursor pCursor currently points to |
| 760 | ** would be filtered (excluded) by the constraints in the |
| 761 | ** pCursor->aConstraint[] array, or false otherwise. |
| 762 | ** |
| 763 | ** This function assumes that the cell is part of a leaf node. |
| 764 | */ |
| 765 | static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor){ |
| 766 | RtreeCell cell; |
| 767 | int ii; |
| 768 | |
| 769 | nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); |
| 770 | for(ii=0; ii<pCursor->nConstraint; ii++){ |
| 771 | RtreeConstraint *p = &pCursor->aConstraint[ii]; |
| 772 | float cell_val = cell.aCoord[p->iCoord]; |
| 773 | int res; |
| 774 | switch( p->op ){ |
| 775 | case RTREE_LE: res = (cell_val<=p->rValue); break; |
| 776 | case RTREE_LT: res = (cell_val<p->rValue); break; |
| 777 | case RTREE_GE: res = (cell_val>=p->rValue); break; |
| 778 | case RTREE_GT: res = (cell_val>p->rValue); break; |
| 779 | case RTREE_EQ: res = (cell_val==p->rValue); break; |
| 780 | #ifndef NDEBUG |
| 781 | default: assert(!"Internal error"); |
| 782 | #endif |
| 783 | } |
| 784 | if( !res ) return 1; |
| 785 | } |
| 786 | |
| 787 | return 0; |
| 788 | } |
| 789 | |
| 790 | /* |
| 791 | ** Cursor pCursor currently points at a node that heads a sub-tree of |
| 792 | ** height iHeight (if iHeight==0, then the node is a leaf). Descend |
| 793 | ** to point to the left-most cell of the sub-tree that matches the |
| 794 | ** configured constraints. |
| 795 | */ |
| 796 | static int descendToCell( |
| 797 | Rtree *pRtree, |
| 798 | RtreeCursor *pCursor, |
| 799 | int iHeight, |
| 800 | int *pEof /* OUT: Set to true if cannot descend */ |
| 801 | ){ |
| 802 | int isEof; |
| 803 | int rc; |
| 804 | int ii; |
| 805 | RtreeNode *pChild; |
| 806 | sqlite3_int64 iRowid; |
| 807 | |
| 808 | RtreeNode *pSavedNode = pCursor->pNode; |
| 809 | int iSavedCell = pCursor->iCell; |
| 810 | |
| 811 | assert( iHeight>=0 ); |
| 812 | |
| 813 | if( iHeight==0 ){ |
| 814 | isEof = testRtreeEntry(pRtree, pCursor); |
| 815 | }else{ |
| 816 | isEof = testRtreeCell(pRtree, pCursor); |
| 817 | } |
| 818 | if( isEof || iHeight==0 ){ |
| 819 | *pEof = isEof; |
| 820 | return SQLITE_OK; |
| 821 | } |
| 822 | |
| 823 | iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell); |
| 824 | rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild); |
| 825 | if( rc!=SQLITE_OK ){ |
| 826 | return rc; |
| 827 | } |
| 828 | |
| 829 | nodeRelease(pRtree, pCursor->pNode); |
| 830 | pCursor->pNode = pChild; |
| 831 | isEof = 1; |
| 832 | for(ii=0; isEof && ii<NCELL(pChild); ii++){ |
| 833 | pCursor->iCell = ii; |
| 834 | rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof); |
| 835 | if( rc!=SQLITE_OK ){ |
| 836 | return rc; |
| 837 | } |
| 838 | } |
| 839 | |
| 840 | if( isEof ){ |
| 841 | assert( pCursor->pNode==pChild ); |
| 842 | nodeReference(pSavedNode); |
| 843 | nodeRelease(pRtree, pChild); |
| 844 | pCursor->pNode = pSavedNode; |
| 845 | pCursor->iCell = iSavedCell; |
| 846 | } |
| 847 | |
| 848 | *pEof = isEof; |
| 849 | return SQLITE_OK; |
| 850 | } |
| 851 | |
| 852 | /* |
| 853 | ** One of the cells in node pNode is guaranteed to have a 64-bit |
| 854 | ** integer value equal to iRowid. Return the index of this cell. |
| 855 | */ |
| 856 | static int nodeRowidIndex(Rtree *pRtree, RtreeNode *pNode, i64 iRowid){ |
| 857 | int ii; |
| 858 | for(ii=0; nodeGetRowid(pRtree, pNode, ii)!=iRowid; ii++){ |
| 859 | assert( ii<(NCELL(pNode)-1) ); |
| 860 | } |
| 861 | return ii; |
| 862 | } |
| 863 | |
| 864 | /* |
| 865 | ** Return the index of the cell containing a pointer to node pNode |
| 866 | ** in its parent. If pNode is the root node, return -1. |
| 867 | */ |
| 868 | static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode){ |
| 869 | RtreeNode *pParent = pNode->pParent; |
| 870 | if( pParent ){ |
| 871 | return nodeRowidIndex(pRtree, pParent, pNode->iNode); |
| 872 | } |
| 873 | return -1; |
| 874 | } |
| 875 | |
| 876 | /* |
| 877 | ** Rtree virtual table module xNext method. |
| 878 | */ |
| 879 | static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ |
| 880 | Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab); |
| 881 | RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
| 882 | int rc = SQLITE_OK; |
| 883 | |
| 884 | if( pCsr->iStrategy==1 ){ |
| 885 | /* This "scan" is a direct lookup by rowid. There is no next entry. */ |
| 886 | nodeRelease(pRtree, pCsr->pNode); |
| 887 | pCsr->pNode = 0; |
| 888 | } |
| 889 | |
| 890 | else if( pCsr->pNode ){ |
| 891 | /* Move to the next entry that matches the configured constraints. */ |
| 892 | int iHeight = 0; |
| 893 | while( pCsr->pNode ){ |
| 894 | RtreeNode *pNode = pCsr->pNode; |
| 895 | int nCell = NCELL(pNode); |
| 896 | for(pCsr->iCell++; pCsr->iCell<nCell; pCsr->iCell++){ |
| 897 | int isEof; |
| 898 | rc = descendToCell(pRtree, pCsr, iHeight, &isEof); |
| 899 | if( rc!=SQLITE_OK || !isEof ){ |
| 900 | return rc; |
| 901 | } |
| 902 | } |
| 903 | pCsr->pNode = pNode->pParent; |
| 904 | pCsr->iCell = nodeParentIndex(pRtree, pNode); |
| 905 | nodeReference(pCsr->pNode); |
| 906 | nodeRelease(pRtree, pNode); |
| 907 | iHeight++; |
| 908 | } |
| 909 | } |
| 910 | |
| 911 | return rc; |
| 912 | } |
| 913 | |
| 914 | /* |
| 915 | ** Rtree virtual table module xRowid method. |
| 916 | */ |
| 917 | static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ |
| 918 | Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; |
| 919 | RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
| 920 | |
| 921 | assert(pCsr->pNode); |
| 922 | *pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); |
| 923 | |
| 924 | return SQLITE_OK; |
| 925 | } |
| 926 | |
| 927 | /* |
| 928 | ** Rtree virtual table module xColumn method. |
| 929 | */ |
| 930 | static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ |
| 931 | Rtree *pRtree = (Rtree *)cur->pVtab; |
| 932 | RtreeCursor *pCsr = (RtreeCursor *)cur; |
| 933 | |
| 934 | if( i==0 ){ |
| 935 | i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); |
| 936 | sqlite3_result_int64(ctx, iRowid); |
| 937 | }else{ |
| 938 | float fCoord = nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1); |
| 939 | sqlite3_result_double(ctx, fCoord); |
| 940 | } |
| 941 | |
| 942 | return SQLITE_OK; |
| 943 | } |
| 944 | |
| 945 | /* |
| 946 | ** Use nodeAcquire() to obtain the leaf node containing the record with |
| 947 | ** rowid iRowid. If successful, set *ppLeaf to point to the node and |
| 948 | ** return SQLITE_OK. If there is no such record in the table, set |
| 949 | ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf |
| 950 | ** to zero and return an SQLite error code. |
| 951 | */ |
| 952 | static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){ |
| 953 | int rc; |
| 954 | *ppLeaf = 0; |
| 955 | sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); |
| 956 | if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ |
| 957 | i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); |
| 958 | rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); |
| 959 | sqlite3_reset(pRtree->pReadRowid); |
| 960 | }else{ |
| 961 | rc = sqlite3_reset(pRtree->pReadRowid); |
| 962 | } |
| 963 | return rc; |
| 964 | } |
| 965 | |
| 966 | |
| 967 | /* |
| 968 | ** Rtree virtual table module xFilter method. |
| 969 | */ |
| 970 | static int rtreeFilter( |
| 971 | sqlite3_vtab_cursor *pVtabCursor, |
| 972 | int idxNum, const char *idxStr, |
| 973 | int argc, sqlite3_value **argv |
| 974 | ){ |
| 975 | Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; |
| 976 | RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
| 977 | |
| 978 | RtreeNode *pRoot = 0; |
| 979 | int ii; |
| 980 | int rc = SQLITE_OK; |
| 981 | |
| 982 | rtreeReference(pRtree); |
| 983 | |
| 984 | sqlite3_free(pCsr->aConstraint); |
| 985 | pCsr->aConstraint = 0; |
| 986 | pCsr->iStrategy = idxNum; |
| 987 | |
| 988 | if( idxNum==1 ){ |
| 989 | /* Special case - lookup by rowid. */ |
| 990 | RtreeNode *pLeaf; /* Leaf on which the required cell resides */ |
| 991 | i64 iRowid = sqlite3_value_int64(argv[0]); |
| 992 | rc = findLeafNode(pRtree, iRowid, &pLeaf); |
| 993 | pCsr->pNode = pLeaf; |
| 994 | if( pLeaf && rc==SQLITE_OK ){ |
| 995 | pCsr->iCell = nodeRowidIndex(pRtree, pLeaf, iRowid); |
| 996 | } |
| 997 | }else{ |
| 998 | /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array |
| 999 | ** with the configured constraints. |
| 1000 | */ |
| 1001 | if( argc>0 ){ |
| 1002 | pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc); |
| 1003 | pCsr->nConstraint = argc; |
| 1004 | if( !pCsr->aConstraint ){ |
| 1005 | rc = SQLITE_NOMEM; |
| 1006 | }else{ |
| 1007 | assert( (idxStr==0 && argc==0) || strlen(idxStr)==argc*2 ); |
| 1008 | for(ii=0; ii<argc; ii++){ |
| 1009 | RtreeConstraint *p = &pCsr->aConstraint[ii]; |
| 1010 | p->op = idxStr[ii*2]; |
| 1011 | p->iCoord = idxStr[ii*2+1]-'a'; |
| 1012 | p->rValue = sqlite3_value_double(argv[ii]); |
| 1013 | } |
| 1014 | } |
| 1015 | } |
| 1016 | |
| 1017 | if( rc==SQLITE_OK ){ |
| 1018 | pCsr->pNode = 0; |
| 1019 | rc = nodeAcquire(pRtree, 1, 0, &pRoot); |
| 1020 | } |
| 1021 | if( rc==SQLITE_OK ){ |
| 1022 | int isEof = 1; |
| 1023 | int nCell = NCELL(pRoot); |
| 1024 | pCsr->pNode = pRoot; |
| 1025 | for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCell<nCell; pCsr->iCell++){ |
| 1026 | assert( pCsr->pNode==pRoot ); |
| 1027 | rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof); |
| 1028 | if( !isEof ){ |
| 1029 | break; |
| 1030 | } |
| 1031 | } |
| 1032 | if( rc==SQLITE_OK && isEof ){ |
| 1033 | assert( pCsr->pNode==pRoot ); |
| 1034 | nodeRelease(pRtree, pRoot); |
| 1035 | pCsr->pNode = 0; |
| 1036 | } |
| 1037 | assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCell<NCELL(pCsr->pNode) ); |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | rtreeRelease(pRtree); |
| 1042 | return rc; |
| 1043 | } |
| 1044 | |
| 1045 | /* |
| 1046 | ** Rtree virtual table module xBestIndex method. There are three |
| 1047 | ** table scan strategies to choose from (in order from most to |
| 1048 | ** least desirable): |
| 1049 | ** |
| 1050 | ** idxNum idxStr Strategy |
| 1051 | ** ------------------------------------------------ |
| 1052 | ** 1 Unused Direct lookup by rowid. |
| 1053 | ** 2 See below R-tree query. |
| 1054 | ** 3 Unused Full table scan. |
| 1055 | ** ------------------------------------------------ |
| 1056 | ** |
| 1057 | ** If strategy 1 or 3 is used, then idxStr is not meaningful. If strategy |
| 1058 | ** 2 is used, idxStr is formatted to contain 2 bytes for each |
| 1059 | ** constraint used. The first two bytes of idxStr correspond to |
| 1060 | ** the constraint in sqlite3_index_info.aConstraintUsage[] with |
| 1061 | ** (argvIndex==1) etc. |
| 1062 | ** |
| 1063 | ** The first of each pair of bytes in idxStr identifies the constraint |
| 1064 | ** operator as follows: |
| 1065 | ** |
| 1066 | ** Operator Byte Value |
| 1067 | ** ---------------------- |
| 1068 | ** = 0x41 ('A') |
| 1069 | ** <= 0x42 ('B') |
| 1070 | ** < 0x43 ('C') |
| 1071 | ** >= 0x44 ('D') |
| 1072 | ** > 0x45 ('E') |
| 1073 | ** ---------------------- |
| 1074 | ** |
| 1075 | ** The second of each pair of bytes identifies the coordinate column |
| 1076 | ** to which the constraint applies. The leftmost coordinate column |
| 1077 | ** is 'a', the second from the left 'b' etc. |
| 1078 | */ |
| 1079 | static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
| 1080 | int rc = SQLITE_OK; |
| 1081 | int ii; |
| 1082 | |
| 1083 | int iIdx = 0; |
| 1084 | char zIdxStr[RTREE_MAX_DIMENSIONS*2+1]; |
| 1085 | memset(zIdxStr, 0, RTREE_MAX_DIMENSIONS*2+1); |
| 1086 | |
| 1087 | assert( pIdxInfo->idxStr==0 ); |
| 1088 | for(ii=0; ii<pIdxInfo->nConstraint; ii++){ |
| 1089 | struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; |
| 1090 | |
| 1091 | if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ |
| 1092 | /* We have an equality constraint on the rowid. Use strategy 1. */ |
| 1093 | int jj; |
| 1094 | for(jj=0; jj<ii; jj++){ |
| 1095 | pIdxInfo->aConstraintUsage[jj].argvIndex = 0; |
| 1096 | pIdxInfo->aConstraintUsage[jj].omit = 0; |
| 1097 | } |
| 1098 | pIdxInfo->idxNum = 1; |
| 1099 | pIdxInfo->aConstraintUsage[ii].argvIndex = 1; |
| 1100 | pIdxInfo->aConstraintUsage[jj].omit = 1; |
| 1101 | return SQLITE_OK; |
| 1102 | } |
| 1103 | |
| 1104 | if( p->usable && p->iColumn>0 ){ |
| 1105 | u8 op = 0; |
| 1106 | switch( p->op ){ |
| 1107 | case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; |
| 1108 | case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; |
| 1109 | case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; |
| 1110 | case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; |
| 1111 | case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; |
| 1112 | } |
| 1113 | if( op ){ |
| 1114 | zIdxStr[iIdx++] = op; |
| 1115 | zIdxStr[iIdx++] = (char)(p->iColumn-1) + 'a'; |
| 1116 | pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); |
| 1117 | pIdxInfo->aConstraintUsage[ii].omit = 1; |
| 1118 | } |
| 1119 | } |
| 1120 | } |
| 1121 | |
| 1122 | pIdxInfo->idxNum = 2; |
| 1123 | pIdxInfo->needToFreeIdxStr = 1; |
| 1124 | if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ |
| 1125 | return SQLITE_NOMEM; |
| 1126 | } |
| 1127 | return rc; |
| 1128 | } |
| 1129 | |
| 1130 | /* |
| 1131 | ** Return the N-dimensional volumn of the cell stored in *p. |
| 1132 | */ |
| 1133 | static float cellArea(Rtree *pRtree, RtreeCell *p){ |
| 1134 | float area = 1.0; |
| 1135 | int ii; |
| 1136 | for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
| 1137 | area = area * (p->aCoord[ii+1] - p->aCoord[ii]); |
| 1138 | } |
| 1139 | return area; |
| 1140 | } |
| 1141 | |
| 1142 | /* |
| 1143 | ** Return the margin length of cell p. The margin length is the sum |
| 1144 | ** of the objects size in each dimension. |
| 1145 | */ |
| 1146 | static float cellMargin(Rtree *pRtree, RtreeCell *p){ |
| 1147 | float margin = 0.0; |
| 1148 | int ii; |
| 1149 | for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
| 1150 | margin += (p->aCoord[ii+1] - p->aCoord[ii]); |
| 1151 | } |
| 1152 | return margin; |
| 1153 | } |
| 1154 | |
| 1155 | /* |
| 1156 | ** Store the union of cells p1 and p2 in p1. |
| 1157 | */ |
| 1158 | static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ |
| 1159 | int ii; |
| 1160 | for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
| 1161 | p1->aCoord[ii] = MIN(p1->aCoord[ii], p2->aCoord[ii]); |
| 1162 | p1->aCoord[ii+1] = MAX(p1->aCoord[ii+1], p2->aCoord[ii+1]); |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | /* |
| 1167 | ** Return the amount cell p would grow by if it were unioned with pCell. |
| 1168 | */ |
| 1169 | static float cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){ |
| 1170 | float area; |
| 1171 | RtreeCell cell; |
| 1172 | memcpy(&cell, p, sizeof(RtreeCell)); |
| 1173 | area = cellArea(pRtree, &cell); |
| 1174 | cellUnion(pRtree, &cell, pCell); |
| 1175 | return (cellArea(pRtree, &cell)-area); |
| 1176 | } |
| 1177 | |
| 1178 | #if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT |
| 1179 | static float cellOverlap( |
| 1180 | Rtree *pRtree, |
| 1181 | RtreeCell *p, |
| 1182 | RtreeCell *aCell, |
| 1183 | int nCell, |
| 1184 | int iExclude |
| 1185 | ){ |
| 1186 | int ii; |
| 1187 | float overlap = 0.0; |
| 1188 | for(ii=0; ii<nCell; ii++){ |
| 1189 | if( ii!=iExclude ){ |
| 1190 | int jj; |
| 1191 | float o = 1.0; |
| 1192 | for(jj=0; jj<(pRtree->nDim*2); jj+=2){ |
| 1193 | |
| 1194 | float x1 = MAX(p->aCoord[jj], aCell[ii].aCoord[jj]); |
| 1195 | float x2 = MIN(p->aCoord[jj+1], aCell[ii].aCoord[jj+1]); |
| 1196 | |
| 1197 | if( x2<x1 ){ |
| 1198 | o = 0.0; |
| 1199 | break; |
| 1200 | }else{ |
| 1201 | o = o * (x2-x1); |
| 1202 | } |
| 1203 | } |
| 1204 | overlap += o; |
| 1205 | } |
| 1206 | } |
| 1207 | return overlap; |
| 1208 | } |
| 1209 | #endif |
| 1210 | |
| 1211 | #if VARIANT_RSTARTREE_CHOOSESUBTREE |
| 1212 | static float cellOverlapEnlargement( |
| 1213 | Rtree *pRtree, |
| 1214 | RtreeCell *p, |
| 1215 | RtreeCell *pInsert, |
| 1216 | RtreeCell *aCell, |
| 1217 | int nCell, |
| 1218 | int iExclude |
| 1219 | ){ |
| 1220 | float before; |
| 1221 | float after; |
| 1222 | before = cellOverlap(pRtree, p, aCell, nCell, iExclude); |
| 1223 | cellUnion(pRtree, p, pInsert); |
| 1224 | after = cellOverlap(pRtree, p, aCell, nCell, iExclude); |
| 1225 | return after-before; |
| 1226 | } |
| 1227 | #endif |
| 1228 | |
| 1229 | |
| 1230 | /* |
| 1231 | ** This function implements the ChooseLeaf algorithm from Gutman[84]. |
| 1232 | ** ChooseSubTree in r*tree terminology. |
| 1233 | */ |
| 1234 | static int ChooseLeaf( |
| 1235 | Rtree *pRtree, /* Rtree table */ |
| 1236 | RtreeCell *pCell, /* Cell to insert into rtree */ |
| 1237 | int iHeight, /* Height of sub-tree rooted at pCell */ |
| 1238 | RtreeNode **ppLeaf /* OUT: Selected leaf page */ |
| 1239 | ){ |
| 1240 | int rc; |
| 1241 | int ii; |
| 1242 | RtreeNode *pNode; |
| 1243 | rc = nodeAcquire(pRtree, 1, 0, &pNode); |
| 1244 | |
| 1245 | for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){ |
| 1246 | int iCell; |
| 1247 | sqlite3_int64 iBest; |
| 1248 | |
| 1249 | float fMinGrowth; |
| 1250 | float fMinArea; |
| 1251 | float fMinOverlap; |
| 1252 | |
| 1253 | int nCell = NCELL(pNode); |
| 1254 | RtreeCell cell; |
| 1255 | RtreeNode *pChild; |
| 1256 | |
| 1257 | RtreeCell *aCell = 0; |
| 1258 | |
| 1259 | #if VARIANT_RSTARTREE_CHOOSESUBTREE |
| 1260 | if( ii==(pRtree->iDepth-1) ){ |
| 1261 | int jj; |
| 1262 | aCell = sqlite3_malloc(sizeof(RtreeCell)*nCell); |
| 1263 | if( !aCell ){ |
| 1264 | rc = SQLITE_NOMEM; |
| 1265 | nodeRelease(pRtree, pNode); |
| 1266 | pNode = 0; |
| 1267 | continue; |
| 1268 | } |
| 1269 | for(jj=0; jj<nCell; jj++){ |
| 1270 | nodeGetCell(pRtree, pNode, jj, &aCell[jj]); |
| 1271 | } |
| 1272 | } |
| 1273 | #endif |
| 1274 | |
| 1275 | /* Select the child node which will be enlarged the least if pCell |
| 1276 | ** is inserted into it. Resolve ties by choosing the entry with |
| 1277 | ** the smallest area. |
| 1278 | */ |
| 1279 | for(iCell=0; iCell<nCell; iCell++){ |
| 1280 | float growth; |
| 1281 | float area; |
| 1282 | float overlap = 0.0; |
| 1283 | nodeGetCell(pRtree, pNode, iCell, &cell); |
| 1284 | growth = cellGrowth(pRtree, &cell, pCell); |
| 1285 | area = cellArea(pRtree, &cell); |
| 1286 | #if VARIANT_RSTARTREE_CHOOSESUBTREE |
| 1287 | if( ii==(pRtree->iDepth-1) ){ |
| 1288 | overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell); |
| 1289 | } |
| 1290 | #endif |
| 1291 | if( (iCell==0) |
| 1292 | || (overlap<fMinOverlap) |
| 1293 | || (overlap==fMinOverlap && growth<fMinGrowth) |
| 1294 | || (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea) |
| 1295 | ){ |
| 1296 | fMinOverlap = overlap; |
| 1297 | fMinGrowth = growth; |
| 1298 | fMinArea = area; |
| 1299 | iBest = cell.iRowid; |
| 1300 | } |
| 1301 | } |
| 1302 | |
| 1303 | sqlite3_free(aCell); |
| 1304 | rc = nodeAcquire(pRtree, iBest, pNode, &pChild); |
| 1305 | nodeRelease(pRtree, pNode); |
| 1306 | pNode = pChild; |
| 1307 | } |
| 1308 | |
| 1309 | *ppLeaf = pNode; |
| 1310 | return rc; |
| 1311 | } |
| 1312 | |
| 1313 | /* |
| 1314 | ** A cell with the same content as pCell has just been inserted into |
| 1315 | ** the node pNode. This function updates the bounding box cells in |
| 1316 | ** all ancestor elements. |
| 1317 | */ |
| 1318 | static void AdjustTree( |
| 1319 | Rtree *pRtree, /* Rtree table */ |
| 1320 | RtreeNode *pNode, /* Adjust ancestry of this node. */ |
| 1321 | RtreeCell *pCell /* This cell was just inserted */ |
| 1322 | ){ |
| 1323 | RtreeNode *p = pNode; |
| 1324 | while( p->pParent ){ |
| 1325 | RtreeCell cell; |
| 1326 | RtreeNode *pParent = p->pParent; |
| 1327 | int iCell = nodeParentIndex(pRtree, p); |
| 1328 | |
| 1329 | nodeGetCell(pRtree, pParent, iCell, &cell); |
| 1330 | if( cellGrowth(pRtree, &cell, pCell)>0.0 ){ |
| 1331 | cellUnion(pRtree, &cell, pCell); |
| 1332 | nodeOverwriteCell(pRtree, pParent, &cell, iCell); |
| 1333 | } |
| 1334 | |
| 1335 | p = pParent; |
| 1336 | } |
| 1337 | } |
| 1338 | |
| 1339 | /* |
| 1340 | ** Write mapping (iRowid->iNode) to the <rtree>_rowid table. |
| 1341 | */ |
| 1342 | static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){ |
| 1343 | sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid); |
| 1344 | sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode); |
| 1345 | sqlite3_step(pRtree->pWriteRowid); |
| 1346 | return sqlite3_reset(pRtree->pWriteRowid); |
| 1347 | } |
| 1348 | |
| 1349 | /* |
| 1350 | ** Write mapping (iNode->iPar) to the <rtree>_parent table. |
| 1351 | */ |
| 1352 | static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ |
| 1353 | sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); |
| 1354 | sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); |
| 1355 | sqlite3_step(pRtree->pWriteParent); |
| 1356 | return sqlite3_reset(pRtree->pWriteParent); |
| 1357 | } |
| 1358 | |
| 1359 | static int insertCell(Rtree *, RtreeNode *, RtreeCell *, int); |
| 1360 | |
| 1361 | #if VARIANT_GUTTMAN_LINEAR_SPLIT |
| 1362 | /* |
| 1363 | ** Implementation of the linear variant of the PickNext() function from |
| 1364 | ** Guttman[84]. |
| 1365 | */ |
| 1366 | static RtreeCell *LinearPickNext( |
| 1367 | Rtree *pRtree, |
| 1368 | RtreeCell *aCell, |
| 1369 | int nCell, |
| 1370 | RtreeCell *pLeftBox, |
| 1371 | RtreeCell *pRightBox, |
| 1372 | int *aiUsed |
| 1373 | ){ |
| 1374 | int ii; |
| 1375 | for(ii=0; aiUsed[ii]; ii++); |
| 1376 | aiUsed[ii] = 1; |
| 1377 | return &aCell[ii]; |
| 1378 | } |
| 1379 | |
| 1380 | /* |
| 1381 | ** Implementation of the linear variant of the PickSeeds() function from |
| 1382 | ** Guttman[84]. |
| 1383 | */ |
| 1384 | static void LinearPickSeeds( |
| 1385 | Rtree *pRtree, |
| 1386 | RtreeCell *aCell, |
| 1387 | int nCell, |
| 1388 | int *piLeftSeed, |
| 1389 | int *piRightSeed |
| 1390 | ){ |
| 1391 | int i; |
| 1392 | int iLeftSeed = 0; |
| 1393 | int iRightSeed = 1; |
| 1394 | float maxNormalInnerWidth = 0.0; |
| 1395 | |
| 1396 | /* Pick two "seed" cells from the array of cells. The algorithm used |
| 1397 | ** here is the LinearPickSeeds algorithm from Gutman[1984]. The |
| 1398 | ** indices of the two seed cells in the array are stored in local |
| 1399 | ** variables iLeftSeek and iRightSeed. |
| 1400 | */ |
| 1401 | for(i=0; i<pRtree->nDim; i++){ |
| 1402 | float x1 = aCell[0].aCoord[i*2]; |
| 1403 | float x2 = aCell[0].aCoord[i*2+1]; |
| 1404 | float x3 = x1; |
| 1405 | float x4 = x2; |
| 1406 | int jj; |
| 1407 | |
| 1408 | int iCellLeft = 0; |
| 1409 | int iCellRight = 0; |
| 1410 | |
| 1411 | for(jj=1; jj<nCell; jj++){ |
| 1412 | float left = aCell[jj].aCoord[i*2]; |
| 1413 | float right = aCell[jj].aCoord[i*2+1]; |
| 1414 | |
| 1415 | if( left<x1 ) x1 = left; |
| 1416 | if( right>x4 ) x4 = right; |
| 1417 | if( left>x3 ){ |
| 1418 | x3 = left; |
| 1419 | iCellRight = jj; |
| 1420 | } |
| 1421 | if( right<x2 ){ |
| 1422 | x2 = right; |
| 1423 | iCellLeft = jj; |
| 1424 | } |
| 1425 | } |
| 1426 | |
| 1427 | if( x4!=x1 ){ |
| 1428 | float normalwidth = (x3 - x2) / (x4 - x1); |
| 1429 | if( normalwidth>maxNormalInnerWidth ){ |
| 1430 | iLeftSeed = iCellLeft; |
| 1431 | iRightSeed = iCellRight; |
| 1432 | } |
| 1433 | } |
| 1434 | } |
| 1435 | |
| 1436 | *piLeftSeed = iLeftSeed; |
| 1437 | *piRightSeed = iRightSeed; |
| 1438 | } |
| 1439 | #endif /* VARIANT_GUTTMAN_LINEAR_SPLIT */ |
| 1440 | |
| 1441 | #if VARIANT_GUTTMAN_QUADRATIC_SPLIT |
| 1442 | /* |
| 1443 | ** Implementation of the quadratic variant of the PickNext() function from |
| 1444 | ** Guttman[84]. |
| 1445 | */ |
| 1446 | static RtreeCell *QuadraticPickNext( |
| 1447 | Rtree *pRtree, |
| 1448 | RtreeCell *aCell, |
| 1449 | int nCell, |
| 1450 | RtreeCell *pLeftBox, |
| 1451 | RtreeCell *pRightBox, |
| 1452 | int *aiUsed |
| 1453 | ){ |
| 1454 | #define FABS(a) ((a)<0.0?-1.0*(a):(a)) |
| 1455 | |
| 1456 | int iSelect = -1; |
| 1457 | float fDiff; |
| 1458 | int ii; |
| 1459 | for(ii=0; ii<nCell; ii++){ |
| 1460 | if( aiUsed[ii]==0 ){ |
| 1461 | float left = cellGrowth(pRtree, pLeftBox, &aCell[ii]); |
| 1462 | float right = cellGrowth(pRtree, pLeftBox, &aCell[ii]); |
| 1463 | float diff = FABS(right-left); |
| 1464 | if( iSelect<0 || diff>fDiff ){ |
| 1465 | fDiff = diff; |
| 1466 | iSelect = ii; |
| 1467 | } |
| 1468 | } |
| 1469 | } |
| 1470 | aiUsed[iSelect] = 1; |
| 1471 | return &aCell[iSelect]; |
| 1472 | } |
| 1473 | |
| 1474 | /* |
| 1475 | ** Implementation of the quadratic variant of the PickSeeds() function from |
| 1476 | ** Guttman[84]. |
| 1477 | */ |
| 1478 | static void QuadraticPickSeeds( |
| 1479 | Rtree *pRtree, |
| 1480 | RtreeCell *aCell, |
| 1481 | int nCell, |
| 1482 | int *piLeftSeed, |
| 1483 | int *piRightSeed |
| 1484 | ){ |
| 1485 | int ii; |
| 1486 | int jj; |
| 1487 | |
| 1488 | int iLeftSeed = 0; |
| 1489 | int iRightSeed = 1; |
| 1490 | float fWaste = 0.0; |
| 1491 | |
| 1492 | for(ii=0; ii<nCell; ii++){ |
| 1493 | for(jj=ii+1; jj<nCell; jj++){ |
| 1494 | float right = cellArea(pRtree, &aCell[jj]); |
| 1495 | float growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]); |
| 1496 | float waste = growth - right; |
| 1497 | |
| 1498 | if( waste>fWaste ){ |
| 1499 | iLeftSeed = ii; |
| 1500 | iRightSeed = jj; |
| 1501 | fWaste = waste; |
| 1502 | } |
| 1503 | } |
| 1504 | } |
| 1505 | |
| 1506 | *piLeftSeed = iLeftSeed; |
| 1507 | *piRightSeed = iRightSeed; |
| 1508 | } |
| 1509 | #endif /* VARIANT_GUTTMAN_QUADRATIC_SPLIT */ |
| 1510 | |
| 1511 | /* |
| 1512 | ** Arguments aIdx, aDistance and aSpare all point to arrays of size |
| 1513 | ** nIdx. The aIdx array contains the set of integers from 0 to |
| 1514 | ** (nIdx-1) in no particular order. This function sorts the values |
| 1515 | ** in aIdx according to the indexed values in aDistance. For |
| 1516 | ** example, assuming the inputs: |
| 1517 | ** |
| 1518 | ** aIdx = { 0, 1, 2, 3 } |
| 1519 | ** aDistance = { 5.0, 2.0, 7.0, 6.0 } |
| 1520 | ** |
| 1521 | ** this function sets the aIdx array to contain: |
| 1522 | ** |
| 1523 | ** aIdx = { 0, 1, 2, 3 } |
| 1524 | ** |
| 1525 | ** The aSpare array is used as temporary working space by the |
| 1526 | ** sorting algorithm. |
| 1527 | */ |
| 1528 | static void SortByDistance( |
| 1529 | int *aIdx, |
| 1530 | int nIdx, |
| 1531 | float *aDistance, |
| 1532 | int *aSpare |
| 1533 | ){ |
| 1534 | if( nIdx>1 ){ |
| 1535 | int iLeft = 0; |
| 1536 | int iRight = 0; |
| 1537 | |
| 1538 | int nLeft = nIdx/2; |
| 1539 | int nRight = nIdx-nLeft; |
| 1540 | int *aLeft = aIdx; |
| 1541 | int *aRight = &aIdx[nLeft]; |
| 1542 | |
| 1543 | SortByDistance(aLeft, nLeft, aDistance, aSpare); |
| 1544 | SortByDistance(aRight, nRight, aDistance, aSpare); |
| 1545 | |
| 1546 | memcpy(aSpare, aLeft, sizeof(int)*nLeft); |
| 1547 | aLeft = aSpare; |
| 1548 | |
| 1549 | while( iLeft<nLeft || iRight<nRight ){ |
| 1550 | if( iLeft==nLeft ){ |
| 1551 | aIdx[iLeft+iRight] = aRight[iRight]; |
| 1552 | iRight++; |
| 1553 | }else if( iRight==nRight ){ |
| 1554 | aIdx[iLeft+iRight] = aLeft[iLeft]; |
| 1555 | iLeft++; |
| 1556 | }else{ |
| 1557 | float fLeft = aDistance[aLeft[iLeft]]; |
| 1558 | float fRight = aDistance[aRight[iRight]]; |
| 1559 | if( fLeft<fRight ){ |
| 1560 | aIdx[iLeft+iRight] = aLeft[iLeft]; |
| 1561 | iLeft++; |
| 1562 | }else{ |
| 1563 | aIdx[iLeft+iRight] = aRight[iRight]; |
| 1564 | iRight++; |
| 1565 | } |
| 1566 | } |
| 1567 | } |
| 1568 | |
| 1569 | #if 0 |
| 1570 | /* Check that the sort worked */ |
| 1571 | { |
| 1572 | int jj; |
| 1573 | for(jj=1; jj<nIdx; jj++){ |
| 1574 | float left = aDistance[aIdx[jj-1]]; |
| 1575 | float right = aDistance[aIdx[jj]]; |
| 1576 | assert( left<=right ); |
| 1577 | } |
| 1578 | } |
| 1579 | #endif |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | /* |
| 1584 | ** Arguments aIdx, aCell and aSpare all point to arrays of size |
| 1585 | ** nIdx. The aIdx array contains the set of integers from 0 to |
| 1586 | ** (nIdx-1) in no particular order. This function sorts the values |
| 1587 | ** in aIdx according to dimension iDim of the cells in aCell. The |
| 1588 | ** minimum value of dimension iDim is considered first, the |
| 1589 | ** maximum used to break ties. |
| 1590 | ** |
| 1591 | ** The aSpare array is used as temporary working space by the |
| 1592 | ** sorting algorithm. |
| 1593 | */ |
| 1594 | static void SortByDimension( |
| 1595 | int *aIdx, |
| 1596 | int nIdx, |
| 1597 | int iDim, |
| 1598 | RtreeCell *aCell, |
| 1599 | int *aSpare |
| 1600 | ){ |
| 1601 | if( nIdx>1 ){ |
| 1602 | |
| 1603 | int iLeft = 0; |
| 1604 | int iRight = 0; |
| 1605 | |
| 1606 | int nLeft = nIdx/2; |
| 1607 | int nRight = nIdx-nLeft; |
| 1608 | int *aLeft = aIdx; |
| 1609 | int *aRight = &aIdx[nLeft]; |
| 1610 | |
| 1611 | SortByDimension(aLeft, nLeft, iDim, aCell, aSpare); |
| 1612 | SortByDimension(aRight, nRight, iDim, aCell, aSpare); |
| 1613 | |
| 1614 | memcpy(aSpare, aLeft, sizeof(int)*nLeft); |
| 1615 | aLeft = aSpare; |
| 1616 | while( iLeft<nLeft || iRight<nRight ){ |
| 1617 | float xleft1 = aCell[aLeft[iLeft]].aCoord[iDim*2]; |
| 1618 | float xleft2 = aCell[aLeft[iLeft]].aCoord[iDim*2+1]; |
| 1619 | float xright1 = aCell[aRight[iRight]].aCoord[iDim*2]; |
| 1620 | float xright2 = aCell[aRight[iRight]].aCoord[iDim*2+1]; |
| 1621 | |
| 1622 | if( (iLeft!=nLeft) && ((iRight==nRight) |
| 1623 | || (xleft1<xright1) |
| 1624 | || (xleft1==xright1 && xleft2<xright2) |
| 1625 | )){ |
| 1626 | aIdx[iLeft+iRight] = aLeft[iLeft]; |
| 1627 | iLeft++; |
| 1628 | }else{ |
| 1629 | aIdx[iLeft+iRight] = aRight[iRight]; |
| 1630 | iRight++; |
| 1631 | } |
| 1632 | } |
| 1633 | |
| 1634 | #if 0 |
| 1635 | /* Check that the sort worked */ |
| 1636 | { |
| 1637 | int jj; |
| 1638 | for(jj=1; jj<nIdx; jj++){ |
| 1639 | float xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2]; |
| 1640 | float xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1]; |
| 1641 | float xright1 = aCell[aIdx[jj]].aCoord[iDim*2]; |
| 1642 | float xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1]; |
| 1643 | assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) ); |
| 1644 | } |
| 1645 | } |
| 1646 | #endif |
| 1647 | } |
| 1648 | } |
| 1649 | |
| 1650 | #if VARIANT_RSTARTREE_SPLIT |
| 1651 | /* |
| 1652 | ** Implementation of the R*-tree variant of SplitNode from Beckman[1990]. |
| 1653 | */ |
| 1654 | static int splitNodeStartree( |
| 1655 | Rtree *pRtree, |
| 1656 | RtreeCell *aCell, |
| 1657 | int nCell, |
| 1658 | RtreeNode *pLeft, |
| 1659 | RtreeNode *pRight, |
| 1660 | RtreeCell *pBboxLeft, |
| 1661 | RtreeCell *pBboxRight |
| 1662 | ){ |
| 1663 | int **aaSorted; |
| 1664 | int *aSpare; |
| 1665 | int ii; |
| 1666 | |
| 1667 | int iBestDim; |
| 1668 | int iBestSplit; |
| 1669 | float fBestMargin; |
| 1670 | |
| 1671 | int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int)); |
| 1672 | |
| 1673 | aaSorted = (int **)sqlite3_malloc(nByte); |
| 1674 | if( !aaSorted ){ |
| 1675 | return SQLITE_NOMEM; |
| 1676 | } |
| 1677 | |
| 1678 | aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; |
| 1679 | memset(aaSorted, 0, nByte); |
| 1680 | for(ii=0; ii<pRtree->nDim; ii++){ |
| 1681 | int jj; |
| 1682 | aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; |
| 1683 | for(jj=0; jj<nCell; jj++){ |
| 1684 | aaSorted[ii][jj] = jj; |
| 1685 | } |
| 1686 | SortByDimension(aaSorted[ii], nCell, ii, aCell, aSpare); |
| 1687 | } |
| 1688 | |
| 1689 | for(ii=0; ii<pRtree->nDim; ii++){ |
| 1690 | float margin = 0.0; |
| 1691 | float fBestOverlap; |
| 1692 | float fBestArea; |
| 1693 | int iBestLeft; |
| 1694 | int nLeft; |
| 1695 | |
| 1696 | for( |
| 1697 | nLeft=RTREE_MINCELLS(pRtree); |
| 1698 | nLeft<=(nCell-RTREE_MINCELLS(pRtree)); |
| 1699 | nLeft++ |
| 1700 | ){ |
| 1701 | RtreeCell left; |
| 1702 | RtreeCell right; |
| 1703 | int kk; |
| 1704 | float overlap; |
| 1705 | float area; |
| 1706 | |
| 1707 | memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); |
| 1708 | memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); |
| 1709 | for(kk=1; kk<(nCell-1); kk++){ |
| 1710 | if( kk<nLeft ){ |
| 1711 | cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]); |
| 1712 | }else{ |
| 1713 | cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]); |
| 1714 | } |
| 1715 | } |
| 1716 | margin += cellMargin(pRtree, &left); |
| 1717 | margin += cellMargin(pRtree, &right); |
| 1718 | overlap = cellOverlap(pRtree, &left, &right, 1, -1); |
| 1719 | area = cellArea(pRtree, &left) + cellArea(pRtree, &right); |
| 1720 | if( (nLeft==RTREE_MINCELLS(pRtree)) |
| 1721 | || (overlap<fBestOverlap) |
| 1722 | || (overlap==fBestOverlap && area<fBestArea) |
| 1723 | ){ |
| 1724 | iBestLeft = nLeft; |
| 1725 | fBestOverlap = overlap; |
| 1726 | fBestArea = area; |
| 1727 | } |
| 1728 | } |
| 1729 | |
| 1730 | if( ii==0 || margin<fBestMargin ){ |
| 1731 | iBestDim = ii; |
| 1732 | fBestMargin = margin; |
| 1733 | iBestSplit = iBestLeft; |
| 1734 | } |
| 1735 | } |
| 1736 | |
| 1737 | memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell)); |
| 1738 | memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell)); |
| 1739 | for(ii=0; ii<nCell; ii++){ |
| 1740 | RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight; |
| 1741 | RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight; |
| 1742 | RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]]; |
| 1743 | nodeInsertCell(pRtree, pTarget, pCell); |
| 1744 | cellUnion(pRtree, pBbox, pCell); |
| 1745 | } |
| 1746 | |
| 1747 | sqlite3_free(aaSorted); |
| 1748 | return SQLITE_OK; |
| 1749 | } |
| 1750 | #endif |
| 1751 | |
| 1752 | #if VARIANT_GUTTMAN_SPLIT |
| 1753 | /* |
| 1754 | ** Implementation of the regular R-tree SplitNode from Guttman[1984]. |
| 1755 | */ |
| 1756 | static int splitNodeGuttman( |
| 1757 | Rtree *pRtree, |
| 1758 | RtreeCell *aCell, |
| 1759 | int nCell, |
| 1760 | RtreeNode *pLeft, |
| 1761 | RtreeNode *pRight, |
| 1762 | RtreeCell *pBboxLeft, |
| 1763 | RtreeCell *pBboxRight |
| 1764 | ){ |
| 1765 | int iLeftSeed = 0; |
| 1766 | int iRightSeed = 1; |
| 1767 | int *aiUsed; |
| 1768 | int i; |
| 1769 | |
| 1770 | aiUsed = sqlite3_malloc(sizeof(int)*nCell); |
| 1771 | memset(aiUsed, 0, sizeof(int)*nCell); |
| 1772 | |
| 1773 | PickSeeds(pRtree, aCell, nCell, &iLeftSeed, &iRightSeed); |
| 1774 | |
| 1775 | memcpy(pBboxLeft, &aCell[iLeftSeed], sizeof(RtreeCell)); |
| 1776 | memcpy(pBboxRight, &aCell[iRightSeed], sizeof(RtreeCell)); |
| 1777 | nodeInsertCell(pRtree, pLeft, &aCell[iLeftSeed]); |
| 1778 | nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]); |
| 1779 | aiUsed[iLeftSeed] = 1; |
| 1780 | aiUsed[iRightSeed] = 1; |
| 1781 | |
| 1782 | for(i=nCell-2; i>0; i--){ |
| 1783 | RtreeCell *pNext; |
| 1784 | pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed); |
| 1785 | float diff = |
| 1786 | cellGrowth(pRtree, pBboxLeft, pNext) - |
| 1787 | cellGrowth(pRtree, pBboxRight, pNext) |
| 1788 | ; |
| 1789 | if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i) |
| 1790 | || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i)) |
| 1791 | ){ |
| 1792 | nodeInsertCell(pRtree, pRight, pNext); |
| 1793 | cellUnion(pRtree, pBboxRight, pNext); |
| 1794 | }else{ |
| 1795 | nodeInsertCell(pRtree, pLeft, pNext); |
| 1796 | cellUnion(pRtree, pBboxLeft, pNext); |
| 1797 | } |
| 1798 | } |
| 1799 | |
| 1800 | sqlite3_free(aiUsed); |
| 1801 | return SQLITE_OK; |
| 1802 | } |
| 1803 | #endif |
| 1804 | |
| 1805 | static int updateMapping( |
| 1806 | Rtree *pRtree, |
| 1807 | i64 iRowid, |
| 1808 | RtreeNode *pNode, |
| 1809 | int iHeight |
| 1810 | ){ |
| 1811 | int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64); |
| 1812 | xSetMapping = ((iHeight==0)?rowidWrite:parentWrite); |
| 1813 | if( iHeight>0 ){ |
| 1814 | RtreeNode *pChild = nodeHashLookup(pRtree, iRowid); |
| 1815 | if( pChild ){ |
| 1816 | nodeRelease(pRtree, pChild->pParent); |
| 1817 | nodeReference(pNode); |
| 1818 | pChild->pParent = pNode; |
| 1819 | } |
| 1820 | } |
| 1821 | return xSetMapping(pRtree, iRowid, pNode->iNode); |
| 1822 | } |
| 1823 | |
| 1824 | static int SplitNode( |
| 1825 | Rtree *pRtree, |
| 1826 | RtreeNode *pNode, |
| 1827 | RtreeCell *pCell, |
| 1828 | int iHeight |
| 1829 | ){ |
| 1830 | int i; |
| 1831 | int newCellIsRight = 0; |
| 1832 | |
| 1833 | int rc = SQLITE_OK; |
| 1834 | int nCell = NCELL(pNode); |
| 1835 | RtreeCell *aCell; |
| 1836 | int *aiUsed; |
| 1837 | |
| 1838 | RtreeNode *pLeft = 0; |
| 1839 | RtreeNode *pRight = 0; |
| 1840 | |
| 1841 | RtreeCell leftbbox; |
| 1842 | RtreeCell rightbbox; |
| 1843 | |
| 1844 | /* Allocate an array and populate it with a copy of pCell and |
| 1845 | ** all cells from node pLeft. Then zero the original node. |
| 1846 | */ |
| 1847 | aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1)); |
| 1848 | if( !aCell ){ |
| 1849 | rc = SQLITE_NOMEM; |
| 1850 | goto splitnode_out; |
| 1851 | } |
| 1852 | aiUsed = (int *)&aCell[nCell+1]; |
| 1853 | memset(aiUsed, 0, sizeof(int)*(nCell+1)); |
| 1854 | for(i=0; i<nCell; i++){ |
| 1855 | nodeGetCell(pRtree, pNode, i, &aCell[i]); |
| 1856 | } |
| 1857 | nodeZero(pRtree, pNode); |
| 1858 | memcpy(&aCell[nCell], pCell, sizeof(RtreeCell)); |
| 1859 | nCell++; |
| 1860 | |
| 1861 | if( pNode->iNode==1 ){ |
| 1862 | pRight = nodeNew(pRtree, pNode, 1); |
| 1863 | pLeft = nodeNew(pRtree, pNode, 1); |
| 1864 | pRtree->iDepth++; |
| 1865 | pNode->isDirty = 1; |
| 1866 | writeInt16(pNode->zData, pRtree->iDepth); |
| 1867 | }else{ |
| 1868 | pLeft = pNode; |
| 1869 | pRight = nodeNew(pRtree, pLeft->pParent, 1); |
| 1870 | nodeReference(pLeft); |
| 1871 | } |
| 1872 | |
| 1873 | if( !pLeft || !pRight ){ |
| 1874 | rc = SQLITE_NOMEM; |
| 1875 | goto splitnode_out; |
| 1876 | } |
| 1877 | |
| 1878 | memset(pLeft->zData, 0, pRtree->iNodeSize); |
| 1879 | memset(pRight->zData, 0, pRtree->iNodeSize); |
| 1880 | |
| 1881 | rc = AssignCells(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox); |
| 1882 | if( rc!=SQLITE_OK ){ |
| 1883 | goto splitnode_out; |
| 1884 | } |
| 1885 | |
| 1886 | /* Ensure both child nodes have node numbers assigned to them. */ |
| 1887 | if( (0==pRight->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))) |
| 1888 | || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) |
| 1889 | ){ |
| 1890 | goto splitnode_out; |
| 1891 | } |
| 1892 | |
| 1893 | rightbbox.iRowid = pRight->iNode; |
| 1894 | leftbbox.iRowid = pLeft->iNode; |
| 1895 | |
| 1896 | if( pNode->iNode==1 ){ |
| 1897 | rc = insertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1); |
| 1898 | if( rc!=SQLITE_OK ){ |
| 1899 | goto splitnode_out; |
| 1900 | } |
| 1901 | }else{ |
| 1902 | RtreeNode *pParent = pLeft->pParent; |
| 1903 | int iCell = nodeParentIndex(pRtree, pLeft); |
| 1904 | nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); |
| 1905 | AdjustTree(pRtree, pParent, &leftbbox); |
| 1906 | } |
| 1907 | if( (rc = insertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ |
| 1908 | goto splitnode_out; |
| 1909 | } |
| 1910 | |
| 1911 | for(i=0; i<NCELL(pRight); i++){ |
| 1912 | i64 iRowid = nodeGetRowid(pRtree, pRight, i); |
| 1913 | rc = updateMapping(pRtree, iRowid, pRight, iHeight); |
| 1914 | if( iRowid==pCell->iRowid ){ |
| 1915 | newCellIsRight = 1; |
| 1916 | } |
| 1917 | if( rc!=SQLITE_OK ){ |
| 1918 | goto splitnode_out; |
| 1919 | } |
| 1920 | } |
| 1921 | if( pNode->iNode==1 ){ |
| 1922 | for(i=0; i<NCELL(pLeft); i++){ |
| 1923 | i64 iRowid = nodeGetRowid(pRtree, pLeft, i); |
| 1924 | rc = updateMapping(pRtree, iRowid, pLeft, iHeight); |
| 1925 | if( rc!=SQLITE_OK ){ |
| 1926 | goto splitnode_out; |
| 1927 | } |
| 1928 | } |
| 1929 | }else if( newCellIsRight==0 ){ |
| 1930 | rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight); |
| 1931 | } |
| 1932 | |
| 1933 | if( rc==SQLITE_OK ){ |
| 1934 | rc = nodeRelease(pRtree, pRight); |
| 1935 | pRight = 0; |
| 1936 | } |
| 1937 | if( rc==SQLITE_OK ){ |
| 1938 | rc = nodeRelease(pRtree, pLeft); |
| 1939 | pLeft = 0; |
| 1940 | } |
| 1941 | |
| 1942 | splitnode_out: |
| 1943 | nodeRelease(pRtree, pRight); |
| 1944 | nodeRelease(pRtree, pLeft); |
| 1945 | sqlite3_free(aCell); |
| 1946 | return rc; |
| 1947 | } |
| 1948 | |
| 1949 | static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ |
| 1950 | int rc = SQLITE_OK; |
| 1951 | if( pLeaf->iNode!=1 && pLeaf->pParent==0 ){ |
| 1952 | sqlite3_bind_int64(pRtree->pReadParent, 1, pLeaf->iNode); |
| 1953 | if( sqlite3_step(pRtree->pReadParent)==SQLITE_ROW ){ |
| 1954 | i64 iNode = sqlite3_column_int64(pRtree->pReadParent, 0); |
| 1955 | rc = nodeAcquire(pRtree, iNode, 0, &pLeaf->pParent); |
| 1956 | }else{ |
| 1957 | rc = SQLITE_ERROR; |
| 1958 | } |
| 1959 | sqlite3_reset(pRtree->pReadParent); |
| 1960 | if( rc==SQLITE_OK ){ |
| 1961 | rc = fixLeafParent(pRtree, pLeaf->pParent); |
| 1962 | } |
| 1963 | } |
| 1964 | return rc; |
| 1965 | } |
| 1966 | |
| 1967 | static int deleteCell(Rtree *, RtreeNode *, int, int); |
| 1968 | |
| 1969 | static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ |
| 1970 | int rc; |
| 1971 | RtreeNode *pParent; |
| 1972 | int iCell; |
| 1973 | |
| 1974 | assert( pNode->nRef==1 ); |
| 1975 | |
| 1976 | /* Remove the entry in the parent cell. */ |
| 1977 | iCell = nodeParentIndex(pRtree, pNode); |
| 1978 | pParent = pNode->pParent; |
| 1979 | pNode->pParent = 0; |
| 1980 | if( SQLITE_OK!=(rc = deleteCell(pRtree, pParent, iCell, iHeight+1)) |
| 1981 | || SQLITE_OK!=(rc = nodeRelease(pRtree, pParent)) |
| 1982 | ){ |
| 1983 | return rc; |
| 1984 | } |
| 1985 | |
| 1986 | /* Remove the xxx_node entry. */ |
| 1987 | sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode); |
| 1988 | sqlite3_step(pRtree->pDeleteNode); |
| 1989 | if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){ |
| 1990 | return rc; |
| 1991 | } |
| 1992 | |
| 1993 | /* Remove the xxx_parent entry. */ |
| 1994 | sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode); |
| 1995 | sqlite3_step(pRtree->pDeleteParent); |
| 1996 | if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){ |
| 1997 | return rc; |
| 1998 | } |
| 1999 | |
| 2000 | /* Remove the node from the in-memory hash table and link it into |
| 2001 | ** the Rtree.pDeleted list. Its contents will be re-inserted later on. |
| 2002 | */ |
| 2003 | nodeHashDelete(pRtree, pNode); |
| 2004 | pNode->iNode = iHeight; |
| 2005 | pNode->pNext = pRtree->pDeleted; |
| 2006 | pNode->nRef++; |
| 2007 | pRtree->pDeleted = pNode; |
| 2008 | |
| 2009 | return SQLITE_OK; |
| 2010 | } |
| 2011 | |
| 2012 | static void fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ |
| 2013 | RtreeNode *pParent = pNode->pParent; |
| 2014 | if( pParent ){ |
| 2015 | int ii; |
| 2016 | int nCell = NCELL(pNode); |
| 2017 | RtreeCell box; /* Bounding box for pNode */ |
| 2018 | nodeGetCell(pRtree, pNode, 0, &box); |
| 2019 | for(ii=1; ii<nCell; ii++){ |
| 2020 | RtreeCell cell; |
| 2021 | nodeGetCell(pRtree, pNode, ii, &cell); |
| 2022 | cellUnion(pRtree, &box, &cell); |
| 2023 | } |
| 2024 | box.iRowid = pNode->iNode; |
| 2025 | ii = nodeParentIndex(pRtree, pNode); |
| 2026 | nodeOverwriteCell(pRtree, pParent, &box, ii); |
| 2027 | fixBoundingBox(pRtree, pParent); |
| 2028 | } |
| 2029 | } |
| 2030 | |
| 2031 | /* |
| 2032 | ** Delete the cell at index iCell of node pNode. After removing the |
| 2033 | ** cell, adjust the r-tree data structure if required. |
| 2034 | */ |
| 2035 | static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ |
| 2036 | int rc; |
| 2037 | |
| 2038 | if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ |
| 2039 | return rc; |
| 2040 | } |
| 2041 | |
| 2042 | /* Remove the cell from the node. This call just moves bytes around |
| 2043 | ** the in-memory node image, so it cannot fail. |
| 2044 | */ |
| 2045 | nodeDeleteCell(pRtree, pNode, iCell); |
| 2046 | |
| 2047 | /* If the node is not the tree root and now has less than the minimum |
| 2048 | ** number of cells, remove it from the tree. Otherwise, update the |
| 2049 | ** cell in the parent node so that it tightly contains the updated |
| 2050 | ** node. |
| 2051 | */ |
| 2052 | if( pNode->iNode!=1 ){ |
| 2053 | RtreeNode *pParent = pNode->pParent; |
| 2054 | if( (pParent->iNode!=1 || NCELL(pParent)!=1) |
| 2055 | && (NCELL(pNode)<RTREE_MINCELLS(pRtree)) |
| 2056 | ){ |
| 2057 | rc = removeNode(pRtree, pNode, iHeight); |
| 2058 | }else{ |
| 2059 | fixBoundingBox(pRtree, pNode); |
| 2060 | } |
| 2061 | } |
| 2062 | |
| 2063 | return rc; |
| 2064 | } |
| 2065 | |
| 2066 | static int Reinsert( |
| 2067 | Rtree *pRtree, |
| 2068 | RtreeNode *pNode, |
| 2069 | RtreeCell *pCell, |
| 2070 | int iHeight |
| 2071 | ){ |
| 2072 | int *aOrder; |
| 2073 | int *aSpare; |
| 2074 | RtreeCell *aCell; |
| 2075 | float *aDistance; |
| 2076 | int nCell; |
| 2077 | float aCenterCoord[RTREE_MAX_DIMENSIONS]; |
| 2078 | int iDim; |
| 2079 | int ii; |
| 2080 | int rc = SQLITE_OK; |
| 2081 | |
| 2082 | memset(aCenterCoord, 0, sizeof(float)*RTREE_MAX_DIMENSIONS); |
| 2083 | |
| 2084 | nCell = NCELL(pNode)+1; |
| 2085 | |
| 2086 | /* Allocate the buffers used by this operation. The allocation is |
| 2087 | ** relinquished before this function returns. |
| 2088 | */ |
| 2089 | aCell = (RtreeCell *)sqlite3_malloc(nCell * ( |
| 2090 | sizeof(RtreeCell) + /* aCell array */ |
| 2091 | sizeof(int) + /* aOrder array */ |
| 2092 | sizeof(int) + /* aSpare array */ |
| 2093 | sizeof(float) /* aDistance array */ |
| 2094 | )); |
| 2095 | if( !aCell ){ |
| 2096 | return SQLITE_NOMEM; |
| 2097 | } |
| 2098 | aOrder = (int *)&aCell[nCell]; |
| 2099 | aSpare = (int *)&aOrder[nCell]; |
| 2100 | aDistance = (float *)&aSpare[nCell]; |
| 2101 | |
| 2102 | for(ii=0; ii<nCell; ii++){ |
| 2103 | if( ii==(nCell-1) ){ |
| 2104 | memcpy(&aCell[ii], pCell, sizeof(RtreeCell)); |
| 2105 | }else{ |
| 2106 | nodeGetCell(pRtree, pNode, ii, &aCell[ii]); |
| 2107 | } |
| 2108 | aOrder[ii] = ii; |
| 2109 | for(iDim=0; iDim<pRtree->nDim; iDim++){ |
| 2110 | aCenterCoord[iDim] += aCell[ii].aCoord[iDim*2]; |
| 2111 | aCenterCoord[iDim] += aCell[ii].aCoord[iDim*2+1]; |
| 2112 | } |
| 2113 | } |
| 2114 | for(iDim=0; iDim<pRtree->nDim; iDim++){ |
| 2115 | aCenterCoord[iDim] = aCenterCoord[iDim]/((float)nCell*2.0); |
| 2116 | } |
| 2117 | |
| 2118 | for(ii=0; ii<nCell; ii++){ |
| 2119 | aDistance[ii] = 0.0; |
| 2120 | for(iDim=0; iDim<pRtree->nDim; iDim++){ |
| 2121 | float coord = aCell[ii].aCoord[iDim*2+1] - aCell[ii].aCoord[iDim*2]; |
| 2122 | aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); |
| 2123 | } |
| 2124 | } |
| 2125 | |
| 2126 | SortByDistance(aOrder, nCell, aDistance, aSpare); |
| 2127 | nodeZero(pRtree, pNode); |
| 2128 | |
| 2129 | for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){ |
| 2130 | RtreeCell *p = &aCell[aOrder[ii]]; |
| 2131 | nodeInsertCell(pRtree, pNode, p); |
| 2132 | if( p->iRowid==pCell->iRowid ){ |
| 2133 | if( iHeight==0 ){ |
| 2134 | rc = rowidWrite(pRtree, p->iRowid, pNode->iNode); |
| 2135 | }else{ |
| 2136 | rc = parentWrite(pRtree, p->iRowid, pNode->iNode); |
| 2137 | } |
| 2138 | } |
| 2139 | } |
| 2140 | if( rc==SQLITE_OK ){ |
| 2141 | fixBoundingBox(pRtree, pNode); |
| 2142 | } |
| 2143 | for(; rc==SQLITE_OK && ii<nCell; ii++){ |
| 2144 | /* Find a node to store this cell in. pNode->iNode currently contains |
| 2145 | ** the height of the sub-tree headed by the cell. |
| 2146 | */ |
| 2147 | RtreeNode *pInsert; |
| 2148 | RtreeCell *p = &aCell[aOrder[ii]]; |
| 2149 | rc = ChooseLeaf(pRtree, p, iHeight, &pInsert); |
| 2150 | if( rc==SQLITE_OK ){ |
| 2151 | int rc2; |
| 2152 | rc = insertCell(pRtree, pInsert, p, iHeight); |
| 2153 | rc2 = nodeRelease(pRtree, pInsert); |
| 2154 | if( rc==SQLITE_OK ){ |
| 2155 | rc = rc2; |
| 2156 | } |
| 2157 | } |
| 2158 | } |
| 2159 | |
| 2160 | sqlite3_free(aCell); |
| 2161 | return rc; |
| 2162 | } |
| 2163 | |
| 2164 | /* |
| 2165 | ** Insert cell pCell into node pNode. Node pNode is the head of a |
| 2166 | ** subtree iHeight high (leaf nodes have iHeight==0). |
| 2167 | */ |
| 2168 | static int insertCell( |
| 2169 | Rtree *pRtree, |
| 2170 | RtreeNode *pNode, |
| 2171 | RtreeCell *pCell, |
| 2172 | int iHeight |
| 2173 | ){ |
| 2174 | int rc = SQLITE_OK; |
| 2175 | if( iHeight>0 ){ |
| 2176 | RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); |
| 2177 | if( pChild ){ |
| 2178 | nodeRelease(pRtree, pChild->pParent); |
| 2179 | nodeReference(pNode); |
| 2180 | pChild->pParent = pNode; |
| 2181 | } |
| 2182 | } |
| 2183 | if( nodeInsertCell(pRtree, pNode, pCell) ){ |
| 2184 | #if VARIANT_RSTARTREE_REINSERT |
| 2185 | if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){ |
| 2186 | rc = SplitNode(pRtree, pNode, pCell, iHeight); |
| 2187 | }else{ |
| 2188 | pRtree->iReinsertHeight = iHeight; |
| 2189 | rc = Reinsert(pRtree, pNode, pCell, iHeight); |
| 2190 | } |
| 2191 | #else |
| 2192 | rc = SplitNode(pRtree, pNode, pCell, iHeight); |
| 2193 | #endif |
| 2194 | }else{ |
| 2195 | AdjustTree(pRtree, pNode, pCell); |
| 2196 | if( iHeight==0 ){ |
| 2197 | rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); |
| 2198 | }else{ |
| 2199 | rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); |
| 2200 | } |
| 2201 | } |
| 2202 | return rc; |
| 2203 | } |
| 2204 | |
| 2205 | static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ |
| 2206 | int ii; |
| 2207 | int rc = SQLITE_OK; |
| 2208 | int nCell = NCELL(pNode); |
| 2209 | |
| 2210 | for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){ |
| 2211 | RtreeNode *pInsert; |
| 2212 | RtreeCell cell; |
| 2213 | nodeGetCell(pRtree, pNode, ii, &cell); |
| 2214 | |
| 2215 | /* Find a node to store this cell in. pNode->iNode currently contains |
| 2216 | ** the height of the sub-tree headed by the cell. |
| 2217 | */ |
| 2218 | rc = ChooseLeaf(pRtree, &cell, pNode->iNode, &pInsert); |
| 2219 | if( rc==SQLITE_OK ){ |
| 2220 | int rc2; |
| 2221 | rc = insertCell(pRtree, pInsert, &cell, pNode->iNode); |
| 2222 | rc2 = nodeRelease(pRtree, pInsert); |
| 2223 | if( rc==SQLITE_OK ){ |
| 2224 | rc = rc2; |
| 2225 | } |
| 2226 | } |
| 2227 | } |
| 2228 | return rc; |
| 2229 | } |
| 2230 | |
| 2231 | /* |
| 2232 | ** Select a currently unused rowid for a new r-tree record. |
| 2233 | */ |
| 2234 | static int newRowid(Rtree *pRtree, i64 *piRowid){ |
| 2235 | int rc; |
| 2236 | sqlite3_bind_null(pRtree->pWriteRowid, 1); |
| 2237 | sqlite3_bind_null(pRtree->pWriteRowid, 2); |
| 2238 | sqlite3_step(pRtree->pWriteRowid); |
| 2239 | rc = sqlite3_reset(pRtree->pWriteRowid); |
| 2240 | *piRowid = sqlite3_last_insert_rowid(pRtree->db); |
| 2241 | return rc; |
| 2242 | } |
| 2243 | |
| 2244 | #ifndef NDEBUG |
| 2245 | static int hashIsEmpty(Rtree *pRtree){ |
| 2246 | int ii; |
| 2247 | for(ii=0; ii<HASHSIZE; ii++){ |
| 2248 | assert( !pRtree->aHash[ii] ); |
| 2249 | } |
| 2250 | return 1; |
| 2251 | } |
| 2252 | #endif |
| 2253 | |
| 2254 | /* |
| 2255 | ** The xUpdate method for rtree module virtual tables. |
| 2256 | */ |
| 2257 | int rtreeUpdate( |
| 2258 | sqlite3_vtab *pVtab, |
| 2259 | int nData, |
| 2260 | sqlite3_value **azData, |
| 2261 | sqlite_int64 *pRowid |
| 2262 | ){ |
| 2263 | Rtree *pRtree = (Rtree *)pVtab; |
| 2264 | int rc = SQLITE_OK; |
| 2265 | |
| 2266 | rtreeReference(pRtree); |
| 2267 | |
| 2268 | assert(nData>=1); |
| 2269 | assert(hashIsEmpty(pRtree)); |
| 2270 | |
| 2271 | /* If azData[0] is not an SQL NULL value, it is the rowid of a |
| 2272 | ** record to delete from the r-tree table. The following block does |
| 2273 | ** just that. |
| 2274 | */ |
| 2275 | if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){ |
| 2276 | i64 iDelete; /* The rowid to delete */ |
| 2277 | RtreeNode *pLeaf; /* Leaf node containing record iDelete */ |
| 2278 | int iCell; /* Index of iDelete cell in pLeaf */ |
| 2279 | RtreeNode *pRoot; |
| 2280 | |
| 2281 | /* Obtain a reference to the root node to initialise Rtree.iDepth */ |
| 2282 | rc = nodeAcquire(pRtree, 1, 0, &pRoot); |
| 2283 | |
| 2284 | /* Obtain a reference to the leaf node that contains the entry |
| 2285 | ** about to be deleted. |
| 2286 | */ |
| 2287 | if( rc==SQLITE_OK ){ |
| 2288 | iDelete = sqlite3_value_int64(azData[0]); |
| 2289 | rc = findLeafNode(pRtree, iDelete, &pLeaf); |
| 2290 | } |
| 2291 | |
| 2292 | /* Delete the cell in question from the leaf node. */ |
| 2293 | if( rc==SQLITE_OK ){ |
| 2294 | int rc2; |
| 2295 | iCell = nodeRowidIndex(pRtree, pLeaf, iDelete); |
| 2296 | rc = deleteCell(pRtree, pLeaf, iCell, 0); |
| 2297 | rc2 = nodeRelease(pRtree, pLeaf); |
| 2298 | if( rc==SQLITE_OK ){ |
| 2299 | rc = rc2; |
| 2300 | } |
| 2301 | } |
| 2302 | |
| 2303 | /* Delete the corresponding entry in the <rtree>_rowid table. */ |
| 2304 | if( rc==SQLITE_OK ){ |
| 2305 | sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); |
| 2306 | sqlite3_step(pRtree->pDeleteRowid); |
| 2307 | rc = sqlite3_reset(pRtree->pDeleteRowid); |
| 2308 | } |
| 2309 | |
| 2310 | /* Check if the root node now has exactly one child. If so, remove |
| 2311 | ** it, schedule the contents of the child for reinsertion and |
| 2312 | ** reduce the tree height by one. |
| 2313 | ** |
| 2314 | ** This is equivalent to copying the contents of the child into |
| 2315 | ** the root node (the operation that Gutman's paper says to perform |
| 2316 | ** in this scenario). |
| 2317 | */ |
| 2318 | if( rc==SQLITE_OK && pRtree->iDepth>0 ){ |
| 2319 | if( rc==SQLITE_OK && NCELL(pRoot)==1 ){ |
| 2320 | RtreeNode *pChild; |
| 2321 | i64 iChild = nodeGetRowid(pRtree, pRoot, 0); |
| 2322 | rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); |
| 2323 | if( rc==SQLITE_OK ){ |
| 2324 | rc = removeNode(pRtree, pChild, pRtree->iDepth-1); |
| 2325 | } |
| 2326 | if( rc==SQLITE_OK ){ |
| 2327 | pRtree->iDepth--; |
| 2328 | writeInt16(pRoot->zData, pRtree->iDepth); |
| 2329 | pRoot->isDirty = 1; |
| 2330 | } |
| 2331 | } |
| 2332 | } |
| 2333 | |
| 2334 | /* Re-insert the contents of any underfull nodes removed from the tree. */ |
| 2335 | for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ |
| 2336 | if( rc==SQLITE_OK ){ |
| 2337 | rc = reinsertNodeContent(pRtree, pLeaf); |
| 2338 | } |
| 2339 | pRtree->pDeleted = pLeaf->pNext; |
| 2340 | sqlite3_free(pLeaf); |
| 2341 | } |
| 2342 | |
| 2343 | /* Release the reference to the root node. */ |
| 2344 | if( rc==SQLITE_OK ){ |
| 2345 | rc = nodeRelease(pRtree, pRoot); |
| 2346 | }else{ |
| 2347 | nodeRelease(pRtree, pRoot); |
| 2348 | } |
| 2349 | } |
| 2350 | |
| 2351 | /* If the azData[] array contains more than one element, elements |
| 2352 | ** (azData[2]..azData[argc-1]) contain a new record to insert into |
| 2353 | ** the r-tree structure. |
| 2354 | */ |
| 2355 | if( rc==SQLITE_OK && nData>1 ){ |
| 2356 | /* Insert a new record into the r-tree */ |
| 2357 | RtreeCell cell; |
| 2358 | int ii; |
| 2359 | RtreeNode *pLeaf; |
| 2360 | |
| 2361 | /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */ |
| 2362 | assert( nData==(pRtree->nDim*2 + 3) ); |
| 2363 | for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
| 2364 | cell.aCoord[ii] = (float)sqlite3_value_double(azData[ii+3]); |
| 2365 | cell.aCoord[ii+1] = (float)sqlite3_value_double(azData[ii+4]); |
| 2366 | if( cell.aCoord[ii]>cell.aCoord[ii+1] ){ |
| 2367 | rc = SQLITE_CONSTRAINT; |
| 2368 | goto constraint; |
| 2369 | } |
| 2370 | } |
| 2371 | |
| 2372 | /* Figure out the rowid of the new row. */ |
| 2373 | if( sqlite3_value_type(azData[2])==SQLITE_NULL ){ |
| 2374 | rc = newRowid(pRtree, &cell.iRowid); |
| 2375 | }else{ |
| 2376 | cell.iRowid = sqlite3_value_int64(azData[2]); |
| 2377 | sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); |
| 2378 | if( SQLITE_ROW==sqlite3_step(pRtree->pReadRowid) ){ |
| 2379 | sqlite3_reset(pRtree->pReadRowid); |
| 2380 | rc = SQLITE_CONSTRAINT; |
| 2381 | goto constraint; |
| 2382 | } |
| 2383 | rc = sqlite3_reset(pRtree->pReadRowid); |
| 2384 | } |
| 2385 | |
| 2386 | if( rc==SQLITE_OK ){ |
| 2387 | rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); |
| 2388 | } |
| 2389 | if( rc==SQLITE_OK ){ |
| 2390 | int rc2; |
| 2391 | pRtree->iReinsertHeight = -1; |
| 2392 | rc = insertCell(pRtree, pLeaf, &cell, 0); |
| 2393 | rc2 = nodeRelease(pRtree, pLeaf); |
| 2394 | if( rc==SQLITE_OK ){ |
| 2395 | rc = rc2; |
| 2396 | } |
| 2397 | } |
| 2398 | } |
| 2399 | |
| 2400 | constraint: |
| 2401 | rtreeRelease(pRtree); |
| 2402 | return rc; |
| 2403 | } |
| 2404 | |
| 2405 | /* |
| 2406 | ** The xRename method for rtree module virtual tables. |
| 2407 | */ |
| 2408 | static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){ |
| 2409 | Rtree *pRtree = (Rtree *)pVtab; |
| 2410 | int rc = SQLITE_NOMEM; |
| 2411 | char *zSql = sqlite3_mprintf( |
| 2412 | "ALTER TABLE %Q.'%q_node' RENAME TO '%q_node';" |
| 2413 | "ALTER TABLE %Q.'%q_parent' RENAME TO '%q_parent';" |
| 2414 | "ALTER TABLE %Q.'%q_rowid' RENAME TO '%q_rowid';" |
| 2415 | , pRtree->zDb, pRtree->zName, zNewName |
| 2416 | , pRtree->zDb, pRtree->zName, zNewName |
| 2417 | , pRtree->zDb, pRtree->zName, zNewName |
| 2418 | ); |
| 2419 | if( zSql ){ |
| 2420 | rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); |
| 2421 | sqlite3_free(zSql); |
| 2422 | } |
| 2423 | return rc; |
| 2424 | } |
| 2425 | |
| 2426 | static sqlite3_module rtreeModule = { |
| 2427 | 0, /* iVersion */ |
| 2428 | rtreeCreate, /* xCreate - create a table */ |
| 2429 | rtreeConnect, /* xConnect - connect to an existing table */ |
| 2430 | rtreeBestIndex, /* xBestIndex - Determine search strategy */ |
| 2431 | rtreeDisconnect, /* xDisconnect - Disconnect from a table */ |
| 2432 | rtreeDestroy, /* xDestroy - Drop a table */ |
| 2433 | rtreeOpen, /* xOpen - open a cursor */ |
| 2434 | rtreeClose, /* xClose - close a cursor */ |
| 2435 | rtreeFilter, /* xFilter - configure scan constraints */ |
| 2436 | rtreeNext, /* xNext - advance a cursor */ |
| 2437 | rtreeEof, /* xEof */ |
| 2438 | rtreeColumn, /* xColumn - read data */ |
| 2439 | rtreeRowid, /* xRowid - read data */ |
| 2440 | rtreeUpdate, /* xUpdate - write data */ |
| 2441 | 0, /* xBegin - begin transaction */ |
| 2442 | 0, /* xSync - sync transaction */ |
| 2443 | 0, /* xCommit - commit transaction */ |
| 2444 | 0, /* xRollback - rollback transaction */ |
| 2445 | 0, /* xFindFunction - function overloading */ |
| 2446 | rtreeRename /* xRename - rename the table */ |
| 2447 | }; |
| 2448 | |
| 2449 | static int rtreeSqlInit( |
| 2450 | Rtree *pRtree, |
| 2451 | sqlite3 *db, |
| 2452 | const char *zDb, |
| 2453 | const char *zPrefix, |
| 2454 | int isCreate |
| 2455 | ){ |
| 2456 | int rc = SQLITE_OK; |
| 2457 | |
| 2458 | #define N_STATEMENT 9 |
| 2459 | static const char *azSql[N_STATEMENT] = { |
| 2460 | /* Read and write the xxx_node table */ |
| 2461 | "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1", |
| 2462 | "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)", |
| 2463 | "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1", |
| 2464 | |
| 2465 | /* Read and write the xxx_rowid table */ |
| 2466 | "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1", |
| 2467 | "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)", |
| 2468 | "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1", |
| 2469 | |
| 2470 | /* Read and write the xxx_parent table */ |
| 2471 | "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1", |
| 2472 | "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)", |
| 2473 | "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1" |
| 2474 | }; |
| 2475 | sqlite3_stmt **appStmt[N_STATEMENT]; |
| 2476 | int i; |
| 2477 | |
| 2478 | pRtree->db = db; |
| 2479 | |
| 2480 | if( isCreate ){ |
| 2481 | char *zCreate = sqlite3_mprintf( |
| 2482 | "CREATE TABLE '%q'.'%q_node'(nodeno INTEGER PRIMARY KEY, data BLOB);" |
| 2483 | "CREATE TABLE '%q'.'%q_rowid'(rowid INTEGER PRIMARY KEY, nodeno INTEGER);" |
| 2484 | "CREATE TABLE '%q'.'%q_parent'(nodeno INTEGER PRIMARY KEY, parentnode INTEGER);" |
| 2485 | "INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))", |
| 2486 | zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize |
| 2487 | ); |
| 2488 | if( !zCreate ){ |
| 2489 | return SQLITE_NOMEM; |
| 2490 | } |
| 2491 | rc = sqlite3_exec(db, zCreate, 0, 0, 0); |
| 2492 | sqlite3_free(zCreate); |
| 2493 | if( rc!=SQLITE_OK ){ |
| 2494 | return rc; |
| 2495 | } |
| 2496 | } |
| 2497 | |
| 2498 | appStmt[0] = &pRtree->pReadNode; |
| 2499 | appStmt[1] = &pRtree->pWriteNode; |
| 2500 | appStmt[2] = &pRtree->pDeleteNode; |
| 2501 | appStmt[3] = &pRtree->pReadRowid; |
| 2502 | appStmt[4] = &pRtree->pWriteRowid; |
| 2503 | appStmt[5] = &pRtree->pDeleteRowid; |
| 2504 | appStmt[6] = &pRtree->pReadParent; |
| 2505 | appStmt[7] = &pRtree->pWriteParent; |
| 2506 | appStmt[8] = &pRtree->pDeleteParent; |
| 2507 | |
| 2508 | for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){ |
| 2509 | char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix); |
| 2510 | if( zSql ){ |
| 2511 | rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0); |
| 2512 | }else{ |
| 2513 | rc = SQLITE_NOMEM; |
| 2514 | } |
| 2515 | sqlite3_free(zSql); |
| 2516 | } |
| 2517 | |
| 2518 | return rc; |
| 2519 | } |
| 2520 | |
| 2521 | /* |
| 2522 | ** This routine queries database handle db for the page-size used by |
| 2523 | ** database zDb. If successful, the page-size in bytes is written to |
| 2524 | ** *piPageSize and SQLITE_OK returned. Otherwise, and an SQLite error |
| 2525 | ** code is returned. |
| 2526 | */ |
| 2527 | static int getPageSize(sqlite3 *db, const char *zDb, int *piPageSize){ |
| 2528 | int rc = SQLITE_NOMEM; |
| 2529 | char *zSql; |
| 2530 | sqlite3_stmt *pStmt = 0; |
| 2531 | |
| 2532 | zSql = sqlite3_mprintf("PRAGMA %Q.page_size", zDb); |
| 2533 | if( !zSql ){ |
| 2534 | return SQLITE_NOMEM; |
| 2535 | } |
| 2536 | |
| 2537 | rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); |
| 2538 | sqlite3_free(zSql); |
| 2539 | if( rc!=SQLITE_OK ){ |
| 2540 | return rc; |
| 2541 | } |
| 2542 | |
| 2543 | if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 2544 | *piPageSize = sqlite3_column_int(pStmt, 0); |
| 2545 | } |
| 2546 | return sqlite3_finalize(pStmt); |
| 2547 | } |
| 2548 | |
| 2549 | /* |
| 2550 | ** This function is the implementation of both the xConnect and xCreate |
| 2551 | ** methods of the r-tree virtual table. |
| 2552 | ** |
| 2553 | ** argv[0] -> module name |
| 2554 | ** argv[1] -> database name |
| 2555 | ** argv[2] -> table name |
| 2556 | ** argv[...] -> column names... |
| 2557 | */ |
| 2558 | static int rtreeInit( |
| 2559 | sqlite3 *db, /* Database connection */ |
| 2560 | void *pAux, /* Pointer to head of rtree list */ |
| 2561 | int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ |
| 2562 | sqlite3_vtab **ppVtab, /* OUT: New virtual table */ |
| 2563 | char **pzErr, /* OUT: Error message, if any */ |
| 2564 | int isCreate /* True for xCreate, false for xConnect */ |
| 2565 | ){ |
| 2566 | int rc = SQLITE_OK; |
| 2567 | int iPageSize = 0; |
| 2568 | Rtree *pRtree; |
| 2569 | int nDb; /* Length of string argv[1] */ |
| 2570 | int nName; /* Length of string argv[2] */ |
| 2571 | |
| 2572 | const char *aErrMsg[] = { |
| 2573 | 0, /* 0 */ |
| 2574 | "Wrong number of columns for an rtree table", /* 1 */ |
| 2575 | "Too few columns for an rtree table", /* 2 */ |
| 2576 | "Too many columns for an rtree table" /* 3 */ |
| 2577 | }; |
| 2578 | |
| 2579 | int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2; |
| 2580 | if( aErrMsg[iErr] ){ |
| 2581 | *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); |
| 2582 | return SQLITE_ERROR; |
| 2583 | } |
| 2584 | |
| 2585 | rc = getPageSize(db, argv[1], &iPageSize); |
| 2586 | if( rc!=SQLITE_OK ){ |
| 2587 | return rc; |
| 2588 | } |
| 2589 | |
| 2590 | /* Allocate the sqlite3_vtab structure */ |
| 2591 | nDb = strlen(argv[1]); |
| 2592 | nName = strlen(argv[2]); |
| 2593 | pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2); |
| 2594 | if( !pRtree ){ |
| 2595 | return SQLITE_NOMEM; |
| 2596 | } |
| 2597 | memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); |
| 2598 | pRtree->nBusy = 1; |
| 2599 | pRtree->base.pModule = &rtreeModule; |
| 2600 | pRtree->zDb = (char *)&pRtree[1]; |
| 2601 | pRtree->zName = &pRtree->zDb[nDb+1]; |
| 2602 | pRtree->nDim = (argc-4)/2; |
| 2603 | pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2; |
| 2604 | memcpy(pRtree->zDb, argv[1], nDb); |
| 2605 | memcpy(pRtree->zName, argv[2], nName); |
| 2606 | |
| 2607 | /* Figure out the node size to use. By default, use 64 bytes less than |
| 2608 | ** the database page-size. This ensures that each node is stored on |
| 2609 | ** a single database page. |
| 2610 | ** |
| 2611 | ** If the databasd page-size is so large that more than RTREE_MAXCELLS |
| 2612 | ** entries would fit in a single node, use a smaller node-size. |
| 2613 | */ |
| 2614 | pRtree->iNodeSize = iPageSize-64; |
| 2615 | if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){ |
| 2616 | pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; |
| 2617 | } |
| 2618 | |
| 2619 | /* Create/Connect to the underlying relational database schema. If |
| 2620 | ** that is successful, call sqlite3_declare_vtab() to configure |
| 2621 | ** the r-tree table schema. |
| 2622 | */ |
| 2623 | if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){ |
| 2624 | *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
| 2625 | }else{ |
| 2626 | char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]); |
| 2627 | char *zTmp; |
| 2628 | int ii; |
| 2629 | for(ii=4; zSql && ii<argc; ii++){ |
| 2630 | zTmp = zSql; |
| 2631 | zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]); |
| 2632 | sqlite3_free(zTmp); |
| 2633 | } |
| 2634 | if( zSql ){ |
| 2635 | zTmp = zSql; |
| 2636 | zSql = sqlite3_mprintf("%s);", zTmp); |
| 2637 | sqlite3_free(zTmp); |
| 2638 | } |
| 2639 | if( !zSql || sqlite3_declare_vtab(db, zSql) ){ |
| 2640 | rc = SQLITE_NOMEM; |
| 2641 | } |
| 2642 | sqlite3_free(zSql); |
| 2643 | } |
| 2644 | |
| 2645 | if( rc==SQLITE_OK ){ |
| 2646 | *ppVtab = (sqlite3_vtab *)pRtree; |
| 2647 | }else{ |
| 2648 | rtreeRelease(pRtree); |
| 2649 | } |
| 2650 | return rc; |
| 2651 | } |
| 2652 | |
| 2653 | |
| 2654 | /* |
| 2655 | ** Implementation of a scalar function that decodes r-tree nodes to |
| 2656 | ** human readable strings. This can be used for debugging and analysis. |
| 2657 | ** |
| 2658 | ** The scalar function takes two arguments, a blob of data containing |
| 2659 | ** an r-tree node, and the number of dimensions the r-tree indexes. |
| 2660 | ** For a two-dimensional r-tree structure called "rt", to deserialize |
| 2661 | ** all nodes, a statement like: |
| 2662 | ** |
| 2663 | ** SELECT rtreenode(2, data) FROM rt_node; |
| 2664 | ** |
| 2665 | ** The human readable string takes the form of a Tcl list with one |
| 2666 | ** entry for each cell in the r-tree node. Each entry is itself a |
| 2667 | ** list, containing the 8-byte rowid/pageno followed by the |
| 2668 | ** <num-dimension>*2 coordinates. |
| 2669 | */ |
| 2670 | static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
| 2671 | char *zText = 0; |
| 2672 | RtreeNode node; |
| 2673 | Rtree tree; |
| 2674 | int ii; |
| 2675 | |
| 2676 | memset(&node, 0, sizeof(RtreeNode)); |
| 2677 | memset(&tree, 0, sizeof(Rtree)); |
| 2678 | tree.nDim = sqlite3_value_int(apArg[0]); |
| 2679 | tree.nBytesPerCell = 8 + 8 * tree.nDim; |
| 2680 | node.zData = (u8 *)sqlite3_value_blob(apArg[1]); |
| 2681 | |
| 2682 | for(ii=0; ii<NCELL(&node); ii++){ |
| 2683 | char zCell[512]; |
| 2684 | int nCell = 0; |
| 2685 | RtreeCell cell; |
| 2686 | int jj; |
| 2687 | |
| 2688 | nodeGetCell(&tree, &node, ii, &cell); |
| 2689 | sqlite3_snprintf(512-nCell,&zCell[nCell],"%d", cell.iRowid); |
| 2690 | nCell = strlen(zCell); |
| 2691 | for(jj=0; jj<tree.nDim*2; jj++){ |
| 2692 | sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj]); |
| 2693 | nCell = strlen(zCell); |
| 2694 | } |
| 2695 | |
| 2696 | if( zText ){ |
| 2697 | char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell); |
| 2698 | sqlite3_free(zText); |
| 2699 | zText = zTextNew; |
| 2700 | }else{ |
| 2701 | zText = sqlite3_mprintf("{%s}", zCell); |
| 2702 | } |
| 2703 | } |
| 2704 | |
| 2705 | sqlite3_result_text(ctx, zText, -1, sqlite3_free); |
| 2706 | } |
| 2707 | |
| 2708 | static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
| 2709 | if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB |
| 2710 | || sqlite3_value_bytes(apArg[0])<2 |
| 2711 | ){ |
| 2712 | sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1); |
| 2713 | }else{ |
| 2714 | u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]); |
| 2715 | sqlite3_result_int(ctx, readInt16(zBlob)); |
| 2716 | } |
| 2717 | } |
| 2718 | |
| 2719 | /* |
| 2720 | ** Register the r-tree module with database handle db. This creates the |
| 2721 | ** virtual table module "rtree" and the debugging/analysis scalar |
| 2722 | ** function "rtreenode". |
| 2723 | */ |
| 2724 | int sqlite3RtreeInit(sqlite3 *db){ |
| 2725 | int rc = SQLITE_OK; |
| 2726 | |
| 2727 | if( rc==SQLITE_OK ){ |
| 2728 | int utf8 = SQLITE_UTF8; |
| 2729 | rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); |
| 2730 | } |
| 2731 | if( rc==SQLITE_OK ){ |
| 2732 | int utf8 = SQLITE_UTF8; |
| 2733 | rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); |
| 2734 | } |
| 2735 | if( rc==SQLITE_OK ){ |
| 2736 | rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, 0, 0); |
| 2737 | } |
| 2738 | |
| 2739 | return rc; |
| 2740 | } |
| 2741 | |
| 2742 | #if !SQLITE_CORE |
| 2743 | int sqlite3_extension_init( |
| 2744 | sqlite3 *db, |
| 2745 | char **pzErrMsg, |
| 2746 | const sqlite3_api_routines *pApi |
| 2747 | ){ |
| 2748 | SQLITE_EXTENSION_INIT2(pApi) |
| 2749 | return sqlite3RtreeInit(db); |
| 2750 | } |
| 2751 | #endif |
| 2752 | |
| 2753 | #endif |