blob: bbcc7e2a73ba00017a05e4f788bc217cb9c70e88 [file] [log] [blame]
Yves Gerey890f62b2019-04-10 17:18:48 +02001/*
2 * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
Artem Titov9d777622020-09-18 18:23:08 +020011#ifndef API_NUMERICS_RUNNING_STATISTICS_H_
12#define API_NUMERICS_RUNNING_STATISTICS_H_
Yves Gerey890f62b2019-04-10 17:18:48 +020013
14#include <algorithm>
15#include <cmath>
16#include <limits>
17
18#include "absl/types/optional.h"
Yves Gerey3dfb6802019-05-13 17:01:32 +020019#include "rtc_base/checks.h"
Yves Gerey890f62b2019-04-10 17:18:48 +020020#include "rtc_base/numerics/math_utils.h"
21
22namespace webrtc {
Artem Titov9d777622020-09-18 18:23:08 +020023namespace webrtc_impl {
Yves Gerey890f62b2019-04-10 17:18:48 +020024
25// tl;dr: Robust and efficient online computation of statistics,
26// using Welford's method for variance. [1]
27//
28// This should be your go-to class if you ever need to compute
29// min, max, mean, variance and standard deviation.
30// If you need to get percentiles, please use webrtc::SamplesStatsCounter.
31//
Yves Gerey3dfb6802019-05-13 17:01:32 +020032// Please note RemoveSample() won't affect min and max.
33// If you want a full-fledged moving window over N last samples,
34// please use webrtc::RollingAccumulator.
35//
Yves Gerey890f62b2019-04-10 17:18:48 +020036// The measures return absl::nullopt if no samples were fed (Size() == 0),
37// otherwise the returned optional is guaranteed to contain a value.
38//
39// [1]
40// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm
41
42// The type T is a scalar which must be convertible to double.
43// Rationale: we often need greater precision for measures
44// than for the samples themselves.
45template <typename T>
46class RunningStatistics {
47 public:
48 // Update stats ////////////////////////////////////////////
49
50 // Add a value participating in the statistics in O(1) time.
51 void AddSample(T sample) {
52 max_ = std::max(max_, sample);
53 min_ = std::min(min_, sample);
54 ++size_;
55 // Welford's incremental update.
56 const double delta = sample - mean_;
57 mean_ += delta / size_;
58 const double delta2 = sample - mean_;
59 cumul_ += delta * delta2;
60 }
61
Yves Gerey3dfb6802019-05-13 17:01:32 +020062 // Remove a previously added value in O(1) time.
63 // Nb: This doesn't affect min or max.
64 // Calling RemoveSample when Size()==0 is incorrect.
65 void RemoveSample(T sample) {
66 RTC_DCHECK_GT(Size(), 0);
67 // In production, just saturate at 0.
68 if (Size() == 0) {
69 return;
70 }
71 // Since samples order doesn't matter, this is the
72 // exact reciprocal of Welford's incremental update.
73 --size_;
74 const double delta = sample - mean_;
75 mean_ -= delta / size_;
76 const double delta2 = sample - mean_;
77 cumul_ -= delta * delta2;
78 }
79
Yves Gerey890f62b2019-04-10 17:18:48 +020080 // Merge other stats, as if samples were added one by one, but in O(1).
81 void MergeStatistics(const RunningStatistics<T>& other) {
82 if (other.size_ == 0) {
83 return;
84 }
85 max_ = std::max(max_, other.max_);
86 min_ = std::min(min_, other.min_);
87 const int64_t new_size = size_ + other.size_;
88 const double new_mean =
89 (mean_ * size_ + other.mean_ * other.size_) / new_size;
90 // Each cumulant must be corrected.
91 // * from: sum((x_i - mean_)²)
92 // * to: sum((x_i - new_mean)²)
93 auto delta = [new_mean](const RunningStatistics<T>& stats) {
94 return stats.size_ * (new_mean * (new_mean - 2 * stats.mean_) +
95 stats.mean_ * stats.mean_);
96 };
97 cumul_ = cumul_ + delta(*this) + other.cumul_ + delta(other);
98 mean_ = new_mean;
99 size_ = new_size;
100 }
101
102 // Get Measures ////////////////////////////////////////////
103
Yves Gerey3dfb6802019-05-13 17:01:32 +0200104 // Returns number of samples involved via AddSample() or MergeStatistics(),
105 // minus number of times RemoveSample() was called.
Yves Gerey890f62b2019-04-10 17:18:48 +0200106 int64_t Size() const { return size_; }
107
Yves Gerey3dfb6802019-05-13 17:01:32 +0200108 // Returns minimum among all seen samples, in O(1) time.
109 // This isn't affected by RemoveSample().
Yves Gerey890f62b2019-04-10 17:18:48 +0200110 absl::optional<T> GetMin() const {
111 if (size_ == 0) {
112 return absl::nullopt;
113 }
114 return min_;
115 }
116
Yves Gerey3dfb6802019-05-13 17:01:32 +0200117 // Returns maximum among all seen samples, in O(1) time.
118 // This isn't affected by RemoveSample().
Yves Gerey890f62b2019-04-10 17:18:48 +0200119 absl::optional<T> GetMax() const {
120 if (size_ == 0) {
121 return absl::nullopt;
122 }
123 return max_;
124 }
125
126 // Returns mean in O(1) time.
127 absl::optional<double> GetMean() const {
128 if (size_ == 0) {
129 return absl::nullopt;
130 }
131 return mean_;
132 }
133
134 // Returns unbiased sample variance in O(1) time.
135 absl::optional<double> GetVariance() const {
136 if (size_ == 0) {
137 return absl::nullopt;
138 }
139 return cumul_ / size_;
140 }
141
142 // Returns unbiased standard deviation in O(1) time.
143 absl::optional<double> GetStandardDeviation() const {
144 if (size_ == 0) {
145 return absl::nullopt;
146 }
147 return std::sqrt(*GetVariance());
148 }
149
150 private:
151 int64_t size_ = 0; // Samples seen.
152 T min_ = infinity_or_max<T>();
153 T max_ = minus_infinity_or_min<T>();
154 double mean_ = 0;
155 double cumul_ = 0; // Variance * size_, sometimes noted m2.
156};
157
Artem Titov9d777622020-09-18 18:23:08 +0200158} // namespace webrtc_impl
Yves Gerey890f62b2019-04-10 17:18:48 +0200159} // namespace webrtc
160
Artem Titov9d777622020-09-18 18:23:08 +0200161#endif // API_NUMERICS_RUNNING_STATISTICS_H_