Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
Artem Titov | 9d77762 | 2020-09-18 18:23:08 +0200 | [diff] [blame] | 11 | #ifndef API_NUMERICS_RUNNING_STATISTICS_H_ |
| 12 | #define API_NUMERICS_RUNNING_STATISTICS_H_ |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 13 | |
| 14 | #include <algorithm> |
| 15 | #include <cmath> |
| 16 | #include <limits> |
| 17 | |
| 18 | #include "absl/types/optional.h" |
Yves Gerey | 3dfb680 | 2019-05-13 17:01:32 +0200 | [diff] [blame] | 19 | #include "rtc_base/checks.h" |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 20 | #include "rtc_base/numerics/math_utils.h" |
| 21 | |
| 22 | namespace webrtc { |
Artem Titov | 9d77762 | 2020-09-18 18:23:08 +0200 | [diff] [blame] | 23 | namespace webrtc_impl { |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 24 | |
| 25 | // tl;dr: Robust and efficient online computation of statistics, |
| 26 | // using Welford's method for variance. [1] |
| 27 | // |
| 28 | // This should be your go-to class if you ever need to compute |
| 29 | // min, max, mean, variance and standard deviation. |
| 30 | // If you need to get percentiles, please use webrtc::SamplesStatsCounter. |
| 31 | // |
Yves Gerey | 3dfb680 | 2019-05-13 17:01:32 +0200 | [diff] [blame] | 32 | // Please note RemoveSample() won't affect min and max. |
| 33 | // If you want a full-fledged moving window over N last samples, |
| 34 | // please use webrtc::RollingAccumulator. |
| 35 | // |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 36 | // The measures return absl::nullopt if no samples were fed (Size() == 0), |
| 37 | // otherwise the returned optional is guaranteed to contain a value. |
| 38 | // |
| 39 | // [1] |
| 40 | // https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm |
| 41 | |
| 42 | // The type T is a scalar which must be convertible to double. |
| 43 | // Rationale: we often need greater precision for measures |
| 44 | // than for the samples themselves. |
| 45 | template <typename T> |
| 46 | class RunningStatistics { |
| 47 | public: |
| 48 | // Update stats //////////////////////////////////////////// |
| 49 | |
| 50 | // Add a value participating in the statistics in O(1) time. |
| 51 | void AddSample(T sample) { |
| 52 | max_ = std::max(max_, sample); |
| 53 | min_ = std::min(min_, sample); |
| 54 | ++size_; |
| 55 | // Welford's incremental update. |
| 56 | const double delta = sample - mean_; |
| 57 | mean_ += delta / size_; |
| 58 | const double delta2 = sample - mean_; |
| 59 | cumul_ += delta * delta2; |
| 60 | } |
| 61 | |
Yves Gerey | 3dfb680 | 2019-05-13 17:01:32 +0200 | [diff] [blame] | 62 | // Remove a previously added value in O(1) time. |
| 63 | // Nb: This doesn't affect min or max. |
| 64 | // Calling RemoveSample when Size()==0 is incorrect. |
| 65 | void RemoveSample(T sample) { |
| 66 | RTC_DCHECK_GT(Size(), 0); |
| 67 | // In production, just saturate at 0. |
| 68 | if (Size() == 0) { |
| 69 | return; |
| 70 | } |
| 71 | // Since samples order doesn't matter, this is the |
| 72 | // exact reciprocal of Welford's incremental update. |
| 73 | --size_; |
| 74 | const double delta = sample - mean_; |
| 75 | mean_ -= delta / size_; |
| 76 | const double delta2 = sample - mean_; |
| 77 | cumul_ -= delta * delta2; |
| 78 | } |
| 79 | |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 80 | // Merge other stats, as if samples were added one by one, but in O(1). |
| 81 | void MergeStatistics(const RunningStatistics<T>& other) { |
| 82 | if (other.size_ == 0) { |
| 83 | return; |
| 84 | } |
| 85 | max_ = std::max(max_, other.max_); |
| 86 | min_ = std::min(min_, other.min_); |
| 87 | const int64_t new_size = size_ + other.size_; |
| 88 | const double new_mean = |
| 89 | (mean_ * size_ + other.mean_ * other.size_) / new_size; |
| 90 | // Each cumulant must be corrected. |
| 91 | // * from: sum((x_i - mean_)²) |
| 92 | // * to: sum((x_i - new_mean)²) |
| 93 | auto delta = [new_mean](const RunningStatistics<T>& stats) { |
| 94 | return stats.size_ * (new_mean * (new_mean - 2 * stats.mean_) + |
| 95 | stats.mean_ * stats.mean_); |
| 96 | }; |
| 97 | cumul_ = cumul_ + delta(*this) + other.cumul_ + delta(other); |
| 98 | mean_ = new_mean; |
| 99 | size_ = new_size; |
| 100 | } |
| 101 | |
| 102 | // Get Measures //////////////////////////////////////////// |
| 103 | |
Yves Gerey | 3dfb680 | 2019-05-13 17:01:32 +0200 | [diff] [blame] | 104 | // Returns number of samples involved via AddSample() or MergeStatistics(), |
| 105 | // minus number of times RemoveSample() was called. |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 106 | int64_t Size() const { return size_; } |
| 107 | |
Yves Gerey | 3dfb680 | 2019-05-13 17:01:32 +0200 | [diff] [blame] | 108 | // Returns minimum among all seen samples, in O(1) time. |
| 109 | // This isn't affected by RemoveSample(). |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 110 | absl::optional<T> GetMin() const { |
| 111 | if (size_ == 0) { |
| 112 | return absl::nullopt; |
| 113 | } |
| 114 | return min_; |
| 115 | } |
| 116 | |
Yves Gerey | 3dfb680 | 2019-05-13 17:01:32 +0200 | [diff] [blame] | 117 | // Returns maximum among all seen samples, in O(1) time. |
| 118 | // This isn't affected by RemoveSample(). |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 119 | absl::optional<T> GetMax() const { |
| 120 | if (size_ == 0) { |
| 121 | return absl::nullopt; |
| 122 | } |
| 123 | return max_; |
| 124 | } |
| 125 | |
| 126 | // Returns mean in O(1) time. |
| 127 | absl::optional<double> GetMean() const { |
| 128 | if (size_ == 0) { |
| 129 | return absl::nullopt; |
| 130 | } |
| 131 | return mean_; |
| 132 | } |
| 133 | |
| 134 | // Returns unbiased sample variance in O(1) time. |
| 135 | absl::optional<double> GetVariance() const { |
| 136 | if (size_ == 0) { |
| 137 | return absl::nullopt; |
| 138 | } |
| 139 | return cumul_ / size_; |
| 140 | } |
| 141 | |
| 142 | // Returns unbiased standard deviation in O(1) time. |
| 143 | absl::optional<double> GetStandardDeviation() const { |
| 144 | if (size_ == 0) { |
| 145 | return absl::nullopt; |
| 146 | } |
| 147 | return std::sqrt(*GetVariance()); |
| 148 | } |
| 149 | |
| 150 | private: |
| 151 | int64_t size_ = 0; // Samples seen. |
| 152 | T min_ = infinity_or_max<T>(); |
| 153 | T max_ = minus_infinity_or_min<T>(); |
| 154 | double mean_ = 0; |
| 155 | double cumul_ = 0; // Variance * size_, sometimes noted m2. |
| 156 | }; |
| 157 | |
Artem Titov | 9d77762 | 2020-09-18 18:23:08 +0200 | [diff] [blame] | 158 | } // namespace webrtc_impl |
Yves Gerey | 890f62b | 2019-04-10 17:18:48 +0200 | [diff] [blame] | 159 | } // namespace webrtc |
| 160 | |
Artem Titov | 9d77762 | 2020-09-18 18:23:08 +0200 | [diff] [blame] | 161 | #endif // API_NUMERICS_RUNNING_STATISTICS_H_ |