blob: c321f83e8098df46d2249952e7ea62d7e4b0d474 [file] [log] [blame]
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001/*
2 * Copyright 2004 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include "webrtc/p2p/base/port.h"
12
13#include <algorithm>
14#include <vector>
15
16#include "webrtc/p2p/base/common.h"
17#include "webrtc/p2p/base/portallocator.h"
18#include "webrtc/base/base64.h"
19#include "webrtc/base/crc32.h"
20#include "webrtc/base/helpers.h"
21#include "webrtc/base/logging.h"
22#include "webrtc/base/messagedigest.h"
23#include "webrtc/base/scoped_ptr.h"
24#include "webrtc/base/stringencode.h"
25#include "webrtc/base/stringutils.h"
26
27namespace {
28
29// Determines whether we have seen at least the given maximum number of
30// pings fail to have a response.
31inline bool TooManyFailures(
32 const std::vector<uint32>& pings_since_last_response,
33 uint32 maximum_failures,
34 uint32 rtt_estimate,
35 uint32 now) {
36
37 // If we haven't sent that many pings, then we can't have failed that many.
38 if (pings_since_last_response.size() < maximum_failures)
39 return false;
40
41 // Check if the window in which we would expect a response to the ping has
42 // already elapsed.
43 return pings_since_last_response[maximum_failures - 1] + rtt_estimate < now;
44}
45
46// Determines whether we have gone too long without seeing any response.
47inline bool TooLongWithoutResponse(
48 const std::vector<uint32>& pings_since_last_response,
49 uint32 maximum_time,
50 uint32 now) {
51
52 if (pings_since_last_response.size() == 0)
53 return false;
54
55 return pings_since_last_response[0] + maximum_time < now;
56}
57
58// GICE(ICEPROTO_GOOGLE) requires different username for RTP and RTCP.
59// This function generates a different username by +1 on the last character of
60// the given username (|rtp_ufrag|).
61std::string GetRtcpUfragFromRtpUfrag(const std::string& rtp_ufrag) {
62 ASSERT(!rtp_ufrag.empty());
63 if (rtp_ufrag.empty()) {
64 return rtp_ufrag;
65 }
66 // Change the last character to the one next to it in the base64 table.
67 char new_last_char;
68 if (!rtc::Base64::GetNextBase64Char(rtp_ufrag[rtp_ufrag.size() - 1],
69 &new_last_char)) {
70 // Should not be here.
71 ASSERT(false);
72 }
73 std::string rtcp_ufrag = rtp_ufrag;
74 rtcp_ufrag[rtcp_ufrag.size() - 1] = new_last_char;
75 ASSERT(rtcp_ufrag != rtp_ufrag);
76 return rtcp_ufrag;
77}
78
79// We will restrict RTT estimates (when used for determining state) to be
80// within a reasonable range.
81const uint32 MINIMUM_RTT = 100; // 0.1 seconds
82const uint32 MAXIMUM_RTT = 3000; // 3 seconds
83
84// When we don't have any RTT data, we have to pick something reasonable. We
85// use a large value just in case the connection is really slow.
86const uint32 DEFAULT_RTT = MAXIMUM_RTT;
87
88// Computes our estimate of the RTT given the current estimate.
89inline uint32 ConservativeRTTEstimate(uint32 rtt) {
andresp@webrtc.orgff689be2015-02-12 11:54:26 +000090 return std::max(MINIMUM_RTT, std::min(MAXIMUM_RTT, 2 * rtt));
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +000091}
92
93// Weighting of the old rtt value to new data.
94const int RTT_RATIO = 3; // 3 : 1
95
96// The delay before we begin checking if this port is useless.
97const int kPortTimeoutDelay = 30 * 1000; // 30 seconds
98
99// Used by the Connection.
100const uint32 MSG_DELETE = 1;
101}
102
103namespace cricket {
104
105// TODO(ronghuawu): Use "host", "srflx", "prflx" and "relay". But this requires
106// the signaling part be updated correspondingly as well.
107const char LOCAL_PORT_TYPE[] = "local";
108const char STUN_PORT_TYPE[] = "stun";
109const char PRFLX_PORT_TYPE[] = "prflx";
110const char RELAY_PORT_TYPE[] = "relay";
111
112const char UDP_PROTOCOL_NAME[] = "udp";
113const char TCP_PROTOCOL_NAME[] = "tcp";
114const char SSLTCP_PROTOCOL_NAME[] = "ssltcp";
115
116static const char* const PROTO_NAMES[] = { UDP_PROTOCOL_NAME,
117 TCP_PROTOCOL_NAME,
118 SSLTCP_PROTOCOL_NAME };
119
120const char* ProtoToString(ProtocolType proto) {
121 return PROTO_NAMES[proto];
122}
123
124bool StringToProto(const char* value, ProtocolType* proto) {
125 for (size_t i = 0; i <= PROTO_LAST; ++i) {
126 if (_stricmp(PROTO_NAMES[i], value) == 0) {
127 *proto = static_cast<ProtocolType>(i);
128 return true;
129 }
130 }
131 return false;
132}
133
134// RFC 6544, TCP candidate encoding rules.
135const int DISCARD_PORT = 9;
136const char TCPTYPE_ACTIVE_STR[] = "active";
137const char TCPTYPE_PASSIVE_STR[] = "passive";
138const char TCPTYPE_SIMOPEN_STR[] = "so";
139
140// Foundation: An arbitrary string that is the same for two candidates
141// that have the same type, base IP address, protocol (UDP, TCP,
142// etc.), and STUN or TURN server. If any of these are different,
143// then the foundation will be different. Two candidate pairs with
144// the same foundation pairs are likely to have similar network
145// characteristics. Foundations are used in the frozen algorithm.
146static std::string ComputeFoundation(
147 const std::string& type,
148 const std::string& protocol,
149 const rtc::SocketAddress& base_address) {
150 std::ostringstream ost;
151 ost << type << base_address.ipaddr().ToString() << protocol;
152 return rtc::ToString<uint32>(rtc::ComputeCrc32(ost.str()));
153}
154
pkasting@chromium.org332331f2014-11-06 20:19:22 +0000155Port::Port(rtc::Thread* thread,
156 rtc::PacketSocketFactory* factory,
157 rtc::Network* network,
158 const rtc::IPAddress& ip,
159 const std::string& username_fragment,
160 const std::string& password)
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000161 : thread_(thread),
162 factory_(factory),
163 send_retransmit_count_attribute_(false),
164 network_(network),
165 ip_(ip),
166 min_port_(0),
167 max_port_(0),
168 component_(ICE_CANDIDATE_COMPONENT_DEFAULT),
169 generation_(0),
170 ice_username_fragment_(username_fragment),
171 password_(password),
172 timeout_delay_(kPortTimeoutDelay),
173 enable_port_packets_(false),
174 ice_protocol_(ICEPROTO_HYBRID),
175 ice_role_(ICEROLE_UNKNOWN),
176 tiebreaker_(0),
177 shared_socket_(true),
178 candidate_filter_(CF_ALL) {
179 Construct();
180}
181
pkasting@chromium.org332331f2014-11-06 20:19:22 +0000182Port::Port(rtc::Thread* thread,
183 const std::string& type,
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000184 rtc::PacketSocketFactory* factory,
pkasting@chromium.org332331f2014-11-06 20:19:22 +0000185 rtc::Network* network,
186 const rtc::IPAddress& ip,
187 uint16 min_port,
188 uint16 max_port,
189 const std::string& username_fragment,
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000190 const std::string& password)
191 : thread_(thread),
192 factory_(factory),
193 type_(type),
194 send_retransmit_count_attribute_(false),
195 network_(network),
196 ip_(ip),
197 min_port_(min_port),
198 max_port_(max_port),
199 component_(ICE_CANDIDATE_COMPONENT_DEFAULT),
200 generation_(0),
201 ice_username_fragment_(username_fragment),
202 password_(password),
203 timeout_delay_(kPortTimeoutDelay),
204 enable_port_packets_(false),
205 ice_protocol_(ICEPROTO_HYBRID),
206 ice_role_(ICEROLE_UNKNOWN),
207 tiebreaker_(0),
208 shared_socket_(false),
209 candidate_filter_(CF_ALL) {
210 ASSERT(factory_ != NULL);
211 Construct();
212}
213
214void Port::Construct() {
215 // If the username_fragment and password are empty, we should just create one.
216 if (ice_username_fragment_.empty()) {
217 ASSERT(password_.empty());
218 ice_username_fragment_ = rtc::CreateRandomString(ICE_UFRAG_LENGTH);
219 password_ = rtc::CreateRandomString(ICE_PWD_LENGTH);
220 }
221 LOG_J(LS_INFO, this) << "Port created";
222}
223
224Port::~Port() {
225 // Delete all of the remaining connections. We copy the list up front
226 // because each deletion will cause it to be modified.
227
228 std::vector<Connection*> list;
229
230 AddressMap::iterator iter = connections_.begin();
231 while (iter != connections_.end()) {
232 list.push_back(iter->second);
233 ++iter;
234 }
235
236 for (uint32 i = 0; i < list.size(); i++)
237 delete list[i];
238}
239
240Connection* Port::GetConnection(const rtc::SocketAddress& remote_addr) {
241 AddressMap::const_iterator iter = connections_.find(remote_addr);
242 if (iter != connections_.end())
243 return iter->second;
244 else
245 return NULL;
246}
247
248void Port::AddAddress(const rtc::SocketAddress& address,
249 const rtc::SocketAddress& base_address,
250 const rtc::SocketAddress& related_address,
251 const std::string& protocol,
252 const std::string& tcptype,
253 const std::string& type,
254 uint32 type_preference,
255 uint32 relay_preference,
256 bool final) {
257 if (protocol == TCP_PROTOCOL_NAME && type == LOCAL_PORT_TYPE) {
258 ASSERT(!tcptype.empty());
259 }
260
261 Candidate c;
262 c.set_id(rtc::CreateRandomString(8));
263 c.set_component(component_);
264 c.set_type(type);
265 c.set_protocol(protocol);
266 c.set_tcptype(tcptype);
267 c.set_address(address);
268 c.set_priority(c.GetPriority(type_preference, network_->preference(),
269 relay_preference));
270 c.set_username(username_fragment());
271 c.set_password(password_);
272 c.set_network_name(network_->name());
guoweis@webrtc.org950c5182014-12-16 23:01:31 +0000273 c.set_network_type(network_->type());
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000274 c.set_generation(generation_);
275 c.set_related_address(related_address);
276 c.set_foundation(ComputeFoundation(type, protocol, base_address));
277 candidates_.push_back(c);
278 SignalCandidateReady(this, c);
279
280 if (final) {
281 SignalPortComplete(this);
282 }
283}
284
285void Port::AddConnection(Connection* conn) {
286 connections_[conn->remote_candidate().address()] = conn;
287 conn->SignalDestroyed.connect(this, &Port::OnConnectionDestroyed);
288 SignalConnectionCreated(this, conn);
289}
290
291void Port::OnReadPacket(
292 const char* data, size_t size, const rtc::SocketAddress& addr,
293 ProtocolType proto) {
294 // If the user has enabled port packets, just hand this over.
295 if (enable_port_packets_) {
296 SignalReadPacket(this, data, size, addr);
297 return;
298 }
299
300 // If this is an authenticated STUN request, then signal unknown address and
301 // send back a proper binding response.
302 rtc::scoped_ptr<IceMessage> msg;
303 std::string remote_username;
304 if (!GetStunMessage(data, size, addr, msg.accept(), &remote_username)) {
305 LOG_J(LS_ERROR, this) << "Received non-STUN packet from unknown address ("
306 << addr.ToSensitiveString() << ")";
307 } else if (!msg) {
308 // STUN message handled already
309 } else if (msg->type() == STUN_BINDING_REQUEST) {
310 // Check for role conflicts.
311 if (IsStandardIce() &&
312 !MaybeIceRoleConflict(addr, msg.get(), remote_username)) {
313 LOG(LS_INFO) << "Received conflicting role from the peer.";
314 return;
315 }
316
317 SignalUnknownAddress(this, addr, proto, msg.get(), remote_username, false);
318 } else {
319 // NOTE(tschmelcher): STUN_BINDING_RESPONSE is benign. It occurs if we
320 // pruned a connection for this port while it had STUN requests in flight,
321 // because we then get back responses for them, which this code correctly
322 // does not handle.
323 if (msg->type() != STUN_BINDING_RESPONSE) {
324 LOG_J(LS_ERROR, this) << "Received unexpected STUN message type ("
325 << msg->type() << ") from unknown address ("
326 << addr.ToSensitiveString() << ")";
327 }
328 }
329}
330
331void Port::OnReadyToSend() {
332 AddressMap::iterator iter = connections_.begin();
333 for (; iter != connections_.end(); ++iter) {
334 iter->second->OnReadyToSend();
335 }
336}
337
338size_t Port::AddPrflxCandidate(const Candidate& local) {
339 candidates_.push_back(local);
340 return (candidates_.size() - 1);
341}
342
343bool Port::IsStandardIce() const {
344 return (ice_protocol_ == ICEPROTO_RFC5245);
345}
346
347bool Port::IsGoogleIce() const {
348 return (ice_protocol_ == ICEPROTO_GOOGLE);
349}
350
351bool Port::IsHybridIce() const {
352 return (ice_protocol_ == ICEPROTO_HYBRID);
353}
354
355bool Port::GetStunMessage(const char* data, size_t size,
356 const rtc::SocketAddress& addr,
357 IceMessage** out_msg, std::string* out_username) {
358 // NOTE: This could clearly be optimized to avoid allocating any memory.
359 // However, at the data rates we'll be looking at on the client side,
360 // this probably isn't worth worrying about.
361 ASSERT(out_msg != NULL);
362 ASSERT(out_username != NULL);
363 *out_msg = NULL;
364 out_username->clear();
365
366 // Don't bother parsing the packet if we can tell it's not STUN.
367 // In ICE mode, all STUN packets will have a valid fingerprint.
368 if (IsStandardIce() && !StunMessage::ValidateFingerprint(data, size)) {
369 return false;
370 }
371
372 // Parse the request message. If the packet is not a complete and correct
373 // STUN message, then ignore it.
374 rtc::scoped_ptr<IceMessage> stun_msg(new IceMessage());
375 rtc::ByteBuffer buf(data, size);
376 if (!stun_msg->Read(&buf) || (buf.Length() > 0)) {
377 return false;
378 }
379
380 if (stun_msg->type() == STUN_BINDING_REQUEST) {
381 // Check for the presence of USERNAME and MESSAGE-INTEGRITY (if ICE) first.
382 // If not present, fail with a 400 Bad Request.
383 if (!stun_msg->GetByteString(STUN_ATTR_USERNAME) ||
384 (IsStandardIce() &&
385 !stun_msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY))) {
386 LOG_J(LS_ERROR, this) << "Received STUN request without username/M-I "
387 << "from " << addr.ToSensitiveString();
388 SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_BAD_REQUEST,
389 STUN_ERROR_REASON_BAD_REQUEST);
390 return true;
391 }
392
393 // If the username is bad or unknown, fail with a 401 Unauthorized.
394 std::string local_ufrag;
395 std::string remote_ufrag;
396 IceProtocolType remote_protocol_type;
397 if (!ParseStunUsername(stun_msg.get(), &local_ufrag, &remote_ufrag,
398 &remote_protocol_type) ||
399 local_ufrag != username_fragment()) {
400 LOG_J(LS_ERROR, this) << "Received STUN request with bad local username "
401 << local_ufrag << " from "
402 << addr.ToSensitiveString();
403 SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED,
404 STUN_ERROR_REASON_UNAUTHORIZED);
405 return true;
406 }
407
408 // Port is initialized to GOOGLE-ICE protocol type. If pings from remote
409 // are received before the signal message, protocol type may be different.
410 // Based on the STUN username, we can determine what's the remote protocol.
411 // This also enables us to send the response back using the same protocol
412 // as the request.
413 if (IsHybridIce()) {
414 SetIceProtocolType(remote_protocol_type);
415 }
416
417 // If ICE, and the MESSAGE-INTEGRITY is bad, fail with a 401 Unauthorized
418 if (IsStandardIce() &&
419 !stun_msg->ValidateMessageIntegrity(data, size, password_)) {
420 LOG_J(LS_ERROR, this) << "Received STUN request with bad M-I "
jiayl@webrtc.orgdacdd942015-01-23 17:33:34 +0000421 << "from " << addr.ToSensitiveString()
422 << ", password_=" << password_;
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000423 SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED,
424 STUN_ERROR_REASON_UNAUTHORIZED);
425 return true;
426 }
427 out_username->assign(remote_ufrag);
428 } else if ((stun_msg->type() == STUN_BINDING_RESPONSE) ||
429 (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE)) {
430 if (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE) {
431 if (const StunErrorCodeAttribute* error_code = stun_msg->GetErrorCode()) {
432 LOG_J(LS_ERROR, this) << "Received STUN binding error:"
433 << " class=" << error_code->eclass()
434 << " number=" << error_code->number()
435 << " reason='" << error_code->reason() << "'"
436 << " from " << addr.ToSensitiveString();
437 // Return message to allow error-specific processing
438 } else {
439 LOG_J(LS_ERROR, this) << "Received STUN binding error without a error "
440 << "code from " << addr.ToSensitiveString();
441 return true;
442 }
443 }
444 // NOTE: Username should not be used in verifying response messages.
445 out_username->clear();
446 } else if (stun_msg->type() == STUN_BINDING_INDICATION) {
447 LOG_J(LS_VERBOSE, this) << "Received STUN binding indication:"
448 << " from " << addr.ToSensitiveString();
449 out_username->clear();
450 // No stun attributes will be verified, if it's stun indication message.
451 // Returning from end of the this method.
452 } else {
453 LOG_J(LS_ERROR, this) << "Received STUN packet with invalid type ("
454 << stun_msg->type() << ") from "
455 << addr.ToSensitiveString();
456 return true;
457 }
458
459 // Return the STUN message found.
460 *out_msg = stun_msg.release();
461 return true;
462}
463
464bool Port::IsCompatibleAddress(const rtc::SocketAddress& addr) {
465 int family = ip().family();
466 // We use single-stack sockets, so families must match.
467 if (addr.family() != family) {
468 return false;
469 }
470 // Link-local IPv6 ports can only connect to other link-local IPv6 ports.
471 if (family == AF_INET6 && (IPIsPrivate(ip()) != IPIsPrivate(addr.ipaddr()))) {
472 return false;
473 }
474 return true;
475}
476
477bool Port::ParseStunUsername(const StunMessage* stun_msg,
478 std::string* local_ufrag,
479 std::string* remote_ufrag,
480 IceProtocolType* remote_protocol_type) const {
481 // The packet must include a username that either begins or ends with our
482 // fragment. It should begin with our fragment if it is a request and it
483 // should end with our fragment if it is a response.
484 local_ufrag->clear();
485 remote_ufrag->clear();
486 const StunByteStringAttribute* username_attr =
487 stun_msg->GetByteString(STUN_ATTR_USERNAME);
488 if (username_attr == NULL)
489 return false;
490
491 const std::string username_attr_str = username_attr->GetString();
492 size_t colon_pos = username_attr_str.find(":");
493 // If we are in hybrid mode set the appropriate ice protocol type based on
494 // the username argument style.
495 if (IsHybridIce()) {
496 *remote_protocol_type = (colon_pos != std::string::npos) ?
497 ICEPROTO_RFC5245 : ICEPROTO_GOOGLE;
498 } else {
499 *remote_protocol_type = ice_protocol_;
500 }
501 if (*remote_protocol_type == ICEPROTO_RFC5245) {
502 if (colon_pos != std::string::npos) { // RFRAG:LFRAG
503 *local_ufrag = username_attr_str.substr(0, colon_pos);
504 *remote_ufrag = username_attr_str.substr(
505 colon_pos + 1, username_attr_str.size());
506 } else {
507 return false;
508 }
509 } else if (*remote_protocol_type == ICEPROTO_GOOGLE) {
510 int remote_frag_len = static_cast<int>(username_attr_str.size());
511 remote_frag_len -= static_cast<int>(username_fragment().size());
512 if (remote_frag_len < 0)
513 return false;
514
515 *local_ufrag = username_attr_str.substr(0, username_fragment().size());
516 *remote_ufrag = username_attr_str.substr(
517 username_fragment().size(), username_attr_str.size());
518 }
519 return true;
520}
521
522bool Port::MaybeIceRoleConflict(
523 const rtc::SocketAddress& addr, IceMessage* stun_msg,
524 const std::string& remote_ufrag) {
525 // Validate ICE_CONTROLLING or ICE_CONTROLLED attributes.
526 bool ret = true;
527 IceRole remote_ice_role = ICEROLE_UNKNOWN;
528 uint64 remote_tiebreaker = 0;
529 const StunUInt64Attribute* stun_attr =
530 stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
531 if (stun_attr) {
532 remote_ice_role = ICEROLE_CONTROLLING;
533 remote_tiebreaker = stun_attr->value();
534 }
535
536 // If |remote_ufrag| is same as port local username fragment and
537 // tie breaker value received in the ping message matches port
538 // tiebreaker value this must be a loopback call.
539 // We will treat this as valid scenario.
540 if (remote_ice_role == ICEROLE_CONTROLLING &&
541 username_fragment() == remote_ufrag &&
542 remote_tiebreaker == IceTiebreaker()) {
543 return true;
544 }
545
546 stun_attr = stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED);
547 if (stun_attr) {
548 remote_ice_role = ICEROLE_CONTROLLED;
549 remote_tiebreaker = stun_attr->value();
550 }
551
552 switch (ice_role_) {
553 case ICEROLE_CONTROLLING:
554 if (ICEROLE_CONTROLLING == remote_ice_role) {
555 if (remote_tiebreaker >= tiebreaker_) {
556 SignalRoleConflict(this);
557 } else {
558 // Send Role Conflict (487) error response.
559 SendBindingErrorResponse(stun_msg, addr,
560 STUN_ERROR_ROLE_CONFLICT, STUN_ERROR_REASON_ROLE_CONFLICT);
561 ret = false;
562 }
563 }
564 break;
565 case ICEROLE_CONTROLLED:
566 if (ICEROLE_CONTROLLED == remote_ice_role) {
567 if (remote_tiebreaker < tiebreaker_) {
568 SignalRoleConflict(this);
569 } else {
570 // Send Role Conflict (487) error response.
571 SendBindingErrorResponse(stun_msg, addr,
572 STUN_ERROR_ROLE_CONFLICT, STUN_ERROR_REASON_ROLE_CONFLICT);
573 ret = false;
574 }
575 }
576 break;
577 default:
578 ASSERT(false);
579 }
580 return ret;
581}
582
583void Port::CreateStunUsername(const std::string& remote_username,
584 std::string* stun_username_attr_str) const {
585 stun_username_attr_str->clear();
586 *stun_username_attr_str = remote_username;
587 if (IsStandardIce()) {
588 // Connectivity checks from L->R will have username RFRAG:LFRAG.
589 stun_username_attr_str->append(":");
590 }
591 stun_username_attr_str->append(username_fragment());
592}
593
594void Port::SendBindingResponse(StunMessage* request,
595 const rtc::SocketAddress& addr) {
596 ASSERT(request->type() == STUN_BINDING_REQUEST);
597
598 // Retrieve the username from the request.
599 const StunByteStringAttribute* username_attr =
600 request->GetByteString(STUN_ATTR_USERNAME);
601 ASSERT(username_attr != NULL);
602 if (username_attr == NULL) {
603 // No valid username, skip the response.
604 return;
605 }
606
607 // Fill in the response message.
608 StunMessage response;
609 response.SetType(STUN_BINDING_RESPONSE);
610 response.SetTransactionID(request->transaction_id());
611 const StunUInt32Attribute* retransmit_attr =
612 request->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
613 if (retransmit_attr) {
614 // Inherit the incoming retransmit value in the response so the other side
615 // can see our view of lost pings.
616 response.AddAttribute(new StunUInt32Attribute(
617 STUN_ATTR_RETRANSMIT_COUNT, retransmit_attr->value()));
618
619 if (retransmit_attr->value() > CONNECTION_WRITE_CONNECT_FAILURES) {
620 LOG_J(LS_INFO, this)
621 << "Received a remote ping with high retransmit count: "
622 << retransmit_attr->value();
623 }
624 }
625
626 // Only GICE messages have USERNAME and MAPPED-ADDRESS in the response.
627 // ICE messages use XOR-MAPPED-ADDRESS, and add MESSAGE-INTEGRITY.
628 if (IsStandardIce()) {
629 response.AddAttribute(
630 new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, addr));
631 response.AddMessageIntegrity(password_);
632 response.AddFingerprint();
633 } else if (IsGoogleIce()) {
634 response.AddAttribute(
635 new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, addr));
636 response.AddAttribute(new StunByteStringAttribute(
637 STUN_ATTR_USERNAME, username_attr->GetString()));
638 }
639
640 // Send the response message.
641 rtc::ByteBuffer buf;
642 response.Write(&buf);
643 rtc::PacketOptions options(DefaultDscpValue());
644 if (SendTo(buf.Data(), buf.Length(), addr, options, false) < 0) {
645 LOG_J(LS_ERROR, this) << "Failed to send STUN ping response to "
646 << addr.ToSensitiveString();
647 }
648
649 // The fact that we received a successful request means that this connection
650 // (if one exists) should now be readable.
651 Connection* conn = GetConnection(addr);
652 ASSERT(conn != NULL);
653 if (conn)
654 conn->ReceivedPing();
655}
656
657void Port::SendBindingErrorResponse(StunMessage* request,
658 const rtc::SocketAddress& addr,
659 int error_code, const std::string& reason) {
660 ASSERT(request->type() == STUN_BINDING_REQUEST);
661
662 // Fill in the response message.
663 StunMessage response;
664 response.SetType(STUN_BINDING_ERROR_RESPONSE);
665 response.SetTransactionID(request->transaction_id());
666
667 // When doing GICE, we need to write out the error code incorrectly to
668 // maintain backwards compatiblility.
669 StunErrorCodeAttribute* error_attr = StunAttribute::CreateErrorCode();
670 if (IsStandardIce()) {
671 error_attr->SetCode(error_code);
672 } else if (IsGoogleIce()) {
673 error_attr->SetClass(error_code / 256);
674 error_attr->SetNumber(error_code % 256);
675 }
676 error_attr->SetReason(reason);
677 response.AddAttribute(error_attr);
678
679 if (IsStandardIce()) {
680 // Per Section 10.1.2, certain error cases don't get a MESSAGE-INTEGRITY,
681 // because we don't have enough information to determine the shared secret.
682 if (error_code != STUN_ERROR_BAD_REQUEST &&
683 error_code != STUN_ERROR_UNAUTHORIZED)
684 response.AddMessageIntegrity(password_);
685 response.AddFingerprint();
686 } else if (IsGoogleIce()) {
687 // GICE responses include a username, if one exists.
688 const StunByteStringAttribute* username_attr =
689 request->GetByteString(STUN_ATTR_USERNAME);
690 if (username_attr)
691 response.AddAttribute(new StunByteStringAttribute(
692 STUN_ATTR_USERNAME, username_attr->GetString()));
693 }
694
695 // Send the response message.
696 rtc::ByteBuffer buf;
697 response.Write(&buf);
698 rtc::PacketOptions options(DefaultDscpValue());
699 SendTo(buf.Data(), buf.Length(), addr, options, false);
700 LOG_J(LS_INFO, this) << "Sending STUN binding error: reason=" << reason
701 << " to " << addr.ToSensitiveString();
702}
703
704void Port::OnMessage(rtc::Message *pmsg) {
705 ASSERT(pmsg->message_id == MSG_CHECKTIMEOUT);
706 CheckTimeout();
707}
708
709std::string Port::ToString() const {
710 std::stringstream ss;
711 ss << "Port[" << content_name_ << ":" << component_
712 << ":" << generation_ << ":" << type_
713 << ":" << network_->ToString() << "]";
714 return ss.str();
715}
716
717void Port::EnablePortPackets() {
718 enable_port_packets_ = true;
719}
720
721void Port::OnConnectionDestroyed(Connection* conn) {
722 AddressMap::iterator iter =
723 connections_.find(conn->remote_candidate().address());
724 ASSERT(iter != connections_.end());
725 connections_.erase(iter);
726
727 // On the controlled side, ports time out, but only after all connections
728 // fail. Note: If a new connection is added after this message is posted,
729 // but it fails and is removed before kPortTimeoutDelay, then this message
730 // will still cause the Port to be destroyed.
731 if (ice_role_ == ICEROLE_CONTROLLED)
732 thread_->PostDelayed(timeout_delay_, this, MSG_CHECKTIMEOUT);
733}
734
735void Port::Destroy() {
736 ASSERT(connections_.empty());
737 LOG_J(LS_INFO, this) << "Port deleted";
738 SignalDestroyed(this);
739 delete this;
740}
741
742void Port::CheckTimeout() {
743 ASSERT(ice_role_ == ICEROLE_CONTROLLED);
744 // If this port has no connections, then there's no reason to keep it around.
745 // When the connections time out (both read and write), they will delete
746 // themselves, so if we have any connections, they are either readable or
747 // writable (or still connecting).
748 if (connections_.empty())
749 Destroy();
750}
751
752const std::string Port::username_fragment() const {
753 if (!IsStandardIce() &&
754 component_ == ICE_CANDIDATE_COMPONENT_RTCP) {
755 // In GICE mode, we should adjust username fragment for rtcp component.
756 return GetRtcpUfragFromRtpUfrag(ice_username_fragment_);
757 } else {
758 return ice_username_fragment_;
759 }
760}
761
762// A ConnectionRequest is a simple STUN ping used to determine writability.
763class ConnectionRequest : public StunRequest {
764 public:
765 explicit ConnectionRequest(Connection* connection)
766 : StunRequest(new IceMessage()),
767 connection_(connection) {
768 }
769
770 virtual ~ConnectionRequest() {
771 }
772
773 virtual void Prepare(StunMessage* request) {
774 request->SetType(STUN_BINDING_REQUEST);
775 std::string username;
776 connection_->port()->CreateStunUsername(
777 connection_->remote_candidate().username(), &username);
778 request->AddAttribute(
779 new StunByteStringAttribute(STUN_ATTR_USERNAME, username));
780
781 // connection_ already holds this ping, so subtract one from count.
782 if (connection_->port()->send_retransmit_count_attribute()) {
783 request->AddAttribute(new StunUInt32Attribute(
784 STUN_ATTR_RETRANSMIT_COUNT,
785 static_cast<uint32>(
786 connection_->pings_since_last_response_.size() - 1)));
787 }
788
789 // Adding ICE-specific attributes to the STUN request message.
790 if (connection_->port()->IsStandardIce()) {
791 // Adding ICE_CONTROLLED or ICE_CONTROLLING attribute based on the role.
792 if (connection_->port()->GetIceRole() == ICEROLE_CONTROLLING) {
793 request->AddAttribute(new StunUInt64Attribute(
794 STUN_ATTR_ICE_CONTROLLING, connection_->port()->IceTiebreaker()));
795 // Since we are trying aggressive nomination, sending USE-CANDIDATE
796 // attribute in every ping.
797 // If we are dealing with a ice-lite end point, nomination flag
798 // in Connection will be set to false by default. Once the connection
799 // becomes "best connection", nomination flag will be turned on.
800 if (connection_->use_candidate_attr()) {
801 request->AddAttribute(new StunByteStringAttribute(
802 STUN_ATTR_USE_CANDIDATE));
803 }
804 } else if (connection_->port()->GetIceRole() == ICEROLE_CONTROLLED) {
805 request->AddAttribute(new StunUInt64Attribute(
806 STUN_ATTR_ICE_CONTROLLED, connection_->port()->IceTiebreaker()));
807 } else {
808 ASSERT(false);
809 }
810
811 // Adding PRIORITY Attribute.
812 // Changing the type preference to Peer Reflexive and local preference
813 // and component id information is unchanged from the original priority.
814 // priority = (2^24)*(type preference) +
815 // (2^8)*(local preference) +
816 // (2^0)*(256 - component ID)
817 uint32 prflx_priority = ICE_TYPE_PREFERENCE_PRFLX << 24 |
818 (connection_->local_candidate().priority() & 0x00FFFFFF);
819 request->AddAttribute(
820 new StunUInt32Attribute(STUN_ATTR_PRIORITY, prflx_priority));
821
822 // Adding Message Integrity attribute.
823 request->AddMessageIntegrity(connection_->remote_candidate().password());
824 // Adding Fingerprint.
825 request->AddFingerprint();
826 }
827 }
828
829 virtual void OnResponse(StunMessage* response) {
830 connection_->OnConnectionRequestResponse(this, response);
831 }
832
833 virtual void OnErrorResponse(StunMessage* response) {
834 connection_->OnConnectionRequestErrorResponse(this, response);
835 }
836
837 virtual void OnTimeout() {
838 connection_->OnConnectionRequestTimeout(this);
839 }
840
841 virtual int GetNextDelay() {
842 // Each request is sent only once. After a single delay , the request will
843 // time out.
844 timeout_ = true;
845 return CONNECTION_RESPONSE_TIMEOUT;
846 }
847
848 private:
849 Connection* connection_;
850};
851
852//
853// Connection
854//
855
guoweis@webrtc.org930e0042014-11-17 19:42:14 +0000856Connection::Connection(Port* port,
857 size_t index,
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000858 const Candidate& remote_candidate)
guoweis@webrtc.org930e0042014-11-17 19:42:14 +0000859 : port_(port),
860 local_candidate_index_(index),
861 remote_candidate_(remote_candidate),
862 read_state_(STATE_READ_INIT),
863 write_state_(STATE_WRITE_INIT),
864 connected_(true),
865 pruned_(false),
866 use_candidate_attr_(false),
867 remote_ice_mode_(ICEMODE_FULL),
868 requests_(port->thread()),
869 rtt_(DEFAULT_RTT),
870 last_ping_sent_(0),
871 last_ping_received_(0),
872 last_data_received_(0),
873 last_ping_response_received_(0),
874 sent_packets_discarded_(0),
875 sent_packets_total_(0),
876 reported_(false),
877 state_(STATE_WAITING) {
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000878 // All of our connections start in WAITING state.
879 // TODO(mallinath) - Start connections from STATE_FROZEN.
880 // Wire up to send stun packets
881 requests_.SignalSendPacket.connect(this, &Connection::OnSendStunPacket);
882 LOG_J(LS_INFO, this) << "Connection created";
883}
884
885Connection::~Connection() {
886}
887
888const Candidate& Connection::local_candidate() const {
889 ASSERT(local_candidate_index_ < port_->Candidates().size());
890 return port_->Candidates()[local_candidate_index_];
891}
892
893uint64 Connection::priority() const {
894 uint64 priority = 0;
895 // RFC 5245 - 5.7.2. Computing Pair Priority and Ordering Pairs
896 // Let G be the priority for the candidate provided by the controlling
897 // agent. Let D be the priority for the candidate provided by the
898 // controlled agent.
899 // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
900 IceRole role = port_->GetIceRole();
901 if (role != ICEROLE_UNKNOWN) {
902 uint32 g = 0;
903 uint32 d = 0;
904 if (role == ICEROLE_CONTROLLING) {
905 g = local_candidate().priority();
906 d = remote_candidate_.priority();
907 } else {
908 g = remote_candidate_.priority();
909 d = local_candidate().priority();
910 }
andresp@webrtc.orgff689be2015-02-12 11:54:26 +0000911 priority = std::min(g, d);
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000912 priority = priority << 32;
andresp@webrtc.orgff689be2015-02-12 11:54:26 +0000913 priority += 2 * std::max(g, d) + (g > d ? 1 : 0);
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000914 }
915 return priority;
916}
917
918void Connection::set_read_state(ReadState value) {
919 ReadState old_value = read_state_;
920 read_state_ = value;
921 if (value != old_value) {
922 LOG_J(LS_VERBOSE, this) << "set_read_state";
923 SignalStateChange(this);
924 CheckTimeout();
925 }
926}
927
928void Connection::set_write_state(WriteState value) {
929 WriteState old_value = write_state_;
930 write_state_ = value;
931 if (value != old_value) {
guoweis@webrtc.org8c9ff202014-12-04 07:56:02 +0000932 LOG_J(LS_VERBOSE, this) << "set_write_state from: " << old_value << " to "
933 << value;
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000934 SignalStateChange(this);
935 CheckTimeout();
936 }
937}
938
939void Connection::set_state(State state) {
940 State old_state = state_;
941 state_ = state;
942 if (state != old_state) {
943 LOG_J(LS_VERBOSE, this) << "set_state";
944 }
945}
946
947void Connection::set_connected(bool value) {
948 bool old_value = connected_;
949 connected_ = value;
950 if (value != old_value) {
951 LOG_J(LS_VERBOSE, this) << "set_connected";
952 }
953}
954
955void Connection::set_use_candidate_attr(bool enable) {
956 use_candidate_attr_ = enable;
957}
958
959void Connection::OnSendStunPacket(const void* data, size_t size,
960 StunRequest* req) {
961 rtc::PacketOptions options(port_->DefaultDscpValue());
962 if (port_->SendTo(data, size, remote_candidate_.address(),
963 options, false) < 0) {
964 LOG_J(LS_WARNING, this) << "Failed to send STUN ping " << req->id();
965 }
966}
967
968void Connection::OnReadPacket(
969 const char* data, size_t size, const rtc::PacketTime& packet_time) {
970 rtc::scoped_ptr<IceMessage> msg;
971 std::string remote_ufrag;
972 const rtc::SocketAddress& addr(remote_candidate_.address());
973 if (!port_->GetStunMessage(data, size, addr, msg.accept(), &remote_ufrag)) {
974 // The packet did not parse as a valid STUN message
975
976 // If this connection is readable, then pass along the packet.
977 if (read_state_ == STATE_READABLE) {
978 // readable means data from this address is acceptable
979 // Send it on!
980
981 last_data_received_ = rtc::Time();
982 recv_rate_tracker_.Update(size);
983 SignalReadPacket(this, data, size, packet_time);
984
985 // If timed out sending writability checks, start up again
986 if (!pruned_ && (write_state_ == STATE_WRITE_TIMEOUT)) {
987 LOG(LS_WARNING) << "Received a data packet on a timed-out Connection. "
988 << "Resetting state to STATE_WRITE_INIT.";
989 set_write_state(STATE_WRITE_INIT);
990 }
991 } else {
992 // Not readable means the remote address hasn't sent a valid
993 // binding request yet.
994
995 LOG_J(LS_WARNING, this)
996 << "Received non-STUN packet from an unreadable connection.";
997 }
998 } else if (!msg) {
999 // The packet was STUN, but failed a check and was handled internally.
1000 } else {
1001 // The packet is STUN and passed the Port checks.
1002 // Perform our own checks to ensure this packet is valid.
1003 // If this is a STUN request, then update the readable bit and respond.
1004 // If this is a STUN response, then update the writable bit.
1005 switch (msg->type()) {
1006 case STUN_BINDING_REQUEST:
1007 if (remote_ufrag == remote_candidate_.username()) {
1008 // Check for role conflicts.
1009 if (port_->IsStandardIce() &&
1010 !port_->MaybeIceRoleConflict(addr, msg.get(), remote_ufrag)) {
1011 // Received conflicting role from the peer.
1012 LOG(LS_INFO) << "Received conflicting role from the peer.";
1013 return;
1014 }
1015
1016 // Incoming, validated stun request from remote peer.
1017 // This call will also set the connection readable.
1018 port_->SendBindingResponse(msg.get(), addr);
1019
1020 // If timed out sending writability checks, start up again
1021 if (!pruned_ && (write_state_ == STATE_WRITE_TIMEOUT))
1022 set_write_state(STATE_WRITE_INIT);
1023
1024 if ((port_->IsStandardIce()) &&
1025 (port_->GetIceRole() == ICEROLE_CONTROLLED)) {
1026 const StunByteStringAttribute* use_candidate_attr =
1027 msg->GetByteString(STUN_ATTR_USE_CANDIDATE);
1028 if (use_candidate_attr)
1029 SignalUseCandidate(this);
1030 }
1031 } else {
1032 // The packet had the right local username, but the remote username
1033 // was not the right one for the remote address.
1034 LOG_J(LS_ERROR, this)
1035 << "Received STUN request with bad remote username "
1036 << remote_ufrag;
1037 port_->SendBindingErrorResponse(msg.get(), addr,
1038 STUN_ERROR_UNAUTHORIZED,
1039 STUN_ERROR_REASON_UNAUTHORIZED);
1040
1041 }
1042 break;
1043
1044 // Response from remote peer. Does it match request sent?
1045 // This doesn't just check, it makes callbacks if transaction
1046 // id's match.
1047 case STUN_BINDING_RESPONSE:
1048 case STUN_BINDING_ERROR_RESPONSE:
1049 if (port_->IsGoogleIce() ||
1050 msg->ValidateMessageIntegrity(
1051 data, size, remote_candidate().password())) {
1052 requests_.CheckResponse(msg.get());
1053 }
1054 // Otherwise silently discard the response message.
1055 break;
1056
1057 // Remote end point sent an STUN indication instead of regular
1058 // binding request. In this case |last_ping_received_| will be updated.
1059 // Otherwise we can mark connection to read timeout. No response will be
1060 // sent in this scenario.
1061 case STUN_BINDING_INDICATION:
1062 if (port_->IsStandardIce() && read_state_ == STATE_READABLE) {
1063 ReceivedPing();
1064 } else {
1065 LOG_J(LS_WARNING, this) << "Received STUN binding indication "
1066 << "from an unreadable connection.";
1067 }
1068 break;
1069
1070 default:
1071 ASSERT(false);
1072 break;
1073 }
1074 }
1075}
1076
1077void Connection::OnReadyToSend() {
1078 if (write_state_ == STATE_WRITABLE) {
1079 SignalReadyToSend(this);
1080 }
1081}
1082
1083void Connection::Prune() {
1084 if (!pruned_) {
1085 LOG_J(LS_VERBOSE, this) << "Connection pruned";
1086 pruned_ = true;
1087 requests_.Clear();
1088 set_write_state(STATE_WRITE_TIMEOUT);
1089 }
1090}
1091
1092void Connection::Destroy() {
1093 LOG_J(LS_VERBOSE, this) << "Connection destroyed";
1094 set_read_state(STATE_READ_TIMEOUT);
1095 set_write_state(STATE_WRITE_TIMEOUT);
1096}
1097
1098void Connection::UpdateState(uint32 now) {
1099 uint32 rtt = ConservativeRTTEstimate(rtt_);
1100
1101 std::string pings;
1102 for (size_t i = 0; i < pings_since_last_response_.size(); ++i) {
1103 char buf[32];
1104 rtc::sprintfn(buf, sizeof(buf), "%u",
1105 pings_since_last_response_[i]);
1106 pings.append(buf).append(" ");
1107 }
guoweis@webrtc.org8c9ff202014-12-04 07:56:02 +00001108 LOG_J(LS_VERBOSE, this) << "UpdateState(): pings_since_last_response_="
1109 << pings << ", rtt=" << rtt << ", now=" << now
1110 << ", last ping received: " << last_ping_received_
1111 << ", last data_received: " << last_data_received_;
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001112
1113 // Check the readable state.
1114 //
1115 // Since we don't know how many pings the other side has attempted, the best
1116 // test we can do is a simple window.
1117 // If other side has not sent ping after connection has become readable, use
1118 // |last_data_received_| as the indication.
1119 // If remote endpoint is doing RFC 5245, it's not required to send ping
1120 // after connection is established. If this connection is serving a data
1121 // channel, it may not be in a position to send media continuously. Do not
1122 // mark connection timeout if it's in RFC5245 mode.
1123 // Below check will be performed with end point if it's doing google-ice.
1124 if (port_->IsGoogleIce() && (read_state_ == STATE_READABLE) &&
1125 (last_ping_received_ + CONNECTION_READ_TIMEOUT <= now) &&
1126 (last_data_received_ + CONNECTION_READ_TIMEOUT <= now)) {
1127 LOG_J(LS_INFO, this) << "Unreadable after "
1128 << now - last_ping_received_
1129 << " ms without a ping,"
1130 << " ms since last received response="
1131 << now - last_ping_response_received_
1132 << " ms since last received data="
1133 << now - last_data_received_
1134 << " rtt=" << rtt;
1135 set_read_state(STATE_READ_TIMEOUT);
1136 }
1137
1138 // Check the writable state. (The order of these checks is important.)
1139 //
1140 // Before becoming unwritable, we allow for a fixed number of pings to fail
1141 // (i.e., receive no response). We also have to give the response time to
1142 // get back, so we include a conservative estimate of this.
1143 //
1144 // Before timing out writability, we give a fixed amount of time. This is to
1145 // allow for changes in network conditions.
1146
1147 if ((write_state_ == STATE_WRITABLE) &&
1148 TooManyFailures(pings_since_last_response_,
1149 CONNECTION_WRITE_CONNECT_FAILURES,
1150 rtt,
1151 now) &&
1152 TooLongWithoutResponse(pings_since_last_response_,
1153 CONNECTION_WRITE_CONNECT_TIMEOUT,
1154 now)) {
1155 uint32 max_pings = CONNECTION_WRITE_CONNECT_FAILURES;
1156 LOG_J(LS_INFO, this) << "Unwritable after " << max_pings
1157 << " ping failures and "
1158 << now - pings_since_last_response_[0]
1159 << " ms without a response,"
1160 << " ms since last received ping="
1161 << now - last_ping_received_
1162 << " ms since last received data="
1163 << now - last_data_received_
1164 << " rtt=" << rtt;
1165 set_write_state(STATE_WRITE_UNRELIABLE);
1166 }
1167
1168 if ((write_state_ == STATE_WRITE_UNRELIABLE ||
1169 write_state_ == STATE_WRITE_INIT) &&
1170 TooLongWithoutResponse(pings_since_last_response_,
1171 CONNECTION_WRITE_TIMEOUT,
1172 now)) {
1173 LOG_J(LS_INFO, this) << "Timed out after "
1174 << now - pings_since_last_response_[0]
1175 << " ms without a response, rtt=" << rtt;
1176 set_write_state(STATE_WRITE_TIMEOUT);
1177 }
1178}
1179
1180void Connection::Ping(uint32 now) {
1181 ASSERT(connected_);
1182 last_ping_sent_ = now;
1183 pings_since_last_response_.push_back(now);
1184 ConnectionRequest *req = new ConnectionRequest(this);
1185 LOG_J(LS_VERBOSE, this) << "Sending STUN ping " << req->id() << " at " << now;
1186 requests_.Send(req);
1187 state_ = STATE_INPROGRESS;
1188}
1189
1190void Connection::ReceivedPing() {
1191 last_ping_received_ = rtc::Time();
1192 set_read_state(STATE_READABLE);
1193}
1194
guoweis@webrtc.org8c9ff202014-12-04 07:56:02 +00001195std::string Connection::ToDebugId() const {
1196 std::stringstream ss;
1197 ss << std::hex << this;
1198 return ss.str();
1199}
1200
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001201std::string Connection::ToString() const {
1202 const char CONNECT_STATE_ABBREV[2] = {
1203 '-', // not connected (false)
1204 'C', // connected (true)
1205 };
1206 const char READ_STATE_ABBREV[3] = {
1207 '-', // STATE_READ_INIT
1208 'R', // STATE_READABLE
1209 'x', // STATE_READ_TIMEOUT
1210 };
1211 const char WRITE_STATE_ABBREV[4] = {
1212 'W', // STATE_WRITABLE
1213 'w', // STATE_WRITE_UNRELIABLE
1214 '-', // STATE_WRITE_INIT
1215 'x', // STATE_WRITE_TIMEOUT
1216 };
1217 const std::string ICESTATE[4] = {
1218 "W", // STATE_WAITING
1219 "I", // STATE_INPROGRESS
1220 "S", // STATE_SUCCEEDED
1221 "F" // STATE_FAILED
1222 };
1223 const Candidate& local = local_candidate();
1224 const Candidate& remote = remote_candidate();
1225 std::stringstream ss;
guoweis@webrtc.org8c9ff202014-12-04 07:56:02 +00001226 ss << "Conn[" << ToDebugId()
1227 << ":" << port_->content_name()
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001228 << ":" << local.id() << ":" << local.component()
1229 << ":" << local.generation()
1230 << ":" << local.type() << ":" << local.protocol()
1231 << ":" << local.address().ToSensitiveString()
1232 << "->" << remote.id() << ":" << remote.component()
1233 << ":" << remote.priority()
1234 << ":" << remote.type() << ":"
1235 << remote.protocol() << ":" << remote.address().ToSensitiveString() << "|"
1236 << CONNECT_STATE_ABBREV[connected()]
1237 << READ_STATE_ABBREV[read_state()]
1238 << WRITE_STATE_ABBREV[write_state()]
1239 << ICESTATE[state()] << "|"
1240 << priority() << "|";
1241 if (rtt_ < DEFAULT_RTT) {
1242 ss << rtt_ << "]";
1243 } else {
1244 ss << "-]";
1245 }
1246 return ss.str();
1247}
1248
1249std::string Connection::ToSensitiveString() const {
1250 return ToString();
1251}
1252
1253void Connection::OnConnectionRequestResponse(ConnectionRequest* request,
1254 StunMessage* response) {
1255 // We've already validated that this is a STUN binding response with
1256 // the correct local and remote username for this connection.
1257 // So if we're not already, become writable. We may be bringing a pruned
1258 // connection back to life, but if we don't really want it, we can always
1259 // prune it again.
1260 uint32 rtt = request->Elapsed();
1261 set_write_state(STATE_WRITABLE);
1262 set_state(STATE_SUCCEEDED);
1263
1264 if (remote_ice_mode_ == ICEMODE_LITE) {
1265 // A ice-lite end point never initiates ping requests. This will allow
1266 // us to move to STATE_READABLE.
1267 ReceivedPing();
1268 }
1269
1270 std::string pings;
1271 for (size_t i = 0; i < pings_since_last_response_.size(); ++i) {
1272 char buf[32];
1273 rtc::sprintfn(buf, sizeof(buf), "%u",
1274 pings_since_last_response_[i]);
1275 pings.append(buf).append(" ");
1276 }
1277
1278 rtc::LoggingSeverity level =
1279 (pings_since_last_response_.size() > CONNECTION_WRITE_CONNECT_FAILURES) ?
1280 rtc::LS_INFO : rtc::LS_VERBOSE;
1281
1282 LOG_JV(level, this) << "Received STUN ping response " << request->id()
1283 << ", pings_since_last_response_=" << pings
1284 << ", rtt=" << rtt;
1285
1286 pings_since_last_response_.clear();
1287 last_ping_response_received_ = rtc::Time();
1288 rtt_ = (RTT_RATIO * rtt_ + rtt) / (RTT_RATIO + 1);
1289
1290 // Peer reflexive candidate is only for RFC 5245 ICE.
1291 if (port_->IsStandardIce()) {
1292 MaybeAddPrflxCandidate(request, response);
1293 }
1294}
1295
1296void Connection::OnConnectionRequestErrorResponse(ConnectionRequest* request,
1297 StunMessage* response) {
1298 const StunErrorCodeAttribute* error_attr = response->GetErrorCode();
1299 int error_code = STUN_ERROR_GLOBAL_FAILURE;
1300 if (error_attr) {
1301 if (port_->IsGoogleIce()) {
1302 // When doing GICE, the error code is written out incorrectly, so we need
1303 // to unmunge it here.
1304 error_code = error_attr->eclass() * 256 + error_attr->number();
1305 } else {
1306 error_code = error_attr->code();
1307 }
1308 }
1309
1310 if (error_code == STUN_ERROR_UNKNOWN_ATTRIBUTE ||
1311 error_code == STUN_ERROR_SERVER_ERROR ||
1312 error_code == STUN_ERROR_UNAUTHORIZED) {
1313 // Recoverable error, retry
1314 } else if (error_code == STUN_ERROR_STALE_CREDENTIALS) {
1315 // Race failure, retry
1316 } else if (error_code == STUN_ERROR_ROLE_CONFLICT) {
1317 HandleRoleConflictFromPeer();
1318 } else {
1319 // This is not a valid connection.
1320 LOG_J(LS_ERROR, this) << "Received STUN error response, code="
1321 << error_code << "; killing connection";
1322 set_state(STATE_FAILED);
1323 set_write_state(STATE_WRITE_TIMEOUT);
1324 }
1325}
1326
1327void Connection::OnConnectionRequestTimeout(ConnectionRequest* request) {
1328 // Log at LS_INFO if we miss a ping on a writable connection.
1329 rtc::LoggingSeverity sev = (write_state_ == STATE_WRITABLE) ?
1330 rtc::LS_INFO : rtc::LS_VERBOSE;
1331 LOG_JV(sev, this) << "Timing-out STUN ping " << request->id()
1332 << " after " << request->Elapsed() << " ms";
1333}
1334
1335void Connection::CheckTimeout() {
1336 // If both read and write have timed out or read has never initialized, then
1337 // this connection can contribute no more to p2p socket unless at some later
1338 // date readability were to come back. However, we gave readability a long
1339 // time to timeout, so at this point, it seems fair to get rid of this
1340 // connection.
1341 if ((read_state_ == STATE_READ_TIMEOUT ||
1342 read_state_ == STATE_READ_INIT) &&
1343 write_state_ == STATE_WRITE_TIMEOUT) {
1344 port_->thread()->Post(this, MSG_DELETE);
1345 }
1346}
1347
1348void Connection::HandleRoleConflictFromPeer() {
1349 port_->SignalRoleConflict(port_);
1350}
1351
jiayl@webrtc.orgdacdd942015-01-23 17:33:34 +00001352void Connection::MaybeSetRemoteIceCredentials(const std::string& ice_ufrag,
1353 const std::string& ice_pwd) {
1354 if (remote_candidate_.username() == ice_ufrag &&
1355 remote_candidate_.password().empty()) {
1356 remote_candidate_.set_password(ice_pwd);
1357 }
1358}
1359
1360void Connection::MaybeUpdatePeerReflexiveCandidate(
1361 const Candidate& new_candidate) {
1362 if (remote_candidate_.type() == PRFLX_PORT_TYPE &&
1363 new_candidate.type() != PRFLX_PORT_TYPE &&
1364 remote_candidate_.protocol() == new_candidate.protocol() &&
1365 remote_candidate_.address() == new_candidate.address() &&
1366 remote_candidate_.username() == new_candidate.username() &&
1367 remote_candidate_.password() == new_candidate.password() &&
1368 remote_candidate_.generation() == new_candidate.generation()) {
1369 remote_candidate_ = new_candidate;
1370 }
1371}
1372
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001373void Connection::OnMessage(rtc::Message *pmsg) {
1374 ASSERT(pmsg->message_id == MSG_DELETE);
1375
henrike@webrtc.org43e033e2014-11-10 19:40:29 +00001376 LOG_J(LS_INFO, this) << "Connection deleted due to read or write timeout";
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001377 SignalDestroyed(this);
1378 delete this;
1379}
1380
1381size_t Connection::recv_bytes_second() {
1382 return recv_rate_tracker_.units_second();
1383}
1384
1385size_t Connection::recv_total_bytes() {
1386 return recv_rate_tracker_.total_units();
1387}
1388
1389size_t Connection::sent_bytes_second() {
1390 return send_rate_tracker_.units_second();
1391}
1392
1393size_t Connection::sent_total_bytes() {
1394 return send_rate_tracker_.total_units();
1395}
1396
guoweis@webrtc.org930e0042014-11-17 19:42:14 +00001397size_t Connection::sent_discarded_packets() {
1398 return sent_packets_discarded_;
1399}
1400
1401size_t Connection::sent_total_packets() {
1402 return sent_packets_total_;
1403}
1404
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001405void Connection::MaybeAddPrflxCandidate(ConnectionRequest* request,
1406 StunMessage* response) {
1407 // RFC 5245
1408 // The agent checks the mapped address from the STUN response. If the
1409 // transport address does not match any of the local candidates that the
1410 // agent knows about, the mapped address represents a new candidate -- a
1411 // peer reflexive candidate.
1412 const StunAddressAttribute* addr =
1413 response->GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
1414 if (!addr) {
1415 LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - "
1416 << "No MAPPED-ADDRESS or XOR-MAPPED-ADDRESS found in the "
1417 << "stun response message";
1418 return;
1419 }
1420
1421 bool known_addr = false;
1422 for (size_t i = 0; i < port_->Candidates().size(); ++i) {
1423 if (port_->Candidates()[i].address() == addr->GetAddress()) {
1424 known_addr = true;
1425 break;
1426 }
1427 }
1428 if (known_addr) {
1429 return;
1430 }
1431
1432 // RFC 5245
1433 // Its priority is set equal to the value of the PRIORITY attribute
1434 // in the Binding request.
1435 const StunUInt32Attribute* priority_attr =
1436 request->msg()->GetUInt32(STUN_ATTR_PRIORITY);
1437 if (!priority_attr) {
1438 LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - "
1439 << "No STUN_ATTR_PRIORITY found in the "
1440 << "stun response message";
1441 return;
1442 }
1443 const uint32 priority = priority_attr->value();
1444 std::string id = rtc::CreateRandomString(8);
1445
1446 Candidate new_local_candidate;
1447 new_local_candidate.set_id(id);
1448 new_local_candidate.set_component(local_candidate().component());
1449 new_local_candidate.set_type(PRFLX_PORT_TYPE);
1450 new_local_candidate.set_protocol(local_candidate().protocol());
1451 new_local_candidate.set_address(addr->GetAddress());
1452 new_local_candidate.set_priority(priority);
1453 new_local_candidate.set_username(local_candidate().username());
1454 new_local_candidate.set_password(local_candidate().password());
1455 new_local_candidate.set_network_name(local_candidate().network_name());
guoweis@webrtc.org950c5182014-12-16 23:01:31 +00001456 new_local_candidate.set_network_type(local_candidate().network_type());
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001457 new_local_candidate.set_related_address(local_candidate().address());
1458 new_local_candidate.set_foundation(
1459 ComputeFoundation(PRFLX_PORT_TYPE, local_candidate().protocol(),
1460 local_candidate().address()));
1461
1462 // Change the local candidate of this Connection to the new prflx candidate.
1463 local_candidate_index_ = port_->AddPrflxCandidate(new_local_candidate);
1464
1465 // SignalStateChange to force a re-sort in P2PTransportChannel as this
1466 // Connection's local candidate has changed.
1467 SignalStateChange(this);
1468}
1469
1470ProxyConnection::ProxyConnection(Port* port, size_t index,
1471 const Candidate& candidate)
1472 : Connection(port, index, candidate), error_(0) {
1473}
1474
1475int ProxyConnection::Send(const void* data, size_t size,
1476 const rtc::PacketOptions& options) {
1477 if (write_state_ == STATE_WRITE_INIT || write_state_ == STATE_WRITE_TIMEOUT) {
1478 error_ = EWOULDBLOCK;
1479 return SOCKET_ERROR;
1480 }
guoweis@webrtc.org930e0042014-11-17 19:42:14 +00001481 sent_packets_total_++;
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001482 int sent = port_->SendTo(data, size, remote_candidate_.address(),
1483 options, true);
1484 if (sent <= 0) {
1485 ASSERT(sent < 0);
1486 error_ = port_->GetError();
guoweis@webrtc.org930e0042014-11-17 19:42:14 +00001487 sent_packets_discarded_++;
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001488 } else {
1489 send_rate_tracker_.Update(sent);
1490 }
1491 return sent;
1492}
1493
1494} // namespace cricket