henrike@webrtc.org | f048872 | 2014-05-13 18:00:26 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
| 11 | #include "webrtc/base/natsocketfactory.h" |
| 12 | |
| 13 | #include "webrtc/base/logging.h" |
| 14 | #include "webrtc/base/natserver.h" |
| 15 | #include "webrtc/base/virtualsocketserver.h" |
| 16 | |
| 17 | namespace rtc { |
| 18 | |
| 19 | // Packs the given socketaddress into the buffer in buf, in the quasi-STUN |
| 20 | // format that the natserver uses. |
| 21 | // Returns 0 if an invalid address is passed. |
| 22 | size_t PackAddressForNAT(char* buf, size_t buf_size, |
| 23 | const SocketAddress& remote_addr) { |
| 24 | const IPAddress& ip = remote_addr.ipaddr(); |
| 25 | int family = ip.family(); |
| 26 | buf[0] = 0; |
| 27 | buf[1] = family; |
| 28 | // Writes the port. |
| 29 | *(reinterpret_cast<uint16*>(&buf[2])) = HostToNetwork16(remote_addr.port()); |
| 30 | if (family == AF_INET) { |
| 31 | ASSERT(buf_size >= kNATEncodedIPv4AddressSize); |
| 32 | in_addr v4addr = ip.ipv4_address(); |
| 33 | memcpy(&buf[4], &v4addr, kNATEncodedIPv4AddressSize - 4); |
| 34 | return kNATEncodedIPv4AddressSize; |
| 35 | } else if (family == AF_INET6) { |
| 36 | ASSERT(buf_size >= kNATEncodedIPv6AddressSize); |
| 37 | in6_addr v6addr = ip.ipv6_address(); |
| 38 | memcpy(&buf[4], &v6addr, kNATEncodedIPv6AddressSize - 4); |
| 39 | return kNATEncodedIPv6AddressSize; |
| 40 | } |
| 41 | return 0U; |
| 42 | } |
| 43 | |
| 44 | // Decodes the remote address from a packet that has been encoded with the nat's |
| 45 | // quasi-STUN format. Returns the length of the address (i.e., the offset into |
| 46 | // data where the original packet starts). |
| 47 | size_t UnpackAddressFromNAT(const char* buf, size_t buf_size, |
| 48 | SocketAddress* remote_addr) { |
| 49 | ASSERT(buf_size >= 8); |
| 50 | ASSERT(buf[0] == 0); |
| 51 | int family = buf[1]; |
| 52 | uint16 port = NetworkToHost16(*(reinterpret_cast<const uint16*>(&buf[2]))); |
| 53 | if (family == AF_INET) { |
| 54 | const in_addr* v4addr = reinterpret_cast<const in_addr*>(&buf[4]); |
| 55 | *remote_addr = SocketAddress(IPAddress(*v4addr), port); |
| 56 | return kNATEncodedIPv4AddressSize; |
| 57 | } else if (family == AF_INET6) { |
| 58 | ASSERT(buf_size >= 20); |
| 59 | const in6_addr* v6addr = reinterpret_cast<const in6_addr*>(&buf[4]); |
| 60 | *remote_addr = SocketAddress(IPAddress(*v6addr), port); |
| 61 | return kNATEncodedIPv6AddressSize; |
| 62 | } |
| 63 | return 0U; |
| 64 | } |
| 65 | |
| 66 | |
| 67 | // NATSocket |
| 68 | class NATSocket : public AsyncSocket, public sigslot::has_slots<> { |
| 69 | public: |
| 70 | explicit NATSocket(NATInternalSocketFactory* sf, int family, int type) |
| 71 | : sf_(sf), family_(family), type_(type), connected_(false), |
| 72 | socket_(NULL), buf_(NULL), size_(0) { |
| 73 | } |
| 74 | |
| 75 | virtual ~NATSocket() { |
| 76 | delete socket_; |
| 77 | delete[] buf_; |
| 78 | } |
| 79 | |
| 80 | virtual SocketAddress GetLocalAddress() const { |
| 81 | return (socket_) ? socket_->GetLocalAddress() : SocketAddress(); |
| 82 | } |
| 83 | |
| 84 | virtual SocketAddress GetRemoteAddress() const { |
| 85 | return remote_addr_; // will be NIL if not connected |
| 86 | } |
| 87 | |
| 88 | virtual int Bind(const SocketAddress& addr) { |
| 89 | if (socket_) { // already bound, bubble up error |
| 90 | return -1; |
| 91 | } |
| 92 | |
| 93 | int result; |
| 94 | socket_ = sf_->CreateInternalSocket(family_, type_, addr, &server_addr_); |
| 95 | result = (socket_) ? socket_->Bind(addr) : -1; |
| 96 | if (result >= 0) { |
| 97 | socket_->SignalConnectEvent.connect(this, &NATSocket::OnConnectEvent); |
| 98 | socket_->SignalReadEvent.connect(this, &NATSocket::OnReadEvent); |
| 99 | socket_->SignalWriteEvent.connect(this, &NATSocket::OnWriteEvent); |
| 100 | socket_->SignalCloseEvent.connect(this, &NATSocket::OnCloseEvent); |
| 101 | } else { |
| 102 | server_addr_.Clear(); |
| 103 | delete socket_; |
| 104 | socket_ = NULL; |
| 105 | } |
| 106 | |
| 107 | return result; |
| 108 | } |
| 109 | |
| 110 | virtual int Connect(const SocketAddress& addr) { |
| 111 | if (!socket_) { // socket must be bound, for now |
| 112 | return -1; |
| 113 | } |
| 114 | |
| 115 | int result = 0; |
| 116 | if (type_ == SOCK_STREAM) { |
| 117 | result = socket_->Connect(server_addr_.IsNil() ? addr : server_addr_); |
| 118 | } else { |
| 119 | connected_ = true; |
| 120 | } |
| 121 | |
| 122 | if (result >= 0) { |
| 123 | remote_addr_ = addr; |
| 124 | } |
| 125 | |
| 126 | return result; |
| 127 | } |
| 128 | |
| 129 | virtual int Send(const void* data, size_t size) { |
| 130 | ASSERT(connected_); |
| 131 | return SendTo(data, size, remote_addr_); |
| 132 | } |
| 133 | |
| 134 | virtual int SendTo(const void* data, size_t size, const SocketAddress& addr) { |
| 135 | ASSERT(!connected_ || addr == remote_addr_); |
| 136 | if (server_addr_.IsNil() || type_ == SOCK_STREAM) { |
| 137 | return socket_->SendTo(data, size, addr); |
| 138 | } |
| 139 | // This array will be too large for IPv4 packets, but only by 12 bytes. |
| 140 | scoped_ptr<char[]> buf(new char[size + kNATEncodedIPv6AddressSize]); |
| 141 | size_t addrlength = PackAddressForNAT(buf.get(), |
| 142 | size + kNATEncodedIPv6AddressSize, |
| 143 | addr); |
| 144 | size_t encoded_size = size + addrlength; |
| 145 | memcpy(buf.get() + addrlength, data, size); |
| 146 | int result = socket_->SendTo(buf.get(), encoded_size, server_addr_); |
| 147 | if (result >= 0) { |
| 148 | ASSERT(result == static_cast<int>(encoded_size)); |
| 149 | result = result - static_cast<int>(addrlength); |
| 150 | } |
| 151 | return result; |
| 152 | } |
| 153 | |
| 154 | virtual int Recv(void* data, size_t size) { |
| 155 | SocketAddress addr; |
| 156 | return RecvFrom(data, size, &addr); |
| 157 | } |
| 158 | |
| 159 | virtual int RecvFrom(void* data, size_t size, SocketAddress *out_addr) { |
| 160 | if (server_addr_.IsNil() || type_ == SOCK_STREAM) { |
| 161 | return socket_->RecvFrom(data, size, out_addr); |
| 162 | } |
| 163 | // Make sure we have enough room to read the requested amount plus the |
| 164 | // largest possible header address. |
| 165 | SocketAddress remote_addr; |
| 166 | Grow(size + kNATEncodedIPv6AddressSize); |
| 167 | |
| 168 | // Read the packet from the socket. |
| 169 | int result = socket_->RecvFrom(buf_, size_, &remote_addr); |
| 170 | if (result >= 0) { |
| 171 | ASSERT(remote_addr == server_addr_); |
| 172 | |
| 173 | // TODO: we need better framing so we know how many bytes we can |
| 174 | // return before we need to read the next address. For UDP, this will be |
| 175 | // fine as long as the reader always reads everything in the packet. |
| 176 | ASSERT((size_t)result < size_); |
| 177 | |
| 178 | // Decode the wire packet into the actual results. |
| 179 | SocketAddress real_remote_addr; |
| 180 | size_t addrlength = |
| 181 | UnpackAddressFromNAT(buf_, result, &real_remote_addr); |
| 182 | memcpy(data, buf_ + addrlength, result - addrlength); |
| 183 | |
| 184 | // Make sure this packet should be delivered before returning it. |
| 185 | if (!connected_ || (real_remote_addr == remote_addr_)) { |
| 186 | if (out_addr) |
| 187 | *out_addr = real_remote_addr; |
| 188 | result = result - static_cast<int>(addrlength); |
| 189 | } else { |
| 190 | LOG(LS_ERROR) << "Dropping packet from unknown remote address: " |
| 191 | << real_remote_addr.ToString(); |
| 192 | result = 0; // Tell the caller we didn't read anything |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | return result; |
| 197 | } |
| 198 | |
| 199 | virtual int Close() { |
| 200 | int result = 0; |
| 201 | if (socket_) { |
| 202 | result = socket_->Close(); |
| 203 | if (result >= 0) { |
| 204 | connected_ = false; |
| 205 | remote_addr_ = SocketAddress(); |
| 206 | delete socket_; |
| 207 | socket_ = NULL; |
| 208 | } |
| 209 | } |
| 210 | return result; |
| 211 | } |
| 212 | |
| 213 | virtual int Listen(int backlog) { |
| 214 | return socket_->Listen(backlog); |
| 215 | } |
| 216 | virtual AsyncSocket* Accept(SocketAddress *paddr) { |
| 217 | return socket_->Accept(paddr); |
| 218 | } |
| 219 | virtual int GetError() const { |
| 220 | return socket_->GetError(); |
| 221 | } |
| 222 | virtual void SetError(int error) { |
| 223 | socket_->SetError(error); |
| 224 | } |
| 225 | virtual ConnState GetState() const { |
| 226 | return connected_ ? CS_CONNECTED : CS_CLOSED; |
| 227 | } |
| 228 | virtual int EstimateMTU(uint16* mtu) { |
| 229 | return socket_->EstimateMTU(mtu); |
| 230 | } |
| 231 | virtual int GetOption(Option opt, int* value) { |
| 232 | return socket_->GetOption(opt, value); |
| 233 | } |
| 234 | virtual int SetOption(Option opt, int value) { |
| 235 | return socket_->SetOption(opt, value); |
| 236 | } |
| 237 | |
| 238 | void OnConnectEvent(AsyncSocket* socket) { |
| 239 | // If we're NATed, we need to send a request with the real addr to use. |
| 240 | ASSERT(socket == socket_); |
| 241 | if (server_addr_.IsNil()) { |
| 242 | connected_ = true; |
| 243 | SignalConnectEvent(this); |
| 244 | } else { |
| 245 | SendConnectRequest(); |
| 246 | } |
| 247 | } |
| 248 | void OnReadEvent(AsyncSocket* socket) { |
| 249 | // If we're NATed, we need to process the connect reply. |
| 250 | ASSERT(socket == socket_); |
| 251 | if (type_ == SOCK_STREAM && !server_addr_.IsNil() && !connected_) { |
| 252 | HandleConnectReply(); |
| 253 | } else { |
| 254 | SignalReadEvent(this); |
| 255 | } |
| 256 | } |
| 257 | void OnWriteEvent(AsyncSocket* socket) { |
| 258 | ASSERT(socket == socket_); |
| 259 | SignalWriteEvent(this); |
| 260 | } |
| 261 | void OnCloseEvent(AsyncSocket* socket, int error) { |
| 262 | ASSERT(socket == socket_); |
| 263 | SignalCloseEvent(this, error); |
| 264 | } |
| 265 | |
| 266 | private: |
| 267 | // Makes sure the buffer is at least the given size. |
| 268 | void Grow(size_t new_size) { |
| 269 | if (size_ < new_size) { |
| 270 | delete[] buf_; |
| 271 | size_ = new_size; |
| 272 | buf_ = new char[size_]; |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | // Sends the destination address to the server to tell it to connect. |
| 277 | void SendConnectRequest() { |
| 278 | char buf[256]; |
| 279 | size_t length = PackAddressForNAT(buf, ARRAY_SIZE(buf), remote_addr_); |
| 280 | socket_->Send(buf, length); |
| 281 | } |
| 282 | |
| 283 | // Handles the byte sent back from the server and fires the appropriate event. |
| 284 | void HandleConnectReply() { |
| 285 | char code; |
| 286 | socket_->Recv(&code, sizeof(code)); |
| 287 | if (code == 0) { |
| 288 | SignalConnectEvent(this); |
| 289 | } else { |
| 290 | Close(); |
| 291 | SignalCloseEvent(this, code); |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | NATInternalSocketFactory* sf_; |
| 296 | int family_; |
| 297 | int type_; |
| 298 | bool connected_; |
| 299 | SocketAddress remote_addr_; |
| 300 | SocketAddress server_addr_; // address of the NAT server |
| 301 | AsyncSocket* socket_; |
| 302 | char* buf_; |
| 303 | size_t size_; |
| 304 | }; |
| 305 | |
| 306 | // NATSocketFactory |
| 307 | NATSocketFactory::NATSocketFactory(SocketFactory* factory, |
| 308 | const SocketAddress& nat_addr) |
| 309 | : factory_(factory), nat_addr_(nat_addr) { |
| 310 | } |
| 311 | |
| 312 | Socket* NATSocketFactory::CreateSocket(int type) { |
| 313 | return CreateSocket(AF_INET, type); |
| 314 | } |
| 315 | |
| 316 | Socket* NATSocketFactory::CreateSocket(int family, int type) { |
| 317 | return new NATSocket(this, family, type); |
| 318 | } |
| 319 | |
| 320 | AsyncSocket* NATSocketFactory::CreateAsyncSocket(int type) { |
| 321 | return CreateAsyncSocket(AF_INET, type); |
| 322 | } |
| 323 | |
| 324 | AsyncSocket* NATSocketFactory::CreateAsyncSocket(int family, int type) { |
| 325 | return new NATSocket(this, family, type); |
| 326 | } |
| 327 | |
| 328 | AsyncSocket* NATSocketFactory::CreateInternalSocket(int family, int type, |
| 329 | const SocketAddress& local_addr, SocketAddress* nat_addr) { |
| 330 | *nat_addr = nat_addr_; |
| 331 | return factory_->CreateAsyncSocket(family, type); |
| 332 | } |
| 333 | |
| 334 | // NATSocketServer |
| 335 | NATSocketServer::NATSocketServer(SocketServer* server) |
| 336 | : server_(server), msg_queue_(NULL) { |
| 337 | } |
| 338 | |
| 339 | NATSocketServer::Translator* NATSocketServer::GetTranslator( |
| 340 | const SocketAddress& ext_ip) { |
| 341 | return nats_.Get(ext_ip); |
| 342 | } |
| 343 | |
| 344 | NATSocketServer::Translator* NATSocketServer::AddTranslator( |
| 345 | const SocketAddress& ext_ip, const SocketAddress& int_ip, NATType type) { |
| 346 | // Fail if a translator already exists with this extternal address. |
| 347 | if (nats_.Get(ext_ip)) |
| 348 | return NULL; |
| 349 | |
| 350 | return nats_.Add(ext_ip, new Translator(this, type, int_ip, server_, ext_ip)); |
| 351 | } |
| 352 | |
| 353 | void NATSocketServer::RemoveTranslator( |
| 354 | const SocketAddress& ext_ip) { |
| 355 | nats_.Remove(ext_ip); |
| 356 | } |
| 357 | |
| 358 | Socket* NATSocketServer::CreateSocket(int type) { |
| 359 | return CreateSocket(AF_INET, type); |
| 360 | } |
| 361 | |
| 362 | Socket* NATSocketServer::CreateSocket(int family, int type) { |
| 363 | return new NATSocket(this, family, type); |
| 364 | } |
| 365 | |
| 366 | AsyncSocket* NATSocketServer::CreateAsyncSocket(int type) { |
| 367 | return CreateAsyncSocket(AF_INET, type); |
| 368 | } |
| 369 | |
| 370 | AsyncSocket* NATSocketServer::CreateAsyncSocket(int family, int type) { |
| 371 | return new NATSocket(this, family, type); |
| 372 | } |
| 373 | |
| 374 | AsyncSocket* NATSocketServer::CreateInternalSocket(int family, int type, |
| 375 | const SocketAddress& local_addr, SocketAddress* nat_addr) { |
| 376 | AsyncSocket* socket = NULL; |
| 377 | Translator* nat = nats_.FindClient(local_addr); |
| 378 | if (nat) { |
| 379 | socket = nat->internal_factory()->CreateAsyncSocket(family, type); |
| 380 | *nat_addr = (type == SOCK_STREAM) ? |
| 381 | nat->internal_tcp_address() : nat->internal_address(); |
| 382 | } else { |
| 383 | socket = server_->CreateAsyncSocket(family, type); |
| 384 | } |
| 385 | return socket; |
| 386 | } |
| 387 | |
| 388 | // NATSocketServer::Translator |
| 389 | NATSocketServer::Translator::Translator( |
| 390 | NATSocketServer* server, NATType type, const SocketAddress& int_ip, |
| 391 | SocketFactory* ext_factory, const SocketAddress& ext_ip) |
| 392 | : server_(server) { |
| 393 | // Create a new private network, and a NATServer running on the private |
| 394 | // network that bridges to the external network. Also tell the private |
| 395 | // network to use the same message queue as us. |
| 396 | VirtualSocketServer* internal_server = new VirtualSocketServer(server_); |
| 397 | internal_server->SetMessageQueue(server_->queue()); |
| 398 | internal_factory_.reset(internal_server); |
| 399 | nat_server_.reset(new NATServer(type, internal_server, int_ip, |
| 400 | ext_factory, ext_ip)); |
| 401 | } |
| 402 | |
| 403 | |
| 404 | NATSocketServer::Translator* NATSocketServer::Translator::GetTranslator( |
| 405 | const SocketAddress& ext_ip) { |
| 406 | return nats_.Get(ext_ip); |
| 407 | } |
| 408 | |
| 409 | NATSocketServer::Translator* NATSocketServer::Translator::AddTranslator( |
| 410 | const SocketAddress& ext_ip, const SocketAddress& int_ip, NATType type) { |
| 411 | // Fail if a translator already exists with this extternal address. |
| 412 | if (nats_.Get(ext_ip)) |
| 413 | return NULL; |
| 414 | |
| 415 | AddClient(ext_ip); |
| 416 | return nats_.Add(ext_ip, |
| 417 | new Translator(server_, type, int_ip, server_, ext_ip)); |
| 418 | } |
| 419 | void NATSocketServer::Translator::RemoveTranslator( |
| 420 | const SocketAddress& ext_ip) { |
| 421 | nats_.Remove(ext_ip); |
| 422 | RemoveClient(ext_ip); |
| 423 | } |
| 424 | |
| 425 | bool NATSocketServer::Translator::AddClient( |
| 426 | const SocketAddress& int_ip) { |
| 427 | // Fail if a client already exists with this internal address. |
| 428 | if (clients_.find(int_ip) != clients_.end()) |
| 429 | return false; |
| 430 | |
| 431 | clients_.insert(int_ip); |
| 432 | return true; |
| 433 | } |
| 434 | |
| 435 | void NATSocketServer::Translator::RemoveClient( |
| 436 | const SocketAddress& int_ip) { |
| 437 | std::set<SocketAddress>::iterator it = clients_.find(int_ip); |
| 438 | if (it != clients_.end()) { |
| 439 | clients_.erase(it); |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | NATSocketServer::Translator* NATSocketServer::Translator::FindClient( |
| 444 | const SocketAddress& int_ip) { |
| 445 | // See if we have the requested IP, or any of our children do. |
| 446 | return (clients_.find(int_ip) != clients_.end()) ? |
| 447 | this : nats_.FindClient(int_ip); |
| 448 | } |
| 449 | |
| 450 | // NATSocketServer::TranslatorMap |
| 451 | NATSocketServer::TranslatorMap::~TranslatorMap() { |
| 452 | for (TranslatorMap::iterator it = begin(); it != end(); ++it) { |
| 453 | delete it->second; |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | NATSocketServer::Translator* NATSocketServer::TranslatorMap::Get( |
| 458 | const SocketAddress& ext_ip) { |
| 459 | TranslatorMap::iterator it = find(ext_ip); |
| 460 | return (it != end()) ? it->second : NULL; |
| 461 | } |
| 462 | |
| 463 | NATSocketServer::Translator* NATSocketServer::TranslatorMap::Add( |
| 464 | const SocketAddress& ext_ip, Translator* nat) { |
| 465 | (*this)[ext_ip] = nat; |
| 466 | return nat; |
| 467 | } |
| 468 | |
| 469 | void NATSocketServer::TranslatorMap::Remove( |
| 470 | const SocketAddress& ext_ip) { |
| 471 | TranslatorMap::iterator it = find(ext_ip); |
| 472 | if (it != end()) { |
| 473 | delete it->second; |
| 474 | erase(it); |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | NATSocketServer::Translator* NATSocketServer::TranslatorMap::FindClient( |
| 479 | const SocketAddress& int_ip) { |
| 480 | Translator* nat = NULL; |
| 481 | for (TranslatorMap::iterator it = begin(); it != end() && !nat; ++it) { |
| 482 | nat = it->second->FindClient(int_ip); |
| 483 | } |
| 484 | return nat; |
| 485 | } |
| 486 | |
| 487 | } // namespace rtc |