blob: 4ac11671474dcde823379be25990532684a499ea [file] [log] [blame]
ekm030249d2015-06-15 13:02:24 -07001/*
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
ekmdb4fecf2015-06-22 17:49:08 -070011//
12// Specifies helper classes for intelligibility enhancement.
13//
14
ekm030249d2015-06-15 13:02:24 -070015#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
16#define WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
17
18#include <complex>
19
ekmdb4fecf2015-06-22 17:49:08 -070020#include "webrtc/base/scoped_ptr.h"
ekm030249d2015-06-15 13:02:24 -070021
22namespace webrtc {
23
24namespace intelligibility {
25
ekm35b72fb2015-07-10 14:11:52 -070026// Return |current| changed towards |target|, with the change being at most
27// |limit|.
28float UpdateFactor(float target, float current, float limit);
29
ekm35b72fb2015-07-10 14:11:52 -070030// Apply a small fudge to degenerate complex values. The numbers in the array
31// were chosen randomly, so that even a series of all zeroes has some small
32// variability.
33std::complex<float> zerofudge(std::complex<float> c);
34
35// Incremental mean computation. Return the mean of the series with the
36// mean |mean| with added |data|.
37std::complex<float> NewMean(std::complex<float> mean,
38 std::complex<float> data,
Peter Kastingdce40cf2015-08-24 14:52:23 -070039 size_t count);
ekm35b72fb2015-07-10 14:11:52 -070040
41// Updates |mean| with added |data|;
Peter Kastingdce40cf2015-08-24 14:52:23 -070042void AddToMean(std::complex<float> data,
43 size_t count,
44 std::complex<float>* mean);
ekm35b72fb2015-07-10 14:11:52 -070045
ekm030249d2015-06-15 13:02:24 -070046// Internal helper for computing the variances of a stream of arrays.
47// The result is an array of variances per position: the i-th variance
48// is the variance of the stream of data on the i-th positions in the
49// input arrays.
50// There are four methods of computation:
51// * kStepInfinite computes variances from the beginning onwards
52// * kStepDecaying uses a recursive exponential decay formula with a
53// settable forgetting factor
54// * kStepWindowed computes variances within a moving window
55// * kStepBlocked is similar to kStepWindowed, but history is kept
56// as a rolling window of blocks: multiple input elements are used for
57// one block and the history then consists of the variances of these blocks
58// with the same effect as kStepWindowed, but less storage, so the window
59// can be longer
60class VarianceArray {
61 public:
62 enum StepType {
63 kStepInfinite = 0,
64 kStepDecaying,
65 kStepWindowed,
ekm35b72fb2015-07-10 14:11:52 -070066 kStepBlocked,
67 kStepBlockBasedMovingAverage
ekm030249d2015-06-15 13:02:24 -070068 };
69
70 // Construct an instance for the given input array length (|freqs|) and
71 // computation algorithm (|type|), with the appropriate parameters.
72 // |window_size| is the number of samples for kStepWindowed and
73 // the number of blocks for kStepBlocked. |decay| is the forgetting factor
74 // for kStepDecaying.
Peter Kastingdce40cf2015-08-24 14:52:23 -070075 VarianceArray(size_t freqs, StepType type, size_t window_size, float decay);
ekm030249d2015-06-15 13:02:24 -070076
77 // Add a new data point to the series and compute the new variances.
78 // TODO(bercic) |skip_fudge| is a flag for kStepWindowed and kStepDecaying,
79 // whether they should skip adding some small dummy values to the input
80 // to prevent problems with all-zero inputs. Can probably be removed.
81 void Step(const std::complex<float>* data, bool skip_fudge = false) {
82 (this->*step_func_)(data, skip_fudge);
83 }
84 // Reset variances to zero and forget all history.
85 void Clear();
86 // Scale the input data by |scale|. Effectively multiply variances
87 // by |scale^2|.
88 void ApplyScale(float scale);
89
90 // The current set of variances.
ekmdb4fecf2015-06-22 17:49:08 -070091 const float* variance() const { return variance_.get(); }
ekm030249d2015-06-15 13:02:24 -070092
93 // The mean value of the current set of variances.
ekmdb4fecf2015-06-22 17:49:08 -070094 float array_mean() const { return array_mean_; }
ekm030249d2015-06-15 13:02:24 -070095
96 private:
97 void InfiniteStep(const std::complex<float>* data, bool dummy);
98 void DecayStep(const std::complex<float>* data, bool dummy);
99 void WindowedStep(const std::complex<float>* data, bool dummy);
100 void BlockedStep(const std::complex<float>* data, bool dummy);
ekm35b72fb2015-07-10 14:11:52 -0700101 void BlockBasedMovingAverage(const std::complex<float>* data, bool dummy);
ekm030249d2015-06-15 13:02:24 -0700102
ekmdb4fecf2015-06-22 17:49:08 -0700103 // TODO(ekmeyerson): Switch the following running means
104 // and histories from rtc::scoped_ptr to std::vector.
105
ekm030249d2015-06-15 13:02:24 -0700106 // The current average X and X^2.
ekmdb4fecf2015-06-22 17:49:08 -0700107 rtc::scoped_ptr<std::complex<float>[]> running_mean_;
108 rtc::scoped_ptr<std::complex<float>[]> running_mean_sq_;
ekm030249d2015-06-15 13:02:24 -0700109
110 // Average X and X^2 for the current block in kStepBlocked.
ekmdb4fecf2015-06-22 17:49:08 -0700111 rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_;
112 rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_sq_;
ekm030249d2015-06-15 13:02:24 -0700113
114 // Sample history for the rolling window in kStepWindowed and block-wise
115 // histories for kStepBlocked.
ekmdb4fecf2015-06-22 17:49:08 -0700116 rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> history_;
117 rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_;
118 rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_sq_;
ekm030249d2015-06-15 13:02:24 -0700119
120 // The current set of variances and sums for Welford's algorithm.
ekmdb4fecf2015-06-22 17:49:08 -0700121 rtc::scoped_ptr<float[]> variance_;
122 rtc::scoped_ptr<float[]> conj_sum_;
ekm030249d2015-06-15 13:02:24 -0700123
Peter Kastingdce40cf2015-08-24 14:52:23 -0700124 const size_t num_freqs_;
125 const size_t window_size_;
ekm030249d2015-06-15 13:02:24 -0700126 const float decay_;
Peter Kastingdce40cf2015-08-24 14:52:23 -0700127 size_t history_cursor_;
128 size_t count_;
ekm030249d2015-06-15 13:02:24 -0700129 float array_mean_;
ekm35b72fb2015-07-10 14:11:52 -0700130 bool buffer_full_;
ekm030249d2015-06-15 13:02:24 -0700131 void (VarianceArray::*step_func_)(const std::complex<float>*, bool);
132};
133
134// Helper class for smoothing gain changes. On each applicatiion step, the
135// currently used gains are changed towards a set of settable target gains,
136// constrained by a limit on the magnitude of the changes.
137class GainApplier {
138 public:
Peter Kastingdce40cf2015-08-24 14:52:23 -0700139 GainApplier(size_t freqs, float change_limit);
ekm030249d2015-06-15 13:02:24 -0700140
141 // Copy |in_block| to |out_block|, multiplied by the current set of gains,
142 // and step the current set of gains towards the target set.
143 void Apply(const std::complex<float>* in_block,
144 std::complex<float>* out_block);
145
146 // Return the current target gain set. Modify this array to set the targets.
ekmdb4fecf2015-06-22 17:49:08 -0700147 float* target() const { return target_.get(); }
ekm030249d2015-06-15 13:02:24 -0700148
149 private:
Peter Kastingdce40cf2015-08-24 14:52:23 -0700150 const size_t num_freqs_;
ekm030249d2015-06-15 13:02:24 -0700151 const float change_limit_;
ekmdb4fecf2015-06-22 17:49:08 -0700152 rtc::scoped_ptr<float[]> target_;
153 rtc::scoped_ptr<float[]> current_;
ekm030249d2015-06-15 13:02:24 -0700154};
155
156} // namespace intelligibility
157
158} // namespace webrtc
159
160#endif // WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_