blob: 8e69f81f7ea69a7e44f3f61d3ce244ce68989846 [file] [log] [blame]
aluebs@webrtc.org1d883942015-03-05 20:38:21 +00001/*
2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
Mirko Bonadei92ea95e2017-09-15 06:47:31 +020011#ifndef MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_
12#define MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_
aluebs@webrtc.org1d883942015-03-05 20:38:21 +000013
14#include <cmath>
aluebs4a66e4a2015-10-19 18:02:39 -070015#include <vector>
aluebs@webrtc.org1d883942015-03-05 20:38:21 +000016
Danil Chapovalovdb9f7ab2018-06-19 10:50:11 +020017#include "absl/types/optional.h"
Alejandro Luebscb3f9bd2015-10-29 18:21:34 -070018
aluebs@webrtc.org1d883942015-03-05 20:38:21 +000019namespace webrtc {
20
Alejandro Luebscb3f9bd2015-10-29 18:21:34 -070021// Coordinates in meters. The convention used is:
22// x: the horizontal dimension, with positive to the right from the camera's
23// perspective.
24// y: the depth dimension, with positive forward from the camera's
25// perspective.
26// z: the vertical dimension, with positive upwards.
aluebs@webrtc.org1d883942015-03-05 20:38:21 +000027template<typename T>
28struct CartesianPoint {
Alejandro Luebscb3f9bd2015-10-29 18:21:34 -070029 CartesianPoint() {
30 c[0] = 0;
31 c[1] = 0;
32 c[2] = 0;
33 }
aluebs@webrtc.org1d883942015-03-05 20:38:21 +000034 CartesianPoint(T x, T y, T z) {
35 c[0] = x;
36 c[1] = y;
37 c[2] = z;
38 }
blochebe74222015-06-25 14:23:43 -070039 T x() const { return c[0]; }
40 T y() const { return c[1]; }
41 T z() const { return c[2]; }
aluebs@webrtc.org1d883942015-03-05 20:38:21 +000042 T c[3];
43};
44
blochebe74222015-06-25 14:23:43 -070045using Point = CartesianPoint<float>;
aluebs@webrtc.org1d883942015-03-05 20:38:21 +000046
Alejandro Luebscb3f9bd2015-10-29 18:21:34 -070047// Calculates the direction from a to b.
48Point PairDirection(const Point& a, const Point& b);
49
50float DotProduct(const Point& a, const Point& b);
51Point CrossProduct(const Point& a, const Point& b);
52
53bool AreParallel(const Point& a, const Point& b);
54bool ArePerpendicular(const Point& a, const Point& b);
55
aluebs4a66e4a2015-10-19 18:02:39 -070056// Returns the minimum distance between any two Points in the given
57// |array_geometry|.
58float GetMinimumSpacing(const std::vector<Point>& array_geometry);
59
Alejandro Luebscb3f9bd2015-10-29 18:21:34 -070060// If the given array geometry is linear it returns the direction without
61// normalizing.
Danil Chapovalovdb9f7ab2018-06-19 10:50:11 +020062absl::optional<Point> GetDirectionIfLinear(
Alejandro Luebscb3f9bd2015-10-29 18:21:34 -070063 const std::vector<Point>& array_geometry);
64
65// If the given array geometry is planar it returns the normal without
66// normalizing.
Danil Chapovalovdb9f7ab2018-06-19 10:50:11 +020067absl::optional<Point> GetNormalIfPlanar(
Karl Wibergbe579832015-11-10 22:34:18 +010068 const std::vector<Point>& array_geometry);
Alejandro Luebscb3f9bd2015-10-29 18:21:34 -070069
70// Returns the normal of an array if it has one and it is in the xy-plane.
Danil Chapovalovdb9f7ab2018-06-19 10:50:11 +020071absl::optional<Point> GetArrayNormalIfExists(
Alejandro Luebscb3f9bd2015-10-29 18:21:34 -070072 const std::vector<Point>& array_geometry);
73
74// The resulting Point will be in the xy-plane.
75Point AzimuthToPoint(float azimuth);
76
aluebs@webrtc.org1d883942015-03-05 20:38:21 +000077template<typename T>
78float Distance(CartesianPoint<T> a, CartesianPoint<T> b) {
79 return std::sqrt((a.x() - b.x()) * (a.x() - b.x()) +
80 (a.y() - b.y()) * (a.y() - b.y()) +
81 (a.z() - b.z()) * (a.z() - b.z()));
82}
83
Alejandro Luebscb3f9bd2015-10-29 18:21:34 -070084// The convention used:
85// azimuth: zero is to the right from the camera's perspective, with positive
86// angles in radians counter-clockwise.
87// elevation: zero is horizontal, with positive angles in radians upwards.
88// radius: distance from the camera in meters.
blochebe74222015-06-25 14:23:43 -070089template <typename T>
90struct SphericalPoint {
91 SphericalPoint(T azimuth, T elevation, T radius) {
92 s[0] = azimuth;
93 s[1] = elevation;
94 s[2] = radius;
95 }
96 T azimuth() const { return s[0]; }
97 T elevation() const { return s[1]; }
98 T distance() const { return s[2]; }
99 T s[3];
100};
101
102using SphericalPointf = SphericalPoint<float>;
103
Alejandro Luebscb3f9bd2015-10-29 18:21:34 -0700104// Helper functions to transform degrees to radians and the inverse.
105template <typename T>
106T DegreesToRadians(T angle_degrees) {
107 return M_PI * angle_degrees / 180;
108}
109
110template <typename T>
111T RadiansToDegrees(T angle_radians) {
112 return 180 * angle_radians / M_PI;
113}
114
aluebs@webrtc.org1d883942015-03-05 20:38:21 +0000115} // namespace webrtc
116
Mirko Bonadei92ea95e2017-09-15 06:47:31 +0200117#endif // MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_