henrik.lundin@webrtc.org | d94659d | 2013-01-29 12:09:21 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
| 11 | /* |
| 12 | * This file includes unit tests for NetEQ. |
| 13 | */ |
| 14 | |
| 15 | #include "webrtc/modules/audio_coding/neteq4/interface/neteq.h" |
| 16 | |
| 17 | #include <stdlib.h> |
| 18 | #include <string.h> // memset |
| 19 | |
| 20 | #include <string> |
| 21 | #include <vector> |
| 22 | |
| 23 | #include "gtest/gtest.h" |
| 24 | #include "webrtc/modules/audio_coding/neteq4/test/NETEQTEST_RTPpacket.h" |
| 25 | #include "webrtc/test/testsupport/fileutils.h" |
| 26 | #include "webrtc/typedefs.h" |
| 27 | |
| 28 | namespace webrtc { |
| 29 | |
| 30 | class RefFiles { |
| 31 | public: |
| 32 | RefFiles(const std::string& input_file, const std::string& output_file); |
| 33 | ~RefFiles(); |
| 34 | template<class T> void ProcessReference(const T& test_results); |
| 35 | template<typename T, size_t n> void ProcessReference( |
| 36 | const T (&test_results)[n], |
| 37 | size_t length); |
| 38 | template<typename T, size_t n> void WriteToFile( |
| 39 | const T (&test_results)[n], |
| 40 | size_t length); |
| 41 | template<typename T, size_t n> void ReadFromFileAndCompare( |
| 42 | const T (&test_results)[n], |
| 43 | size_t length); |
| 44 | void WriteToFile(const NetEqNetworkStatistics& stats); |
| 45 | void ReadFromFileAndCompare(const NetEqNetworkStatistics& stats); |
| 46 | void WriteToFile(const RtcpStatistics& stats); |
| 47 | void ReadFromFileAndCompare(const RtcpStatistics& stats); |
| 48 | |
| 49 | FILE* input_fp_; |
| 50 | FILE* output_fp_; |
| 51 | }; |
| 52 | |
| 53 | RefFiles::RefFiles(const std::string &input_file, |
| 54 | const std::string &output_file) |
| 55 | : input_fp_(NULL), |
| 56 | output_fp_(NULL) { |
| 57 | if (!input_file.empty()) { |
| 58 | input_fp_ = fopen(input_file.c_str(), "rb"); |
| 59 | EXPECT_TRUE(input_fp_ != NULL); |
| 60 | } |
| 61 | if (!output_file.empty()) { |
| 62 | output_fp_ = fopen(output_file.c_str(), "wb"); |
| 63 | EXPECT_TRUE(output_fp_ != NULL); |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | RefFiles::~RefFiles() { |
| 68 | if (input_fp_) { |
| 69 | EXPECT_EQ(EOF, fgetc(input_fp_)); // Make sure that we reached the end. |
| 70 | fclose(input_fp_); |
| 71 | } |
| 72 | if (output_fp_) fclose(output_fp_); |
| 73 | } |
| 74 | |
| 75 | template<class T> |
| 76 | void RefFiles::ProcessReference(const T& test_results) { |
| 77 | WriteToFile(test_results); |
| 78 | ReadFromFileAndCompare(test_results); |
| 79 | } |
| 80 | |
| 81 | template<typename T, size_t n> |
| 82 | void RefFiles::ProcessReference(const T (&test_results)[n], size_t length) { |
| 83 | WriteToFile(test_results, length); |
| 84 | ReadFromFileAndCompare(test_results, length); |
| 85 | } |
| 86 | |
| 87 | template<typename T, size_t n> |
| 88 | void RefFiles::WriteToFile(const T (&test_results)[n], size_t length) { |
| 89 | if (output_fp_) { |
| 90 | ASSERT_EQ(length, fwrite(&test_results, sizeof(T), length, output_fp_)); |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | template<typename T, size_t n> |
| 95 | void RefFiles::ReadFromFileAndCompare(const T (&test_results)[n], |
| 96 | size_t length) { |
| 97 | if (input_fp_) { |
| 98 | // Read from ref file. |
| 99 | T* ref = new T[length]; |
| 100 | ASSERT_EQ(length, fread(ref, sizeof(T), length, input_fp_)); |
| 101 | // Compare |
| 102 | ASSERT_EQ(0, memcmp(&test_results, ref, sizeof(T) * length)); |
| 103 | delete [] ref; |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | void RefFiles::WriteToFile(const NetEqNetworkStatistics& stats) { |
| 108 | if (output_fp_) { |
| 109 | ASSERT_EQ(1u, fwrite(&stats, sizeof(NetEqNetworkStatistics), 1, |
| 110 | output_fp_)); |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | void RefFiles::ReadFromFileAndCompare( |
| 115 | const NetEqNetworkStatistics& stats) { |
| 116 | if (input_fp_) { |
| 117 | // Read from ref file. |
| 118 | size_t stat_size = sizeof(NetEqNetworkStatistics); |
| 119 | NetEqNetworkStatistics ref_stats; |
| 120 | ASSERT_EQ(1u, fread(&ref_stats, stat_size, 1, input_fp_)); |
| 121 | // Compare |
| 122 | EXPECT_EQ(0, memcmp(&stats, &ref_stats, stat_size)); |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | void RefFiles::WriteToFile(const RtcpStatistics& stats) { |
| 127 | if (output_fp_) { |
| 128 | ASSERT_EQ(1u, fwrite(&(stats.fraction_lost), sizeof(stats.fraction_lost), 1, |
| 129 | output_fp_)); |
| 130 | ASSERT_EQ(1u, fwrite(&(stats.cumulative_lost), |
| 131 | sizeof(stats.cumulative_lost), 1, output_fp_)); |
| 132 | ASSERT_EQ(1u, fwrite(&(stats.extended_max), sizeof(stats.extended_max), 1, |
| 133 | output_fp_)); |
| 134 | ASSERT_EQ(1u, fwrite(&(stats.jitter), sizeof(stats.jitter), 1, |
| 135 | output_fp_)); |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | void RefFiles::ReadFromFileAndCompare( |
| 140 | const RtcpStatistics& stats) { |
| 141 | if (input_fp_) { |
| 142 | // Read from ref file. |
| 143 | RtcpStatistics ref_stats; |
| 144 | ASSERT_EQ(1u, fread(&(ref_stats.fraction_lost), |
| 145 | sizeof(ref_stats.fraction_lost), 1, input_fp_)); |
| 146 | ASSERT_EQ(1u, fread(&(ref_stats.cumulative_lost), |
| 147 | sizeof(ref_stats.cumulative_lost), 1, input_fp_)); |
| 148 | ASSERT_EQ(1u, fread(&(ref_stats.extended_max), |
| 149 | sizeof(ref_stats.extended_max), 1, input_fp_)); |
| 150 | ASSERT_EQ(1u, fread(&(ref_stats.jitter), sizeof(ref_stats.jitter), 1, |
| 151 | input_fp_)); |
| 152 | // Compare |
| 153 | EXPECT_EQ(ref_stats.fraction_lost, stats.fraction_lost); |
| 154 | EXPECT_EQ(ref_stats.cumulative_lost, stats.cumulative_lost); |
| 155 | EXPECT_EQ(ref_stats.extended_max, stats.extended_max); |
| 156 | EXPECT_EQ(ref_stats.jitter, stats.jitter); |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | class NetEqDecodingTest : public ::testing::Test { |
| 161 | protected: |
| 162 | // NetEQ must be polled for data once every 10 ms. Thus, neither of the |
| 163 | // constants below can be changed. |
| 164 | static const int kTimeStepMs = 10; |
| 165 | static const int kBlockSize8kHz = kTimeStepMs * 8; |
| 166 | static const int kBlockSize16kHz = kTimeStepMs * 16; |
| 167 | static const int kBlockSize32kHz = kTimeStepMs * 32; |
| 168 | static const int kMaxBlockSize = kBlockSize32kHz; |
| 169 | static const int kInitSampleRateHz = 8000; |
| 170 | |
| 171 | NetEqDecodingTest(); |
| 172 | virtual void SetUp(); |
| 173 | virtual void TearDown(); |
| 174 | void SelectDecoders(NetEqDecoder* used_codec); |
| 175 | void LoadDecoders(); |
| 176 | void OpenInputFile(const std::string &rtp_file); |
| 177 | void Process(NETEQTEST_RTPpacket* rtp_ptr, int* out_len); |
| 178 | void DecodeAndCompare(const std::string &rtp_file, |
| 179 | const std::string &ref_file); |
| 180 | void DecodeAndCheckStats(const std::string &rtp_file, |
| 181 | const std::string &stat_ref_file, |
| 182 | const std::string &rtcp_ref_file); |
| 183 | static void PopulateRtpInfo(int frame_index, |
| 184 | int timestamp, |
| 185 | WebRtcRTPHeader* rtp_info); |
| 186 | static void PopulateCng(int frame_index, |
| 187 | int timestamp, |
| 188 | WebRtcRTPHeader* rtp_info, |
| 189 | uint8_t* payload, |
| 190 | int* payload_len); |
| 191 | |
| 192 | NetEq* neteq_; |
| 193 | FILE* rtp_fp_; |
| 194 | unsigned int sim_clock_; |
| 195 | int16_t out_data_[kMaxBlockSize]; |
| 196 | int output_sample_rate_; |
| 197 | }; |
| 198 | |
| 199 | // Allocating the static const so that it can be passed by reference. |
| 200 | const int NetEqDecodingTest::kTimeStepMs; |
| 201 | const int NetEqDecodingTest::kBlockSize8kHz; |
| 202 | const int NetEqDecodingTest::kBlockSize16kHz; |
| 203 | const int NetEqDecodingTest::kBlockSize32kHz; |
| 204 | const int NetEqDecodingTest::kMaxBlockSize; |
| 205 | const int NetEqDecodingTest::kInitSampleRateHz; |
| 206 | |
| 207 | NetEqDecodingTest::NetEqDecodingTest() |
| 208 | : neteq_(NULL), |
| 209 | rtp_fp_(NULL), |
| 210 | sim_clock_(0), |
| 211 | output_sample_rate_(kInitSampleRateHz) { |
| 212 | memset(out_data_, 0, sizeof(out_data_)); |
| 213 | } |
| 214 | |
| 215 | void NetEqDecodingTest::SetUp() { |
| 216 | neteq_ = NetEq::Create(kInitSampleRateHz); |
| 217 | ASSERT_TRUE(neteq_); |
| 218 | LoadDecoders(); |
| 219 | } |
| 220 | |
| 221 | void NetEqDecodingTest::TearDown() { |
| 222 | delete neteq_; |
| 223 | if (rtp_fp_) |
| 224 | fclose(rtp_fp_); |
| 225 | } |
| 226 | |
| 227 | void NetEqDecodingTest::LoadDecoders() { |
| 228 | // Load PCMu. |
| 229 | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCMu, 0)); |
| 230 | // Load PCMa. |
| 231 | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCMa, 8)); |
| 232 | // Load iLBC. |
| 233 | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderILBC, 102)); |
| 234 | // Load iSAC. |
| 235 | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISAC, 103)); |
| 236 | // Load iSAC SWB. |
| 237 | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISACswb, 104)); |
| 238 | // Load PCM16B nb. |
| 239 | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16B, 93)); |
| 240 | // Load PCM16B wb. |
| 241 | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16Bwb, 94)); |
| 242 | // Load PCM16B swb32. |
| 243 | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16Bswb32kHz, 95)); |
| 244 | // Load CNG 8 kHz. |
| 245 | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGnb, 13)); |
| 246 | // Load CNG 16 kHz. |
| 247 | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGwb, 98)); |
| 248 | } |
| 249 | |
| 250 | void NetEqDecodingTest::OpenInputFile(const std::string &rtp_file) { |
| 251 | rtp_fp_ = fopen(rtp_file.c_str(), "rb"); |
| 252 | ASSERT_TRUE(rtp_fp_ != NULL); |
| 253 | ASSERT_EQ(0, NETEQTEST_RTPpacket::skipFileHeader(rtp_fp_)); |
| 254 | } |
| 255 | |
| 256 | void NetEqDecodingTest::Process(NETEQTEST_RTPpacket* rtp, int* out_len) { |
| 257 | // Check if time to receive. |
| 258 | while ((sim_clock_ >= rtp->time()) && |
| 259 | (rtp->dataLen() >= 0)) { |
| 260 | if (rtp->dataLen() > 0) { |
| 261 | WebRtcRTPHeader rtpInfo; |
| 262 | rtp->parseHeader(&rtpInfo); |
| 263 | ASSERT_EQ(0, neteq_->InsertPacket( |
| 264 | rtpInfo, |
| 265 | rtp->payload(), |
| 266 | rtp->payloadLen(), |
| 267 | rtp->time() * (output_sample_rate_ / 1000))); |
| 268 | } |
| 269 | // Get next packet. |
| 270 | ASSERT_NE(-1, rtp->readFromFile(rtp_fp_)); |
| 271 | } |
| 272 | |
| 273 | // RecOut |
| 274 | NetEqOutputType type; |
| 275 | int num_channels; |
| 276 | ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, out_len, |
| 277 | &num_channels, &type)); |
| 278 | ASSERT_TRUE((*out_len == kBlockSize8kHz) || |
| 279 | (*out_len == kBlockSize16kHz) || |
| 280 | (*out_len == kBlockSize32kHz)); |
| 281 | output_sample_rate_ = *out_len / 10 * 1000; |
| 282 | |
| 283 | // Increase time. |
| 284 | sim_clock_ += kTimeStepMs; |
| 285 | } |
| 286 | |
| 287 | void NetEqDecodingTest::DecodeAndCompare(const std::string &rtp_file, |
| 288 | const std::string &ref_file) { |
| 289 | OpenInputFile(rtp_file); |
| 290 | |
| 291 | std::string ref_out_file = ""; |
| 292 | if (ref_file.empty()) { |
| 293 | ref_out_file = webrtc::test::OutputPath() + "neteq_out.pcm"; |
| 294 | } |
| 295 | RefFiles ref_files(ref_file, ref_out_file); |
| 296 | |
| 297 | NETEQTEST_RTPpacket rtp; |
| 298 | ASSERT_GT(rtp.readFromFile(rtp_fp_), 0); |
| 299 | int i = 0; |
| 300 | while (rtp.dataLen() >= 0) { |
| 301 | std::ostringstream ss; |
| 302 | ss << "Lap number " << i++ << " in DecodeAndCompare while loop"; |
| 303 | SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. |
| 304 | int out_len; |
| 305 | ASSERT_NO_FATAL_FAILURE(Process(&rtp, &out_len)); |
| 306 | ASSERT_NO_FATAL_FAILURE(ref_files.ProcessReference(out_data_, out_len)); |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | void NetEqDecodingTest::DecodeAndCheckStats(const std::string &rtp_file, |
| 311 | const std::string &stat_ref_file, |
| 312 | const std::string &rtcp_ref_file) { |
| 313 | OpenInputFile(rtp_file); |
| 314 | std::string stat_out_file = ""; |
| 315 | if (stat_ref_file.empty()) { |
| 316 | stat_out_file = webrtc::test::OutputPath() + |
| 317 | "neteq_network_stats.dat"; |
| 318 | } |
| 319 | RefFiles network_stat_files(stat_ref_file, stat_out_file); |
| 320 | |
| 321 | std::string rtcp_out_file = ""; |
| 322 | if (rtcp_ref_file.empty()) { |
| 323 | rtcp_out_file = webrtc::test::OutputPath() + |
| 324 | "neteq_rtcp_stats.dat"; |
| 325 | } |
| 326 | RefFiles rtcp_stat_files(rtcp_ref_file, rtcp_out_file); |
| 327 | |
| 328 | NETEQTEST_RTPpacket rtp; |
| 329 | ASSERT_GT(rtp.readFromFile(rtp_fp_), 0); |
| 330 | while (rtp.dataLen() >= 0) { |
| 331 | int out_len; |
| 332 | Process(&rtp, &out_len); |
| 333 | |
| 334 | // Query the network statistics API once per second |
| 335 | if (sim_clock_ % 1000 == 0) { |
| 336 | // Process NetworkStatistics. |
| 337 | NetEqNetworkStatistics network_stats; |
| 338 | ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); |
| 339 | network_stat_files.ProcessReference(network_stats); |
| 340 | |
| 341 | // Process RTCPstat. |
| 342 | RtcpStatistics rtcp_stats; |
| 343 | neteq_->GetRtcpStatistics(&rtcp_stats); |
| 344 | rtcp_stat_files.ProcessReference(rtcp_stats); |
| 345 | } |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | void NetEqDecodingTest::PopulateRtpInfo(int frame_index, |
| 350 | int timestamp, |
| 351 | WebRtcRTPHeader* rtp_info) { |
| 352 | rtp_info->header.sequenceNumber = frame_index; |
| 353 | rtp_info->header.timestamp = timestamp; |
| 354 | rtp_info->header.ssrc = 0x1234; // Just an arbitrary SSRC. |
| 355 | rtp_info->header.payloadType = 94; // PCM16b WB codec. |
| 356 | rtp_info->header.markerBit = 0; |
| 357 | } |
| 358 | |
| 359 | void NetEqDecodingTest::PopulateCng(int frame_index, |
| 360 | int timestamp, |
| 361 | WebRtcRTPHeader* rtp_info, |
| 362 | uint8_t* payload, |
| 363 | int* payload_len) { |
| 364 | rtp_info->header.sequenceNumber = frame_index; |
| 365 | rtp_info->header.timestamp = timestamp; |
| 366 | rtp_info->header.ssrc = 0x1234; // Just an arbitrary SSRC. |
| 367 | rtp_info->header.payloadType = 98; // WB CNG. |
| 368 | rtp_info->header.markerBit = 0; |
| 369 | payload[0] = 64; // Noise level -64 dBov, quite arbitrarily chosen. |
| 370 | *payload_len = 1; // Only noise level, no spectral parameters. |
| 371 | } |
| 372 | |
| 373 | TEST_F(NetEqDecodingTest, TestBitExactness) { |
| 374 | const std::string kInputRtpFile = webrtc::test::ProjectRootPath() + |
| 375 | "resources/neteq_universal.rtp"; |
| 376 | const std::string kInputRefFile = |
| 377 | webrtc::test::ResourcePath("neteq_universal_ref", "pcm"); |
| 378 | DecodeAndCompare(kInputRtpFile, kInputRefFile); |
| 379 | } |
| 380 | |
| 381 | TEST_F(NetEqDecodingTest, TestNetworkStatistics) { |
| 382 | const std::string kInputRtpFile = webrtc::test::ProjectRootPath() + |
| 383 | "resources/neteq_universal.rtp"; |
| 384 | const std::string kNetworkStatRefFile = |
| 385 | webrtc::test::ResourcePath("neteq_network_stats", "dat"); |
| 386 | const std::string kRtcpStatRefFile = |
| 387 | webrtc::test::ResourcePath("neteq_rtcp_stats", "dat"); |
| 388 | DecodeAndCheckStats(kInputRtpFile, kNetworkStatRefFile, kRtcpStatRefFile); |
| 389 | } |
| 390 | |
| 391 | // TODO(hlundin): Re-enable test once the statistics interface is up and again. |
| 392 | TEST_F(NetEqDecodingTest, TestFrameWaitingTimeStatistics) { |
| 393 | // Use fax mode to avoid time-scaling. This is to simplify the testing of |
| 394 | // packet waiting times in the packet buffer. |
| 395 | neteq_->SetPlayoutMode(kPlayoutFax); |
| 396 | ASSERT_EQ(kPlayoutFax, neteq_->PlayoutMode()); |
| 397 | // Insert 30 dummy packets at once. Each packet contains 10 ms 16 kHz audio. |
| 398 | size_t num_frames = 30; |
| 399 | const int kSamples = 10 * 16; |
| 400 | const int kPayloadBytes = kSamples * 2; |
| 401 | for (size_t i = 0; i < num_frames; ++i) { |
| 402 | uint16_t payload[kSamples] = {0}; |
| 403 | WebRtcRTPHeader rtp_info; |
| 404 | rtp_info.header.sequenceNumber = i; |
| 405 | rtp_info.header.timestamp = i * kSamples; |
| 406 | rtp_info.header.ssrc = 0x1234; // Just an arbitrary SSRC. |
| 407 | rtp_info.header.payloadType = 94; // PCM16b WB codec. |
| 408 | rtp_info.header.markerBit = 0; |
| 409 | ASSERT_EQ(0, neteq_->InsertPacket( |
| 410 | rtp_info, |
| 411 | reinterpret_cast<uint8_t*>(payload), |
| 412 | kPayloadBytes, 0)); |
| 413 | } |
| 414 | // Pull out all data. |
| 415 | for (size_t i = 0; i < num_frames; ++i) { |
| 416 | int out_len; |
| 417 | int num_channels; |
| 418 | NetEqOutputType type; |
| 419 | ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, |
| 420 | &num_channels, &type)); |
| 421 | ASSERT_EQ(kBlockSize16kHz, out_len); |
| 422 | } |
| 423 | |
| 424 | std::vector<int> waiting_times; |
| 425 | neteq_->WaitingTimes(&waiting_times); |
| 426 | int len = waiting_times.size(); |
| 427 | EXPECT_EQ(num_frames, waiting_times.size()); |
| 428 | // Since all frames are dumped into NetEQ at once, but pulled out with 10 ms |
| 429 | // spacing (per definition), we expect the delay to increase with 10 ms for |
| 430 | // each packet. |
| 431 | for (size_t i = 0; i < waiting_times.size(); ++i) { |
| 432 | EXPECT_EQ(static_cast<int>(i + 1) * 10, waiting_times[i]); |
| 433 | } |
| 434 | |
| 435 | // Check statistics again and make sure it's been reset. |
| 436 | neteq_->WaitingTimes(&waiting_times); |
| 437 | len = waiting_times.size(); |
| 438 | EXPECT_EQ(0, len); |
| 439 | |
| 440 | // Process > 100 frames, and make sure that that we get statistics |
| 441 | // only for 100 frames. Note the new SSRC, causing NetEQ to reset. |
| 442 | num_frames = 110; |
| 443 | for (size_t i = 0; i < num_frames; ++i) { |
| 444 | uint16_t payload[kSamples] = {0}; |
| 445 | WebRtcRTPHeader rtp_info; |
| 446 | rtp_info.header.sequenceNumber = i; |
| 447 | rtp_info.header.timestamp = i * kSamples; |
| 448 | rtp_info.header.ssrc = 0x1235; // Just an arbitrary SSRC. |
| 449 | rtp_info.header.payloadType = 94; // PCM16b WB codec. |
| 450 | rtp_info.header.markerBit = 0; |
| 451 | ASSERT_EQ(0, neteq_->InsertPacket( |
| 452 | rtp_info, |
| 453 | reinterpret_cast<uint8_t*>(payload), |
| 454 | kPayloadBytes, 0)); |
| 455 | int out_len; |
| 456 | int num_channels; |
| 457 | NetEqOutputType type; |
| 458 | ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, |
| 459 | &num_channels, &type)); |
| 460 | ASSERT_EQ(kBlockSize16kHz, out_len); |
| 461 | } |
| 462 | |
| 463 | neteq_->WaitingTimes(&waiting_times); |
| 464 | EXPECT_EQ(100u, waiting_times.size()); |
| 465 | } |
| 466 | |
| 467 | TEST_F(NetEqDecodingTest, TestAverageInterArrivalTimeNegative) { |
| 468 | const int kNumFrames = 3000; // Needed for convergence. |
| 469 | int frame_index = 0; |
| 470 | const int kSamples = 10 * 16; |
| 471 | const int kPayloadBytes = kSamples * 2; |
| 472 | while (frame_index < kNumFrames) { |
| 473 | // Insert one packet each time, except every 10th time where we insert two |
| 474 | // packets at once. This will create a negative clock-drift of approx. 10%. |
| 475 | int num_packets = (frame_index % 10 == 0 ? 2 : 1); |
| 476 | for (int n = 0; n < num_packets; ++n) { |
| 477 | uint8_t payload[kPayloadBytes] = {0}; |
| 478 | WebRtcRTPHeader rtp_info; |
| 479 | PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info); |
| 480 | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); |
| 481 | ++frame_index; |
| 482 | } |
| 483 | |
| 484 | // Pull out data once. |
| 485 | int out_len; |
| 486 | int num_channels; |
| 487 | NetEqOutputType type; |
| 488 | ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, |
| 489 | &num_channels, &type)); |
| 490 | ASSERT_EQ(kBlockSize16kHz, out_len); |
| 491 | } |
| 492 | |
| 493 | NetEqNetworkStatistics network_stats; |
| 494 | ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); |
| 495 | EXPECT_EQ(-103196, network_stats.clockdrift_ppm); |
| 496 | } |
| 497 | |
| 498 | TEST_F(NetEqDecodingTest, TestAverageInterArrivalTimePositive) { |
| 499 | const int kNumFrames = 5000; // Needed for convergence. |
| 500 | int frame_index = 0; |
| 501 | const int kSamples = 10 * 16; |
| 502 | const int kPayloadBytes = kSamples * 2; |
| 503 | for (int i = 0; i < kNumFrames; ++i) { |
| 504 | // Insert one packet each time, except every 10th time where we don't insert |
| 505 | // any packet. This will create a positive clock-drift of approx. 11%. |
| 506 | int num_packets = (i % 10 == 9 ? 0 : 1); |
| 507 | for (int n = 0; n < num_packets; ++n) { |
| 508 | uint8_t payload[kPayloadBytes] = {0}; |
| 509 | WebRtcRTPHeader rtp_info; |
| 510 | PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info); |
| 511 | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); |
| 512 | ++frame_index; |
| 513 | } |
| 514 | |
| 515 | // Pull out data once. |
| 516 | int out_len; |
| 517 | int num_channels; |
| 518 | NetEqOutputType type; |
| 519 | ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, |
| 520 | &num_channels, &type)); |
| 521 | ASSERT_EQ(kBlockSize16kHz, out_len); |
| 522 | } |
| 523 | |
| 524 | NetEqNetworkStatistics network_stats; |
| 525 | ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); |
| 526 | EXPECT_EQ(110946, network_stats.clockdrift_ppm); |
| 527 | } |
| 528 | |
| 529 | TEST_F(NetEqDecodingTest, LongCngWithClockDrift) { |
| 530 | uint16_t seq_no = 0; |
| 531 | uint32_t timestamp = 0; |
| 532 | const int kFrameSizeMs = 30; |
| 533 | const int kSamples = kFrameSizeMs * 16; |
| 534 | const int kPayloadBytes = kSamples * 2; |
| 535 | // Apply a clock drift of -25 ms / s (sender faster than receiver). |
| 536 | const double kDriftFactor = 1000.0 / (1000.0 + 25.0); |
| 537 | double next_input_time_ms = 0.0; |
| 538 | double t_ms; |
| 539 | NetEqOutputType type; |
| 540 | |
| 541 | // Insert speech for 5 seconds. |
| 542 | const int kSpeechDurationMs = 5000; |
| 543 | for (t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) { |
| 544 | // Each turn in this for loop is 10 ms. |
| 545 | while (next_input_time_ms <= t_ms) { |
| 546 | // Insert one 30 ms speech frame. |
| 547 | uint8_t payload[kPayloadBytes] = {0}; |
| 548 | WebRtcRTPHeader rtp_info; |
| 549 | PopulateRtpInfo(seq_no, timestamp, &rtp_info); |
| 550 | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); |
| 551 | ++seq_no; |
| 552 | timestamp += kSamples; |
| 553 | next_input_time_ms += static_cast<double>(kFrameSizeMs) * kDriftFactor; |
| 554 | } |
| 555 | // Pull out data once. |
| 556 | int out_len; |
| 557 | int num_channels; |
| 558 | ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, |
| 559 | &num_channels, &type)); |
| 560 | ASSERT_EQ(kBlockSize16kHz, out_len); |
| 561 | } |
| 562 | |
| 563 | EXPECT_EQ(kOutputNormal, type); |
| 564 | int32_t delay_before = timestamp - neteq_->PlayoutTimestamp(); |
| 565 | |
| 566 | // Insert CNG for 1 minute (= 60000 ms). |
| 567 | const int kCngPeriodMs = 100; |
| 568 | const int kCngPeriodSamples = kCngPeriodMs * 16; // Period in 16 kHz samples. |
| 569 | const int kCngDurationMs = 60000; |
| 570 | for (; t_ms < kSpeechDurationMs + kCngDurationMs; t_ms += 10) { |
| 571 | // Each turn in this for loop is 10 ms. |
| 572 | while (next_input_time_ms <= t_ms) { |
| 573 | // Insert one CNG frame each 100 ms. |
| 574 | uint8_t payload[kPayloadBytes]; |
| 575 | int payload_len; |
| 576 | WebRtcRTPHeader rtp_info; |
| 577 | PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); |
| 578 | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0)); |
| 579 | ++seq_no; |
| 580 | timestamp += kCngPeriodSamples; |
| 581 | next_input_time_ms += static_cast<double>(kCngPeriodMs) * kDriftFactor; |
| 582 | } |
| 583 | // Pull out data once. |
| 584 | int out_len; |
| 585 | int num_channels; |
| 586 | ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, |
| 587 | &num_channels, &type)); |
| 588 | ASSERT_EQ(kBlockSize16kHz, out_len); |
| 589 | } |
| 590 | |
| 591 | EXPECT_EQ(kOutputCNG, type); |
| 592 | |
| 593 | // Insert speech again until output type is speech. |
| 594 | while (type != kOutputNormal) { |
| 595 | // Each turn in this for loop is 10 ms. |
| 596 | while (next_input_time_ms <= t_ms) { |
| 597 | // Insert one 30 ms speech frame. |
| 598 | uint8_t payload[kPayloadBytes] = {0}; |
| 599 | WebRtcRTPHeader rtp_info; |
| 600 | PopulateRtpInfo(seq_no, timestamp, &rtp_info); |
| 601 | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); |
| 602 | ++seq_no; |
| 603 | timestamp += kSamples; |
| 604 | next_input_time_ms += static_cast<double>(kFrameSizeMs) * kDriftFactor; |
| 605 | } |
| 606 | // Pull out data once. |
| 607 | int out_len; |
| 608 | int num_channels; |
| 609 | ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, |
| 610 | &num_channels, &type)); |
| 611 | ASSERT_EQ(kBlockSize16kHz, out_len); |
| 612 | // Increase clock. |
| 613 | t_ms += 10; |
| 614 | } |
| 615 | |
| 616 | int32_t delay_after = timestamp - neteq_->PlayoutTimestamp(); |
| 617 | // Compare delay before and after, and make sure it differs less than 20 ms. |
| 618 | EXPECT_LE(delay_after, delay_before + 20 * 16); |
| 619 | EXPECT_GE(delay_after, delay_before - 20 * 16); |
| 620 | } |
| 621 | |
| 622 | TEST_F(NetEqDecodingTest, UnknownPayloadType) { |
| 623 | const int kPayloadBytes = 100; |
| 624 | uint8_t payload[kPayloadBytes] = {0}; |
| 625 | WebRtcRTPHeader rtp_info; |
| 626 | PopulateRtpInfo(0, 0, &rtp_info); |
| 627 | rtp_info.header.payloadType = 1; // Not registered as a decoder. |
| 628 | EXPECT_EQ(NetEq::kFail, |
| 629 | neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); |
| 630 | EXPECT_EQ(NetEq::kUnknownRtpPayloadType, neteq_->LastError()); |
| 631 | } |
| 632 | |
| 633 | TEST_F(NetEqDecodingTest, DecoderError) { |
| 634 | const int kPayloadBytes = 100; |
| 635 | uint8_t payload[kPayloadBytes] = {0}; |
| 636 | WebRtcRTPHeader rtp_info; |
| 637 | PopulateRtpInfo(0, 0, &rtp_info); |
| 638 | rtp_info.header.payloadType = 103; // iSAC, but the payload is invalid. |
| 639 | EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); |
| 640 | NetEqOutputType type; |
| 641 | // Set all of |out_data_| to 1, and verify that it was set to 0 by the call |
| 642 | // to GetAudio. |
| 643 | for (int i = 0; i < kMaxBlockSize; ++i) { |
| 644 | out_data_[i] = 1; |
| 645 | } |
| 646 | int num_channels; |
| 647 | int samples_per_channel; |
| 648 | EXPECT_EQ(NetEq::kFail, |
| 649 | neteq_->GetAudio(kMaxBlockSize, out_data_, |
| 650 | &samples_per_channel, &num_channels, &type)); |
| 651 | // Verify that there is a decoder error to check. |
| 652 | EXPECT_EQ(NetEq::kDecoderErrorCode, neteq_->LastError()); |
| 653 | // Code 6730 is an iSAC error code. |
| 654 | EXPECT_EQ(6730, neteq_->LastDecoderError()); |
| 655 | // Verify that the first 160 samples are set to 0, and that the remaining |
| 656 | // samples are left unmodified. |
| 657 | static const int kExpectedOutputLength = 160; // 10 ms at 16 kHz sample rate. |
| 658 | for (int i = 0; i < kExpectedOutputLength; ++i) { |
| 659 | std::ostringstream ss; |
| 660 | ss << "i = " << i; |
| 661 | SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. |
| 662 | EXPECT_EQ(0, out_data_[i]); |
| 663 | } |
| 664 | for (int i = kExpectedOutputLength; i < kMaxBlockSize; ++i) { |
| 665 | std::ostringstream ss; |
| 666 | ss << "i = " << i; |
| 667 | SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. |
| 668 | EXPECT_EQ(1, out_data_[i]); |
| 669 | } |
| 670 | } |
| 671 | |
| 672 | TEST_F(NetEqDecodingTest, GetAudioBeforeInsertPacket) { |
| 673 | NetEqOutputType type; |
| 674 | // Set all of |out_data_| to 1, and verify that it was set to 0 by the call |
| 675 | // to GetAudio. |
| 676 | for (int i = 0; i < kMaxBlockSize; ++i) { |
| 677 | out_data_[i] = 1; |
| 678 | } |
| 679 | int num_channels; |
| 680 | int samples_per_channel; |
| 681 | EXPECT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, |
| 682 | &samples_per_channel, |
| 683 | &num_channels, &type)); |
| 684 | // Verify that the first block of samples is set to 0. |
| 685 | static const int kExpectedOutputLength = |
| 686 | kInitSampleRateHz / 100; // 10 ms at initial sample rate. |
| 687 | for (int i = 0; i < kExpectedOutputLength; ++i) { |
| 688 | std::ostringstream ss; |
| 689 | ss << "i = " << i; |
| 690 | SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. |
| 691 | EXPECT_EQ(0, out_data_[i]); |
| 692 | } |
| 693 | } |
| 694 | } // namespace |