blob: aeac77ac95bdea0ef44f0b64948739c2e3f3bd8b [file] [log] [blame]
andrew@webrtc.org31628aa2013-10-22 12:50:00 +00001/*
2 * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
stefan@webrtc.orgc9cff242011-08-29 07:39:02 +000010
andrew@webrtc.org31628aa2013-10-22 12:50:00 +000011// Borrowed from Chromium's src/base/memory/scoped_ptr.h.
stefan@webrtc.orgc9cff242011-08-29 07:39:02 +000012
andrew@webrtc.org31628aa2013-10-22 12:50:00 +000013// Scopers help you manage ownership of a pointer, helping you easily manage the
14// a pointer within a scope, and automatically destroying the pointer at the
15// end of a scope. There are two main classes you will use, which correspond
16// to the operators new/delete and new[]/delete[].
17//
18// Example usage (scoped_ptr<T>):
19// {
20// scoped_ptr<Foo> foo(new Foo("wee"));
21// } // foo goes out of scope, releasing the pointer with it.
22//
23// {
24// scoped_ptr<Foo> foo; // No pointer managed.
25// foo.reset(new Foo("wee")); // Now a pointer is managed.
26// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
27// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
28// foo->Method(); // Foo::Method() called.
29// foo.get()->Method(); // Foo::Method() called.
30// SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
31// // manages a pointer.
32// foo.reset(new Foo("wee4")); // foo manages a pointer again.
33// foo.reset(); // Foo("wee4") destroyed, foo no longer
34// // manages a pointer.
35// } // foo wasn't managing a pointer, so nothing was destroyed.
36//
37// Example usage (scoped_ptr<T[]>):
38// {
39// scoped_ptr<Foo[]> foo(new Foo[100]);
40// foo.get()->Method(); // Foo::Method on the 0th element.
41// foo[10].Method(); // Foo::Method on the 10th element.
42// }
43//
44// These scopers also implement part of the functionality of C++11 unique_ptr
45// in that they are "movable but not copyable." You can use the scopers in
46// the parameter and return types of functions to signify ownership transfer
47// in to and out of a function. When calling a function that has a scoper
48// as the argument type, it must be called with the result of an analogous
49// scoper's Pass() function or another function that generates a temporary;
50// passing by copy will NOT work. Here is an example using scoped_ptr:
51//
52// void TakesOwnership(scoped_ptr<Foo> arg) {
53// // Do something with arg
54// }
55// scoped_ptr<Foo> CreateFoo() {
56// // No need for calling Pass() because we are constructing a temporary
57// // for the return value.
58// return scoped_ptr<Foo>(new Foo("new"));
59// }
60// scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
61// return arg.Pass();
62// }
63//
64// {
65// scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay").
66// TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay").
67// scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
68// scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
69// PassThru(ptr2.Pass()); // ptr2 is correspondingly NULL.
70// }
71//
72// Notice that if you do not call Pass() when returning from PassThru(), or
73// when invoking TakesOwnership(), the code will not compile because scopers
74// are not copyable; they only implement move semantics which require calling
75// the Pass() function to signify a destructive transfer of state. CreateFoo()
76// is different though because we are constructing a temporary on the return
77// line and thus can avoid needing to call Pass().
78//
79// Pass() properly handles upcast in initialization, i.e. you can use a
80// scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
81//
82// scoped_ptr<Foo> foo(new Foo());
83// scoped_ptr<FooParent> parent(foo.Pass());
84//
85// PassAs<>() should be used to upcast return value in return statement:
86//
87// scoped_ptr<Foo> CreateFoo() {
88// scoped_ptr<FooChild> result(new FooChild());
89// return result.PassAs<Foo>();
90// }
91//
92// Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
93// scoped_ptr<T[]>. This is because casting array pointers may not be safe.
stefan@webrtc.orgc9cff242011-08-29 07:39:02 +000094
stefan@webrtc.orgc9cff242011-08-29 07:39:02 +000095#ifndef WEBRTC_SYSTEM_WRAPPERS_INTERFACE_SCOPED_PTR_H_
96#define WEBRTC_SYSTEM_WRAPPERS_INTERFACE_SCOPED_PTR_H_
97
andrew@webrtc.org31628aa2013-10-22 12:50:00 +000098// This is an implementation designed to match the anticipated future TR2
99// implementation of the scoped_ptr class and scoped_ptr_malloc (deprecated).
stefan@webrtc.orgc9cff242011-08-29 07:39:02 +0000100
andrew@webrtc.org31628aa2013-10-22 12:50:00 +0000101#include <assert.h>
102#include <stddef.h>
103#include <stdlib.h>
104
105#include <algorithm> // For std::swap().
106
107#include "webrtc/system_wrappers/interface/compile_assert.h"
108#include "webrtc/system_wrappers/interface/constructor_magic.h"
andrew@webrtc.org31628aa2013-10-22 12:50:00 +0000109#include "webrtc/system_wrappers/interface/template_util.h"
andrew@webrtc.orgb3731da2013-10-24 15:16:53 +0000110#include "webrtc/system_wrappers/source/move.h"
andrew@webrtc.org31628aa2013-10-22 12:50:00 +0000111#include "webrtc/typedefs.h"
stefan@webrtc.orgc9cff242011-08-29 07:39:02 +0000112
113namespace webrtc {
114
andrew@webrtc.org31628aa2013-10-22 12:50:00 +0000115// Function object which deletes its parameter, which must be a pointer.
116// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
117// invokes 'delete'. The default deleter for scoped_ptr<T>.
118template <class T>
119struct DefaultDeleter {
120 DefaultDeleter() {}
121 template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
122 // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
123 // if U* is implicitly convertible to T* and U is not an array type.
124 //
125 // Correct implementation should use SFINAE to disable this
126 // constructor. However, since there are no other 1-argument constructors,
127 // using a COMPILE_ASSERT() based on is_convertible<> and requiring
128 // complete types is simpler and will cause compile failures for equivalent
129 // misuses.
130 //
131 // Note, the is_convertible<U*, T*> check also ensures that U is not an
132 // array. T is guaranteed to be a non-array, so any U* where U is an array
133 // cannot convert to T*.
134 enum { T_must_be_complete = sizeof(T) };
135 enum { U_must_be_complete = sizeof(U) };
136 COMPILE_ASSERT((webrtc::is_convertible<U*, T*>::value),
137 U_ptr_must_implicitly_convert_to_T_ptr);
138 }
139 inline void operator()(T* ptr) const {
140 enum { type_must_be_complete = sizeof(T) };
stefan@webrtc.orgc9cff242011-08-29 07:39:02 +0000141 delete ptr;
142 }
stefan@webrtc.orgc9cff242011-08-29 07:39:02 +0000143};
144
andrew@webrtc.org31628aa2013-10-22 12:50:00 +0000145// Specialization of DefaultDeleter for array types.
146template <class T>
147struct DefaultDeleter<T[]> {
148 inline void operator()(T* ptr) const {
149 enum { type_must_be_complete = sizeof(T) };
150 delete[] ptr;
151 }
152
153 private:
154 // Disable this operator for any U != T because it is undefined to execute
155 // an array delete when the static type of the array mismatches the dynamic
156 // type.
157 //
158 // References:
159 // C++98 [expr.delete]p3
160 // http://cplusplus.github.com/LWG/lwg-defects.html#938
161 template <typename U> void operator()(U* array) const;
162};
163
164template <class T, int n>
165struct DefaultDeleter<T[n]> {
166 // Never allow someone to declare something like scoped_ptr<int[10]>.
167 COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
168};
169
170// Function object which invokes 'free' on its parameter, which must be
171// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
172//
173// scoped_ptr<int, webrtc::FreeDeleter> foo_ptr(
174// static_cast<int*>(malloc(sizeof(int))));
175struct FreeDeleter {
176 inline void operator()(void* ptr) const {
177 free(ptr);
178 }
179};
180
181namespace internal {
182
183// Minimal implementation of the core logic of scoped_ptr, suitable for
184// reuse in both scoped_ptr and its specializations.
185template <class T, class D>
186class scoped_ptr_impl {
187 public:
188 explicit scoped_ptr_impl(T* p) : data_(p) { }
189
190 // Initializer for deleters that have data parameters.
191 scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
192
193 // Templated constructor that destructively takes the value from another
194 // scoped_ptr_impl.
195 template <typename U, typename V>
196 scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
197 : data_(other->release(), other->get_deleter()) {
198 // We do not support move-only deleters. We could modify our move
199 // emulation to have webrtc::subtle::move() and webrtc::subtle::forward()
200 // functions that are imperfect emulations of their C++11 equivalents,
201 // but until there's a requirement, just assume deleters are copyable.
202 }
203
204 template <typename U, typename V>
205 void TakeState(scoped_ptr_impl<U, V>* other) {
206 // See comment in templated constructor above regarding lack of support
207 // for move-only deleters.
208 reset(other->release());
209 get_deleter() = other->get_deleter();
210 }
211
212 ~scoped_ptr_impl() {
213 if (data_.ptr != NULL) {
214 // Not using get_deleter() saves one function call in non-optimized
215 // builds.
216 static_cast<D&>(data_)(data_.ptr);
217 }
218 }
219
220 void reset(T* p) {
221 // This is a self-reset, which is no longer allowed: http://crbug.com/162971
222 if (p != NULL && p == data_.ptr)
223 abort();
224
225 // Note that running data_.ptr = p can lead to undefined behavior if
226 // get_deleter()(get()) deletes this. In order to pevent this, reset()
227 // should update the stored pointer before deleting its old value.
228 //
229 // However, changing reset() to use that behavior may cause current code to
230 // break in unexpected ways. If the destruction of the owned object
231 // dereferences the scoped_ptr when it is destroyed by a call to reset(),
232 // then it will incorrectly dispatch calls to |p| rather than the original
233 // value of |data_.ptr|.
234 //
235 // During the transition period, set the stored pointer to NULL while
236 // deleting the object. Eventually, this safety check will be removed to
237 // prevent the scenario initially described from occuring and
238 // http://crbug.com/176091 can be closed.
239 T* old = data_.ptr;
240 data_.ptr = NULL;
241 if (old != NULL)
242 static_cast<D&>(data_)(old);
243 data_.ptr = p;
244 }
245
246 T* get() const { return data_.ptr; }
247
248 D& get_deleter() { return data_; }
249 const D& get_deleter() const { return data_; }
250
251 void swap(scoped_ptr_impl& p2) {
252 // Standard swap idiom: 'using std::swap' ensures that std::swap is
253 // present in the overload set, but we call swap unqualified so that
254 // any more-specific overloads can be used, if available.
255 using std::swap;
256 swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
257 swap(data_.ptr, p2.data_.ptr);
258 }
259
260 T* release() {
261 T* old_ptr = data_.ptr;
262 data_.ptr = NULL;
263 return old_ptr;
264 }
265
266 private:
267 // Needed to allow type-converting constructor.
268 template <typename U, typename V> friend class scoped_ptr_impl;
269
270 // Use the empty base class optimization to allow us to have a D
271 // member, while avoiding any space overhead for it when D is an
272 // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
273 // discussion of this technique.
274 struct Data : public D {
275 explicit Data(T* ptr_in) : ptr(ptr_in) {}
276 Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
277 T* ptr;
278 };
279
280 Data data_;
281
282 DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
283};
284
285} // namespace internal
286
287// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
288// automatically deletes the pointer it holds (if any).
289// That is, scoped_ptr<T> owns the T object that it points to.
290// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
291// Also like T*, scoped_ptr<T> is thread-compatible, and once you
292// dereference it, you get the thread safety guarantees of T.
293//
294// The size of scoped_ptr is small. On most compilers, when using the
295// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
296// increase the size proportional to whatever state they need to have. See
297// comments inside scoped_ptr_impl<> for details.
298//
299// Current implementation targets having a strict subset of C++11's
300// unique_ptr<> features. Known deficiencies include not supporting move-only
301// deleteres, function pointers as deleters, and deleters with reference
302// types.
303template <class T, class D = webrtc::DefaultDeleter<T> >
304class scoped_ptr {
andrew@webrtc.orgb3731da2013-10-24 15:16:53 +0000305 WEBRTC_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
andrew@webrtc.org31628aa2013-10-22 12:50:00 +0000306
307 public:
308 // The element and deleter types.
309 typedef T element_type;
310 typedef D deleter_type;
311
312 // Constructor. Defaults to initializing with NULL.
313 scoped_ptr() : impl_(NULL) { }
314
315 // Constructor. Takes ownership of p.
316 explicit scoped_ptr(element_type* p) : impl_(p) { }
317
318 // Constructor. Allows initialization of a stateful deleter.
319 scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
320
321 // Constructor. Allows construction from a scoped_ptr rvalue for a
322 // convertible type and deleter.
323 //
324 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
325 // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
326 // has different post-conditions if D is a reference type. Since this
327 // implementation does not support deleters with reference type,
328 // we do not need a separate move constructor allowing us to avoid one
329 // use of SFINAE. You only need to care about this if you modify the
330 // implementation of scoped_ptr.
331 template <typename U, typename V>
332 scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
333 COMPILE_ASSERT(!webrtc::is_array<U>::value, U_cannot_be_an_array);
334 }
335
336 // Constructor. Move constructor for C++03 move emulation of this type.
337 scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
338
339 // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
340 // type and deleter.
341 //
342 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
343 // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
344 // form has different requirements on for move-only Deleters. Since this
345 // implementation does not support move-only Deleters, we do not need a
346 // separate move assignment operator allowing us to avoid one use of SFINAE.
347 // You only need to care about this if you modify the implementation of
348 // scoped_ptr.
349 template <typename U, typename V>
350 scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
351 COMPILE_ASSERT(!webrtc::is_array<U>::value, U_cannot_be_an_array);
352 impl_.TakeState(&rhs.impl_);
353 return *this;
354 }
355
356 // Reset. Deletes the currently owned object, if any.
357 // Then takes ownership of a new object, if given.
358 void reset(element_type* p = NULL) { impl_.reset(p); }
359
360 // Accessors to get the owned object.
361 // operator* and operator-> will assert() if there is no current object.
362 element_type& operator*() const {
363 assert(impl_.get() != NULL);
364 return *impl_.get();
365 }
366 element_type* operator->() const {
367 assert(impl_.get() != NULL);
368 return impl_.get();
369 }
370 element_type* get() const { return impl_.get(); }
371
372 // Access to the deleter.
373 deleter_type& get_deleter() { return impl_.get_deleter(); }
374 const deleter_type& get_deleter() const { return impl_.get_deleter(); }
375
376 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
377 // implicitly convertible to a real bool (which is dangerous).
378 //
379 // Note that this trick is only safe when the == and != operators
380 // are declared explicitly, as otherwise "scoped_ptr1 ==
381 // scoped_ptr2" will compile but do the wrong thing (i.e., convert
382 // to Testable and then do the comparison).
383 private:
384 typedef webrtc::internal::scoped_ptr_impl<element_type, deleter_type>
385 scoped_ptr::*Testable;
386
387 public:
388 operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
389
390 // Comparison operators.
391 // These return whether two scoped_ptr refer to the same object, not just to
392 // two different but equal objects.
393 bool operator==(const element_type* p) const { return impl_.get() == p; }
394 bool operator!=(const element_type* p) const { return impl_.get() != p; }
395
396 // Swap two scoped pointers.
397 void swap(scoped_ptr& p2) {
398 impl_.swap(p2.impl_);
399 }
400
401 // Release a pointer.
402 // The return value is the current pointer held by this object.
403 // If this object holds a NULL pointer, the return value is NULL.
404 // After this operation, this object will hold a NULL pointer,
405 // and will not own the object any more.
406 element_type* release() WARN_UNUSED_RESULT {
407 return impl_.release();
408 }
409
410 // C++98 doesn't support functions templates with default parameters which
411 // makes it hard to write a PassAs() that understands converting the deleter
412 // while preserving simple calling semantics.
413 //
414 // Until there is a use case for PassAs() with custom deleters, just ignore
415 // the custom deleter.
416 template <typename PassAsType>
417 scoped_ptr<PassAsType> PassAs() {
418 return scoped_ptr<PassAsType>(Pass());
419 }
420
421 private:
422 // Needed to reach into |impl_| in the constructor.
423 template <typename U, typename V> friend class scoped_ptr;
424 webrtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
425
426 // Forbidden for API compatibility with std::unique_ptr.
427 explicit scoped_ptr(int disallow_construction_from_null);
428
429 // Forbid comparison of scoped_ptr types. If U != T, it totally
430 // doesn't make sense, and if U == T, it still doesn't make sense
431 // because you should never have the same object owned by two different
432 // scoped_ptrs.
433 template <class U> bool operator==(scoped_ptr<U> const& p2) const;
434 template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
435};
436
437template <class T, class D>
438class scoped_ptr<T[], D> {
andrew@webrtc.orgb3731da2013-10-24 15:16:53 +0000439 WEBRTC_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
andrew@webrtc.org31628aa2013-10-22 12:50:00 +0000440
441 public:
442 // The element and deleter types.
443 typedef T element_type;
444 typedef D deleter_type;
445
446 // Constructor. Defaults to initializing with NULL.
447 scoped_ptr() : impl_(NULL) { }
448
449 // Constructor. Stores the given array. Note that the argument's type
450 // must exactly match T*. In particular:
451 // - it cannot be a pointer to a type derived from T, because it is
452 // inherently unsafe in the general case to access an array through a
453 // pointer whose dynamic type does not match its static type (eg., if
454 // T and the derived types had different sizes access would be
455 // incorrectly calculated). Deletion is also always undefined
456 // (C++98 [expr.delete]p3). If you're doing this, fix your code.
457 // - it cannot be NULL, because NULL is an integral expression, not a
458 // pointer to T. Use the no-argument version instead of explicitly
459 // passing NULL.
460 // - it cannot be const-qualified differently from T per unique_ptr spec
461 // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
462 // to work around this may use implicit_cast<const T*>().
463 // However, because of the first bullet in this comment, users MUST
464 // NOT use implicit_cast<Base*>() to upcast the static type of the array.
465 explicit scoped_ptr(element_type* array) : impl_(array) { }
466
467 // Constructor. Move constructor for C++03 move emulation of this type.
468 scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
469
470 // operator=. Move operator= for C++03 move emulation of this type.
471 scoped_ptr& operator=(RValue rhs) {
472 impl_.TakeState(&rhs.object->impl_);
473 return *this;
474 }
475
476 // Reset. Deletes the currently owned array, if any.
477 // Then takes ownership of a new object, if given.
478 void reset(element_type* array = NULL) { impl_.reset(array); }
479
480 // Accessors to get the owned array.
481 element_type& operator[](size_t i) const {
482 assert(impl_.get() != NULL);
483 return impl_.get()[i];
484 }
485 element_type* get() const { return impl_.get(); }
486
487 // Access to the deleter.
488 deleter_type& get_deleter() { return impl_.get_deleter(); }
489 const deleter_type& get_deleter() const { return impl_.get_deleter(); }
490
491 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
492 // implicitly convertible to a real bool (which is dangerous).
493 private:
494 typedef webrtc::internal::scoped_ptr_impl<element_type, deleter_type>
495 scoped_ptr::*Testable;
496
497 public:
498 operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
499
500 // Comparison operators.
501 // These return whether two scoped_ptr refer to the same object, not just to
502 // two different but equal objects.
503 bool operator==(element_type* array) const { return impl_.get() == array; }
504 bool operator!=(element_type* array) const { return impl_.get() != array; }
505
506 // Swap two scoped pointers.
507 void swap(scoped_ptr& p2) {
508 impl_.swap(p2.impl_);
509 }
510
511 // Release a pointer.
512 // The return value is the current pointer held by this object.
513 // If this object holds a NULL pointer, the return value is NULL.
514 // After this operation, this object will hold a NULL pointer,
515 // and will not own the object any more.
516 element_type* release() WARN_UNUSED_RESULT {
517 return impl_.release();
518 }
519
520 private:
521 // Force element_type to be a complete type.
522 enum { type_must_be_complete = sizeof(element_type) };
523
524 // Actually hold the data.
525 webrtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
526
527 // Disable initialization from any type other than element_type*, by
528 // providing a constructor that matches such an initialization, but is
529 // private and has no definition. This is disabled because it is not safe to
530 // call delete[] on an array whose static type does not match its dynamic
531 // type.
532 template <typename U> explicit scoped_ptr(U* array);
533 explicit scoped_ptr(int disallow_construction_from_null);
534
535 // Disable reset() from any type other than element_type*, for the same
536 // reasons as the constructor above.
537 template <typename U> void reset(U* array);
538 void reset(int disallow_reset_from_null);
539
540 // Forbid comparison of scoped_ptr types. If U != T, it totally
541 // doesn't make sense, and if U == T, it still doesn't make sense
542 // because you should never have the same object owned by two different
543 // scoped_ptrs.
544 template <class U> bool operator==(scoped_ptr<U> const& p2) const;
545 template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
546};
547
548} // namespace webrtc
549
550// Free functions
551template <class T, class D>
552void swap(webrtc::scoped_ptr<T, D>& p1, webrtc::scoped_ptr<T, D>& p2) {
553 p1.swap(p2);
stefan@webrtc.orgc9cff242011-08-29 07:39:02 +0000554}
555
andrew@webrtc.org31628aa2013-10-22 12:50:00 +0000556template <class T, class D>
557bool operator==(T* p1, const webrtc::scoped_ptr<T, D>& p2) {
558 return p1 == p2.get();
559}
stefan@webrtc.orgc9cff242011-08-29 07:39:02 +0000560
andrew@webrtc.org31628aa2013-10-22 12:50:00 +0000561template <class T, class D>
562bool operator!=(T* p1, const webrtc::scoped_ptr<T, D>& p2) {
563 return p1 != p2.get();
564}
stefan@webrtc.orgc9cff242011-08-29 07:39:02 +0000565
andrew@webrtc.org31628aa2013-10-22 12:50:00 +0000566namespace webrtc {
567
568// DEPRECATED: Use scoped_ptr<T[]> instead.
569// TODO(ajm): Remove scoped_array.
570//
stefan@webrtc.orgc9cff242011-08-29 07:39:02 +0000571// scoped_array extends scoped_ptr to arrays. Deletion of the array pointed to
572// is guaranteed, either on destruction of the scoped_array or via an explicit
573// reset(). Use shared_array or std::vector if your needs are more complex.
574
575template<typename T>
576class scoped_array {
577 private:
578
579 T* ptr;
580
581 scoped_array(scoped_array const &);
582 scoped_array & operator=(scoped_array const &);
583
584 public:
585
586 typedef T element_type;
587
588 explicit scoped_array(T* p = NULL) : ptr(p) {}
589
590 ~scoped_array() {
591 typedef char type_must_be_complete[sizeof(T)];
592 delete[] ptr;
593 }
594
595 void reset(T* p = NULL) {
596 typedef char type_must_be_complete[sizeof(T)];
597
598 if (ptr != p) {
599 T* arr = ptr;
600 ptr = p;
601 // Delete last, in case arr destructor indirectly results in ~scoped_array
602 delete [] arr;
603 }
604 }
605
pbos@webrtc.org12dc1a32013-08-05 16:22:53 +0000606 T& operator[](ptrdiff_t i) const {
stefan@webrtc.orgc9cff242011-08-29 07:39:02 +0000607 assert(ptr != NULL);
608 assert(i >= 0);
609 return ptr[i];
610 }
611
612 T* get() const {
613 return ptr;
614 }
615
616 void swap(scoped_array & b) {
617 T* tmp = b.ptr;
618 b.ptr = ptr;
619 ptr = tmp;
620 }
621
622 T* release() {
623 T* tmp = ptr;
624 ptr = NULL;
625 return tmp;
626 }
627
628 T** accept() {
629 if (ptr) {
630 delete [] ptr;
631 ptr = NULL;
632 }
633 return &ptr;
634 }
635};
636
637template<class T> inline
638void swap(scoped_array<T>& a, scoped_array<T>& b) {
639 a.swap(b);
640}
641
andrew@webrtc.org31628aa2013-10-22 12:50:00 +0000642// DEPRECATED: Use scoped_ptr<C, webrtc::FreeDeleter> instead.
643// TODO(ajm): Remove scoped_ptr_malloc.
644//
stefan@webrtc.orgc9cff242011-08-29 07:39:02 +0000645// scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
646// second template argument, the function used to free the object.
647
648template<typename T, void (*FF)(void*) = free> class scoped_ptr_malloc {
649 private:
650
651 T* ptr;
652
653 scoped_ptr_malloc(scoped_ptr_malloc const &);
654 scoped_ptr_malloc & operator=(scoped_ptr_malloc const &);
655
656 public:
657
658 typedef T element_type;
659
660 explicit scoped_ptr_malloc(T* p = 0): ptr(p) {}
661
662 ~scoped_ptr_malloc() {
663 FF(static_cast<void*>(ptr));
664 }
665
666 void reset(T* p = 0) {
667 if (ptr != p) {
668 FF(static_cast<void*>(ptr));
669 ptr = p;
670 }
671 }
672
673 T& operator*() const {
674 assert(ptr != 0);
675 return *ptr;
676 }
677
678 T* operator->() const {
679 assert(ptr != 0);
680 return ptr;
681 }
682
683 T* get() const {
684 return ptr;
685 }
686
687 void swap(scoped_ptr_malloc & b) {
688 T* tmp = b.ptr;
689 b.ptr = ptr;
690 ptr = tmp;
691 }
692
693 T* release() {
694 T* tmp = ptr;
695 ptr = 0;
696 return tmp;
697 }
698
699 T** accept() {
700 if (ptr) {
701 FF(static_cast<void*>(ptr));
702 ptr = 0;
703 }
704 return &ptr;
705 }
706};
707
708template<typename T, void (*FF)(void*)> inline
709void swap(scoped_ptr_malloc<T,FF>& a, scoped_ptr_malloc<T,FF>& b) {
710 a.swap(b);
711}
712
pbos@webrtc.orgd900e8b2013-07-03 15:12:26 +0000713} // namespace webrtc
stefan@webrtc.orgc9cff242011-08-29 07:39:02 +0000714
andrew@webrtc.org31628aa2013-10-22 12:50:00 +0000715#endif // WEBRTC_SYSTEM_WRAPPERS_INTERFACE_SCOPED_PTR_H_