blob: 21d6eabaa644fca9366dda1f5a66fe4f1c7d5af7 [file] [log] [blame]
henrike@webrtc.org28e20752013-07-10 00:45:36 +00001/*
2 * libjingle
3 * Copyright 2004--2005, Google Inc.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
19 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
22 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
24 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
25 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#if defined(_MSC_VER) && _MSC_VER < 1300
29#pragma warning(disable:4786)
30#endif
31
32#include <cassert>
33
34#ifdef POSIX
35#include <string.h>
36#include <errno.h>
37#include <fcntl.h>
38#include <sys/time.h>
39#include <unistd.h>
40#include <signal.h>
41#endif
42
43#ifdef WIN32
44#define WIN32_LEAN_AND_MEAN
45#include <windows.h>
46#include <winsock2.h>
47#include <ws2tcpip.h>
48#undef SetPort
49#endif
50
51#include <algorithm>
52#include <map>
53
54#include "talk/base/basictypes.h"
55#include "talk/base/byteorder.h"
56#include "talk/base/common.h"
57#include "talk/base/logging.h"
58#include "talk/base/nethelpers.h"
59#include "talk/base/physicalsocketserver.h"
60#include "talk/base/timeutils.h"
61#include "talk/base/winping.h"
62#include "talk/base/win32socketinit.h"
63
64// stm: this will tell us if we are on OSX
65#ifdef HAVE_CONFIG_H
66#include "config.h"
67#endif
68
69#ifdef POSIX
70#include <netinet/tcp.h> // for TCP_NODELAY
71#define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h
72typedef void* SockOptArg;
73#endif // POSIX
74
75#ifdef WIN32
76typedef char* SockOptArg;
77#endif
78
79namespace talk_base {
80
81// Standard MTUs, from RFC 1191
82const uint16 PACKET_MAXIMUMS[] = {
83 65535, // Theoretical maximum, Hyperchannel
84 32000, // Nothing
85 17914, // 16Mb IBM Token Ring
86 8166, // IEEE 802.4
87 //4464, // IEEE 802.5 (4Mb max)
88 4352, // FDDI
89 //2048, // Wideband Network
90 2002, // IEEE 802.5 (4Mb recommended)
91 //1536, // Expermental Ethernet Networks
92 //1500, // Ethernet, Point-to-Point (default)
93 1492, // IEEE 802.3
94 1006, // SLIP, ARPANET
95 //576, // X.25 Networks
96 //544, // DEC IP Portal
97 //512, // NETBIOS
98 508, // IEEE 802/Source-Rt Bridge, ARCNET
99 296, // Point-to-Point (low delay)
100 68, // Official minimum
101 0, // End of list marker
102};
103
104static const int IP_HEADER_SIZE = 20u;
105static const int IPV6_HEADER_SIZE = 40u;
106static const int ICMP_HEADER_SIZE = 8u;
107static const int ICMP_PING_TIMEOUT_MILLIS = 10000u;
108
109class PhysicalSocket : public AsyncSocket, public sigslot::has_slots<> {
110 public:
111 PhysicalSocket(PhysicalSocketServer* ss, SOCKET s = INVALID_SOCKET)
112 : ss_(ss), s_(s), enabled_events_(0), error_(0),
113 state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED),
114 resolver_(NULL) {
115#ifdef WIN32
116 // EnsureWinsockInit() ensures that winsock is initialized. The default
117 // version of this function doesn't do anything because winsock is
118 // initialized by constructor of a static object. If neccessary libjingle
119 // users can link it with a different version of this function by replacing
120 // win32socketinit.cc. See win32socketinit.cc for more details.
121 EnsureWinsockInit();
122#endif
123 if (s_ != INVALID_SOCKET) {
124 enabled_events_ = DE_READ | DE_WRITE;
125
126 int type = SOCK_STREAM;
127 socklen_t len = sizeof(type);
128 VERIFY(0 == getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len));
129 udp_ = (SOCK_DGRAM == type);
130 }
131 }
132
133 virtual ~PhysicalSocket() {
134 Close();
135 }
136
137 // Creates the underlying OS socket (same as the "socket" function).
138 virtual bool Create(int family, int type) {
139 Close();
140 s_ = ::socket(family, type, 0);
141 udp_ = (SOCK_DGRAM == type);
142 UpdateLastError();
143 if (udp_)
144 enabled_events_ = DE_READ | DE_WRITE;
145 return s_ != INVALID_SOCKET;
146 }
147
148 SocketAddress GetLocalAddress() const {
149 sockaddr_storage addr_storage = {0};
150 socklen_t addrlen = sizeof(addr_storage);
151 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
152 int result = ::getsockname(s_, addr, &addrlen);
153 SocketAddress address;
154 if (result >= 0) {
155 SocketAddressFromSockAddrStorage(addr_storage, &address);
156 } else {
157 LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket="
158 << s_;
159 }
160 return address;
161 }
162
163 SocketAddress GetRemoteAddress() const {
164 sockaddr_storage addr_storage = {0};
165 socklen_t addrlen = sizeof(addr_storage);
166 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
167 int result = ::getpeername(s_, addr, &addrlen);
168 SocketAddress address;
169 if (result >= 0) {
170 SocketAddressFromSockAddrStorage(addr_storage, &address);
171 } else {
172 LOG(LS_WARNING) << "GetRemoteAddress: unable to get remote addr, socket="
173 << s_;
174 }
175 return address;
176 }
177
178 int Bind(const SocketAddress& bind_addr) {
179 sockaddr_storage addr_storage;
180 size_t len = bind_addr.ToSockAddrStorage(&addr_storage);
181 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
182 int err = ::bind(s_, addr, static_cast<int>(len));
183 UpdateLastError();
184#ifdef _DEBUG
185 if (0 == err) {
186 dbg_addr_ = "Bound @ ";
187 dbg_addr_.append(GetLocalAddress().ToString());
188 }
189#endif // _DEBUG
190 return err;
191 }
192
193 int Connect(const SocketAddress& addr) {
194 // TODO: Implicit creation is required to reconnect...
195 // ...but should we make it more explicit?
196 if (state_ != CS_CLOSED) {
197 SetError(EALREADY);
198 return SOCKET_ERROR;
199 }
200 if (addr.IsUnresolved()) {
201 LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect";
202 resolver_ = new AsyncResolver();
203 resolver_->set_address(addr);
204 resolver_->SignalWorkDone.connect(this, &PhysicalSocket::OnResolveResult);
205 resolver_->Start();
206 state_ = CS_CONNECTING;
207 return 0;
208 }
209
210 return DoConnect(addr);
211 }
212
213 int DoConnect(const SocketAddress& connect_addr) {
214 if ((s_ == INVALID_SOCKET) &&
215 !Create(connect_addr.family(), SOCK_STREAM)) {
216 return SOCKET_ERROR;
217 }
218 sockaddr_storage addr_storage;
219 size_t len = connect_addr.ToSockAddrStorage(&addr_storage);
220 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
221 int err = ::connect(s_, addr, static_cast<int>(len));
222 UpdateLastError();
223 if (err == 0) {
224 state_ = CS_CONNECTED;
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000225 } else if (IsBlockingError(GetError())) {
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000226 state_ = CS_CONNECTING;
227 enabled_events_ |= DE_CONNECT;
228 } else {
229 return SOCKET_ERROR;
230 }
231
232 enabled_events_ |= DE_READ | DE_WRITE;
233 return 0;
234 }
235
236 int GetError() const {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000237 CritScope cs(&crit_);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000238 return error_;
239 }
240
241 void SetError(int error) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000242 CritScope cs(&crit_);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000243 error_ = error;
244 }
245
246 ConnState GetState() const {
247 return state_;
248 }
249
250 int GetOption(Option opt, int* value) {
251 int slevel;
252 int sopt;
253 if (TranslateOption(opt, &slevel, &sopt) == -1)
254 return -1;
255 socklen_t optlen = sizeof(*value);
256 int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen);
257 if (ret != -1 && opt == OPT_DONTFRAGMENT) {
258#ifdef LINUX
259 *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0;
260#endif
261 }
262 return ret;
263 }
264
265 int SetOption(Option opt, int value) {
266 int slevel;
267 int sopt;
268 if (TranslateOption(opt, &slevel, &sopt) == -1)
269 return -1;
270 if (opt == OPT_DONTFRAGMENT) {
271#ifdef LINUX
272 value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
273#endif
274 }
275 return ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value));
276 }
277
278 int Send(const void *pv, size_t cb) {
279 int sent = ::send(s_, reinterpret_cast<const char *>(pv), (int)cb,
280#ifdef LINUX
281 // Suppress SIGPIPE. Without this, attempting to send on a socket whose
282 // other end is closed will result in a SIGPIPE signal being raised to
283 // our process, which by default will terminate the process, which we
284 // don't want. By specifying this flag, we'll just get the error EPIPE
285 // instead and can handle the error gracefully.
286 MSG_NOSIGNAL
287#else
288 0
289#endif
290 );
291 UpdateLastError();
292 MaybeRemapSendError();
293 // We have seen minidumps where this may be false.
294 ASSERT(sent <= static_cast<int>(cb));
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000295 if ((sent < 0) && IsBlockingError(GetError())) {
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000296 enabled_events_ |= DE_WRITE;
297 }
298 return sent;
299 }
300
301 int SendTo(const void* buffer, size_t length, const SocketAddress& addr) {
302 sockaddr_storage saddr;
303 size_t len = addr.ToSockAddrStorage(&saddr);
304 int sent = ::sendto(
305 s_, static_cast<const char *>(buffer), static_cast<int>(length),
306#ifdef LINUX
307 // Suppress SIGPIPE. See above for explanation.
308 MSG_NOSIGNAL,
309#else
310 0,
311#endif
312 reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len));
313 UpdateLastError();
314 MaybeRemapSendError();
315 // We have seen minidumps where this may be false.
316 ASSERT(sent <= static_cast<int>(length));
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000317 if ((sent < 0) && IsBlockingError(GetError())) {
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000318 enabled_events_ |= DE_WRITE;
319 }
320 return sent;
321 }
322
323 int Recv(void* buffer, size_t length) {
324 int received = ::recv(s_, static_cast<char*>(buffer),
325 static_cast<int>(length), 0);
326 if ((received == 0) && (length != 0)) {
327 // Note: on graceful shutdown, recv can return 0. In this case, we
328 // pretend it is blocking, and then signal close, so that simplifying
329 // assumptions can be made about Recv.
330 LOG(LS_WARNING) << "EOF from socket; deferring close event";
331 // Must turn this back on so that the select() loop will notice the close
332 // event.
333 enabled_events_ |= DE_READ;
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000334 SetError(EWOULDBLOCK);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000335 return SOCKET_ERROR;
336 }
337 UpdateLastError();
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000338 int error = GetError();
339 bool success = (received >= 0) || IsBlockingError(error);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000340 if (udp_ || success) {
341 enabled_events_ |= DE_READ;
342 }
343 if (!success) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000344 LOG_F(LS_VERBOSE) << "Error = " << error;
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000345 }
346 return received;
347 }
348
349 int RecvFrom(void* buffer, size_t length, SocketAddress *out_addr) {
350 sockaddr_storage addr_storage;
351 socklen_t addr_len = sizeof(addr_storage);
352 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
353 int received = ::recvfrom(s_, static_cast<char*>(buffer),
354 static_cast<int>(length), 0, addr, &addr_len);
355 UpdateLastError();
356 if ((received >= 0) && (out_addr != NULL))
357 SocketAddressFromSockAddrStorage(addr_storage, out_addr);
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000358 int error = GetError();
359 bool success = (received >= 0) || IsBlockingError(error);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000360 if (udp_ || success) {
361 enabled_events_ |= DE_READ;
362 }
363 if (!success) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000364 LOG_F(LS_VERBOSE) << "Error = " << error;
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000365 }
366 return received;
367 }
368
369 int Listen(int backlog) {
370 int err = ::listen(s_, backlog);
371 UpdateLastError();
372 if (err == 0) {
373 state_ = CS_CONNECTING;
374 enabled_events_ |= DE_ACCEPT;
375#ifdef _DEBUG
376 dbg_addr_ = "Listening @ ";
377 dbg_addr_.append(GetLocalAddress().ToString());
378#endif // _DEBUG
379 }
380 return err;
381 }
382
383 AsyncSocket* Accept(SocketAddress *out_addr) {
384 sockaddr_storage addr_storage;
385 socklen_t addr_len = sizeof(addr_storage);
386 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
387 SOCKET s = ::accept(s_, addr, &addr_len);
388 UpdateLastError();
389 if (s == INVALID_SOCKET)
390 return NULL;
391 enabled_events_ |= DE_ACCEPT;
392 if (out_addr != NULL)
393 SocketAddressFromSockAddrStorage(addr_storage, out_addr);
394 return ss_->WrapSocket(s);
395 }
396
397 int Close() {
398 if (s_ == INVALID_SOCKET)
399 return 0;
400 int err = ::closesocket(s_);
401 UpdateLastError();
402 s_ = INVALID_SOCKET;
403 state_ = CS_CLOSED;
404 enabled_events_ = 0;
405 if (resolver_) {
406 resolver_->Destroy(false);
407 resolver_ = NULL;
408 }
409 return err;
410 }
411
412 int EstimateMTU(uint16* mtu) {
413 SocketAddress addr = GetRemoteAddress();
414 if (addr.IsAny()) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000415 SetError(ENOTCONN);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000416 return -1;
417 }
418
419#if defined(WIN32)
420 // Gets the interface MTU (TTL=1) for the interface used to reach |addr|.
421 WinPing ping;
422 if (!ping.IsValid()) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000423 SetError(EINVAL); // can't think of a better error ID
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000424 return -1;
425 }
426 int header_size = ICMP_HEADER_SIZE;
427 if (addr.family() == AF_INET6) {
428 header_size += IPV6_HEADER_SIZE;
429 } else if (addr.family() == AF_INET) {
430 header_size += IP_HEADER_SIZE;
431 }
432
433 for (int level = 0; PACKET_MAXIMUMS[level + 1] > 0; ++level) {
434 int32 size = PACKET_MAXIMUMS[level] - header_size;
435 WinPing::PingResult result = ping.Ping(addr.ipaddr(), size,
436 ICMP_PING_TIMEOUT_MILLIS,
437 1, false);
438 if (result == WinPing::PING_FAIL) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000439 SetError(EINVAL); // can't think of a better error ID
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000440 return -1;
441 } else if (result != WinPing::PING_TOO_LARGE) {
442 *mtu = PACKET_MAXIMUMS[level];
443 return 0;
444 }
445 }
446
447 ASSERT(false);
448 return -1;
449#elif defined(IOS) || defined(OSX)
450 // No simple way to do this on Mac OS X.
451 // SIOCGIFMTU would work if we knew which interface would be used, but
452 // figuring that out is pretty complicated. For now we'll return an error
453 // and let the caller pick a default MTU.
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000454 SetError(EINVAL);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000455 return -1;
456#elif defined(LINUX) || defined(ANDROID)
457 // Gets the path MTU.
458 int value;
459 socklen_t vlen = sizeof(value);
460 int err = getsockopt(s_, IPPROTO_IP, IP_MTU, &value, &vlen);
461 if (err < 0) {
462 UpdateLastError();
463 return err;
464 }
465
466 ASSERT((0 <= value) && (value <= 65536));
467 *mtu = value;
468 return 0;
469#endif
470 }
471
472 SocketServer* socketserver() { return ss_; }
473
474 protected:
475 void OnResolveResult(SignalThread* thread) {
476 if (thread != resolver_) {
477 return;
478 }
479
480 int error = resolver_->error();
481 if (error == 0) {
482 error = DoConnect(resolver_->address());
483 } else {
484 Close();
485 }
486
487 if (error) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000488 SetError(error);
489 SignalCloseEvent(this, error);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000490 }
491 }
492
493 void UpdateLastError() {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000494 SetError(LAST_SYSTEM_ERROR);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000495 }
496
497 void MaybeRemapSendError() {
498#if defined(OSX)
499 // https://developer.apple.com/library/mac/documentation/Darwin/
500 // Reference/ManPages/man2/sendto.2.html
501 // ENOBUFS - The output queue for a network interface is full.
502 // This generally indicates that the interface has stopped sending,
503 // but may be caused by transient congestion.
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000504 if (GetError() == ENOBUFS) {
505 SetError(EWOULDBLOCK);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000506 }
507#endif
508 }
509
510 static int TranslateOption(Option opt, int* slevel, int* sopt) {
511 switch (opt) {
512 case OPT_DONTFRAGMENT:
513#ifdef WIN32
514 *slevel = IPPROTO_IP;
515 *sopt = IP_DONTFRAGMENT;
516 break;
517#elif defined(IOS) || defined(OSX) || defined(BSD)
518 LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported.";
519 return -1;
520#elif defined(POSIX)
521 *slevel = IPPROTO_IP;
522 *sopt = IP_MTU_DISCOVER;
523 break;
524#endif
525 case OPT_RCVBUF:
526 *slevel = SOL_SOCKET;
527 *sopt = SO_RCVBUF;
528 break;
529 case OPT_SNDBUF:
530 *slevel = SOL_SOCKET;
531 *sopt = SO_SNDBUF;
532 break;
533 case OPT_NODELAY:
534 *slevel = IPPROTO_TCP;
535 *sopt = TCP_NODELAY;
536 break;
537 default:
538 ASSERT(false);
539 return -1;
540 }
541 return 0;
542 }
543
544 PhysicalSocketServer* ss_;
545 SOCKET s_;
546 uint8 enabled_events_;
547 bool udp_;
548 int error_;
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000549 // Protects |error_| that is accessed from different threads.
550 mutable CriticalSection crit_;
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000551 ConnState state_;
552 AsyncResolver* resolver_;
553
554#ifdef _DEBUG
555 std::string dbg_addr_;
556#endif // _DEBUG;
557};
558
559#ifdef POSIX
560class EventDispatcher : public Dispatcher {
561 public:
562 EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) {
563 if (pipe(afd_) < 0)
564 LOG(LERROR) << "pipe failed";
565 ss_->Add(this);
566 }
567
568 virtual ~EventDispatcher() {
569 ss_->Remove(this);
570 close(afd_[0]);
571 close(afd_[1]);
572 }
573
574 virtual void Signal() {
575 CritScope cs(&crit_);
576 if (!fSignaled_) {
577 const uint8 b[1] = { 0 };
578 if (VERIFY(1 == write(afd_[1], b, sizeof(b)))) {
579 fSignaled_ = true;
580 }
581 }
582 }
583
584 virtual uint32 GetRequestedEvents() {
585 return DE_READ;
586 }
587
588 virtual void OnPreEvent(uint32 ff) {
589 // It is not possible to perfectly emulate an auto-resetting event with
590 // pipes. This simulates it by resetting before the event is handled.
591
592 CritScope cs(&crit_);
593 if (fSignaled_) {
594 uint8 b[4]; // Allow for reading more than 1 byte, but expect 1.
595 VERIFY(1 == read(afd_[0], b, sizeof(b)));
596 fSignaled_ = false;
597 }
598 }
599
600 virtual void OnEvent(uint32 ff, int err) {
601 ASSERT(false);
602 }
603
604 virtual int GetDescriptor() {
605 return afd_[0];
606 }
607
608 virtual bool IsDescriptorClosed() {
609 return false;
610 }
611
612 private:
613 PhysicalSocketServer *ss_;
614 int afd_[2];
615 bool fSignaled_;
616 CriticalSection crit_;
617};
618
619// These two classes use the self-pipe trick to deliver POSIX signals to our
620// select loop. This is the only safe, reliable, cross-platform way to do
621// non-trivial things with a POSIX signal in an event-driven program (until
622// proper pselect() implementations become ubiquitous).
623
624class PosixSignalHandler {
625 public:
626 // POSIX only specifies 32 signals, but in principle the system might have
627 // more and the programmer might choose to use them, so we size our array
628 // for 128.
629 static const int kNumPosixSignals = 128;
630
631 // There is just a single global instance. (Signal handlers do not get any
632 // sort of user-defined void * parameter, so they can't access anything that
633 // isn't global.)
634 static PosixSignalHandler* Instance() {
635 LIBJINGLE_DEFINE_STATIC_LOCAL(PosixSignalHandler, instance, ());
636 return &instance;
637 }
638
639 // Returns true if the given signal number is set.
640 bool IsSignalSet(int signum) const {
641 ASSERT(signum < ARRAY_SIZE(received_signal_));
642 if (signum < ARRAY_SIZE(received_signal_)) {
643 return received_signal_[signum];
644 } else {
645 return false;
646 }
647 }
648
649 // Clears the given signal number.
650 void ClearSignal(int signum) {
651 ASSERT(signum < ARRAY_SIZE(received_signal_));
652 if (signum < ARRAY_SIZE(received_signal_)) {
653 received_signal_[signum] = false;
654 }
655 }
656
657 // Returns the file descriptor to monitor for signal events.
658 int GetDescriptor() const {
659 return afd_[0];
660 }
661
662 // This is called directly from our real signal handler, so it must be
663 // signal-handler-safe. That means it cannot assume anything about the
664 // user-level state of the process, since the handler could be executed at any
665 // time on any thread.
666 void OnPosixSignalReceived(int signum) {
667 if (signum >= ARRAY_SIZE(received_signal_)) {
668 // We don't have space in our array for this.
669 return;
670 }
671 // Set a flag saying we've seen this signal.
672 received_signal_[signum] = true;
673 // Notify application code that we got a signal.
674 const uint8 b[1] = { 0 };
675 if (-1 == write(afd_[1], b, sizeof(b))) {
676 // Nothing we can do here. If there's an error somehow then there's
677 // nothing we can safely do from a signal handler.
678 // No, we can't even safely log it.
679 // But, we still have to check the return value here. Otherwise,
680 // GCC 4.4.1 complains ignoring return value. Even (void) doesn't help.
681 return;
682 }
683 }
684
685 private:
686 PosixSignalHandler() {
687 if (pipe(afd_) < 0) {
688 LOG_ERR(LS_ERROR) << "pipe failed";
689 return;
690 }
691 if (fcntl(afd_[0], F_SETFL, O_NONBLOCK) < 0) {
692 LOG_ERR(LS_WARNING) << "fcntl #1 failed";
693 }
694 if (fcntl(afd_[1], F_SETFL, O_NONBLOCK) < 0) {
695 LOG_ERR(LS_WARNING) << "fcntl #2 failed";
696 }
697 memset(const_cast<void *>(static_cast<volatile void *>(received_signal_)),
698 0,
699 sizeof(received_signal_));
700 }
701
702 ~PosixSignalHandler() {
703 int fd1 = afd_[0];
704 int fd2 = afd_[1];
705 // We clobber the stored file descriptor numbers here or else in principle
706 // a signal that happens to be delivered during application termination
707 // could erroneously write a zero byte to an unrelated file handle in
708 // OnPosixSignalReceived() if some other file happens to be opened later
709 // during shutdown and happens to be given the same file descriptor number
710 // as our pipe had. Unfortunately even with this precaution there is still a
711 // race where that could occur if said signal happens to be handled
712 // concurrently with this code and happens to have already read the value of
713 // afd_[1] from memory before we clobber it, but that's unlikely.
714 afd_[0] = -1;
715 afd_[1] = -1;
716 close(fd1);
717 close(fd2);
718 }
719
720 int afd_[2];
721 // These are boolean flags that will be set in our signal handler and read
722 // and cleared from Wait(). There is a race involved in this, but it is
723 // benign. The signal handler sets the flag before signaling the pipe, so
724 // we'll never end up blocking in select() while a flag is still true.
725 // However, if two of the same signal arrive close to each other then it's
726 // possible that the second time the handler may set the flag while it's still
727 // true, meaning that signal will be missed. But the first occurrence of it
728 // will still be handled, so this isn't a problem.
729 // Volatile is not necessary here for correctness, but this data _is_ volatile
730 // so I've marked it as such.
731 volatile uint8 received_signal_[kNumPosixSignals];
732};
733
734class PosixSignalDispatcher : public Dispatcher {
735 public:
736 PosixSignalDispatcher(PhysicalSocketServer *owner) : owner_(owner) {
737 owner_->Add(this);
738 }
739
740 virtual ~PosixSignalDispatcher() {
741 owner_->Remove(this);
742 }
743
744 virtual uint32 GetRequestedEvents() {
745 return DE_READ;
746 }
747
748 virtual void OnPreEvent(uint32 ff) {
749 // Events might get grouped if signals come very fast, so we read out up to
750 // 16 bytes to make sure we keep the pipe empty.
751 uint8 b[16];
752 ssize_t ret = read(GetDescriptor(), b, sizeof(b));
753 if (ret < 0) {
754 LOG_ERR(LS_WARNING) << "Error in read()";
755 } else if (ret == 0) {
756 LOG(LS_WARNING) << "Should have read at least one byte";
757 }
758 }
759
760 virtual void OnEvent(uint32 ff, int err) {
761 for (int signum = 0; signum < PosixSignalHandler::kNumPosixSignals;
762 ++signum) {
763 if (PosixSignalHandler::Instance()->IsSignalSet(signum)) {
764 PosixSignalHandler::Instance()->ClearSignal(signum);
765 HandlerMap::iterator i = handlers_.find(signum);
766 if (i == handlers_.end()) {
767 // This can happen if a signal is delivered to our process at around
768 // the same time as we unset our handler for it. It is not an error
769 // condition, but it's unusual enough to be worth logging.
770 LOG(LS_INFO) << "Received signal with no handler: " << signum;
771 } else {
772 // Otherwise, execute our handler.
773 (*i->second)(signum);
774 }
775 }
776 }
777 }
778
779 virtual int GetDescriptor() {
780 return PosixSignalHandler::Instance()->GetDescriptor();
781 }
782
783 virtual bool IsDescriptorClosed() {
784 return false;
785 }
786
787 void SetHandler(int signum, void (*handler)(int)) {
788 handlers_[signum] = handler;
789 }
790
791 void ClearHandler(int signum) {
792 handlers_.erase(signum);
793 }
794
795 bool HasHandlers() {
796 return !handlers_.empty();
797 }
798
799 private:
800 typedef std::map<int, void (*)(int)> HandlerMap;
801
802 HandlerMap handlers_;
803 // Our owner.
804 PhysicalSocketServer *owner_;
805};
806
807class SocketDispatcher : public Dispatcher, public PhysicalSocket {
808 public:
809 explicit SocketDispatcher(PhysicalSocketServer *ss) : PhysicalSocket(ss) {
810 }
811 SocketDispatcher(SOCKET s, PhysicalSocketServer *ss) : PhysicalSocket(ss, s) {
812 }
813
814 virtual ~SocketDispatcher() {
815 Close();
816 }
817
818 bool Initialize() {
819 ss_->Add(this);
820 fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK);
821 return true;
822 }
823
824 virtual bool Create(int type) {
825 return Create(AF_INET, type);
826 }
827
828 virtual bool Create(int family, int type) {
829 // Change the socket to be non-blocking.
830 if (!PhysicalSocket::Create(family, type))
831 return false;
832
833 return Initialize();
834 }
835
836 virtual int GetDescriptor() {
837 return s_;
838 }
839
840 virtual bool IsDescriptorClosed() {
841 // We don't have a reliable way of distinguishing end-of-stream
842 // from readability. So test on each readable call. Is this
843 // inefficient? Probably.
844 char ch;
845 ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK);
846 if (res > 0) {
847 // Data available, so not closed.
848 return false;
849 } else if (res == 0) {
850 // EOF, so closed.
851 return true;
852 } else { // error
853 switch (errno) {
854 // Returned if we've already closed s_.
855 case EBADF:
856 // Returned during ungraceful peer shutdown.
857 case ECONNRESET:
858 return true;
859 default:
860 // Assume that all other errors are just blocking errors, meaning the
861 // connection is still good but we just can't read from it right now.
862 // This should only happen when connecting (and at most once), because
863 // in all other cases this function is only called if the file
864 // descriptor is already known to be in the readable state. However,
865 // it's not necessary a problem if we spuriously interpret a
866 // "connection lost"-type error as a blocking error, because typically
867 // the next recv() will get EOF, so we'll still eventually notice that
868 // the socket is closed.
869 LOG_ERR(LS_WARNING) << "Assuming benign blocking error";
870 return false;
871 }
872 }
873 }
874
875 virtual uint32 GetRequestedEvents() {
876 return enabled_events_;
877 }
878
879 virtual void OnPreEvent(uint32 ff) {
880 if ((ff & DE_CONNECT) != 0)
881 state_ = CS_CONNECTED;
882 if ((ff & DE_CLOSE) != 0)
883 state_ = CS_CLOSED;
884 }
885
886 virtual void OnEvent(uint32 ff, int err) {
887 // Make sure we deliver connect/accept first. Otherwise, consumers may see
888 // something like a READ followed by a CONNECT, which would be odd.
889 if ((ff & DE_CONNECT) != 0) {
890 enabled_events_ &= ~DE_CONNECT;
891 SignalConnectEvent(this);
892 }
893 if ((ff & DE_ACCEPT) != 0) {
894 enabled_events_ &= ~DE_ACCEPT;
895 SignalReadEvent(this);
896 }
897 if ((ff & DE_READ) != 0) {
898 enabled_events_ &= ~DE_READ;
899 SignalReadEvent(this);
900 }
901 if ((ff & DE_WRITE) != 0) {
902 enabled_events_ &= ~DE_WRITE;
903 SignalWriteEvent(this);
904 }
905 if ((ff & DE_CLOSE) != 0) {
906 // The socket is now dead to us, so stop checking it.
907 enabled_events_ = 0;
908 SignalCloseEvent(this, err);
909 }
910 }
911
912 virtual int Close() {
913 if (s_ == INVALID_SOCKET)
914 return 0;
915
916 ss_->Remove(this);
917 return PhysicalSocket::Close();
918 }
919};
920
921class FileDispatcher: public Dispatcher, public AsyncFile {
922 public:
923 FileDispatcher(int fd, PhysicalSocketServer *ss) : ss_(ss), fd_(fd) {
924 set_readable(true);
925
926 ss_->Add(this);
927
928 fcntl(fd_, F_SETFL, fcntl(fd_, F_GETFL, 0) | O_NONBLOCK);
929 }
930
931 virtual ~FileDispatcher() {
932 ss_->Remove(this);
933 }
934
935 SocketServer* socketserver() { return ss_; }
936
937 virtual int GetDescriptor() {
938 return fd_;
939 }
940
941 virtual bool IsDescriptorClosed() {
942 return false;
943 }
944
945 virtual uint32 GetRequestedEvents() {
946 return flags_;
947 }
948
949 virtual void OnPreEvent(uint32 ff) {
950 }
951
952 virtual void OnEvent(uint32 ff, int err) {
953 if ((ff & DE_READ) != 0)
954 SignalReadEvent(this);
955 if ((ff & DE_WRITE) != 0)
956 SignalWriteEvent(this);
957 if ((ff & DE_CLOSE) != 0)
958 SignalCloseEvent(this, err);
959 }
960
961 virtual bool readable() {
962 return (flags_ & DE_READ) != 0;
963 }
964
965 virtual void set_readable(bool value) {
966 flags_ = value ? (flags_ | DE_READ) : (flags_ & ~DE_READ);
967 }
968
969 virtual bool writable() {
970 return (flags_ & DE_WRITE) != 0;
971 }
972
973 virtual void set_writable(bool value) {
974 flags_ = value ? (flags_ | DE_WRITE) : (flags_ & ~DE_WRITE);
975 }
976
977 private:
978 PhysicalSocketServer* ss_;
979 int fd_;
980 int flags_;
981};
982
983AsyncFile* PhysicalSocketServer::CreateFile(int fd) {
984 return new FileDispatcher(fd, this);
985}
986
987#endif // POSIX
988
989#ifdef WIN32
990static uint32 FlagsToEvents(uint32 events) {
991 uint32 ffFD = FD_CLOSE;
992 if (events & DE_READ)
993 ffFD |= FD_READ;
994 if (events & DE_WRITE)
995 ffFD |= FD_WRITE;
996 if (events & DE_CONNECT)
997 ffFD |= FD_CONNECT;
998 if (events & DE_ACCEPT)
999 ffFD |= FD_ACCEPT;
1000 return ffFD;
1001}
1002
1003class EventDispatcher : public Dispatcher {
1004 public:
1005 EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) {
1006 hev_ = WSACreateEvent();
1007 if (hev_) {
1008 ss_->Add(this);
1009 }
1010 }
1011
1012 ~EventDispatcher() {
1013 if (hev_ != NULL) {
1014 ss_->Remove(this);
1015 WSACloseEvent(hev_);
1016 hev_ = NULL;
1017 }
1018 }
1019
1020 virtual void Signal() {
1021 if (hev_ != NULL)
1022 WSASetEvent(hev_);
1023 }
1024
1025 virtual uint32 GetRequestedEvents() {
1026 return 0;
1027 }
1028
1029 virtual void OnPreEvent(uint32 ff) {
1030 WSAResetEvent(hev_);
1031 }
1032
1033 virtual void OnEvent(uint32 ff, int err) {
1034 }
1035
1036 virtual WSAEVENT GetWSAEvent() {
1037 return hev_;
1038 }
1039
1040 virtual SOCKET GetSocket() {
1041 return INVALID_SOCKET;
1042 }
1043
1044 virtual bool CheckSignalClose() { return false; }
1045
1046private:
1047 PhysicalSocketServer* ss_;
1048 WSAEVENT hev_;
1049};
1050
1051class SocketDispatcher : public Dispatcher, public PhysicalSocket {
1052 public:
1053 static int next_id_;
1054 int id_;
1055 bool signal_close_;
1056 int signal_err_;
1057
1058 SocketDispatcher(PhysicalSocketServer* ss)
1059 : PhysicalSocket(ss),
1060 id_(0),
1061 signal_close_(false) {
1062 }
1063
1064 SocketDispatcher(SOCKET s, PhysicalSocketServer* ss)
1065 : PhysicalSocket(ss, s),
1066 id_(0),
1067 signal_close_(false) {
1068 }
1069
1070 virtual ~SocketDispatcher() {
1071 Close();
1072 }
1073
1074 bool Initialize() {
1075 ASSERT(s_ != INVALID_SOCKET);
1076 // Must be a non-blocking
1077 u_long argp = 1;
1078 ioctlsocket(s_, FIONBIO, &argp);
1079 ss_->Add(this);
1080 return true;
1081 }
1082
1083 virtual bool Create(int type) {
1084 return Create(AF_INET, type);
1085 }
1086
1087 virtual bool Create(int family, int type) {
1088 // Create socket
1089 if (!PhysicalSocket::Create(family, type))
1090 return false;
1091
1092 if (!Initialize())
1093 return false;
1094
1095 do { id_ = ++next_id_; } while (id_ == 0);
1096 return true;
1097 }
1098
1099 virtual int Close() {
1100 if (s_ == INVALID_SOCKET)
1101 return 0;
1102
1103 id_ = 0;
1104 signal_close_ = false;
1105 ss_->Remove(this);
1106 return PhysicalSocket::Close();
1107 }
1108
1109 virtual uint32 GetRequestedEvents() {
1110 return enabled_events_;
1111 }
1112
1113 virtual void OnPreEvent(uint32 ff) {
1114 if ((ff & DE_CONNECT) != 0)
1115 state_ = CS_CONNECTED;
1116 // We set CS_CLOSED from CheckSignalClose.
1117 }
1118
1119 virtual void OnEvent(uint32 ff, int err) {
1120 int cache_id = id_;
1121 // Make sure we deliver connect/accept first. Otherwise, consumers may see
1122 // something like a READ followed by a CONNECT, which would be odd.
1123 if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) {
1124 if (ff != DE_CONNECT)
1125 LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff;
1126 enabled_events_ &= ~DE_CONNECT;
1127#ifdef _DEBUG
1128 dbg_addr_ = "Connected @ ";
1129 dbg_addr_.append(GetRemoteAddress().ToString());
1130#endif // _DEBUG
1131 SignalConnectEvent(this);
1132 }
1133 if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) {
1134 enabled_events_ &= ~DE_ACCEPT;
1135 SignalReadEvent(this);
1136 }
1137 if ((ff & DE_READ) != 0) {
1138 enabled_events_ &= ~DE_READ;
1139 SignalReadEvent(this);
1140 }
1141 if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) {
1142 enabled_events_ &= ~DE_WRITE;
1143 SignalWriteEvent(this);
1144 }
1145 if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) {
1146 signal_close_ = true;
1147 signal_err_ = err;
1148 }
1149 }
1150
1151 virtual WSAEVENT GetWSAEvent() {
1152 return WSA_INVALID_EVENT;
1153 }
1154
1155 virtual SOCKET GetSocket() {
1156 return s_;
1157 }
1158
1159 virtual bool CheckSignalClose() {
1160 if (!signal_close_)
1161 return false;
1162
1163 char ch;
1164 if (recv(s_, &ch, 1, MSG_PEEK) > 0)
1165 return false;
1166
1167 state_ = CS_CLOSED;
1168 signal_close_ = false;
1169 SignalCloseEvent(this, signal_err_);
1170 return true;
1171 }
1172};
1173
1174int SocketDispatcher::next_id_ = 0;
1175
1176#endif // WIN32
1177
1178// Sets the value of a boolean value to false when signaled.
1179class Signaler : public EventDispatcher {
1180 public:
1181 Signaler(PhysicalSocketServer* ss, bool* pf)
1182 : EventDispatcher(ss), pf_(pf) {
1183 }
1184 virtual ~Signaler() { }
1185
1186 void OnEvent(uint32 ff, int err) {
1187 if (pf_)
1188 *pf_ = false;
1189 }
1190
1191 private:
1192 bool *pf_;
1193};
1194
1195PhysicalSocketServer::PhysicalSocketServer()
1196 : fWait_(false),
1197 last_tick_tracked_(0),
1198 last_tick_dispatch_count_(0) {
1199 signal_wakeup_ = new Signaler(this, &fWait_);
1200#ifdef WIN32
1201 socket_ev_ = WSACreateEvent();
1202#endif
1203}
1204
1205PhysicalSocketServer::~PhysicalSocketServer() {
1206#ifdef WIN32
1207 WSACloseEvent(socket_ev_);
1208#endif
1209#ifdef POSIX
1210 signal_dispatcher_.reset();
1211#endif
1212 delete signal_wakeup_;
1213 ASSERT(dispatchers_.empty());
1214}
1215
1216void PhysicalSocketServer::WakeUp() {
1217 signal_wakeup_->Signal();
1218}
1219
1220Socket* PhysicalSocketServer::CreateSocket(int type) {
1221 return CreateSocket(AF_INET, type);
1222}
1223
1224Socket* PhysicalSocketServer::CreateSocket(int family, int type) {
1225 PhysicalSocket* socket = new PhysicalSocket(this);
1226 if (socket->Create(family, type)) {
1227 return socket;
1228 } else {
1229 delete socket;
1230 return 0;
1231 }
1232}
1233
1234AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) {
1235 return CreateAsyncSocket(AF_INET, type);
1236}
1237
1238AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int family, int type) {
1239 SocketDispatcher* dispatcher = new SocketDispatcher(this);
1240 if (dispatcher->Create(family, type)) {
1241 return dispatcher;
1242 } else {
1243 delete dispatcher;
1244 return 0;
1245 }
1246}
1247
1248AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) {
1249 SocketDispatcher* dispatcher = new SocketDispatcher(s, this);
1250 if (dispatcher->Initialize()) {
1251 return dispatcher;
1252 } else {
1253 delete dispatcher;
1254 return 0;
1255 }
1256}
1257
1258void PhysicalSocketServer::Add(Dispatcher *pdispatcher) {
1259 CritScope cs(&crit_);
1260 // Prevent duplicates. This can cause dead dispatchers to stick around.
1261 DispatcherList::iterator pos = std::find(dispatchers_.begin(),
1262 dispatchers_.end(),
1263 pdispatcher);
1264 if (pos != dispatchers_.end())
1265 return;
1266 dispatchers_.push_back(pdispatcher);
1267}
1268
1269void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) {
1270 CritScope cs(&crit_);
1271 DispatcherList::iterator pos = std::find(dispatchers_.begin(),
1272 dispatchers_.end(),
1273 pdispatcher);
wu@webrtc.org967bfff2013-09-19 05:49:50 +00001274 // We silently ignore duplicate calls to Add, so we should silently ignore
1275 // the (expected) symmetric calls to Remove. Note that this may still hide
1276 // a real issue, so we at least log a warning about it.
1277 if (pos == dispatchers_.end()) {
1278 LOG(LS_WARNING) << "PhysicalSocketServer asked to remove a unknown "
1279 << "dispatcher, potentially from a duplicate call to Add.";
1280 return;
1281 }
henrike@webrtc.org28e20752013-07-10 00:45:36 +00001282 size_t index = pos - dispatchers_.begin();
1283 dispatchers_.erase(pos);
1284 for (IteratorList::iterator it = iterators_.begin(); it != iterators_.end();
1285 ++it) {
1286 if (index < **it) {
1287 --**it;
1288 }
1289 }
1290}
1291
1292#ifdef POSIX
1293bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1294 // Calculate timing information
1295
1296 struct timeval *ptvWait = NULL;
1297 struct timeval tvWait;
1298 struct timeval tvStop;
1299 if (cmsWait != kForever) {
1300 // Calculate wait timeval
1301 tvWait.tv_sec = cmsWait / 1000;
1302 tvWait.tv_usec = (cmsWait % 1000) * 1000;
1303 ptvWait = &tvWait;
1304
1305 // Calculate when to return in a timeval
1306 gettimeofday(&tvStop, NULL);
1307 tvStop.tv_sec += tvWait.tv_sec;
1308 tvStop.tv_usec += tvWait.tv_usec;
1309 if (tvStop.tv_usec >= 1000000) {
1310 tvStop.tv_usec -= 1000000;
1311 tvStop.tv_sec += 1;
1312 }
1313 }
1314
1315 // Zero all fd_sets. Don't need to do this inside the loop since
1316 // select() zeros the descriptors not signaled
1317
1318 fd_set fdsRead;
1319 FD_ZERO(&fdsRead);
1320 fd_set fdsWrite;
1321 FD_ZERO(&fdsWrite);
1322
1323 fWait_ = true;
1324
1325 while (fWait_) {
1326 int fdmax = -1;
1327 {
1328 CritScope cr(&crit_);
1329 for (size_t i = 0; i < dispatchers_.size(); ++i) {
1330 // Query dispatchers for read and write wait state
1331 Dispatcher *pdispatcher = dispatchers_[i];
1332 ASSERT(pdispatcher);
1333 if (!process_io && (pdispatcher != signal_wakeup_))
1334 continue;
1335 int fd = pdispatcher->GetDescriptor();
1336 if (fd > fdmax)
1337 fdmax = fd;
1338
1339 uint32 ff = pdispatcher->GetRequestedEvents();
1340 if (ff & (DE_READ | DE_ACCEPT))
1341 FD_SET(fd, &fdsRead);
1342 if (ff & (DE_WRITE | DE_CONNECT))
1343 FD_SET(fd, &fdsWrite);
1344 }
1345 }
1346
1347 // Wait then call handlers as appropriate
1348 // < 0 means error
1349 // 0 means timeout
1350 // > 0 means count of descriptors ready
1351 int n = select(fdmax + 1, &fdsRead, &fdsWrite, NULL, ptvWait);
1352
1353 // If error, return error.
1354 if (n < 0) {
1355 if (errno != EINTR) {
1356 LOG_E(LS_ERROR, EN, errno) << "select";
1357 return false;
1358 }
1359 // Else ignore the error and keep going. If this EINTR was for one of the
1360 // signals managed by this PhysicalSocketServer, the
1361 // PosixSignalDeliveryDispatcher will be in the signaled state in the next
1362 // iteration.
1363 } else if (n == 0) {
1364 // If timeout, return success
1365 return true;
1366 } else {
1367 // We have signaled descriptors
1368 CritScope cr(&crit_);
1369 for (size_t i = 0; i < dispatchers_.size(); ++i) {
1370 Dispatcher *pdispatcher = dispatchers_[i];
1371 int fd = pdispatcher->GetDescriptor();
1372 uint32 ff = 0;
1373 int errcode = 0;
1374
1375 // Reap any error code, which can be signaled through reads or writes.
1376 // TODO: Should we set errcode if getsockopt fails?
1377 if (FD_ISSET(fd, &fdsRead) || FD_ISSET(fd, &fdsWrite)) {
1378 socklen_t len = sizeof(errcode);
1379 ::getsockopt(fd, SOL_SOCKET, SO_ERROR, &errcode, &len);
1380 }
1381
1382 // Check readable descriptors. If we're waiting on an accept, signal
1383 // that. Otherwise we're waiting for data, check to see if we're
1384 // readable or really closed.
1385 // TODO: Only peek at TCP descriptors.
1386 if (FD_ISSET(fd, &fdsRead)) {
1387 FD_CLR(fd, &fdsRead);
1388 if (pdispatcher->GetRequestedEvents() & DE_ACCEPT) {
1389 ff |= DE_ACCEPT;
1390 } else if (errcode || pdispatcher->IsDescriptorClosed()) {
1391 ff |= DE_CLOSE;
1392 } else {
1393 ff |= DE_READ;
1394 }
1395 }
1396
1397 // Check writable descriptors. If we're waiting on a connect, detect
1398 // success versus failure by the reaped error code.
1399 if (FD_ISSET(fd, &fdsWrite)) {
1400 FD_CLR(fd, &fdsWrite);
1401 if (pdispatcher->GetRequestedEvents() & DE_CONNECT) {
1402 if (!errcode) {
1403 ff |= DE_CONNECT;
1404 } else {
1405 ff |= DE_CLOSE;
1406 }
1407 } else {
1408 ff |= DE_WRITE;
1409 }
1410 }
1411
1412 // Tell the descriptor about the event.
1413 if (ff != 0) {
1414 pdispatcher->OnPreEvent(ff);
1415 pdispatcher->OnEvent(ff, errcode);
1416 }
1417 }
1418 }
1419
1420 // Recalc the time remaining to wait. Doing it here means it doesn't get
1421 // calced twice the first time through the loop
1422 if (ptvWait) {
1423 ptvWait->tv_sec = 0;
1424 ptvWait->tv_usec = 0;
1425 struct timeval tvT;
1426 gettimeofday(&tvT, NULL);
1427 if ((tvStop.tv_sec > tvT.tv_sec)
1428 || ((tvStop.tv_sec == tvT.tv_sec)
1429 && (tvStop.tv_usec > tvT.tv_usec))) {
1430 ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec;
1431 ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec;
1432 if (ptvWait->tv_usec < 0) {
1433 ASSERT(ptvWait->tv_sec > 0);
1434 ptvWait->tv_usec += 1000000;
1435 ptvWait->tv_sec -= 1;
1436 }
1437 }
1438 }
1439 }
1440
1441 return true;
1442}
1443
1444static void GlobalSignalHandler(int signum) {
1445 PosixSignalHandler::Instance()->OnPosixSignalReceived(signum);
1446}
1447
1448bool PhysicalSocketServer::SetPosixSignalHandler(int signum,
1449 void (*handler)(int)) {
1450 // If handler is SIG_IGN or SIG_DFL then clear our user-level handler,
1451 // otherwise set one.
1452 if (handler == SIG_IGN || handler == SIG_DFL) {
1453 if (!InstallSignal(signum, handler)) {
1454 return false;
1455 }
1456 if (signal_dispatcher_) {
1457 signal_dispatcher_->ClearHandler(signum);
1458 if (!signal_dispatcher_->HasHandlers()) {
1459 signal_dispatcher_.reset();
1460 }
1461 }
1462 } else {
1463 if (!signal_dispatcher_) {
1464 signal_dispatcher_.reset(new PosixSignalDispatcher(this));
1465 }
1466 signal_dispatcher_->SetHandler(signum, handler);
1467 if (!InstallSignal(signum, &GlobalSignalHandler)) {
1468 return false;
1469 }
1470 }
1471 return true;
1472}
1473
1474Dispatcher* PhysicalSocketServer::signal_dispatcher() {
1475 return signal_dispatcher_.get();
1476}
1477
1478bool PhysicalSocketServer::InstallSignal(int signum, void (*handler)(int)) {
1479 struct sigaction act;
1480 // It doesn't really matter what we set this mask to.
1481 if (sigemptyset(&act.sa_mask) != 0) {
1482 LOG_ERR(LS_ERROR) << "Couldn't set mask";
1483 return false;
1484 }
1485 act.sa_handler = handler;
1486 // Use SA_RESTART so that our syscalls don't get EINTR, since we don't need it
1487 // and it's a nuisance. Though some syscalls still return EINTR and there's no
1488 // real standard for which ones. :(
1489 act.sa_flags = SA_RESTART;
1490 if (sigaction(signum, &act, NULL) != 0) {
1491 LOG_ERR(LS_ERROR) << "Couldn't set sigaction";
1492 return false;
1493 }
1494 return true;
1495}
1496#endif // POSIX
1497
1498#ifdef WIN32
1499bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1500 int cmsTotal = cmsWait;
1501 int cmsElapsed = 0;
1502 uint32 msStart = Time();
1503
1504#if LOGGING
1505 if (last_tick_dispatch_count_ == 0) {
1506 last_tick_tracked_ = msStart;
1507 }
1508#endif
1509
1510 fWait_ = true;
1511 while (fWait_) {
1512 std::vector<WSAEVENT> events;
1513 std::vector<Dispatcher *> event_owners;
1514
1515 events.push_back(socket_ev_);
1516
1517 {
1518 CritScope cr(&crit_);
1519 size_t i = 0;
1520 iterators_.push_back(&i);
1521 // Don't track dispatchers_.size(), because we want to pick up any new
1522 // dispatchers that were added while processing the loop.
1523 while (i < dispatchers_.size()) {
1524 Dispatcher* disp = dispatchers_[i++];
1525 if (!process_io && (disp != signal_wakeup_))
1526 continue;
1527 SOCKET s = disp->GetSocket();
1528 if (disp->CheckSignalClose()) {
1529 // We just signalled close, don't poll this socket
1530 } else if (s != INVALID_SOCKET) {
1531 WSAEventSelect(s,
1532 events[0],
1533 FlagsToEvents(disp->GetRequestedEvents()));
1534 } else {
1535 events.push_back(disp->GetWSAEvent());
1536 event_owners.push_back(disp);
1537 }
1538 }
1539 ASSERT(iterators_.back() == &i);
1540 iterators_.pop_back();
1541 }
1542
1543 // Which is shorter, the delay wait or the asked wait?
1544
1545 int cmsNext;
1546 if (cmsWait == kForever) {
1547 cmsNext = cmsWait;
1548 } else {
1549 cmsNext = _max(0, cmsTotal - cmsElapsed);
1550 }
1551
1552 // Wait for one of the events to signal
1553 DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()),
1554 &events[0],
1555 false,
1556 cmsNext,
1557 false);
1558
1559#if 0 // LOGGING
1560 // we track this information purely for logging purposes.
1561 last_tick_dispatch_count_++;
1562 if (last_tick_dispatch_count_ >= 1000) {
1563 int32 elapsed = TimeSince(last_tick_tracked_);
1564 LOG(INFO) << "PhysicalSocketServer took " << elapsed
1565 << "ms for 1000 events";
1566
1567 // If we get more than 1000 events in a second, we are spinning badly
1568 // (normally it should take about 8-20 seconds).
1569 ASSERT(elapsed > 1000);
1570
1571 last_tick_tracked_ = Time();
1572 last_tick_dispatch_count_ = 0;
1573 }
1574#endif
1575
1576 if (dw == WSA_WAIT_FAILED) {
1577 // Failed?
1578 // TODO: need a better strategy than this!
1579 int error = WSAGetLastError();
1580 ASSERT(false);
1581 return false;
1582 } else if (dw == WSA_WAIT_TIMEOUT) {
1583 // Timeout?
1584 return true;
1585 } else {
1586 // Figure out which one it is and call it
1587 CritScope cr(&crit_);
1588 int index = dw - WSA_WAIT_EVENT_0;
1589 if (index > 0) {
1590 --index; // The first event is the socket event
1591 event_owners[index]->OnPreEvent(0);
1592 event_owners[index]->OnEvent(0, 0);
1593 } else if (process_io) {
1594 size_t i = 0, end = dispatchers_.size();
1595 iterators_.push_back(&i);
1596 iterators_.push_back(&end); // Don't iterate over new dispatchers.
1597 while (i < end) {
1598 Dispatcher* disp = dispatchers_[i++];
1599 SOCKET s = disp->GetSocket();
1600 if (s == INVALID_SOCKET)
1601 continue;
1602
1603 WSANETWORKEVENTS wsaEvents;
1604 int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents);
1605 if (err == 0) {
1606
1607#if LOGGING
1608 {
1609 if ((wsaEvents.lNetworkEvents & FD_READ) &&
1610 wsaEvents.iErrorCode[FD_READ_BIT] != 0) {
1611 LOG(WARNING) << "PhysicalSocketServer got FD_READ_BIT error "
1612 << wsaEvents.iErrorCode[FD_READ_BIT];
1613 }
1614 if ((wsaEvents.lNetworkEvents & FD_WRITE) &&
1615 wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) {
1616 LOG(WARNING) << "PhysicalSocketServer got FD_WRITE_BIT error "
1617 << wsaEvents.iErrorCode[FD_WRITE_BIT];
1618 }
1619 if ((wsaEvents.lNetworkEvents & FD_CONNECT) &&
1620 wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) {
1621 LOG(WARNING) << "PhysicalSocketServer got FD_CONNECT_BIT error "
1622 << wsaEvents.iErrorCode[FD_CONNECT_BIT];
1623 }
1624 if ((wsaEvents.lNetworkEvents & FD_ACCEPT) &&
1625 wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) {
1626 LOG(WARNING) << "PhysicalSocketServer got FD_ACCEPT_BIT error "
1627 << wsaEvents.iErrorCode[FD_ACCEPT_BIT];
1628 }
1629 if ((wsaEvents.lNetworkEvents & FD_CLOSE) &&
1630 wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) {
1631 LOG(WARNING) << "PhysicalSocketServer got FD_CLOSE_BIT error "
1632 << wsaEvents.iErrorCode[FD_CLOSE_BIT];
1633 }
1634 }
1635#endif
1636 uint32 ff = 0;
1637 int errcode = 0;
1638 if (wsaEvents.lNetworkEvents & FD_READ)
1639 ff |= DE_READ;
1640 if (wsaEvents.lNetworkEvents & FD_WRITE)
1641 ff |= DE_WRITE;
1642 if (wsaEvents.lNetworkEvents & FD_CONNECT) {
1643 if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) {
1644 ff |= DE_CONNECT;
1645 } else {
1646 ff |= DE_CLOSE;
1647 errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT];
1648 }
1649 }
1650 if (wsaEvents.lNetworkEvents & FD_ACCEPT)
1651 ff |= DE_ACCEPT;
1652 if (wsaEvents.lNetworkEvents & FD_CLOSE) {
1653 ff |= DE_CLOSE;
1654 errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT];
1655 }
1656 if (ff != 0) {
1657 disp->OnPreEvent(ff);
1658 disp->OnEvent(ff, errcode);
1659 }
1660 }
1661 }
1662 ASSERT(iterators_.back() == &end);
1663 iterators_.pop_back();
1664 ASSERT(iterators_.back() == &i);
1665 iterators_.pop_back();
1666 }
1667
1668 // Reset the network event until new activity occurs
1669 WSAResetEvent(socket_ev_);
1670 }
1671
1672 // Break?
1673 if (!fWait_)
1674 break;
1675 cmsElapsed = TimeSince(msStart);
1676 if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) {
1677 break;
1678 }
1679 }
1680
1681 // Done
1682 return true;
1683}
1684#endif // WIN32
1685
1686} // namespace talk_base