blob: 2d6b7d1b860c94df8ab867bd3aa4fca8e2cf36ad [file] [log] [blame]
andrew@webrtc.org618ab3f2012-09-04 23:39:05 +00001/*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
Mirko Bonadei92ea95e2017-09-15 06:47:31 +020011#include "common_audio/signal_processing/include/real_fft.h"
12#include "common_audio/signal_processing/include/signal_processing_library.h"
13#include "test/gtest.h"
Mirko Bonadei71207422017-09-15 13:58:09 +020014#include "typedefs.h" // NOLINT(build/include)
andrew@webrtc.org618ab3f2012-09-04 23:39:05 +000015
16namespace webrtc {
17namespace {
18
kma@webrtc.orgfc8aaf02013-07-24 17:38:23 +000019// FFT order.
20const int kOrder = 5;
21// Lengths for real FFT's time and frequency bufffers.
22// For N-point FFT, the length requirements from API are N and N+2 respectively.
23const int kTimeDataLength = 1 << kOrder;
24const int kFreqDataLength = (1 << kOrder) + 2;
25// For complex FFT's time and freq buffer. The implementation requires
26// 2*N 16-bit words.
27const int kComplexFftDataLength = 2 << kOrder;
28// Reference data for time signal.
29const int16_t kRefData[kTimeDataLength] = {
Yves Gerey665174f2018-06-19 15:03:05 +020030 11739, 6848, -8688, 31980, -30295, 25242, 27085, 19410,
31 -26299, 15607, -10791, 11778, -23819, 14498, -25772, 10076,
32 1173, 6848, -8688, 31980, -30295, 2522, 27085, 19410,
33 -2629, 5607, -3, 1178, -23819, 1498, -25772, 10076};
andrew@webrtc.org618ab3f2012-09-04 23:39:05 +000034
35class RealFFTTest : public ::testing::Test {
kma@webrtc.org0221b782012-09-08 00:09:26 +000036 protected:
Yves Gerey665174f2018-06-19 15:03:05 +020037 RealFFTTest() { WebRtcSpl_Init(); }
andrew@webrtc.org618ab3f2012-09-04 23:39:05 +000038};
39
40TEST_F(RealFFTTest, CreateFailsOnBadInput) {
41 RealFFT* fft = WebRtcSpl_CreateRealFFT(11);
deadbeef922246a2017-02-26 04:18:12 -080042 EXPECT_TRUE(fft == nullptr);
andrew@webrtc.org618ab3f2012-09-04 23:39:05 +000043 fft = WebRtcSpl_CreateRealFFT(-1);
deadbeef922246a2017-02-26 04:18:12 -080044 EXPECT_TRUE(fft == nullptr);
andrew@webrtc.org618ab3f2012-09-04 23:39:05 +000045}
46
bjornv@webrtc.orgaca59392014-05-28 08:45:04 +000047TEST_F(RealFFTTest, RealAndComplexMatch) {
kma@webrtc.orgfc8aaf02013-07-24 17:38:23 +000048 int i = 0;
49 int j = 0;
50 int16_t real_fft_time[kTimeDataLength] = {0};
51 int16_t real_fft_freq[kFreqDataLength] = {0};
52 // One common buffer for complex FFT's time and frequency data.
53 int16_t complex_fft_buff[kComplexFftDataLength] = {0};
andrew@webrtc.org618ab3f2012-09-04 23:39:05 +000054
kma@webrtc.orgfc8aaf02013-07-24 17:38:23 +000055 // Prepare the inputs to forward FFT's.
56 memcpy(real_fft_time, kRefData, sizeof(kRefData));
57 for (i = 0, j = 0; i < kTimeDataLength; i += 1, j += 2) {
58 complex_fft_buff[j] = kRefData[i];
59 complex_fft_buff[j + 1] = 0; // Insert zero's to imaginary parts.
oprypin67fdb802017-03-09 06:25:06 -080060 }
kma@webrtc.orgfc8aaf02013-07-24 17:38:23 +000061
62 // Create and run real forward FFT.
kma@webrtc.orgf9e6cc22012-09-21 18:51:12 +000063 RealFFT* fft = WebRtcSpl_CreateRealFFT(kOrder);
deadbeef922246a2017-02-26 04:18:12 -080064 EXPECT_TRUE(fft != nullptr);
kma@webrtc.orgfc8aaf02013-07-24 17:38:23 +000065 EXPECT_EQ(0, WebRtcSpl_RealForwardFFT(fft, real_fft_time, real_fft_freq));
andrew@webrtc.org618ab3f2012-09-04 23:39:05 +000066
kma@webrtc.orgfc8aaf02013-07-24 17:38:23 +000067 // Run complex forward FFT.
68 WebRtcSpl_ComplexBitReverse(complex_fft_buff, kOrder);
69 EXPECT_EQ(0, WebRtcSpl_ComplexFFT(complex_fft_buff, kOrder, 1));
kma@webrtc.orgf9e6cc22012-09-21 18:51:12 +000070
kma@webrtc.orgfc8aaf02013-07-24 17:38:23 +000071 // Verify the results between complex and real forward FFT.
72 for (i = 0; i < kFreqDataLength; i++) {
73 EXPECT_EQ(real_fft_freq[i], complex_fft_buff[i]);
andrew@webrtc.org618ab3f2012-09-04 23:39:05 +000074 }
75
kma@webrtc.orgfc8aaf02013-07-24 17:38:23 +000076 // Prepare the inputs to inverse real FFT.
77 // We use whatever data in complex_fft_buff[] since we don't care
78 // about data contents. Only kFreqDataLength 16-bit words are copied
79 // from complex_fft_buff to real_fft_freq since remaining words (2nd half)
80 // are conjugate-symmetric to the first half in theory.
81 memcpy(real_fft_freq, complex_fft_buff, sizeof(real_fft_freq));
kma@webrtc.orgf9e6cc22012-09-21 18:51:12 +000082
kma@webrtc.orgfc8aaf02013-07-24 17:38:23 +000083 // Run real inverse FFT.
84 int real_scale = WebRtcSpl_RealInverseFFT(fft, real_fft_freq, real_fft_time);
andrew@webrtc.org618ab3f2012-09-04 23:39:05 +000085 EXPECT_GE(real_scale, 0);
kma@webrtc.orgfc8aaf02013-07-24 17:38:23 +000086
87 // Run complex inverse FFT.
88 WebRtcSpl_ComplexBitReverse(complex_fft_buff, kOrder);
89 int complex_scale = WebRtcSpl_ComplexIFFT(complex_fft_buff, kOrder, 1);
90
91 // Verify the results between complex and real inverse FFT.
92 // They are not bit-exact, since complex IFFT doesn't produce
93 // exactly conjugate-symmetric data (between first and second half).
andrew@webrtc.org618ab3f2012-09-04 23:39:05 +000094 EXPECT_EQ(real_scale, complex_scale);
kma@webrtc.orgfc8aaf02013-07-24 17:38:23 +000095 for (i = 0, j = 0; i < kTimeDataLength; i += 1, j += 2) {
96 EXPECT_LE(abs(real_fft_time[i] - complex_fft_buff[j]), 1);
andrew@webrtc.org618ab3f2012-09-04 23:39:05 +000097 }
kma@webrtc.orgfc8aaf02013-07-24 17:38:23 +000098
andrew@webrtc.org618ab3f2012-09-04 23:39:05 +000099 WebRtcSpl_FreeRealFFT(fft);
100}
101
102} // namespace
103} // namespace webrtc