blob: 8a1bb5c2656336311582603552c31f7631d897e9 [file] [log] [blame]
henrike@webrtc.org28e20752013-07-10 00:45:36 +00001/*
2 * libjingle
3 * Copyright 2004--2005, Google Inc.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
19 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
22 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
24 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
25 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#if defined(_MSC_VER) && _MSC_VER < 1300
29#pragma warning(disable:4786)
30#endif
31
32#include <cassert>
33
34#ifdef POSIX
35#include <string.h>
36#include <errno.h>
37#include <fcntl.h>
38#include <sys/time.h>
39#include <unistd.h>
40#include <signal.h>
41#endif
42
43#ifdef WIN32
44#define WIN32_LEAN_AND_MEAN
45#include <windows.h>
46#include <winsock2.h>
47#include <ws2tcpip.h>
48#undef SetPort
49#endif
50
51#include <algorithm>
52#include <map>
53
54#include "talk/base/basictypes.h"
55#include "talk/base/byteorder.h"
56#include "talk/base/common.h"
57#include "talk/base/logging.h"
58#include "talk/base/nethelpers.h"
59#include "talk/base/physicalsocketserver.h"
60#include "talk/base/timeutils.h"
61#include "talk/base/winping.h"
62#include "talk/base/win32socketinit.h"
63
64// stm: this will tell us if we are on OSX
65#ifdef HAVE_CONFIG_H
66#include "config.h"
67#endif
68
69#ifdef POSIX
70#include <netinet/tcp.h> // for TCP_NODELAY
71#define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h
72typedef void* SockOptArg;
73#endif // POSIX
74
75#ifdef WIN32
76typedef char* SockOptArg;
77#endif
78
79namespace talk_base {
80
81// Standard MTUs, from RFC 1191
82const uint16 PACKET_MAXIMUMS[] = {
83 65535, // Theoretical maximum, Hyperchannel
84 32000, // Nothing
85 17914, // 16Mb IBM Token Ring
86 8166, // IEEE 802.4
87 //4464, // IEEE 802.5 (4Mb max)
88 4352, // FDDI
89 //2048, // Wideband Network
90 2002, // IEEE 802.5 (4Mb recommended)
91 //1536, // Expermental Ethernet Networks
92 //1500, // Ethernet, Point-to-Point (default)
93 1492, // IEEE 802.3
94 1006, // SLIP, ARPANET
95 //576, // X.25 Networks
96 //544, // DEC IP Portal
97 //512, // NETBIOS
98 508, // IEEE 802/Source-Rt Bridge, ARCNET
99 296, // Point-to-Point (low delay)
100 68, // Official minimum
101 0, // End of list marker
102};
103
104static const int IP_HEADER_SIZE = 20u;
105static const int IPV6_HEADER_SIZE = 40u;
106static const int ICMP_HEADER_SIZE = 8u;
107static const int ICMP_PING_TIMEOUT_MILLIS = 10000u;
108
109class PhysicalSocket : public AsyncSocket, public sigslot::has_slots<> {
110 public:
111 PhysicalSocket(PhysicalSocketServer* ss, SOCKET s = INVALID_SOCKET)
112 : ss_(ss), s_(s), enabled_events_(0), error_(0),
113 state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED),
114 resolver_(NULL) {
115#ifdef WIN32
116 // EnsureWinsockInit() ensures that winsock is initialized. The default
117 // version of this function doesn't do anything because winsock is
118 // initialized by constructor of a static object. If neccessary libjingle
119 // users can link it with a different version of this function by replacing
120 // win32socketinit.cc. See win32socketinit.cc for more details.
121 EnsureWinsockInit();
122#endif
123 if (s_ != INVALID_SOCKET) {
124 enabled_events_ = DE_READ | DE_WRITE;
125
126 int type = SOCK_STREAM;
127 socklen_t len = sizeof(type);
128 VERIFY(0 == getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len));
129 udp_ = (SOCK_DGRAM == type);
130 }
131 }
132
133 virtual ~PhysicalSocket() {
134 Close();
135 }
136
137 // Creates the underlying OS socket (same as the "socket" function).
138 virtual bool Create(int family, int type) {
139 Close();
140 s_ = ::socket(family, type, 0);
141 udp_ = (SOCK_DGRAM == type);
142 UpdateLastError();
143 if (udp_)
144 enabled_events_ = DE_READ | DE_WRITE;
145 return s_ != INVALID_SOCKET;
146 }
147
148 SocketAddress GetLocalAddress() const {
149 sockaddr_storage addr_storage = {0};
150 socklen_t addrlen = sizeof(addr_storage);
151 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
152 int result = ::getsockname(s_, addr, &addrlen);
153 SocketAddress address;
154 if (result >= 0) {
155 SocketAddressFromSockAddrStorage(addr_storage, &address);
156 } else {
157 LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket="
158 << s_;
159 }
160 return address;
161 }
162
163 SocketAddress GetRemoteAddress() const {
164 sockaddr_storage addr_storage = {0};
165 socklen_t addrlen = sizeof(addr_storage);
166 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
167 int result = ::getpeername(s_, addr, &addrlen);
168 SocketAddress address;
169 if (result >= 0) {
170 SocketAddressFromSockAddrStorage(addr_storage, &address);
171 } else {
172 LOG(LS_WARNING) << "GetRemoteAddress: unable to get remote addr, socket="
173 << s_;
174 }
175 return address;
176 }
177
178 int Bind(const SocketAddress& bind_addr) {
179 sockaddr_storage addr_storage;
180 size_t len = bind_addr.ToSockAddrStorage(&addr_storage);
181 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
182 int err = ::bind(s_, addr, static_cast<int>(len));
183 UpdateLastError();
184#ifdef _DEBUG
185 if (0 == err) {
186 dbg_addr_ = "Bound @ ";
187 dbg_addr_.append(GetLocalAddress().ToString());
188 }
189#endif // _DEBUG
190 return err;
191 }
192
193 int Connect(const SocketAddress& addr) {
194 // TODO: Implicit creation is required to reconnect...
195 // ...but should we make it more explicit?
196 if (state_ != CS_CLOSED) {
197 SetError(EALREADY);
198 return SOCKET_ERROR;
199 }
200 if (addr.IsUnresolved()) {
201 LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect";
202 resolver_ = new AsyncResolver();
203 resolver_->set_address(addr);
204 resolver_->SignalWorkDone.connect(this, &PhysicalSocket::OnResolveResult);
205 resolver_->Start();
206 state_ = CS_CONNECTING;
207 return 0;
208 }
209
210 return DoConnect(addr);
211 }
212
213 int DoConnect(const SocketAddress& connect_addr) {
214 if ((s_ == INVALID_SOCKET) &&
215 !Create(connect_addr.family(), SOCK_STREAM)) {
216 return SOCKET_ERROR;
217 }
218 sockaddr_storage addr_storage;
219 size_t len = connect_addr.ToSockAddrStorage(&addr_storage);
220 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
221 int err = ::connect(s_, addr, static_cast<int>(len));
222 UpdateLastError();
223 if (err == 0) {
224 state_ = CS_CONNECTED;
225 } else if (IsBlockingError(error_)) {
226 state_ = CS_CONNECTING;
227 enabled_events_ |= DE_CONNECT;
228 } else {
229 return SOCKET_ERROR;
230 }
231
232 enabled_events_ |= DE_READ | DE_WRITE;
233 return 0;
234 }
235
236 int GetError() const {
237 return error_;
238 }
239
240 void SetError(int error) {
241 error_ = error;
242 }
243
244 ConnState GetState() const {
245 return state_;
246 }
247
248 int GetOption(Option opt, int* value) {
249 int slevel;
250 int sopt;
251 if (TranslateOption(opt, &slevel, &sopt) == -1)
252 return -1;
253 socklen_t optlen = sizeof(*value);
254 int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen);
255 if (ret != -1 && opt == OPT_DONTFRAGMENT) {
256#ifdef LINUX
257 *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0;
258#endif
259 }
260 return ret;
261 }
262
263 int SetOption(Option opt, int value) {
264 int slevel;
265 int sopt;
266 if (TranslateOption(opt, &slevel, &sopt) == -1)
267 return -1;
268 if (opt == OPT_DONTFRAGMENT) {
269#ifdef LINUX
270 value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
271#endif
272 }
273 return ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value));
274 }
275
276 int Send(const void *pv, size_t cb) {
277 int sent = ::send(s_, reinterpret_cast<const char *>(pv), (int)cb,
278#ifdef LINUX
279 // Suppress SIGPIPE. Without this, attempting to send on a socket whose
280 // other end is closed will result in a SIGPIPE signal being raised to
281 // our process, which by default will terminate the process, which we
282 // don't want. By specifying this flag, we'll just get the error EPIPE
283 // instead and can handle the error gracefully.
284 MSG_NOSIGNAL
285#else
286 0
287#endif
288 );
289 UpdateLastError();
290 MaybeRemapSendError();
291 // We have seen minidumps where this may be false.
292 ASSERT(sent <= static_cast<int>(cb));
293 if ((sent < 0) && IsBlockingError(error_)) {
294 enabled_events_ |= DE_WRITE;
295 }
296 return sent;
297 }
298
299 int SendTo(const void* buffer, size_t length, const SocketAddress& addr) {
300 sockaddr_storage saddr;
301 size_t len = addr.ToSockAddrStorage(&saddr);
302 int sent = ::sendto(
303 s_, static_cast<const char *>(buffer), static_cast<int>(length),
304#ifdef LINUX
305 // Suppress SIGPIPE. See above for explanation.
306 MSG_NOSIGNAL,
307#else
308 0,
309#endif
310 reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len));
311 UpdateLastError();
312 MaybeRemapSendError();
313 // We have seen minidumps where this may be false.
314 ASSERT(sent <= static_cast<int>(length));
315 if ((sent < 0) && IsBlockingError(error_)) {
316 enabled_events_ |= DE_WRITE;
317 }
318 return sent;
319 }
320
321 int Recv(void* buffer, size_t length) {
322 int received = ::recv(s_, static_cast<char*>(buffer),
323 static_cast<int>(length), 0);
324 if ((received == 0) && (length != 0)) {
325 // Note: on graceful shutdown, recv can return 0. In this case, we
326 // pretend it is blocking, and then signal close, so that simplifying
327 // assumptions can be made about Recv.
328 LOG(LS_WARNING) << "EOF from socket; deferring close event";
329 // Must turn this back on so that the select() loop will notice the close
330 // event.
331 enabled_events_ |= DE_READ;
332 error_ = EWOULDBLOCK;
333 return SOCKET_ERROR;
334 }
335 UpdateLastError();
336 bool success = (received >= 0) || IsBlockingError(error_);
337 if (udp_ || success) {
338 enabled_events_ |= DE_READ;
339 }
340 if (!success) {
341 LOG_F(LS_VERBOSE) << "Error = " << error_;
342 }
343 return received;
344 }
345
346 int RecvFrom(void* buffer, size_t length, SocketAddress *out_addr) {
347 sockaddr_storage addr_storage;
348 socklen_t addr_len = sizeof(addr_storage);
349 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
350 int received = ::recvfrom(s_, static_cast<char*>(buffer),
351 static_cast<int>(length), 0, addr, &addr_len);
352 UpdateLastError();
353 if ((received >= 0) && (out_addr != NULL))
354 SocketAddressFromSockAddrStorage(addr_storage, out_addr);
355 bool success = (received >= 0) || IsBlockingError(error_);
356 if (udp_ || success) {
357 enabled_events_ |= DE_READ;
358 }
359 if (!success) {
360 LOG_F(LS_VERBOSE) << "Error = " << error_;
361 }
362 return received;
363 }
364
365 int Listen(int backlog) {
366 int err = ::listen(s_, backlog);
367 UpdateLastError();
368 if (err == 0) {
369 state_ = CS_CONNECTING;
370 enabled_events_ |= DE_ACCEPT;
371#ifdef _DEBUG
372 dbg_addr_ = "Listening @ ";
373 dbg_addr_.append(GetLocalAddress().ToString());
374#endif // _DEBUG
375 }
376 return err;
377 }
378
379 AsyncSocket* Accept(SocketAddress *out_addr) {
380 sockaddr_storage addr_storage;
381 socklen_t addr_len = sizeof(addr_storage);
382 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
383 SOCKET s = ::accept(s_, addr, &addr_len);
384 UpdateLastError();
385 if (s == INVALID_SOCKET)
386 return NULL;
387 enabled_events_ |= DE_ACCEPT;
388 if (out_addr != NULL)
389 SocketAddressFromSockAddrStorage(addr_storage, out_addr);
390 return ss_->WrapSocket(s);
391 }
392
393 int Close() {
394 if (s_ == INVALID_SOCKET)
395 return 0;
396 int err = ::closesocket(s_);
397 UpdateLastError();
398 s_ = INVALID_SOCKET;
399 state_ = CS_CLOSED;
400 enabled_events_ = 0;
401 if (resolver_) {
402 resolver_->Destroy(false);
403 resolver_ = NULL;
404 }
405 return err;
406 }
407
408 int EstimateMTU(uint16* mtu) {
409 SocketAddress addr = GetRemoteAddress();
410 if (addr.IsAny()) {
411 error_ = ENOTCONN;
412 return -1;
413 }
414
415#if defined(WIN32)
416 // Gets the interface MTU (TTL=1) for the interface used to reach |addr|.
417 WinPing ping;
418 if (!ping.IsValid()) {
419 error_ = EINVAL; // can't think of a better error ID
420 return -1;
421 }
422 int header_size = ICMP_HEADER_SIZE;
423 if (addr.family() == AF_INET6) {
424 header_size += IPV6_HEADER_SIZE;
425 } else if (addr.family() == AF_INET) {
426 header_size += IP_HEADER_SIZE;
427 }
428
429 for (int level = 0; PACKET_MAXIMUMS[level + 1] > 0; ++level) {
430 int32 size = PACKET_MAXIMUMS[level] - header_size;
431 WinPing::PingResult result = ping.Ping(addr.ipaddr(), size,
432 ICMP_PING_TIMEOUT_MILLIS,
433 1, false);
434 if (result == WinPing::PING_FAIL) {
435 error_ = EINVAL; // can't think of a better error ID
436 return -1;
437 } else if (result != WinPing::PING_TOO_LARGE) {
438 *mtu = PACKET_MAXIMUMS[level];
439 return 0;
440 }
441 }
442
443 ASSERT(false);
444 return -1;
445#elif defined(IOS) || defined(OSX)
446 // No simple way to do this on Mac OS X.
447 // SIOCGIFMTU would work if we knew which interface would be used, but
448 // figuring that out is pretty complicated. For now we'll return an error
449 // and let the caller pick a default MTU.
450 error_ = EINVAL;
451 return -1;
452#elif defined(LINUX) || defined(ANDROID)
453 // Gets the path MTU.
454 int value;
455 socklen_t vlen = sizeof(value);
456 int err = getsockopt(s_, IPPROTO_IP, IP_MTU, &value, &vlen);
457 if (err < 0) {
458 UpdateLastError();
459 return err;
460 }
461
462 ASSERT((0 <= value) && (value <= 65536));
463 *mtu = value;
464 return 0;
465#endif
466 }
467
468 SocketServer* socketserver() { return ss_; }
469
470 protected:
471 void OnResolveResult(SignalThread* thread) {
472 if (thread != resolver_) {
473 return;
474 }
475
476 int error = resolver_->error();
477 if (error == 0) {
478 error = DoConnect(resolver_->address());
479 } else {
480 Close();
481 }
482
483 if (error) {
484 error_ = error;
485 SignalCloseEvent(this, error_);
486 }
487 }
488
489 void UpdateLastError() {
490 error_ = LAST_SYSTEM_ERROR;
491 }
492
493 void MaybeRemapSendError() {
494#if defined(OSX)
495 // https://developer.apple.com/library/mac/documentation/Darwin/
496 // Reference/ManPages/man2/sendto.2.html
497 // ENOBUFS - The output queue for a network interface is full.
498 // This generally indicates that the interface has stopped sending,
499 // but may be caused by transient congestion.
500 if (error_ == ENOBUFS) {
501 error_ = EWOULDBLOCK;
502 }
503#endif
504 }
505
506 static int TranslateOption(Option opt, int* slevel, int* sopt) {
507 switch (opt) {
508 case OPT_DONTFRAGMENT:
509#ifdef WIN32
510 *slevel = IPPROTO_IP;
511 *sopt = IP_DONTFRAGMENT;
512 break;
513#elif defined(IOS) || defined(OSX) || defined(BSD)
514 LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported.";
515 return -1;
516#elif defined(POSIX)
517 *slevel = IPPROTO_IP;
518 *sopt = IP_MTU_DISCOVER;
519 break;
520#endif
521 case OPT_RCVBUF:
522 *slevel = SOL_SOCKET;
523 *sopt = SO_RCVBUF;
524 break;
525 case OPT_SNDBUF:
526 *slevel = SOL_SOCKET;
527 *sopt = SO_SNDBUF;
528 break;
529 case OPT_NODELAY:
530 *slevel = IPPROTO_TCP;
531 *sopt = TCP_NODELAY;
532 break;
533 default:
534 ASSERT(false);
535 return -1;
536 }
537 return 0;
538 }
539
540 PhysicalSocketServer* ss_;
541 SOCKET s_;
542 uint8 enabled_events_;
543 bool udp_;
544 int error_;
545 ConnState state_;
546 AsyncResolver* resolver_;
547
548#ifdef _DEBUG
549 std::string dbg_addr_;
550#endif // _DEBUG;
551};
552
553#ifdef POSIX
554class EventDispatcher : public Dispatcher {
555 public:
556 EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) {
557 if (pipe(afd_) < 0)
558 LOG(LERROR) << "pipe failed";
559 ss_->Add(this);
560 }
561
562 virtual ~EventDispatcher() {
563 ss_->Remove(this);
564 close(afd_[0]);
565 close(afd_[1]);
566 }
567
568 virtual void Signal() {
569 CritScope cs(&crit_);
570 if (!fSignaled_) {
571 const uint8 b[1] = { 0 };
572 if (VERIFY(1 == write(afd_[1], b, sizeof(b)))) {
573 fSignaled_ = true;
574 }
575 }
576 }
577
578 virtual uint32 GetRequestedEvents() {
579 return DE_READ;
580 }
581
582 virtual void OnPreEvent(uint32 ff) {
583 // It is not possible to perfectly emulate an auto-resetting event with
584 // pipes. This simulates it by resetting before the event is handled.
585
586 CritScope cs(&crit_);
587 if (fSignaled_) {
588 uint8 b[4]; // Allow for reading more than 1 byte, but expect 1.
589 VERIFY(1 == read(afd_[0], b, sizeof(b)));
590 fSignaled_ = false;
591 }
592 }
593
594 virtual void OnEvent(uint32 ff, int err) {
595 ASSERT(false);
596 }
597
598 virtual int GetDescriptor() {
599 return afd_[0];
600 }
601
602 virtual bool IsDescriptorClosed() {
603 return false;
604 }
605
606 private:
607 PhysicalSocketServer *ss_;
608 int afd_[2];
609 bool fSignaled_;
610 CriticalSection crit_;
611};
612
613// These two classes use the self-pipe trick to deliver POSIX signals to our
614// select loop. This is the only safe, reliable, cross-platform way to do
615// non-trivial things with a POSIX signal in an event-driven program (until
616// proper pselect() implementations become ubiquitous).
617
618class PosixSignalHandler {
619 public:
620 // POSIX only specifies 32 signals, but in principle the system might have
621 // more and the programmer might choose to use them, so we size our array
622 // for 128.
623 static const int kNumPosixSignals = 128;
624
625 // There is just a single global instance. (Signal handlers do not get any
626 // sort of user-defined void * parameter, so they can't access anything that
627 // isn't global.)
628 static PosixSignalHandler* Instance() {
629 LIBJINGLE_DEFINE_STATIC_LOCAL(PosixSignalHandler, instance, ());
630 return &instance;
631 }
632
633 // Returns true if the given signal number is set.
634 bool IsSignalSet(int signum) const {
635 ASSERT(signum < ARRAY_SIZE(received_signal_));
636 if (signum < ARRAY_SIZE(received_signal_)) {
637 return received_signal_[signum];
638 } else {
639 return false;
640 }
641 }
642
643 // Clears the given signal number.
644 void ClearSignal(int signum) {
645 ASSERT(signum < ARRAY_SIZE(received_signal_));
646 if (signum < ARRAY_SIZE(received_signal_)) {
647 received_signal_[signum] = false;
648 }
649 }
650
651 // Returns the file descriptor to monitor for signal events.
652 int GetDescriptor() const {
653 return afd_[0];
654 }
655
656 // This is called directly from our real signal handler, so it must be
657 // signal-handler-safe. That means it cannot assume anything about the
658 // user-level state of the process, since the handler could be executed at any
659 // time on any thread.
660 void OnPosixSignalReceived(int signum) {
661 if (signum >= ARRAY_SIZE(received_signal_)) {
662 // We don't have space in our array for this.
663 return;
664 }
665 // Set a flag saying we've seen this signal.
666 received_signal_[signum] = true;
667 // Notify application code that we got a signal.
668 const uint8 b[1] = { 0 };
669 if (-1 == write(afd_[1], b, sizeof(b))) {
670 // Nothing we can do here. If there's an error somehow then there's
671 // nothing we can safely do from a signal handler.
672 // No, we can't even safely log it.
673 // But, we still have to check the return value here. Otherwise,
674 // GCC 4.4.1 complains ignoring return value. Even (void) doesn't help.
675 return;
676 }
677 }
678
679 private:
680 PosixSignalHandler() {
681 if (pipe(afd_) < 0) {
682 LOG_ERR(LS_ERROR) << "pipe failed";
683 return;
684 }
685 if (fcntl(afd_[0], F_SETFL, O_NONBLOCK) < 0) {
686 LOG_ERR(LS_WARNING) << "fcntl #1 failed";
687 }
688 if (fcntl(afd_[1], F_SETFL, O_NONBLOCK) < 0) {
689 LOG_ERR(LS_WARNING) << "fcntl #2 failed";
690 }
691 memset(const_cast<void *>(static_cast<volatile void *>(received_signal_)),
692 0,
693 sizeof(received_signal_));
694 }
695
696 ~PosixSignalHandler() {
697 int fd1 = afd_[0];
698 int fd2 = afd_[1];
699 // We clobber the stored file descriptor numbers here or else in principle
700 // a signal that happens to be delivered during application termination
701 // could erroneously write a zero byte to an unrelated file handle in
702 // OnPosixSignalReceived() if some other file happens to be opened later
703 // during shutdown and happens to be given the same file descriptor number
704 // as our pipe had. Unfortunately even with this precaution there is still a
705 // race where that could occur if said signal happens to be handled
706 // concurrently with this code and happens to have already read the value of
707 // afd_[1] from memory before we clobber it, but that's unlikely.
708 afd_[0] = -1;
709 afd_[1] = -1;
710 close(fd1);
711 close(fd2);
712 }
713
714 int afd_[2];
715 // These are boolean flags that will be set in our signal handler and read
716 // and cleared from Wait(). There is a race involved in this, but it is
717 // benign. The signal handler sets the flag before signaling the pipe, so
718 // we'll never end up blocking in select() while a flag is still true.
719 // However, if two of the same signal arrive close to each other then it's
720 // possible that the second time the handler may set the flag while it's still
721 // true, meaning that signal will be missed. But the first occurrence of it
722 // will still be handled, so this isn't a problem.
723 // Volatile is not necessary here for correctness, but this data _is_ volatile
724 // so I've marked it as such.
725 volatile uint8 received_signal_[kNumPosixSignals];
726};
727
728class PosixSignalDispatcher : public Dispatcher {
729 public:
730 PosixSignalDispatcher(PhysicalSocketServer *owner) : owner_(owner) {
731 owner_->Add(this);
732 }
733
734 virtual ~PosixSignalDispatcher() {
735 owner_->Remove(this);
736 }
737
738 virtual uint32 GetRequestedEvents() {
739 return DE_READ;
740 }
741
742 virtual void OnPreEvent(uint32 ff) {
743 // Events might get grouped if signals come very fast, so we read out up to
744 // 16 bytes to make sure we keep the pipe empty.
745 uint8 b[16];
746 ssize_t ret = read(GetDescriptor(), b, sizeof(b));
747 if (ret < 0) {
748 LOG_ERR(LS_WARNING) << "Error in read()";
749 } else if (ret == 0) {
750 LOG(LS_WARNING) << "Should have read at least one byte";
751 }
752 }
753
754 virtual void OnEvent(uint32 ff, int err) {
755 for (int signum = 0; signum < PosixSignalHandler::kNumPosixSignals;
756 ++signum) {
757 if (PosixSignalHandler::Instance()->IsSignalSet(signum)) {
758 PosixSignalHandler::Instance()->ClearSignal(signum);
759 HandlerMap::iterator i = handlers_.find(signum);
760 if (i == handlers_.end()) {
761 // This can happen if a signal is delivered to our process at around
762 // the same time as we unset our handler for it. It is not an error
763 // condition, but it's unusual enough to be worth logging.
764 LOG(LS_INFO) << "Received signal with no handler: " << signum;
765 } else {
766 // Otherwise, execute our handler.
767 (*i->second)(signum);
768 }
769 }
770 }
771 }
772
773 virtual int GetDescriptor() {
774 return PosixSignalHandler::Instance()->GetDescriptor();
775 }
776
777 virtual bool IsDescriptorClosed() {
778 return false;
779 }
780
781 void SetHandler(int signum, void (*handler)(int)) {
782 handlers_[signum] = handler;
783 }
784
785 void ClearHandler(int signum) {
786 handlers_.erase(signum);
787 }
788
789 bool HasHandlers() {
790 return !handlers_.empty();
791 }
792
793 private:
794 typedef std::map<int, void (*)(int)> HandlerMap;
795
796 HandlerMap handlers_;
797 // Our owner.
798 PhysicalSocketServer *owner_;
799};
800
801class SocketDispatcher : public Dispatcher, public PhysicalSocket {
802 public:
803 explicit SocketDispatcher(PhysicalSocketServer *ss) : PhysicalSocket(ss) {
804 }
805 SocketDispatcher(SOCKET s, PhysicalSocketServer *ss) : PhysicalSocket(ss, s) {
806 }
807
808 virtual ~SocketDispatcher() {
809 Close();
810 }
811
812 bool Initialize() {
813 ss_->Add(this);
814 fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK);
815 return true;
816 }
817
818 virtual bool Create(int type) {
819 return Create(AF_INET, type);
820 }
821
822 virtual bool Create(int family, int type) {
823 // Change the socket to be non-blocking.
824 if (!PhysicalSocket::Create(family, type))
825 return false;
826
827 return Initialize();
828 }
829
830 virtual int GetDescriptor() {
831 return s_;
832 }
833
834 virtual bool IsDescriptorClosed() {
835 // We don't have a reliable way of distinguishing end-of-stream
836 // from readability. So test on each readable call. Is this
837 // inefficient? Probably.
838 char ch;
839 ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK);
840 if (res > 0) {
841 // Data available, so not closed.
842 return false;
843 } else if (res == 0) {
844 // EOF, so closed.
845 return true;
846 } else { // error
847 switch (errno) {
848 // Returned if we've already closed s_.
849 case EBADF:
850 // Returned during ungraceful peer shutdown.
851 case ECONNRESET:
852 return true;
853 default:
854 // Assume that all other errors are just blocking errors, meaning the
855 // connection is still good but we just can't read from it right now.
856 // This should only happen when connecting (and at most once), because
857 // in all other cases this function is only called if the file
858 // descriptor is already known to be in the readable state. However,
859 // it's not necessary a problem if we spuriously interpret a
860 // "connection lost"-type error as a blocking error, because typically
861 // the next recv() will get EOF, so we'll still eventually notice that
862 // the socket is closed.
863 LOG_ERR(LS_WARNING) << "Assuming benign blocking error";
864 return false;
865 }
866 }
867 }
868
869 virtual uint32 GetRequestedEvents() {
870 return enabled_events_;
871 }
872
873 virtual void OnPreEvent(uint32 ff) {
874 if ((ff & DE_CONNECT) != 0)
875 state_ = CS_CONNECTED;
876 if ((ff & DE_CLOSE) != 0)
877 state_ = CS_CLOSED;
878 }
879
880 virtual void OnEvent(uint32 ff, int err) {
881 // Make sure we deliver connect/accept first. Otherwise, consumers may see
882 // something like a READ followed by a CONNECT, which would be odd.
883 if ((ff & DE_CONNECT) != 0) {
884 enabled_events_ &= ~DE_CONNECT;
885 SignalConnectEvent(this);
886 }
887 if ((ff & DE_ACCEPT) != 0) {
888 enabled_events_ &= ~DE_ACCEPT;
889 SignalReadEvent(this);
890 }
891 if ((ff & DE_READ) != 0) {
892 enabled_events_ &= ~DE_READ;
893 SignalReadEvent(this);
894 }
895 if ((ff & DE_WRITE) != 0) {
896 enabled_events_ &= ~DE_WRITE;
897 SignalWriteEvent(this);
898 }
899 if ((ff & DE_CLOSE) != 0) {
900 // The socket is now dead to us, so stop checking it.
901 enabled_events_ = 0;
902 SignalCloseEvent(this, err);
903 }
904 }
905
906 virtual int Close() {
907 if (s_ == INVALID_SOCKET)
908 return 0;
909
910 ss_->Remove(this);
911 return PhysicalSocket::Close();
912 }
913};
914
915class FileDispatcher: public Dispatcher, public AsyncFile {
916 public:
917 FileDispatcher(int fd, PhysicalSocketServer *ss) : ss_(ss), fd_(fd) {
918 set_readable(true);
919
920 ss_->Add(this);
921
922 fcntl(fd_, F_SETFL, fcntl(fd_, F_GETFL, 0) | O_NONBLOCK);
923 }
924
925 virtual ~FileDispatcher() {
926 ss_->Remove(this);
927 }
928
929 SocketServer* socketserver() { return ss_; }
930
931 virtual int GetDescriptor() {
932 return fd_;
933 }
934
935 virtual bool IsDescriptorClosed() {
936 return false;
937 }
938
939 virtual uint32 GetRequestedEvents() {
940 return flags_;
941 }
942
943 virtual void OnPreEvent(uint32 ff) {
944 }
945
946 virtual void OnEvent(uint32 ff, int err) {
947 if ((ff & DE_READ) != 0)
948 SignalReadEvent(this);
949 if ((ff & DE_WRITE) != 0)
950 SignalWriteEvent(this);
951 if ((ff & DE_CLOSE) != 0)
952 SignalCloseEvent(this, err);
953 }
954
955 virtual bool readable() {
956 return (flags_ & DE_READ) != 0;
957 }
958
959 virtual void set_readable(bool value) {
960 flags_ = value ? (flags_ | DE_READ) : (flags_ & ~DE_READ);
961 }
962
963 virtual bool writable() {
964 return (flags_ & DE_WRITE) != 0;
965 }
966
967 virtual void set_writable(bool value) {
968 flags_ = value ? (flags_ | DE_WRITE) : (flags_ & ~DE_WRITE);
969 }
970
971 private:
972 PhysicalSocketServer* ss_;
973 int fd_;
974 int flags_;
975};
976
977AsyncFile* PhysicalSocketServer::CreateFile(int fd) {
978 return new FileDispatcher(fd, this);
979}
980
981#endif // POSIX
982
983#ifdef WIN32
984static uint32 FlagsToEvents(uint32 events) {
985 uint32 ffFD = FD_CLOSE;
986 if (events & DE_READ)
987 ffFD |= FD_READ;
988 if (events & DE_WRITE)
989 ffFD |= FD_WRITE;
990 if (events & DE_CONNECT)
991 ffFD |= FD_CONNECT;
992 if (events & DE_ACCEPT)
993 ffFD |= FD_ACCEPT;
994 return ffFD;
995}
996
997class EventDispatcher : public Dispatcher {
998 public:
999 EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) {
1000 hev_ = WSACreateEvent();
1001 if (hev_) {
1002 ss_->Add(this);
1003 }
1004 }
1005
1006 ~EventDispatcher() {
1007 if (hev_ != NULL) {
1008 ss_->Remove(this);
1009 WSACloseEvent(hev_);
1010 hev_ = NULL;
1011 }
1012 }
1013
1014 virtual void Signal() {
1015 if (hev_ != NULL)
1016 WSASetEvent(hev_);
1017 }
1018
1019 virtual uint32 GetRequestedEvents() {
1020 return 0;
1021 }
1022
1023 virtual void OnPreEvent(uint32 ff) {
1024 WSAResetEvent(hev_);
1025 }
1026
1027 virtual void OnEvent(uint32 ff, int err) {
1028 }
1029
1030 virtual WSAEVENT GetWSAEvent() {
1031 return hev_;
1032 }
1033
1034 virtual SOCKET GetSocket() {
1035 return INVALID_SOCKET;
1036 }
1037
1038 virtual bool CheckSignalClose() { return false; }
1039
1040private:
1041 PhysicalSocketServer* ss_;
1042 WSAEVENT hev_;
1043};
1044
1045class SocketDispatcher : public Dispatcher, public PhysicalSocket {
1046 public:
1047 static int next_id_;
1048 int id_;
1049 bool signal_close_;
1050 int signal_err_;
1051
1052 SocketDispatcher(PhysicalSocketServer* ss)
1053 : PhysicalSocket(ss),
1054 id_(0),
1055 signal_close_(false) {
1056 }
1057
1058 SocketDispatcher(SOCKET s, PhysicalSocketServer* ss)
1059 : PhysicalSocket(ss, s),
1060 id_(0),
1061 signal_close_(false) {
1062 }
1063
1064 virtual ~SocketDispatcher() {
1065 Close();
1066 }
1067
1068 bool Initialize() {
1069 ASSERT(s_ != INVALID_SOCKET);
1070 // Must be a non-blocking
1071 u_long argp = 1;
1072 ioctlsocket(s_, FIONBIO, &argp);
1073 ss_->Add(this);
1074 return true;
1075 }
1076
1077 virtual bool Create(int type) {
1078 return Create(AF_INET, type);
1079 }
1080
1081 virtual bool Create(int family, int type) {
1082 // Create socket
1083 if (!PhysicalSocket::Create(family, type))
1084 return false;
1085
1086 if (!Initialize())
1087 return false;
1088
1089 do { id_ = ++next_id_; } while (id_ == 0);
1090 return true;
1091 }
1092
1093 virtual int Close() {
1094 if (s_ == INVALID_SOCKET)
1095 return 0;
1096
1097 id_ = 0;
1098 signal_close_ = false;
1099 ss_->Remove(this);
1100 return PhysicalSocket::Close();
1101 }
1102
1103 virtual uint32 GetRequestedEvents() {
1104 return enabled_events_;
1105 }
1106
1107 virtual void OnPreEvent(uint32 ff) {
1108 if ((ff & DE_CONNECT) != 0)
1109 state_ = CS_CONNECTED;
1110 // We set CS_CLOSED from CheckSignalClose.
1111 }
1112
1113 virtual void OnEvent(uint32 ff, int err) {
1114 int cache_id = id_;
1115 // Make sure we deliver connect/accept first. Otherwise, consumers may see
1116 // something like a READ followed by a CONNECT, which would be odd.
1117 if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) {
1118 if (ff != DE_CONNECT)
1119 LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff;
1120 enabled_events_ &= ~DE_CONNECT;
1121#ifdef _DEBUG
1122 dbg_addr_ = "Connected @ ";
1123 dbg_addr_.append(GetRemoteAddress().ToString());
1124#endif // _DEBUG
1125 SignalConnectEvent(this);
1126 }
1127 if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) {
1128 enabled_events_ &= ~DE_ACCEPT;
1129 SignalReadEvent(this);
1130 }
1131 if ((ff & DE_READ) != 0) {
1132 enabled_events_ &= ~DE_READ;
1133 SignalReadEvent(this);
1134 }
1135 if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) {
1136 enabled_events_ &= ~DE_WRITE;
1137 SignalWriteEvent(this);
1138 }
1139 if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) {
1140 signal_close_ = true;
1141 signal_err_ = err;
1142 }
1143 }
1144
1145 virtual WSAEVENT GetWSAEvent() {
1146 return WSA_INVALID_EVENT;
1147 }
1148
1149 virtual SOCKET GetSocket() {
1150 return s_;
1151 }
1152
1153 virtual bool CheckSignalClose() {
1154 if (!signal_close_)
1155 return false;
1156
1157 char ch;
1158 if (recv(s_, &ch, 1, MSG_PEEK) > 0)
1159 return false;
1160
1161 state_ = CS_CLOSED;
1162 signal_close_ = false;
1163 SignalCloseEvent(this, signal_err_);
1164 return true;
1165 }
1166};
1167
1168int SocketDispatcher::next_id_ = 0;
1169
1170#endif // WIN32
1171
1172// Sets the value of a boolean value to false when signaled.
1173class Signaler : public EventDispatcher {
1174 public:
1175 Signaler(PhysicalSocketServer* ss, bool* pf)
1176 : EventDispatcher(ss), pf_(pf) {
1177 }
1178 virtual ~Signaler() { }
1179
1180 void OnEvent(uint32 ff, int err) {
1181 if (pf_)
1182 *pf_ = false;
1183 }
1184
1185 private:
1186 bool *pf_;
1187};
1188
1189PhysicalSocketServer::PhysicalSocketServer()
1190 : fWait_(false),
1191 last_tick_tracked_(0),
1192 last_tick_dispatch_count_(0) {
1193 signal_wakeup_ = new Signaler(this, &fWait_);
1194#ifdef WIN32
1195 socket_ev_ = WSACreateEvent();
1196#endif
1197}
1198
1199PhysicalSocketServer::~PhysicalSocketServer() {
1200#ifdef WIN32
1201 WSACloseEvent(socket_ev_);
1202#endif
1203#ifdef POSIX
1204 signal_dispatcher_.reset();
1205#endif
1206 delete signal_wakeup_;
1207 ASSERT(dispatchers_.empty());
1208}
1209
1210void PhysicalSocketServer::WakeUp() {
1211 signal_wakeup_->Signal();
1212}
1213
1214Socket* PhysicalSocketServer::CreateSocket(int type) {
1215 return CreateSocket(AF_INET, type);
1216}
1217
1218Socket* PhysicalSocketServer::CreateSocket(int family, int type) {
1219 PhysicalSocket* socket = new PhysicalSocket(this);
1220 if (socket->Create(family, type)) {
1221 return socket;
1222 } else {
1223 delete socket;
1224 return 0;
1225 }
1226}
1227
1228AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) {
1229 return CreateAsyncSocket(AF_INET, type);
1230}
1231
1232AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int family, int type) {
1233 SocketDispatcher* dispatcher = new SocketDispatcher(this);
1234 if (dispatcher->Create(family, type)) {
1235 return dispatcher;
1236 } else {
1237 delete dispatcher;
1238 return 0;
1239 }
1240}
1241
1242AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) {
1243 SocketDispatcher* dispatcher = new SocketDispatcher(s, this);
1244 if (dispatcher->Initialize()) {
1245 return dispatcher;
1246 } else {
1247 delete dispatcher;
1248 return 0;
1249 }
1250}
1251
1252void PhysicalSocketServer::Add(Dispatcher *pdispatcher) {
1253 CritScope cs(&crit_);
1254 // Prevent duplicates. This can cause dead dispatchers to stick around.
1255 DispatcherList::iterator pos = std::find(dispatchers_.begin(),
1256 dispatchers_.end(),
1257 pdispatcher);
1258 if (pos != dispatchers_.end())
1259 return;
1260 dispatchers_.push_back(pdispatcher);
1261}
1262
1263void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) {
1264 CritScope cs(&crit_);
1265 DispatcherList::iterator pos = std::find(dispatchers_.begin(),
1266 dispatchers_.end(),
1267 pdispatcher);
1268 ASSERT(pos != dispatchers_.end());
1269 size_t index = pos - dispatchers_.begin();
1270 dispatchers_.erase(pos);
1271 for (IteratorList::iterator it = iterators_.begin(); it != iterators_.end();
1272 ++it) {
1273 if (index < **it) {
1274 --**it;
1275 }
1276 }
1277}
1278
1279#ifdef POSIX
1280bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1281 // Calculate timing information
1282
1283 struct timeval *ptvWait = NULL;
1284 struct timeval tvWait;
1285 struct timeval tvStop;
1286 if (cmsWait != kForever) {
1287 // Calculate wait timeval
1288 tvWait.tv_sec = cmsWait / 1000;
1289 tvWait.tv_usec = (cmsWait % 1000) * 1000;
1290 ptvWait = &tvWait;
1291
1292 // Calculate when to return in a timeval
1293 gettimeofday(&tvStop, NULL);
1294 tvStop.tv_sec += tvWait.tv_sec;
1295 tvStop.tv_usec += tvWait.tv_usec;
1296 if (tvStop.tv_usec >= 1000000) {
1297 tvStop.tv_usec -= 1000000;
1298 tvStop.tv_sec += 1;
1299 }
1300 }
1301
1302 // Zero all fd_sets. Don't need to do this inside the loop since
1303 // select() zeros the descriptors not signaled
1304
1305 fd_set fdsRead;
1306 FD_ZERO(&fdsRead);
1307 fd_set fdsWrite;
1308 FD_ZERO(&fdsWrite);
1309
1310 fWait_ = true;
1311
1312 while (fWait_) {
1313 int fdmax = -1;
1314 {
1315 CritScope cr(&crit_);
1316 for (size_t i = 0; i < dispatchers_.size(); ++i) {
1317 // Query dispatchers for read and write wait state
1318 Dispatcher *pdispatcher = dispatchers_[i];
1319 ASSERT(pdispatcher);
1320 if (!process_io && (pdispatcher != signal_wakeup_))
1321 continue;
1322 int fd = pdispatcher->GetDescriptor();
1323 if (fd > fdmax)
1324 fdmax = fd;
1325
1326 uint32 ff = pdispatcher->GetRequestedEvents();
1327 if (ff & (DE_READ | DE_ACCEPT))
1328 FD_SET(fd, &fdsRead);
1329 if (ff & (DE_WRITE | DE_CONNECT))
1330 FD_SET(fd, &fdsWrite);
1331 }
1332 }
1333
1334 // Wait then call handlers as appropriate
1335 // < 0 means error
1336 // 0 means timeout
1337 // > 0 means count of descriptors ready
1338 int n = select(fdmax + 1, &fdsRead, &fdsWrite, NULL, ptvWait);
1339
1340 // If error, return error.
1341 if (n < 0) {
1342 if (errno != EINTR) {
1343 LOG_E(LS_ERROR, EN, errno) << "select";
1344 return false;
1345 }
1346 // Else ignore the error and keep going. If this EINTR was for one of the
1347 // signals managed by this PhysicalSocketServer, the
1348 // PosixSignalDeliveryDispatcher will be in the signaled state in the next
1349 // iteration.
1350 } else if (n == 0) {
1351 // If timeout, return success
1352 return true;
1353 } else {
1354 // We have signaled descriptors
1355 CritScope cr(&crit_);
1356 for (size_t i = 0; i < dispatchers_.size(); ++i) {
1357 Dispatcher *pdispatcher = dispatchers_[i];
1358 int fd = pdispatcher->GetDescriptor();
1359 uint32 ff = 0;
1360 int errcode = 0;
1361
1362 // Reap any error code, which can be signaled through reads or writes.
1363 // TODO: Should we set errcode if getsockopt fails?
1364 if (FD_ISSET(fd, &fdsRead) || FD_ISSET(fd, &fdsWrite)) {
1365 socklen_t len = sizeof(errcode);
1366 ::getsockopt(fd, SOL_SOCKET, SO_ERROR, &errcode, &len);
1367 }
1368
1369 // Check readable descriptors. If we're waiting on an accept, signal
1370 // that. Otherwise we're waiting for data, check to see if we're
1371 // readable or really closed.
1372 // TODO: Only peek at TCP descriptors.
1373 if (FD_ISSET(fd, &fdsRead)) {
1374 FD_CLR(fd, &fdsRead);
1375 if (pdispatcher->GetRequestedEvents() & DE_ACCEPT) {
1376 ff |= DE_ACCEPT;
1377 } else if (errcode || pdispatcher->IsDescriptorClosed()) {
1378 ff |= DE_CLOSE;
1379 } else {
1380 ff |= DE_READ;
1381 }
1382 }
1383
1384 // Check writable descriptors. If we're waiting on a connect, detect
1385 // success versus failure by the reaped error code.
1386 if (FD_ISSET(fd, &fdsWrite)) {
1387 FD_CLR(fd, &fdsWrite);
1388 if (pdispatcher->GetRequestedEvents() & DE_CONNECT) {
1389 if (!errcode) {
1390 ff |= DE_CONNECT;
1391 } else {
1392 ff |= DE_CLOSE;
1393 }
1394 } else {
1395 ff |= DE_WRITE;
1396 }
1397 }
1398
1399 // Tell the descriptor about the event.
1400 if (ff != 0) {
1401 pdispatcher->OnPreEvent(ff);
1402 pdispatcher->OnEvent(ff, errcode);
1403 }
1404 }
1405 }
1406
1407 // Recalc the time remaining to wait. Doing it here means it doesn't get
1408 // calced twice the first time through the loop
1409 if (ptvWait) {
1410 ptvWait->tv_sec = 0;
1411 ptvWait->tv_usec = 0;
1412 struct timeval tvT;
1413 gettimeofday(&tvT, NULL);
1414 if ((tvStop.tv_sec > tvT.tv_sec)
1415 || ((tvStop.tv_sec == tvT.tv_sec)
1416 && (tvStop.tv_usec > tvT.tv_usec))) {
1417 ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec;
1418 ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec;
1419 if (ptvWait->tv_usec < 0) {
1420 ASSERT(ptvWait->tv_sec > 0);
1421 ptvWait->tv_usec += 1000000;
1422 ptvWait->tv_sec -= 1;
1423 }
1424 }
1425 }
1426 }
1427
1428 return true;
1429}
1430
1431static void GlobalSignalHandler(int signum) {
1432 PosixSignalHandler::Instance()->OnPosixSignalReceived(signum);
1433}
1434
1435bool PhysicalSocketServer::SetPosixSignalHandler(int signum,
1436 void (*handler)(int)) {
1437 // If handler is SIG_IGN or SIG_DFL then clear our user-level handler,
1438 // otherwise set one.
1439 if (handler == SIG_IGN || handler == SIG_DFL) {
1440 if (!InstallSignal(signum, handler)) {
1441 return false;
1442 }
1443 if (signal_dispatcher_) {
1444 signal_dispatcher_->ClearHandler(signum);
1445 if (!signal_dispatcher_->HasHandlers()) {
1446 signal_dispatcher_.reset();
1447 }
1448 }
1449 } else {
1450 if (!signal_dispatcher_) {
1451 signal_dispatcher_.reset(new PosixSignalDispatcher(this));
1452 }
1453 signal_dispatcher_->SetHandler(signum, handler);
1454 if (!InstallSignal(signum, &GlobalSignalHandler)) {
1455 return false;
1456 }
1457 }
1458 return true;
1459}
1460
1461Dispatcher* PhysicalSocketServer::signal_dispatcher() {
1462 return signal_dispatcher_.get();
1463}
1464
1465bool PhysicalSocketServer::InstallSignal(int signum, void (*handler)(int)) {
1466 struct sigaction act;
1467 // It doesn't really matter what we set this mask to.
1468 if (sigemptyset(&act.sa_mask) != 0) {
1469 LOG_ERR(LS_ERROR) << "Couldn't set mask";
1470 return false;
1471 }
1472 act.sa_handler = handler;
1473 // Use SA_RESTART so that our syscalls don't get EINTR, since we don't need it
1474 // and it's a nuisance. Though some syscalls still return EINTR and there's no
1475 // real standard for which ones. :(
1476 act.sa_flags = SA_RESTART;
1477 if (sigaction(signum, &act, NULL) != 0) {
1478 LOG_ERR(LS_ERROR) << "Couldn't set sigaction";
1479 return false;
1480 }
1481 return true;
1482}
1483#endif // POSIX
1484
1485#ifdef WIN32
1486bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1487 int cmsTotal = cmsWait;
1488 int cmsElapsed = 0;
1489 uint32 msStart = Time();
1490
1491#if LOGGING
1492 if (last_tick_dispatch_count_ == 0) {
1493 last_tick_tracked_ = msStart;
1494 }
1495#endif
1496
1497 fWait_ = true;
1498 while (fWait_) {
1499 std::vector<WSAEVENT> events;
1500 std::vector<Dispatcher *> event_owners;
1501
1502 events.push_back(socket_ev_);
1503
1504 {
1505 CritScope cr(&crit_);
1506 size_t i = 0;
1507 iterators_.push_back(&i);
1508 // Don't track dispatchers_.size(), because we want to pick up any new
1509 // dispatchers that were added while processing the loop.
1510 while (i < dispatchers_.size()) {
1511 Dispatcher* disp = dispatchers_[i++];
1512 if (!process_io && (disp != signal_wakeup_))
1513 continue;
1514 SOCKET s = disp->GetSocket();
1515 if (disp->CheckSignalClose()) {
1516 // We just signalled close, don't poll this socket
1517 } else if (s != INVALID_SOCKET) {
1518 WSAEventSelect(s,
1519 events[0],
1520 FlagsToEvents(disp->GetRequestedEvents()));
1521 } else {
1522 events.push_back(disp->GetWSAEvent());
1523 event_owners.push_back(disp);
1524 }
1525 }
1526 ASSERT(iterators_.back() == &i);
1527 iterators_.pop_back();
1528 }
1529
1530 // Which is shorter, the delay wait or the asked wait?
1531
1532 int cmsNext;
1533 if (cmsWait == kForever) {
1534 cmsNext = cmsWait;
1535 } else {
1536 cmsNext = _max(0, cmsTotal - cmsElapsed);
1537 }
1538
1539 // Wait for one of the events to signal
1540 DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()),
1541 &events[0],
1542 false,
1543 cmsNext,
1544 false);
1545
1546#if 0 // LOGGING
1547 // we track this information purely for logging purposes.
1548 last_tick_dispatch_count_++;
1549 if (last_tick_dispatch_count_ >= 1000) {
1550 int32 elapsed = TimeSince(last_tick_tracked_);
1551 LOG(INFO) << "PhysicalSocketServer took " << elapsed
1552 << "ms for 1000 events";
1553
1554 // If we get more than 1000 events in a second, we are spinning badly
1555 // (normally it should take about 8-20 seconds).
1556 ASSERT(elapsed > 1000);
1557
1558 last_tick_tracked_ = Time();
1559 last_tick_dispatch_count_ = 0;
1560 }
1561#endif
1562
1563 if (dw == WSA_WAIT_FAILED) {
1564 // Failed?
1565 // TODO: need a better strategy than this!
1566 int error = WSAGetLastError();
1567 ASSERT(false);
1568 return false;
1569 } else if (dw == WSA_WAIT_TIMEOUT) {
1570 // Timeout?
1571 return true;
1572 } else {
1573 // Figure out which one it is and call it
1574 CritScope cr(&crit_);
1575 int index = dw - WSA_WAIT_EVENT_0;
1576 if (index > 0) {
1577 --index; // The first event is the socket event
1578 event_owners[index]->OnPreEvent(0);
1579 event_owners[index]->OnEvent(0, 0);
1580 } else if (process_io) {
1581 size_t i = 0, end = dispatchers_.size();
1582 iterators_.push_back(&i);
1583 iterators_.push_back(&end); // Don't iterate over new dispatchers.
1584 while (i < end) {
1585 Dispatcher* disp = dispatchers_[i++];
1586 SOCKET s = disp->GetSocket();
1587 if (s == INVALID_SOCKET)
1588 continue;
1589
1590 WSANETWORKEVENTS wsaEvents;
1591 int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents);
1592 if (err == 0) {
1593
1594#if LOGGING
1595 {
1596 if ((wsaEvents.lNetworkEvents & FD_READ) &&
1597 wsaEvents.iErrorCode[FD_READ_BIT] != 0) {
1598 LOG(WARNING) << "PhysicalSocketServer got FD_READ_BIT error "
1599 << wsaEvents.iErrorCode[FD_READ_BIT];
1600 }
1601 if ((wsaEvents.lNetworkEvents & FD_WRITE) &&
1602 wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) {
1603 LOG(WARNING) << "PhysicalSocketServer got FD_WRITE_BIT error "
1604 << wsaEvents.iErrorCode[FD_WRITE_BIT];
1605 }
1606 if ((wsaEvents.lNetworkEvents & FD_CONNECT) &&
1607 wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) {
1608 LOG(WARNING) << "PhysicalSocketServer got FD_CONNECT_BIT error "
1609 << wsaEvents.iErrorCode[FD_CONNECT_BIT];
1610 }
1611 if ((wsaEvents.lNetworkEvents & FD_ACCEPT) &&
1612 wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) {
1613 LOG(WARNING) << "PhysicalSocketServer got FD_ACCEPT_BIT error "
1614 << wsaEvents.iErrorCode[FD_ACCEPT_BIT];
1615 }
1616 if ((wsaEvents.lNetworkEvents & FD_CLOSE) &&
1617 wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) {
1618 LOG(WARNING) << "PhysicalSocketServer got FD_CLOSE_BIT error "
1619 << wsaEvents.iErrorCode[FD_CLOSE_BIT];
1620 }
1621 }
1622#endif
1623 uint32 ff = 0;
1624 int errcode = 0;
1625 if (wsaEvents.lNetworkEvents & FD_READ)
1626 ff |= DE_READ;
1627 if (wsaEvents.lNetworkEvents & FD_WRITE)
1628 ff |= DE_WRITE;
1629 if (wsaEvents.lNetworkEvents & FD_CONNECT) {
1630 if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) {
1631 ff |= DE_CONNECT;
1632 } else {
1633 ff |= DE_CLOSE;
1634 errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT];
1635 }
1636 }
1637 if (wsaEvents.lNetworkEvents & FD_ACCEPT)
1638 ff |= DE_ACCEPT;
1639 if (wsaEvents.lNetworkEvents & FD_CLOSE) {
1640 ff |= DE_CLOSE;
1641 errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT];
1642 }
1643 if (ff != 0) {
1644 disp->OnPreEvent(ff);
1645 disp->OnEvent(ff, errcode);
1646 }
1647 }
1648 }
1649 ASSERT(iterators_.back() == &end);
1650 iterators_.pop_back();
1651 ASSERT(iterators_.back() == &i);
1652 iterators_.pop_back();
1653 }
1654
1655 // Reset the network event until new activity occurs
1656 WSAResetEvent(socket_ev_);
1657 }
1658
1659 // Break?
1660 if (!fWait_)
1661 break;
1662 cmsElapsed = TimeSince(msStart);
1663 if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) {
1664 break;
1665 }
1666 }
1667
1668 // Done
1669 return true;
1670}
1671#endif // WIN32
1672
1673} // namespace talk_base