blob: a16e5802c150819d442ac4655e65c31589e5dd3f [file] [log] [blame]
henrike@webrtc.org28e20752013-07-10 00:45:36 +00001/*
2 * libjingle
3 * Copyright 2004--2005, Google Inc.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
19 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
22 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
24 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
25 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#if defined(_MSC_VER) && _MSC_VER < 1300
29#pragma warning(disable:4786)
30#endif
31
pbos@webrtc.org371243d2014-03-07 15:22:04 +000032#include <assert.h>
henrike@webrtc.org28e20752013-07-10 00:45:36 +000033
34#ifdef POSIX
35#include <string.h>
36#include <errno.h>
37#include <fcntl.h>
38#include <sys/time.h>
wu@webrtc.orgf6d6ed02014-01-03 22:08:47 +000039#include <sys/select.h>
henrike@webrtc.org28e20752013-07-10 00:45:36 +000040#include <unistd.h>
41#include <signal.h>
42#endif
43
44#ifdef WIN32
45#define WIN32_LEAN_AND_MEAN
46#include <windows.h>
47#include <winsock2.h>
48#include <ws2tcpip.h>
49#undef SetPort
50#endif
51
52#include <algorithm>
53#include <map>
54
55#include "talk/base/basictypes.h"
56#include "talk/base/byteorder.h"
57#include "talk/base/common.h"
58#include "talk/base/logging.h"
59#include "talk/base/nethelpers.h"
60#include "talk/base/physicalsocketserver.h"
61#include "talk/base/timeutils.h"
62#include "talk/base/winping.h"
63#include "talk/base/win32socketinit.h"
64
65// stm: this will tell us if we are on OSX
66#ifdef HAVE_CONFIG_H
67#include "config.h"
68#endif
69
70#ifdef POSIX
71#include <netinet/tcp.h> // for TCP_NODELAY
72#define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h
73typedef void* SockOptArg;
74#endif // POSIX
75
76#ifdef WIN32
77typedef char* SockOptArg;
78#endif
79
80namespace talk_base {
81
82// Standard MTUs, from RFC 1191
83const uint16 PACKET_MAXIMUMS[] = {
84 65535, // Theoretical maximum, Hyperchannel
85 32000, // Nothing
86 17914, // 16Mb IBM Token Ring
87 8166, // IEEE 802.4
88 //4464, // IEEE 802.5 (4Mb max)
89 4352, // FDDI
90 //2048, // Wideband Network
91 2002, // IEEE 802.5 (4Mb recommended)
92 //1536, // Expermental Ethernet Networks
93 //1500, // Ethernet, Point-to-Point (default)
94 1492, // IEEE 802.3
95 1006, // SLIP, ARPANET
96 //576, // X.25 Networks
97 //544, // DEC IP Portal
98 //512, // NETBIOS
99 508, // IEEE 802/Source-Rt Bridge, ARCNET
100 296, // Point-to-Point (low delay)
101 68, // Official minimum
102 0, // End of list marker
103};
104
105static const int IP_HEADER_SIZE = 20u;
106static const int IPV6_HEADER_SIZE = 40u;
107static const int ICMP_HEADER_SIZE = 8u;
108static const int ICMP_PING_TIMEOUT_MILLIS = 10000u;
109
110class PhysicalSocket : public AsyncSocket, public sigslot::has_slots<> {
111 public:
112 PhysicalSocket(PhysicalSocketServer* ss, SOCKET s = INVALID_SOCKET)
113 : ss_(ss), s_(s), enabled_events_(0), error_(0),
114 state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED),
115 resolver_(NULL) {
116#ifdef WIN32
117 // EnsureWinsockInit() ensures that winsock is initialized. The default
118 // version of this function doesn't do anything because winsock is
119 // initialized by constructor of a static object. If neccessary libjingle
120 // users can link it with a different version of this function by replacing
121 // win32socketinit.cc. See win32socketinit.cc for more details.
122 EnsureWinsockInit();
123#endif
124 if (s_ != INVALID_SOCKET) {
125 enabled_events_ = DE_READ | DE_WRITE;
126
127 int type = SOCK_STREAM;
128 socklen_t len = sizeof(type);
129 VERIFY(0 == getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len));
130 udp_ = (SOCK_DGRAM == type);
131 }
132 }
133
134 virtual ~PhysicalSocket() {
135 Close();
136 }
137
138 // Creates the underlying OS socket (same as the "socket" function).
139 virtual bool Create(int family, int type) {
140 Close();
141 s_ = ::socket(family, type, 0);
142 udp_ = (SOCK_DGRAM == type);
143 UpdateLastError();
144 if (udp_)
145 enabled_events_ = DE_READ | DE_WRITE;
146 return s_ != INVALID_SOCKET;
147 }
148
149 SocketAddress GetLocalAddress() const {
150 sockaddr_storage addr_storage = {0};
151 socklen_t addrlen = sizeof(addr_storage);
152 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
153 int result = ::getsockname(s_, addr, &addrlen);
154 SocketAddress address;
155 if (result >= 0) {
156 SocketAddressFromSockAddrStorage(addr_storage, &address);
157 } else {
158 LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket="
159 << s_;
160 }
161 return address;
162 }
163
164 SocketAddress GetRemoteAddress() const {
165 sockaddr_storage addr_storage = {0};
166 socklen_t addrlen = sizeof(addr_storage);
167 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
168 int result = ::getpeername(s_, addr, &addrlen);
169 SocketAddress address;
170 if (result >= 0) {
171 SocketAddressFromSockAddrStorage(addr_storage, &address);
172 } else {
173 LOG(LS_WARNING) << "GetRemoteAddress: unable to get remote addr, socket="
174 << s_;
175 }
176 return address;
177 }
178
179 int Bind(const SocketAddress& bind_addr) {
180 sockaddr_storage addr_storage;
181 size_t len = bind_addr.ToSockAddrStorage(&addr_storage);
182 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
183 int err = ::bind(s_, addr, static_cast<int>(len));
184 UpdateLastError();
185#ifdef _DEBUG
186 if (0 == err) {
187 dbg_addr_ = "Bound @ ";
188 dbg_addr_.append(GetLocalAddress().ToString());
189 }
190#endif // _DEBUG
191 return err;
192 }
193
194 int Connect(const SocketAddress& addr) {
195 // TODO: Implicit creation is required to reconnect...
196 // ...but should we make it more explicit?
197 if (state_ != CS_CLOSED) {
198 SetError(EALREADY);
199 return SOCKET_ERROR;
200 }
201 if (addr.IsUnresolved()) {
202 LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect";
203 resolver_ = new AsyncResolver();
sergeyu@chromium.orga23f0ca2013-11-13 22:48:52 +0000204 resolver_->SignalDone.connect(this, &PhysicalSocket::OnResolveResult);
205 resolver_->Start(addr);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000206 state_ = CS_CONNECTING;
207 return 0;
208 }
209
210 return DoConnect(addr);
211 }
212
213 int DoConnect(const SocketAddress& connect_addr) {
214 if ((s_ == INVALID_SOCKET) &&
215 !Create(connect_addr.family(), SOCK_STREAM)) {
216 return SOCKET_ERROR;
217 }
218 sockaddr_storage addr_storage;
219 size_t len = connect_addr.ToSockAddrStorage(&addr_storage);
220 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
221 int err = ::connect(s_, addr, static_cast<int>(len));
222 UpdateLastError();
223 if (err == 0) {
224 state_ = CS_CONNECTED;
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000225 } else if (IsBlockingError(GetError())) {
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000226 state_ = CS_CONNECTING;
227 enabled_events_ |= DE_CONNECT;
228 } else {
229 return SOCKET_ERROR;
230 }
231
232 enabled_events_ |= DE_READ | DE_WRITE;
233 return 0;
234 }
235
236 int GetError() const {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000237 CritScope cs(&crit_);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000238 return error_;
239 }
240
241 void SetError(int error) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000242 CritScope cs(&crit_);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000243 error_ = error;
244 }
245
246 ConnState GetState() const {
247 return state_;
248 }
249
250 int GetOption(Option opt, int* value) {
251 int slevel;
252 int sopt;
253 if (TranslateOption(opt, &slevel, &sopt) == -1)
254 return -1;
255 socklen_t optlen = sizeof(*value);
256 int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen);
257 if (ret != -1 && opt == OPT_DONTFRAGMENT) {
258#ifdef LINUX
259 *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0;
260#endif
261 }
262 return ret;
263 }
264
265 int SetOption(Option opt, int value) {
266 int slevel;
267 int sopt;
268 if (TranslateOption(opt, &slevel, &sopt) == -1)
269 return -1;
270 if (opt == OPT_DONTFRAGMENT) {
271#ifdef LINUX
272 value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
273#endif
274 }
275 return ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value));
276 }
277
278 int Send(const void *pv, size_t cb) {
279 int sent = ::send(s_, reinterpret_cast<const char *>(pv), (int)cb,
280#ifdef LINUX
281 // Suppress SIGPIPE. Without this, attempting to send on a socket whose
282 // other end is closed will result in a SIGPIPE signal being raised to
283 // our process, which by default will terminate the process, which we
284 // don't want. By specifying this flag, we'll just get the error EPIPE
285 // instead and can handle the error gracefully.
286 MSG_NOSIGNAL
287#else
288 0
289#endif
290 );
291 UpdateLastError();
292 MaybeRemapSendError();
293 // We have seen minidumps where this may be false.
294 ASSERT(sent <= static_cast<int>(cb));
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000295 if ((sent < 0) && IsBlockingError(GetError())) {
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000296 enabled_events_ |= DE_WRITE;
297 }
298 return sent;
299 }
300
301 int SendTo(const void* buffer, size_t length, const SocketAddress& addr) {
302 sockaddr_storage saddr;
303 size_t len = addr.ToSockAddrStorage(&saddr);
304 int sent = ::sendto(
305 s_, static_cast<const char *>(buffer), static_cast<int>(length),
306#ifdef LINUX
307 // Suppress SIGPIPE. See above for explanation.
308 MSG_NOSIGNAL,
309#else
310 0,
311#endif
312 reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len));
313 UpdateLastError();
314 MaybeRemapSendError();
315 // We have seen minidumps where this may be false.
316 ASSERT(sent <= static_cast<int>(length));
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000317 if ((sent < 0) && IsBlockingError(GetError())) {
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000318 enabled_events_ |= DE_WRITE;
319 }
320 return sent;
321 }
322
323 int Recv(void* buffer, size_t length) {
324 int received = ::recv(s_, static_cast<char*>(buffer),
325 static_cast<int>(length), 0);
326 if ((received == 0) && (length != 0)) {
327 // Note: on graceful shutdown, recv can return 0. In this case, we
328 // pretend it is blocking, and then signal close, so that simplifying
329 // assumptions can be made about Recv.
330 LOG(LS_WARNING) << "EOF from socket; deferring close event";
331 // Must turn this back on so that the select() loop will notice the close
332 // event.
333 enabled_events_ |= DE_READ;
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000334 SetError(EWOULDBLOCK);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000335 return SOCKET_ERROR;
336 }
337 UpdateLastError();
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000338 int error = GetError();
339 bool success = (received >= 0) || IsBlockingError(error);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000340 if (udp_ || success) {
341 enabled_events_ |= DE_READ;
342 }
343 if (!success) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000344 LOG_F(LS_VERBOSE) << "Error = " << error;
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000345 }
346 return received;
347 }
348
349 int RecvFrom(void* buffer, size_t length, SocketAddress *out_addr) {
350 sockaddr_storage addr_storage;
351 socklen_t addr_len = sizeof(addr_storage);
352 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
353 int received = ::recvfrom(s_, static_cast<char*>(buffer),
354 static_cast<int>(length), 0, addr, &addr_len);
355 UpdateLastError();
356 if ((received >= 0) && (out_addr != NULL))
357 SocketAddressFromSockAddrStorage(addr_storage, out_addr);
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000358 int error = GetError();
359 bool success = (received >= 0) || IsBlockingError(error);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000360 if (udp_ || success) {
361 enabled_events_ |= DE_READ;
362 }
363 if (!success) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000364 LOG_F(LS_VERBOSE) << "Error = " << error;
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000365 }
366 return received;
367 }
368
369 int Listen(int backlog) {
370 int err = ::listen(s_, backlog);
371 UpdateLastError();
372 if (err == 0) {
373 state_ = CS_CONNECTING;
374 enabled_events_ |= DE_ACCEPT;
375#ifdef _DEBUG
376 dbg_addr_ = "Listening @ ";
377 dbg_addr_.append(GetLocalAddress().ToString());
378#endif // _DEBUG
379 }
380 return err;
381 }
382
383 AsyncSocket* Accept(SocketAddress *out_addr) {
384 sockaddr_storage addr_storage;
385 socklen_t addr_len = sizeof(addr_storage);
386 sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
387 SOCKET s = ::accept(s_, addr, &addr_len);
388 UpdateLastError();
389 if (s == INVALID_SOCKET)
390 return NULL;
391 enabled_events_ |= DE_ACCEPT;
392 if (out_addr != NULL)
393 SocketAddressFromSockAddrStorage(addr_storage, out_addr);
394 return ss_->WrapSocket(s);
395 }
396
397 int Close() {
398 if (s_ == INVALID_SOCKET)
399 return 0;
400 int err = ::closesocket(s_);
401 UpdateLastError();
402 s_ = INVALID_SOCKET;
403 state_ = CS_CLOSED;
404 enabled_events_ = 0;
405 if (resolver_) {
406 resolver_->Destroy(false);
407 resolver_ = NULL;
408 }
409 return err;
410 }
411
412 int EstimateMTU(uint16* mtu) {
413 SocketAddress addr = GetRemoteAddress();
414 if (addr.IsAny()) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000415 SetError(ENOTCONN);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000416 return -1;
417 }
418
419#if defined(WIN32)
420 // Gets the interface MTU (TTL=1) for the interface used to reach |addr|.
421 WinPing ping;
422 if (!ping.IsValid()) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000423 SetError(EINVAL); // can't think of a better error ID
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000424 return -1;
425 }
426 int header_size = ICMP_HEADER_SIZE;
427 if (addr.family() == AF_INET6) {
428 header_size += IPV6_HEADER_SIZE;
429 } else if (addr.family() == AF_INET) {
430 header_size += IP_HEADER_SIZE;
431 }
432
433 for (int level = 0; PACKET_MAXIMUMS[level + 1] > 0; ++level) {
434 int32 size = PACKET_MAXIMUMS[level] - header_size;
435 WinPing::PingResult result = ping.Ping(addr.ipaddr(), size,
436 ICMP_PING_TIMEOUT_MILLIS,
437 1, false);
438 if (result == WinPing::PING_FAIL) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000439 SetError(EINVAL); // can't think of a better error ID
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000440 return -1;
441 } else if (result != WinPing::PING_TOO_LARGE) {
442 *mtu = PACKET_MAXIMUMS[level];
443 return 0;
444 }
445 }
446
447 ASSERT(false);
448 return -1;
449#elif defined(IOS) || defined(OSX)
450 // No simple way to do this on Mac OS X.
451 // SIOCGIFMTU would work if we knew which interface would be used, but
452 // figuring that out is pretty complicated. For now we'll return an error
453 // and let the caller pick a default MTU.
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000454 SetError(EINVAL);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000455 return -1;
456#elif defined(LINUX) || defined(ANDROID)
457 // Gets the path MTU.
458 int value;
459 socklen_t vlen = sizeof(value);
460 int err = getsockopt(s_, IPPROTO_IP, IP_MTU, &value, &vlen);
461 if (err < 0) {
462 UpdateLastError();
463 return err;
464 }
465
466 ASSERT((0 <= value) && (value <= 65536));
467 *mtu = value;
468 return 0;
wu@webrtc.orgcecfd182013-10-30 05:18:12 +0000469#elif defined(__native_client__)
470 // Most socket operations, including this, will fail in NaCl's sandbox.
471 error_ = EACCES;
472 return -1;
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000473#endif
474 }
475
476 SocketServer* socketserver() { return ss_; }
477
478 protected:
sergeyu@chromium.orga23f0ca2013-11-13 22:48:52 +0000479 void OnResolveResult(AsyncResolverInterface* resolver) {
480 if (resolver != resolver_) {
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000481 return;
482 }
483
sergeyu@chromium.orga23f0ca2013-11-13 22:48:52 +0000484 int error = resolver_->GetError();
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000485 if (error == 0) {
486 error = DoConnect(resolver_->address());
487 } else {
488 Close();
489 }
490
491 if (error) {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000492 SetError(error);
493 SignalCloseEvent(this, error);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000494 }
495 }
496
497 void UpdateLastError() {
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000498 SetError(LAST_SYSTEM_ERROR);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000499 }
500
501 void MaybeRemapSendError() {
502#if defined(OSX)
503 // https://developer.apple.com/library/mac/documentation/Darwin/
504 // Reference/ManPages/man2/sendto.2.html
505 // ENOBUFS - The output queue for a network interface is full.
506 // This generally indicates that the interface has stopped sending,
507 // but may be caused by transient congestion.
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000508 if (GetError() == ENOBUFS) {
509 SetError(EWOULDBLOCK);
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000510 }
511#endif
512 }
513
514 static int TranslateOption(Option opt, int* slevel, int* sopt) {
515 switch (opt) {
516 case OPT_DONTFRAGMENT:
517#ifdef WIN32
518 *slevel = IPPROTO_IP;
519 *sopt = IP_DONTFRAGMENT;
520 break;
wu@webrtc.orgf6d6ed02014-01-03 22:08:47 +0000521#elif defined(IOS) || defined(OSX) || defined(BSD) || defined(__native_client__)
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000522 LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported.";
523 return -1;
524#elif defined(POSIX)
525 *slevel = IPPROTO_IP;
526 *sopt = IP_MTU_DISCOVER;
527 break;
528#endif
529 case OPT_RCVBUF:
530 *slevel = SOL_SOCKET;
531 *sopt = SO_RCVBUF;
532 break;
533 case OPT_SNDBUF:
534 *slevel = SOL_SOCKET;
535 *sopt = SO_SNDBUF;
536 break;
537 case OPT_NODELAY:
538 *slevel = IPPROTO_TCP;
539 *sopt = TCP_NODELAY;
540 break;
wu@webrtc.org97077a32013-10-25 21:18:33 +0000541 case OPT_DSCP:
542 LOG(LS_WARNING) << "Socket::OPT_DSCP not supported.";
543 return -1;
wu@webrtc.orgb9a088b2014-02-13 23:18:49 +0000544 case OPT_RTP_SENDTIME_EXTN_ID:
545 return -1; // No logging is necessary as this not a OS socket option.
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000546 default:
547 ASSERT(false);
548 return -1;
549 }
550 return 0;
551 }
552
553 PhysicalSocketServer* ss_;
554 SOCKET s_;
555 uint8 enabled_events_;
556 bool udp_;
557 int error_;
wu@webrtc.orgd371a292013-10-23 23:56:09 +0000558 // Protects |error_| that is accessed from different threads.
559 mutable CriticalSection crit_;
henrike@webrtc.org28e20752013-07-10 00:45:36 +0000560 ConnState state_;
561 AsyncResolver* resolver_;
562
563#ifdef _DEBUG
564 std::string dbg_addr_;
565#endif // _DEBUG;
566};
567
568#ifdef POSIX
569class EventDispatcher : public Dispatcher {
570 public:
571 EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) {
572 if (pipe(afd_) < 0)
573 LOG(LERROR) << "pipe failed";
574 ss_->Add(this);
575 }
576
577 virtual ~EventDispatcher() {
578 ss_->Remove(this);
579 close(afd_[0]);
580 close(afd_[1]);
581 }
582
583 virtual void Signal() {
584 CritScope cs(&crit_);
585 if (!fSignaled_) {
586 const uint8 b[1] = { 0 };
587 if (VERIFY(1 == write(afd_[1], b, sizeof(b)))) {
588 fSignaled_ = true;
589 }
590 }
591 }
592
593 virtual uint32 GetRequestedEvents() {
594 return DE_READ;
595 }
596
597 virtual void OnPreEvent(uint32 ff) {
598 // It is not possible to perfectly emulate an auto-resetting event with
599 // pipes. This simulates it by resetting before the event is handled.
600
601 CritScope cs(&crit_);
602 if (fSignaled_) {
603 uint8 b[4]; // Allow for reading more than 1 byte, but expect 1.
604 VERIFY(1 == read(afd_[0], b, sizeof(b)));
605 fSignaled_ = false;
606 }
607 }
608
609 virtual void OnEvent(uint32 ff, int err) {
610 ASSERT(false);
611 }
612
613 virtual int GetDescriptor() {
614 return afd_[0];
615 }
616
617 virtual bool IsDescriptorClosed() {
618 return false;
619 }
620
621 private:
622 PhysicalSocketServer *ss_;
623 int afd_[2];
624 bool fSignaled_;
625 CriticalSection crit_;
626};
627
628// These two classes use the self-pipe trick to deliver POSIX signals to our
629// select loop. This is the only safe, reliable, cross-platform way to do
630// non-trivial things with a POSIX signal in an event-driven program (until
631// proper pselect() implementations become ubiquitous).
632
633class PosixSignalHandler {
634 public:
635 // POSIX only specifies 32 signals, but in principle the system might have
636 // more and the programmer might choose to use them, so we size our array
637 // for 128.
638 static const int kNumPosixSignals = 128;
639
640 // There is just a single global instance. (Signal handlers do not get any
641 // sort of user-defined void * parameter, so they can't access anything that
642 // isn't global.)
643 static PosixSignalHandler* Instance() {
644 LIBJINGLE_DEFINE_STATIC_LOCAL(PosixSignalHandler, instance, ());
645 return &instance;
646 }
647
648 // Returns true if the given signal number is set.
649 bool IsSignalSet(int signum) const {
650 ASSERT(signum < ARRAY_SIZE(received_signal_));
651 if (signum < ARRAY_SIZE(received_signal_)) {
652 return received_signal_[signum];
653 } else {
654 return false;
655 }
656 }
657
658 // Clears the given signal number.
659 void ClearSignal(int signum) {
660 ASSERT(signum < ARRAY_SIZE(received_signal_));
661 if (signum < ARRAY_SIZE(received_signal_)) {
662 received_signal_[signum] = false;
663 }
664 }
665
666 // Returns the file descriptor to monitor for signal events.
667 int GetDescriptor() const {
668 return afd_[0];
669 }
670
671 // This is called directly from our real signal handler, so it must be
672 // signal-handler-safe. That means it cannot assume anything about the
673 // user-level state of the process, since the handler could be executed at any
674 // time on any thread.
675 void OnPosixSignalReceived(int signum) {
676 if (signum >= ARRAY_SIZE(received_signal_)) {
677 // We don't have space in our array for this.
678 return;
679 }
680 // Set a flag saying we've seen this signal.
681 received_signal_[signum] = true;
682 // Notify application code that we got a signal.
683 const uint8 b[1] = { 0 };
684 if (-1 == write(afd_[1], b, sizeof(b))) {
685 // Nothing we can do here. If there's an error somehow then there's
686 // nothing we can safely do from a signal handler.
687 // No, we can't even safely log it.
688 // But, we still have to check the return value here. Otherwise,
689 // GCC 4.4.1 complains ignoring return value. Even (void) doesn't help.
690 return;
691 }
692 }
693
694 private:
695 PosixSignalHandler() {
696 if (pipe(afd_) < 0) {
697 LOG_ERR(LS_ERROR) << "pipe failed";
698 return;
699 }
700 if (fcntl(afd_[0], F_SETFL, O_NONBLOCK) < 0) {
701 LOG_ERR(LS_WARNING) << "fcntl #1 failed";
702 }
703 if (fcntl(afd_[1], F_SETFL, O_NONBLOCK) < 0) {
704 LOG_ERR(LS_WARNING) << "fcntl #2 failed";
705 }
706 memset(const_cast<void *>(static_cast<volatile void *>(received_signal_)),
707 0,
708 sizeof(received_signal_));
709 }
710
711 ~PosixSignalHandler() {
712 int fd1 = afd_[0];
713 int fd2 = afd_[1];
714 // We clobber the stored file descriptor numbers here or else in principle
715 // a signal that happens to be delivered during application termination
716 // could erroneously write a zero byte to an unrelated file handle in
717 // OnPosixSignalReceived() if some other file happens to be opened later
718 // during shutdown and happens to be given the same file descriptor number
719 // as our pipe had. Unfortunately even with this precaution there is still a
720 // race where that could occur if said signal happens to be handled
721 // concurrently with this code and happens to have already read the value of
722 // afd_[1] from memory before we clobber it, but that's unlikely.
723 afd_[0] = -1;
724 afd_[1] = -1;
725 close(fd1);
726 close(fd2);
727 }
728
729 int afd_[2];
730 // These are boolean flags that will be set in our signal handler and read
731 // and cleared from Wait(). There is a race involved in this, but it is
732 // benign. The signal handler sets the flag before signaling the pipe, so
733 // we'll never end up blocking in select() while a flag is still true.
734 // However, if two of the same signal arrive close to each other then it's
735 // possible that the second time the handler may set the flag while it's still
736 // true, meaning that signal will be missed. But the first occurrence of it
737 // will still be handled, so this isn't a problem.
738 // Volatile is not necessary here for correctness, but this data _is_ volatile
739 // so I've marked it as such.
740 volatile uint8 received_signal_[kNumPosixSignals];
741};
742
743class PosixSignalDispatcher : public Dispatcher {
744 public:
745 PosixSignalDispatcher(PhysicalSocketServer *owner) : owner_(owner) {
746 owner_->Add(this);
747 }
748
749 virtual ~PosixSignalDispatcher() {
750 owner_->Remove(this);
751 }
752
753 virtual uint32 GetRequestedEvents() {
754 return DE_READ;
755 }
756
757 virtual void OnPreEvent(uint32 ff) {
758 // Events might get grouped if signals come very fast, so we read out up to
759 // 16 bytes to make sure we keep the pipe empty.
760 uint8 b[16];
761 ssize_t ret = read(GetDescriptor(), b, sizeof(b));
762 if (ret < 0) {
763 LOG_ERR(LS_WARNING) << "Error in read()";
764 } else if (ret == 0) {
765 LOG(LS_WARNING) << "Should have read at least one byte";
766 }
767 }
768
769 virtual void OnEvent(uint32 ff, int err) {
770 for (int signum = 0; signum < PosixSignalHandler::kNumPosixSignals;
771 ++signum) {
772 if (PosixSignalHandler::Instance()->IsSignalSet(signum)) {
773 PosixSignalHandler::Instance()->ClearSignal(signum);
774 HandlerMap::iterator i = handlers_.find(signum);
775 if (i == handlers_.end()) {
776 // This can happen if a signal is delivered to our process at around
777 // the same time as we unset our handler for it. It is not an error
778 // condition, but it's unusual enough to be worth logging.
779 LOG(LS_INFO) << "Received signal with no handler: " << signum;
780 } else {
781 // Otherwise, execute our handler.
782 (*i->second)(signum);
783 }
784 }
785 }
786 }
787
788 virtual int GetDescriptor() {
789 return PosixSignalHandler::Instance()->GetDescriptor();
790 }
791
792 virtual bool IsDescriptorClosed() {
793 return false;
794 }
795
796 void SetHandler(int signum, void (*handler)(int)) {
797 handlers_[signum] = handler;
798 }
799
800 void ClearHandler(int signum) {
801 handlers_.erase(signum);
802 }
803
804 bool HasHandlers() {
805 return !handlers_.empty();
806 }
807
808 private:
809 typedef std::map<int, void (*)(int)> HandlerMap;
810
811 HandlerMap handlers_;
812 // Our owner.
813 PhysicalSocketServer *owner_;
814};
815
816class SocketDispatcher : public Dispatcher, public PhysicalSocket {
817 public:
818 explicit SocketDispatcher(PhysicalSocketServer *ss) : PhysicalSocket(ss) {
819 }
820 SocketDispatcher(SOCKET s, PhysicalSocketServer *ss) : PhysicalSocket(ss, s) {
821 }
822
823 virtual ~SocketDispatcher() {
824 Close();
825 }
826
827 bool Initialize() {
828 ss_->Add(this);
829 fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK);
830 return true;
831 }
832
833 virtual bool Create(int type) {
834 return Create(AF_INET, type);
835 }
836
837 virtual bool Create(int family, int type) {
838 // Change the socket to be non-blocking.
839 if (!PhysicalSocket::Create(family, type))
840 return false;
841
842 return Initialize();
843 }
844
845 virtual int GetDescriptor() {
846 return s_;
847 }
848
849 virtual bool IsDescriptorClosed() {
850 // We don't have a reliable way of distinguishing end-of-stream
851 // from readability. So test on each readable call. Is this
852 // inefficient? Probably.
853 char ch;
854 ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK);
855 if (res > 0) {
856 // Data available, so not closed.
857 return false;
858 } else if (res == 0) {
859 // EOF, so closed.
860 return true;
861 } else { // error
862 switch (errno) {
863 // Returned if we've already closed s_.
864 case EBADF:
865 // Returned during ungraceful peer shutdown.
866 case ECONNRESET:
867 return true;
868 default:
869 // Assume that all other errors are just blocking errors, meaning the
870 // connection is still good but we just can't read from it right now.
871 // This should only happen when connecting (and at most once), because
872 // in all other cases this function is only called if the file
873 // descriptor is already known to be in the readable state. However,
874 // it's not necessary a problem if we spuriously interpret a
875 // "connection lost"-type error as a blocking error, because typically
876 // the next recv() will get EOF, so we'll still eventually notice that
877 // the socket is closed.
878 LOG_ERR(LS_WARNING) << "Assuming benign blocking error";
879 return false;
880 }
881 }
882 }
883
884 virtual uint32 GetRequestedEvents() {
885 return enabled_events_;
886 }
887
888 virtual void OnPreEvent(uint32 ff) {
889 if ((ff & DE_CONNECT) != 0)
890 state_ = CS_CONNECTED;
891 if ((ff & DE_CLOSE) != 0)
892 state_ = CS_CLOSED;
893 }
894
895 virtual void OnEvent(uint32 ff, int err) {
896 // Make sure we deliver connect/accept first. Otherwise, consumers may see
897 // something like a READ followed by a CONNECT, which would be odd.
898 if ((ff & DE_CONNECT) != 0) {
899 enabled_events_ &= ~DE_CONNECT;
900 SignalConnectEvent(this);
901 }
902 if ((ff & DE_ACCEPT) != 0) {
903 enabled_events_ &= ~DE_ACCEPT;
904 SignalReadEvent(this);
905 }
906 if ((ff & DE_READ) != 0) {
907 enabled_events_ &= ~DE_READ;
908 SignalReadEvent(this);
909 }
910 if ((ff & DE_WRITE) != 0) {
911 enabled_events_ &= ~DE_WRITE;
912 SignalWriteEvent(this);
913 }
914 if ((ff & DE_CLOSE) != 0) {
915 // The socket is now dead to us, so stop checking it.
916 enabled_events_ = 0;
917 SignalCloseEvent(this, err);
918 }
919 }
920
921 virtual int Close() {
922 if (s_ == INVALID_SOCKET)
923 return 0;
924
925 ss_->Remove(this);
926 return PhysicalSocket::Close();
927 }
928};
929
930class FileDispatcher: public Dispatcher, public AsyncFile {
931 public:
932 FileDispatcher(int fd, PhysicalSocketServer *ss) : ss_(ss), fd_(fd) {
933 set_readable(true);
934
935 ss_->Add(this);
936
937 fcntl(fd_, F_SETFL, fcntl(fd_, F_GETFL, 0) | O_NONBLOCK);
938 }
939
940 virtual ~FileDispatcher() {
941 ss_->Remove(this);
942 }
943
944 SocketServer* socketserver() { return ss_; }
945
946 virtual int GetDescriptor() {
947 return fd_;
948 }
949
950 virtual bool IsDescriptorClosed() {
951 return false;
952 }
953
954 virtual uint32 GetRequestedEvents() {
955 return flags_;
956 }
957
958 virtual void OnPreEvent(uint32 ff) {
959 }
960
961 virtual void OnEvent(uint32 ff, int err) {
962 if ((ff & DE_READ) != 0)
963 SignalReadEvent(this);
964 if ((ff & DE_WRITE) != 0)
965 SignalWriteEvent(this);
966 if ((ff & DE_CLOSE) != 0)
967 SignalCloseEvent(this, err);
968 }
969
970 virtual bool readable() {
971 return (flags_ & DE_READ) != 0;
972 }
973
974 virtual void set_readable(bool value) {
975 flags_ = value ? (flags_ | DE_READ) : (flags_ & ~DE_READ);
976 }
977
978 virtual bool writable() {
979 return (flags_ & DE_WRITE) != 0;
980 }
981
982 virtual void set_writable(bool value) {
983 flags_ = value ? (flags_ | DE_WRITE) : (flags_ & ~DE_WRITE);
984 }
985
986 private:
987 PhysicalSocketServer* ss_;
988 int fd_;
989 int flags_;
990};
991
992AsyncFile* PhysicalSocketServer::CreateFile(int fd) {
993 return new FileDispatcher(fd, this);
994}
995
996#endif // POSIX
997
998#ifdef WIN32
999static uint32 FlagsToEvents(uint32 events) {
1000 uint32 ffFD = FD_CLOSE;
1001 if (events & DE_READ)
1002 ffFD |= FD_READ;
1003 if (events & DE_WRITE)
1004 ffFD |= FD_WRITE;
1005 if (events & DE_CONNECT)
1006 ffFD |= FD_CONNECT;
1007 if (events & DE_ACCEPT)
1008 ffFD |= FD_ACCEPT;
1009 return ffFD;
1010}
1011
1012class EventDispatcher : public Dispatcher {
1013 public:
1014 EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) {
1015 hev_ = WSACreateEvent();
1016 if (hev_) {
1017 ss_->Add(this);
1018 }
1019 }
1020
1021 ~EventDispatcher() {
1022 if (hev_ != NULL) {
1023 ss_->Remove(this);
1024 WSACloseEvent(hev_);
1025 hev_ = NULL;
1026 }
1027 }
1028
1029 virtual void Signal() {
1030 if (hev_ != NULL)
1031 WSASetEvent(hev_);
1032 }
1033
1034 virtual uint32 GetRequestedEvents() {
1035 return 0;
1036 }
1037
1038 virtual void OnPreEvent(uint32 ff) {
1039 WSAResetEvent(hev_);
1040 }
1041
1042 virtual void OnEvent(uint32 ff, int err) {
1043 }
1044
1045 virtual WSAEVENT GetWSAEvent() {
1046 return hev_;
1047 }
1048
1049 virtual SOCKET GetSocket() {
1050 return INVALID_SOCKET;
1051 }
1052
1053 virtual bool CheckSignalClose() { return false; }
1054
1055private:
1056 PhysicalSocketServer* ss_;
1057 WSAEVENT hev_;
1058};
1059
1060class SocketDispatcher : public Dispatcher, public PhysicalSocket {
1061 public:
1062 static int next_id_;
1063 int id_;
1064 bool signal_close_;
1065 int signal_err_;
1066
1067 SocketDispatcher(PhysicalSocketServer* ss)
1068 : PhysicalSocket(ss),
1069 id_(0),
1070 signal_close_(false) {
1071 }
1072
1073 SocketDispatcher(SOCKET s, PhysicalSocketServer* ss)
1074 : PhysicalSocket(ss, s),
1075 id_(0),
1076 signal_close_(false) {
1077 }
1078
1079 virtual ~SocketDispatcher() {
1080 Close();
1081 }
1082
1083 bool Initialize() {
1084 ASSERT(s_ != INVALID_SOCKET);
1085 // Must be a non-blocking
1086 u_long argp = 1;
1087 ioctlsocket(s_, FIONBIO, &argp);
1088 ss_->Add(this);
1089 return true;
1090 }
1091
1092 virtual bool Create(int type) {
1093 return Create(AF_INET, type);
1094 }
1095
1096 virtual bool Create(int family, int type) {
1097 // Create socket
1098 if (!PhysicalSocket::Create(family, type))
1099 return false;
1100
1101 if (!Initialize())
1102 return false;
1103
1104 do { id_ = ++next_id_; } while (id_ == 0);
1105 return true;
1106 }
1107
1108 virtual int Close() {
1109 if (s_ == INVALID_SOCKET)
1110 return 0;
1111
1112 id_ = 0;
1113 signal_close_ = false;
1114 ss_->Remove(this);
1115 return PhysicalSocket::Close();
1116 }
1117
1118 virtual uint32 GetRequestedEvents() {
1119 return enabled_events_;
1120 }
1121
1122 virtual void OnPreEvent(uint32 ff) {
1123 if ((ff & DE_CONNECT) != 0)
1124 state_ = CS_CONNECTED;
1125 // We set CS_CLOSED from CheckSignalClose.
1126 }
1127
1128 virtual void OnEvent(uint32 ff, int err) {
1129 int cache_id = id_;
1130 // Make sure we deliver connect/accept first. Otherwise, consumers may see
1131 // something like a READ followed by a CONNECT, which would be odd.
1132 if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) {
1133 if (ff != DE_CONNECT)
1134 LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff;
1135 enabled_events_ &= ~DE_CONNECT;
1136#ifdef _DEBUG
1137 dbg_addr_ = "Connected @ ";
1138 dbg_addr_.append(GetRemoteAddress().ToString());
1139#endif // _DEBUG
1140 SignalConnectEvent(this);
1141 }
1142 if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) {
1143 enabled_events_ &= ~DE_ACCEPT;
1144 SignalReadEvent(this);
1145 }
1146 if ((ff & DE_READ) != 0) {
1147 enabled_events_ &= ~DE_READ;
1148 SignalReadEvent(this);
1149 }
1150 if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) {
1151 enabled_events_ &= ~DE_WRITE;
1152 SignalWriteEvent(this);
1153 }
1154 if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) {
1155 signal_close_ = true;
1156 signal_err_ = err;
1157 }
1158 }
1159
1160 virtual WSAEVENT GetWSAEvent() {
1161 return WSA_INVALID_EVENT;
1162 }
1163
1164 virtual SOCKET GetSocket() {
1165 return s_;
1166 }
1167
1168 virtual bool CheckSignalClose() {
1169 if (!signal_close_)
1170 return false;
1171
1172 char ch;
1173 if (recv(s_, &ch, 1, MSG_PEEK) > 0)
1174 return false;
1175
1176 state_ = CS_CLOSED;
1177 signal_close_ = false;
1178 SignalCloseEvent(this, signal_err_);
1179 return true;
1180 }
1181};
1182
1183int SocketDispatcher::next_id_ = 0;
1184
1185#endif // WIN32
1186
1187// Sets the value of a boolean value to false when signaled.
1188class Signaler : public EventDispatcher {
1189 public:
1190 Signaler(PhysicalSocketServer* ss, bool* pf)
1191 : EventDispatcher(ss), pf_(pf) {
1192 }
1193 virtual ~Signaler() { }
1194
1195 void OnEvent(uint32 ff, int err) {
1196 if (pf_)
1197 *pf_ = false;
1198 }
1199
1200 private:
1201 bool *pf_;
1202};
1203
1204PhysicalSocketServer::PhysicalSocketServer()
1205 : fWait_(false),
1206 last_tick_tracked_(0),
1207 last_tick_dispatch_count_(0) {
1208 signal_wakeup_ = new Signaler(this, &fWait_);
1209#ifdef WIN32
1210 socket_ev_ = WSACreateEvent();
1211#endif
1212}
1213
1214PhysicalSocketServer::~PhysicalSocketServer() {
1215#ifdef WIN32
1216 WSACloseEvent(socket_ev_);
1217#endif
1218#ifdef POSIX
1219 signal_dispatcher_.reset();
1220#endif
1221 delete signal_wakeup_;
1222 ASSERT(dispatchers_.empty());
1223}
1224
1225void PhysicalSocketServer::WakeUp() {
1226 signal_wakeup_->Signal();
1227}
1228
1229Socket* PhysicalSocketServer::CreateSocket(int type) {
1230 return CreateSocket(AF_INET, type);
1231}
1232
1233Socket* PhysicalSocketServer::CreateSocket(int family, int type) {
1234 PhysicalSocket* socket = new PhysicalSocket(this);
1235 if (socket->Create(family, type)) {
1236 return socket;
1237 } else {
1238 delete socket;
1239 return 0;
1240 }
1241}
1242
1243AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) {
1244 return CreateAsyncSocket(AF_INET, type);
1245}
1246
1247AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int family, int type) {
1248 SocketDispatcher* dispatcher = new SocketDispatcher(this);
1249 if (dispatcher->Create(family, type)) {
1250 return dispatcher;
1251 } else {
1252 delete dispatcher;
1253 return 0;
1254 }
1255}
1256
1257AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) {
1258 SocketDispatcher* dispatcher = new SocketDispatcher(s, this);
1259 if (dispatcher->Initialize()) {
1260 return dispatcher;
1261 } else {
1262 delete dispatcher;
1263 return 0;
1264 }
1265}
1266
1267void PhysicalSocketServer::Add(Dispatcher *pdispatcher) {
1268 CritScope cs(&crit_);
1269 // Prevent duplicates. This can cause dead dispatchers to stick around.
1270 DispatcherList::iterator pos = std::find(dispatchers_.begin(),
1271 dispatchers_.end(),
1272 pdispatcher);
1273 if (pos != dispatchers_.end())
1274 return;
1275 dispatchers_.push_back(pdispatcher);
1276}
1277
1278void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) {
1279 CritScope cs(&crit_);
1280 DispatcherList::iterator pos = std::find(dispatchers_.begin(),
1281 dispatchers_.end(),
1282 pdispatcher);
wu@webrtc.org967bfff2013-09-19 05:49:50 +00001283 // We silently ignore duplicate calls to Add, so we should silently ignore
1284 // the (expected) symmetric calls to Remove. Note that this may still hide
1285 // a real issue, so we at least log a warning about it.
1286 if (pos == dispatchers_.end()) {
1287 LOG(LS_WARNING) << "PhysicalSocketServer asked to remove a unknown "
1288 << "dispatcher, potentially from a duplicate call to Add.";
1289 return;
1290 }
henrike@webrtc.org28e20752013-07-10 00:45:36 +00001291 size_t index = pos - dispatchers_.begin();
1292 dispatchers_.erase(pos);
1293 for (IteratorList::iterator it = iterators_.begin(); it != iterators_.end();
1294 ++it) {
1295 if (index < **it) {
1296 --**it;
1297 }
1298 }
1299}
1300
1301#ifdef POSIX
1302bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1303 // Calculate timing information
1304
1305 struct timeval *ptvWait = NULL;
1306 struct timeval tvWait;
1307 struct timeval tvStop;
1308 if (cmsWait != kForever) {
1309 // Calculate wait timeval
1310 tvWait.tv_sec = cmsWait / 1000;
1311 tvWait.tv_usec = (cmsWait % 1000) * 1000;
1312 ptvWait = &tvWait;
1313
1314 // Calculate when to return in a timeval
1315 gettimeofday(&tvStop, NULL);
1316 tvStop.tv_sec += tvWait.tv_sec;
1317 tvStop.tv_usec += tvWait.tv_usec;
1318 if (tvStop.tv_usec >= 1000000) {
1319 tvStop.tv_usec -= 1000000;
1320 tvStop.tv_sec += 1;
1321 }
1322 }
1323
1324 // Zero all fd_sets. Don't need to do this inside the loop since
1325 // select() zeros the descriptors not signaled
1326
1327 fd_set fdsRead;
1328 FD_ZERO(&fdsRead);
1329 fd_set fdsWrite;
1330 FD_ZERO(&fdsWrite);
1331
1332 fWait_ = true;
1333
1334 while (fWait_) {
1335 int fdmax = -1;
1336 {
1337 CritScope cr(&crit_);
1338 for (size_t i = 0; i < dispatchers_.size(); ++i) {
1339 // Query dispatchers for read and write wait state
1340 Dispatcher *pdispatcher = dispatchers_[i];
1341 ASSERT(pdispatcher);
1342 if (!process_io && (pdispatcher != signal_wakeup_))
1343 continue;
1344 int fd = pdispatcher->GetDescriptor();
1345 if (fd > fdmax)
1346 fdmax = fd;
1347
1348 uint32 ff = pdispatcher->GetRequestedEvents();
1349 if (ff & (DE_READ | DE_ACCEPT))
1350 FD_SET(fd, &fdsRead);
1351 if (ff & (DE_WRITE | DE_CONNECT))
1352 FD_SET(fd, &fdsWrite);
1353 }
1354 }
1355
1356 // Wait then call handlers as appropriate
1357 // < 0 means error
1358 // 0 means timeout
1359 // > 0 means count of descriptors ready
1360 int n = select(fdmax + 1, &fdsRead, &fdsWrite, NULL, ptvWait);
1361
1362 // If error, return error.
1363 if (n < 0) {
1364 if (errno != EINTR) {
1365 LOG_E(LS_ERROR, EN, errno) << "select";
1366 return false;
1367 }
1368 // Else ignore the error and keep going. If this EINTR was for one of the
1369 // signals managed by this PhysicalSocketServer, the
1370 // PosixSignalDeliveryDispatcher will be in the signaled state in the next
1371 // iteration.
1372 } else if (n == 0) {
1373 // If timeout, return success
1374 return true;
1375 } else {
1376 // We have signaled descriptors
1377 CritScope cr(&crit_);
1378 for (size_t i = 0; i < dispatchers_.size(); ++i) {
1379 Dispatcher *pdispatcher = dispatchers_[i];
1380 int fd = pdispatcher->GetDescriptor();
1381 uint32 ff = 0;
1382 int errcode = 0;
1383
1384 // Reap any error code, which can be signaled through reads or writes.
1385 // TODO: Should we set errcode if getsockopt fails?
1386 if (FD_ISSET(fd, &fdsRead) || FD_ISSET(fd, &fdsWrite)) {
1387 socklen_t len = sizeof(errcode);
1388 ::getsockopt(fd, SOL_SOCKET, SO_ERROR, &errcode, &len);
1389 }
1390
1391 // Check readable descriptors. If we're waiting on an accept, signal
1392 // that. Otherwise we're waiting for data, check to see if we're
1393 // readable or really closed.
1394 // TODO: Only peek at TCP descriptors.
1395 if (FD_ISSET(fd, &fdsRead)) {
1396 FD_CLR(fd, &fdsRead);
1397 if (pdispatcher->GetRequestedEvents() & DE_ACCEPT) {
1398 ff |= DE_ACCEPT;
1399 } else if (errcode || pdispatcher->IsDescriptorClosed()) {
1400 ff |= DE_CLOSE;
1401 } else {
1402 ff |= DE_READ;
1403 }
1404 }
1405
1406 // Check writable descriptors. If we're waiting on a connect, detect
1407 // success versus failure by the reaped error code.
1408 if (FD_ISSET(fd, &fdsWrite)) {
1409 FD_CLR(fd, &fdsWrite);
1410 if (pdispatcher->GetRequestedEvents() & DE_CONNECT) {
1411 if (!errcode) {
1412 ff |= DE_CONNECT;
1413 } else {
1414 ff |= DE_CLOSE;
1415 }
1416 } else {
1417 ff |= DE_WRITE;
1418 }
1419 }
1420
1421 // Tell the descriptor about the event.
1422 if (ff != 0) {
1423 pdispatcher->OnPreEvent(ff);
1424 pdispatcher->OnEvent(ff, errcode);
1425 }
1426 }
1427 }
1428
1429 // Recalc the time remaining to wait. Doing it here means it doesn't get
1430 // calced twice the first time through the loop
1431 if (ptvWait) {
1432 ptvWait->tv_sec = 0;
1433 ptvWait->tv_usec = 0;
1434 struct timeval tvT;
1435 gettimeofday(&tvT, NULL);
1436 if ((tvStop.tv_sec > tvT.tv_sec)
1437 || ((tvStop.tv_sec == tvT.tv_sec)
1438 && (tvStop.tv_usec > tvT.tv_usec))) {
1439 ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec;
1440 ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec;
1441 if (ptvWait->tv_usec < 0) {
1442 ASSERT(ptvWait->tv_sec > 0);
1443 ptvWait->tv_usec += 1000000;
1444 ptvWait->tv_sec -= 1;
1445 }
1446 }
1447 }
1448 }
1449
1450 return true;
1451}
1452
1453static void GlobalSignalHandler(int signum) {
1454 PosixSignalHandler::Instance()->OnPosixSignalReceived(signum);
1455}
1456
1457bool PhysicalSocketServer::SetPosixSignalHandler(int signum,
1458 void (*handler)(int)) {
1459 // If handler is SIG_IGN or SIG_DFL then clear our user-level handler,
1460 // otherwise set one.
1461 if (handler == SIG_IGN || handler == SIG_DFL) {
1462 if (!InstallSignal(signum, handler)) {
1463 return false;
1464 }
1465 if (signal_dispatcher_) {
1466 signal_dispatcher_->ClearHandler(signum);
1467 if (!signal_dispatcher_->HasHandlers()) {
1468 signal_dispatcher_.reset();
1469 }
1470 }
1471 } else {
1472 if (!signal_dispatcher_) {
1473 signal_dispatcher_.reset(new PosixSignalDispatcher(this));
1474 }
1475 signal_dispatcher_->SetHandler(signum, handler);
1476 if (!InstallSignal(signum, &GlobalSignalHandler)) {
1477 return false;
1478 }
1479 }
1480 return true;
1481}
1482
1483Dispatcher* PhysicalSocketServer::signal_dispatcher() {
1484 return signal_dispatcher_.get();
1485}
1486
1487bool PhysicalSocketServer::InstallSignal(int signum, void (*handler)(int)) {
1488 struct sigaction act;
1489 // It doesn't really matter what we set this mask to.
1490 if (sigemptyset(&act.sa_mask) != 0) {
1491 LOG_ERR(LS_ERROR) << "Couldn't set mask";
1492 return false;
1493 }
1494 act.sa_handler = handler;
wu@webrtc.orgf6d6ed02014-01-03 22:08:47 +00001495#if !defined(__native_client__)
henrike@webrtc.org28e20752013-07-10 00:45:36 +00001496 // Use SA_RESTART so that our syscalls don't get EINTR, since we don't need it
1497 // and it's a nuisance. Though some syscalls still return EINTR and there's no
1498 // real standard for which ones. :(
1499 act.sa_flags = SA_RESTART;
wu@webrtc.orgf6d6ed02014-01-03 22:08:47 +00001500#else
1501 act.sa_flags = 0;
1502#endif
henrike@webrtc.org28e20752013-07-10 00:45:36 +00001503 if (sigaction(signum, &act, NULL) != 0) {
1504 LOG_ERR(LS_ERROR) << "Couldn't set sigaction";
1505 return false;
1506 }
1507 return true;
1508}
1509#endif // POSIX
1510
1511#ifdef WIN32
1512bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1513 int cmsTotal = cmsWait;
1514 int cmsElapsed = 0;
1515 uint32 msStart = Time();
1516
1517#if LOGGING
1518 if (last_tick_dispatch_count_ == 0) {
1519 last_tick_tracked_ = msStart;
1520 }
1521#endif
1522
1523 fWait_ = true;
1524 while (fWait_) {
1525 std::vector<WSAEVENT> events;
1526 std::vector<Dispatcher *> event_owners;
1527
1528 events.push_back(socket_ev_);
1529
1530 {
1531 CritScope cr(&crit_);
1532 size_t i = 0;
1533 iterators_.push_back(&i);
1534 // Don't track dispatchers_.size(), because we want to pick up any new
1535 // dispatchers that were added while processing the loop.
1536 while (i < dispatchers_.size()) {
1537 Dispatcher* disp = dispatchers_[i++];
1538 if (!process_io && (disp != signal_wakeup_))
1539 continue;
1540 SOCKET s = disp->GetSocket();
1541 if (disp->CheckSignalClose()) {
1542 // We just signalled close, don't poll this socket
1543 } else if (s != INVALID_SOCKET) {
1544 WSAEventSelect(s,
1545 events[0],
1546 FlagsToEvents(disp->GetRequestedEvents()));
1547 } else {
1548 events.push_back(disp->GetWSAEvent());
1549 event_owners.push_back(disp);
1550 }
1551 }
1552 ASSERT(iterators_.back() == &i);
1553 iterators_.pop_back();
1554 }
1555
1556 // Which is shorter, the delay wait or the asked wait?
1557
1558 int cmsNext;
1559 if (cmsWait == kForever) {
1560 cmsNext = cmsWait;
1561 } else {
1562 cmsNext = _max(0, cmsTotal - cmsElapsed);
1563 }
1564
1565 // Wait for one of the events to signal
1566 DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()),
1567 &events[0],
1568 false,
1569 cmsNext,
1570 false);
1571
1572#if 0 // LOGGING
1573 // we track this information purely for logging purposes.
1574 last_tick_dispatch_count_++;
1575 if (last_tick_dispatch_count_ >= 1000) {
1576 int32 elapsed = TimeSince(last_tick_tracked_);
1577 LOG(INFO) << "PhysicalSocketServer took " << elapsed
1578 << "ms for 1000 events";
1579
1580 // If we get more than 1000 events in a second, we are spinning badly
1581 // (normally it should take about 8-20 seconds).
1582 ASSERT(elapsed > 1000);
1583
1584 last_tick_tracked_ = Time();
1585 last_tick_dispatch_count_ = 0;
1586 }
1587#endif
1588
1589 if (dw == WSA_WAIT_FAILED) {
1590 // Failed?
1591 // TODO: need a better strategy than this!
1592 int error = WSAGetLastError();
1593 ASSERT(false);
1594 return false;
1595 } else if (dw == WSA_WAIT_TIMEOUT) {
1596 // Timeout?
1597 return true;
1598 } else {
1599 // Figure out which one it is and call it
1600 CritScope cr(&crit_);
1601 int index = dw - WSA_WAIT_EVENT_0;
1602 if (index > 0) {
1603 --index; // The first event is the socket event
1604 event_owners[index]->OnPreEvent(0);
1605 event_owners[index]->OnEvent(0, 0);
1606 } else if (process_io) {
1607 size_t i = 0, end = dispatchers_.size();
1608 iterators_.push_back(&i);
1609 iterators_.push_back(&end); // Don't iterate over new dispatchers.
1610 while (i < end) {
1611 Dispatcher* disp = dispatchers_[i++];
1612 SOCKET s = disp->GetSocket();
1613 if (s == INVALID_SOCKET)
1614 continue;
1615
1616 WSANETWORKEVENTS wsaEvents;
1617 int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents);
1618 if (err == 0) {
1619
1620#if LOGGING
1621 {
1622 if ((wsaEvents.lNetworkEvents & FD_READ) &&
1623 wsaEvents.iErrorCode[FD_READ_BIT] != 0) {
1624 LOG(WARNING) << "PhysicalSocketServer got FD_READ_BIT error "
1625 << wsaEvents.iErrorCode[FD_READ_BIT];
1626 }
1627 if ((wsaEvents.lNetworkEvents & FD_WRITE) &&
1628 wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) {
1629 LOG(WARNING) << "PhysicalSocketServer got FD_WRITE_BIT error "
1630 << wsaEvents.iErrorCode[FD_WRITE_BIT];
1631 }
1632 if ((wsaEvents.lNetworkEvents & FD_CONNECT) &&
1633 wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) {
1634 LOG(WARNING) << "PhysicalSocketServer got FD_CONNECT_BIT error "
1635 << wsaEvents.iErrorCode[FD_CONNECT_BIT];
1636 }
1637 if ((wsaEvents.lNetworkEvents & FD_ACCEPT) &&
1638 wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) {
1639 LOG(WARNING) << "PhysicalSocketServer got FD_ACCEPT_BIT error "
1640 << wsaEvents.iErrorCode[FD_ACCEPT_BIT];
1641 }
1642 if ((wsaEvents.lNetworkEvents & FD_CLOSE) &&
1643 wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) {
1644 LOG(WARNING) << "PhysicalSocketServer got FD_CLOSE_BIT error "
1645 << wsaEvents.iErrorCode[FD_CLOSE_BIT];
1646 }
1647 }
1648#endif
1649 uint32 ff = 0;
1650 int errcode = 0;
1651 if (wsaEvents.lNetworkEvents & FD_READ)
1652 ff |= DE_READ;
1653 if (wsaEvents.lNetworkEvents & FD_WRITE)
1654 ff |= DE_WRITE;
1655 if (wsaEvents.lNetworkEvents & FD_CONNECT) {
1656 if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) {
1657 ff |= DE_CONNECT;
1658 } else {
1659 ff |= DE_CLOSE;
1660 errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT];
1661 }
1662 }
1663 if (wsaEvents.lNetworkEvents & FD_ACCEPT)
1664 ff |= DE_ACCEPT;
1665 if (wsaEvents.lNetworkEvents & FD_CLOSE) {
1666 ff |= DE_CLOSE;
1667 errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT];
1668 }
1669 if (ff != 0) {
1670 disp->OnPreEvent(ff);
1671 disp->OnEvent(ff, errcode);
1672 }
1673 }
1674 }
1675 ASSERT(iterators_.back() == &end);
1676 iterators_.pop_back();
1677 ASSERT(iterators_.back() == &i);
1678 iterators_.pop_back();
1679 }
1680
1681 // Reset the network event until new activity occurs
1682 WSAResetEvent(socket_ev_);
1683 }
1684
1685 // Break?
1686 if (!fWait_)
1687 break;
1688 cmsElapsed = TimeSince(msStart);
1689 if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) {
1690 break;
1691 }
1692 }
1693
1694 // Done
1695 return true;
1696}
1697#endif // WIN32
1698
1699} // namespace talk_base