blob: bf7d75fbaddd57a695adb24a6926f9ad4b214d2a [file] [log] [blame]
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001/*
2 * Copyright 2004 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include "webrtc/p2p/base/port.h"
12
13#include <algorithm>
14#include <vector>
15
16#include "webrtc/p2p/base/common.h"
17#include "webrtc/p2p/base/portallocator.h"
18#include "webrtc/base/base64.h"
19#include "webrtc/base/crc32.h"
20#include "webrtc/base/helpers.h"
21#include "webrtc/base/logging.h"
22#include "webrtc/base/messagedigest.h"
23#include "webrtc/base/scoped_ptr.h"
24#include "webrtc/base/stringencode.h"
25#include "webrtc/base/stringutils.h"
26
27namespace {
28
29// Determines whether we have seen at least the given maximum number of
30// pings fail to have a response.
31inline bool TooManyFailures(
32 const std::vector<uint32>& pings_since_last_response,
33 uint32 maximum_failures,
34 uint32 rtt_estimate,
35 uint32 now) {
36
37 // If we haven't sent that many pings, then we can't have failed that many.
38 if (pings_since_last_response.size() < maximum_failures)
39 return false;
40
41 // Check if the window in which we would expect a response to the ping has
42 // already elapsed.
43 return pings_since_last_response[maximum_failures - 1] + rtt_estimate < now;
44}
45
46// Determines whether we have gone too long without seeing any response.
47inline bool TooLongWithoutResponse(
48 const std::vector<uint32>& pings_since_last_response,
49 uint32 maximum_time,
50 uint32 now) {
51
52 if (pings_since_last_response.size() == 0)
53 return false;
54
55 return pings_since_last_response[0] + maximum_time < now;
56}
57
58// GICE(ICEPROTO_GOOGLE) requires different username for RTP and RTCP.
59// This function generates a different username by +1 on the last character of
60// the given username (|rtp_ufrag|).
61std::string GetRtcpUfragFromRtpUfrag(const std::string& rtp_ufrag) {
62 ASSERT(!rtp_ufrag.empty());
63 if (rtp_ufrag.empty()) {
64 return rtp_ufrag;
65 }
66 // Change the last character to the one next to it in the base64 table.
67 char new_last_char;
68 if (!rtc::Base64::GetNextBase64Char(rtp_ufrag[rtp_ufrag.size() - 1],
69 &new_last_char)) {
70 // Should not be here.
71 ASSERT(false);
72 }
73 std::string rtcp_ufrag = rtp_ufrag;
74 rtcp_ufrag[rtcp_ufrag.size() - 1] = new_last_char;
75 ASSERT(rtcp_ufrag != rtp_ufrag);
76 return rtcp_ufrag;
77}
78
79// We will restrict RTT estimates (when used for determining state) to be
80// within a reasonable range.
81const uint32 MINIMUM_RTT = 100; // 0.1 seconds
82const uint32 MAXIMUM_RTT = 3000; // 3 seconds
83
84// When we don't have any RTT data, we have to pick something reasonable. We
85// use a large value just in case the connection is really slow.
86const uint32 DEFAULT_RTT = MAXIMUM_RTT;
87
88// Computes our estimate of the RTT given the current estimate.
89inline uint32 ConservativeRTTEstimate(uint32 rtt) {
andresp@webrtc.orgff689be2015-02-12 11:54:26 +000090 return std::max(MINIMUM_RTT, std::min(MAXIMUM_RTT, 2 * rtt));
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +000091}
92
93// Weighting of the old rtt value to new data.
94const int RTT_RATIO = 3; // 3 : 1
95
96// The delay before we begin checking if this port is useless.
97const int kPortTimeoutDelay = 30 * 1000; // 30 seconds
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +000098}
99
100namespace cricket {
101
102// TODO(ronghuawu): Use "host", "srflx", "prflx" and "relay". But this requires
103// the signaling part be updated correspondingly as well.
104const char LOCAL_PORT_TYPE[] = "local";
105const char STUN_PORT_TYPE[] = "stun";
106const char PRFLX_PORT_TYPE[] = "prflx";
107const char RELAY_PORT_TYPE[] = "relay";
108
109const char UDP_PROTOCOL_NAME[] = "udp";
110const char TCP_PROTOCOL_NAME[] = "tcp";
111const char SSLTCP_PROTOCOL_NAME[] = "ssltcp";
112
113static const char* const PROTO_NAMES[] = { UDP_PROTOCOL_NAME,
114 TCP_PROTOCOL_NAME,
115 SSLTCP_PROTOCOL_NAME };
116
117const char* ProtoToString(ProtocolType proto) {
118 return PROTO_NAMES[proto];
119}
120
121bool StringToProto(const char* value, ProtocolType* proto) {
122 for (size_t i = 0; i <= PROTO_LAST; ++i) {
123 if (_stricmp(PROTO_NAMES[i], value) == 0) {
124 *proto = static_cast<ProtocolType>(i);
125 return true;
126 }
127 }
128 return false;
129}
130
131// RFC 6544, TCP candidate encoding rules.
132const int DISCARD_PORT = 9;
133const char TCPTYPE_ACTIVE_STR[] = "active";
134const char TCPTYPE_PASSIVE_STR[] = "passive";
135const char TCPTYPE_SIMOPEN_STR[] = "so";
136
137// Foundation: An arbitrary string that is the same for two candidates
138// that have the same type, base IP address, protocol (UDP, TCP,
139// etc.), and STUN or TURN server. If any of these are different,
140// then the foundation will be different. Two candidate pairs with
141// the same foundation pairs are likely to have similar network
142// characteristics. Foundations are used in the frozen algorithm.
143static std::string ComputeFoundation(
144 const std::string& type,
145 const std::string& protocol,
146 const rtc::SocketAddress& base_address) {
147 std::ostringstream ost;
148 ost << type << base_address.ipaddr().ToString() << protocol;
149 return rtc::ToString<uint32>(rtc::ComputeCrc32(ost.str()));
150}
151
pkasting@chromium.org332331f2014-11-06 20:19:22 +0000152Port::Port(rtc::Thread* thread,
153 rtc::PacketSocketFactory* factory,
154 rtc::Network* network,
155 const rtc::IPAddress& ip,
156 const std::string& username_fragment,
157 const std::string& password)
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000158 : thread_(thread),
159 factory_(factory),
160 send_retransmit_count_attribute_(false),
161 network_(network),
162 ip_(ip),
163 min_port_(0),
164 max_port_(0),
165 component_(ICE_CANDIDATE_COMPONENT_DEFAULT),
166 generation_(0),
167 ice_username_fragment_(username_fragment),
168 password_(password),
169 timeout_delay_(kPortTimeoutDelay),
170 enable_port_packets_(false),
171 ice_protocol_(ICEPROTO_HYBRID),
172 ice_role_(ICEROLE_UNKNOWN),
173 tiebreaker_(0),
174 shared_socket_(true),
175 candidate_filter_(CF_ALL) {
176 Construct();
177}
178
pkasting@chromium.org332331f2014-11-06 20:19:22 +0000179Port::Port(rtc::Thread* thread,
180 const std::string& type,
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000181 rtc::PacketSocketFactory* factory,
pkasting@chromium.org332331f2014-11-06 20:19:22 +0000182 rtc::Network* network,
183 const rtc::IPAddress& ip,
184 uint16 min_port,
185 uint16 max_port,
186 const std::string& username_fragment,
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000187 const std::string& password)
188 : thread_(thread),
189 factory_(factory),
190 type_(type),
191 send_retransmit_count_attribute_(false),
192 network_(network),
193 ip_(ip),
194 min_port_(min_port),
195 max_port_(max_port),
196 component_(ICE_CANDIDATE_COMPONENT_DEFAULT),
197 generation_(0),
198 ice_username_fragment_(username_fragment),
199 password_(password),
200 timeout_delay_(kPortTimeoutDelay),
201 enable_port_packets_(false),
202 ice_protocol_(ICEPROTO_HYBRID),
203 ice_role_(ICEROLE_UNKNOWN),
204 tiebreaker_(0),
205 shared_socket_(false),
206 candidate_filter_(CF_ALL) {
207 ASSERT(factory_ != NULL);
208 Construct();
209}
210
211void Port::Construct() {
212 // If the username_fragment and password are empty, we should just create one.
213 if (ice_username_fragment_.empty()) {
214 ASSERT(password_.empty());
215 ice_username_fragment_ = rtc::CreateRandomString(ICE_UFRAG_LENGTH);
216 password_ = rtc::CreateRandomString(ICE_PWD_LENGTH);
217 }
218 LOG_J(LS_INFO, this) << "Port created";
219}
220
221Port::~Port() {
222 // Delete all of the remaining connections. We copy the list up front
223 // because each deletion will cause it to be modified.
224
225 std::vector<Connection*> list;
226
227 AddressMap::iterator iter = connections_.begin();
228 while (iter != connections_.end()) {
229 list.push_back(iter->second);
230 ++iter;
231 }
232
233 for (uint32 i = 0; i < list.size(); i++)
234 delete list[i];
235}
236
237Connection* Port::GetConnection(const rtc::SocketAddress& remote_addr) {
238 AddressMap::const_iterator iter = connections_.find(remote_addr);
239 if (iter != connections_.end())
240 return iter->second;
241 else
242 return NULL;
243}
244
245void Port::AddAddress(const rtc::SocketAddress& address,
246 const rtc::SocketAddress& base_address,
247 const rtc::SocketAddress& related_address,
248 const std::string& protocol,
249 const std::string& tcptype,
250 const std::string& type,
251 uint32 type_preference,
252 uint32 relay_preference,
253 bool final) {
254 if (protocol == TCP_PROTOCOL_NAME && type == LOCAL_PORT_TYPE) {
255 ASSERT(!tcptype.empty());
256 }
257
258 Candidate c;
259 c.set_id(rtc::CreateRandomString(8));
260 c.set_component(component_);
261 c.set_type(type);
262 c.set_protocol(protocol);
263 c.set_tcptype(tcptype);
264 c.set_address(address);
265 c.set_priority(c.GetPriority(type_preference, network_->preference(),
266 relay_preference));
267 c.set_username(username_fragment());
268 c.set_password(password_);
269 c.set_network_name(network_->name());
guoweis@webrtc.org950c5182014-12-16 23:01:31 +0000270 c.set_network_type(network_->type());
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000271 c.set_generation(generation_);
272 c.set_related_address(related_address);
273 c.set_foundation(ComputeFoundation(type, protocol, base_address));
274 candidates_.push_back(c);
275 SignalCandidateReady(this, c);
276
277 if (final) {
278 SignalPortComplete(this);
279 }
280}
281
282void Port::AddConnection(Connection* conn) {
283 connections_[conn->remote_candidate().address()] = conn;
284 conn->SignalDestroyed.connect(this, &Port::OnConnectionDestroyed);
285 SignalConnectionCreated(this, conn);
286}
287
288void Port::OnReadPacket(
289 const char* data, size_t size, const rtc::SocketAddress& addr,
290 ProtocolType proto) {
291 // If the user has enabled port packets, just hand this over.
292 if (enable_port_packets_) {
293 SignalReadPacket(this, data, size, addr);
294 return;
295 }
296
297 // If this is an authenticated STUN request, then signal unknown address and
298 // send back a proper binding response.
299 rtc::scoped_ptr<IceMessage> msg;
300 std::string remote_username;
301 if (!GetStunMessage(data, size, addr, msg.accept(), &remote_username)) {
302 LOG_J(LS_ERROR, this) << "Received non-STUN packet from unknown address ("
303 << addr.ToSensitiveString() << ")";
304 } else if (!msg) {
305 // STUN message handled already
306 } else if (msg->type() == STUN_BINDING_REQUEST) {
307 // Check for role conflicts.
308 if (IsStandardIce() &&
309 !MaybeIceRoleConflict(addr, msg.get(), remote_username)) {
310 LOG(LS_INFO) << "Received conflicting role from the peer.";
311 return;
312 }
313
314 SignalUnknownAddress(this, addr, proto, msg.get(), remote_username, false);
315 } else {
316 // NOTE(tschmelcher): STUN_BINDING_RESPONSE is benign. It occurs if we
317 // pruned a connection for this port while it had STUN requests in flight,
318 // because we then get back responses for them, which this code correctly
319 // does not handle.
320 if (msg->type() != STUN_BINDING_RESPONSE) {
321 LOG_J(LS_ERROR, this) << "Received unexpected STUN message type ("
322 << msg->type() << ") from unknown address ("
323 << addr.ToSensitiveString() << ")";
324 }
325 }
326}
327
328void Port::OnReadyToSend() {
329 AddressMap::iterator iter = connections_.begin();
330 for (; iter != connections_.end(); ++iter) {
331 iter->second->OnReadyToSend();
332 }
333}
334
335size_t Port::AddPrflxCandidate(const Candidate& local) {
336 candidates_.push_back(local);
337 return (candidates_.size() - 1);
338}
339
340bool Port::IsStandardIce() const {
341 return (ice_protocol_ == ICEPROTO_RFC5245);
342}
343
344bool Port::IsGoogleIce() const {
345 return (ice_protocol_ == ICEPROTO_GOOGLE);
346}
347
348bool Port::IsHybridIce() const {
349 return (ice_protocol_ == ICEPROTO_HYBRID);
350}
351
352bool Port::GetStunMessage(const char* data, size_t size,
353 const rtc::SocketAddress& addr,
354 IceMessage** out_msg, std::string* out_username) {
355 // NOTE: This could clearly be optimized to avoid allocating any memory.
356 // However, at the data rates we'll be looking at on the client side,
357 // this probably isn't worth worrying about.
358 ASSERT(out_msg != NULL);
359 ASSERT(out_username != NULL);
360 *out_msg = NULL;
361 out_username->clear();
362
363 // Don't bother parsing the packet if we can tell it's not STUN.
364 // In ICE mode, all STUN packets will have a valid fingerprint.
365 if (IsStandardIce() && !StunMessage::ValidateFingerprint(data, size)) {
366 return false;
367 }
368
369 // Parse the request message. If the packet is not a complete and correct
370 // STUN message, then ignore it.
371 rtc::scoped_ptr<IceMessage> stun_msg(new IceMessage());
372 rtc::ByteBuffer buf(data, size);
373 if (!stun_msg->Read(&buf) || (buf.Length() > 0)) {
374 return false;
375 }
376
377 if (stun_msg->type() == STUN_BINDING_REQUEST) {
378 // Check for the presence of USERNAME and MESSAGE-INTEGRITY (if ICE) first.
379 // If not present, fail with a 400 Bad Request.
380 if (!stun_msg->GetByteString(STUN_ATTR_USERNAME) ||
381 (IsStandardIce() &&
382 !stun_msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY))) {
383 LOG_J(LS_ERROR, this) << "Received STUN request without username/M-I "
384 << "from " << addr.ToSensitiveString();
385 SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_BAD_REQUEST,
386 STUN_ERROR_REASON_BAD_REQUEST);
387 return true;
388 }
389
390 // If the username is bad or unknown, fail with a 401 Unauthorized.
391 std::string local_ufrag;
392 std::string remote_ufrag;
393 IceProtocolType remote_protocol_type;
394 if (!ParseStunUsername(stun_msg.get(), &local_ufrag, &remote_ufrag,
395 &remote_protocol_type) ||
396 local_ufrag != username_fragment()) {
397 LOG_J(LS_ERROR, this) << "Received STUN request with bad local username "
398 << local_ufrag << " from "
399 << addr.ToSensitiveString();
400 SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED,
401 STUN_ERROR_REASON_UNAUTHORIZED);
402 return true;
403 }
404
405 // Port is initialized to GOOGLE-ICE protocol type. If pings from remote
406 // are received before the signal message, protocol type may be different.
407 // Based on the STUN username, we can determine what's the remote protocol.
408 // This also enables us to send the response back using the same protocol
409 // as the request.
410 if (IsHybridIce()) {
411 SetIceProtocolType(remote_protocol_type);
412 }
413
414 // If ICE, and the MESSAGE-INTEGRITY is bad, fail with a 401 Unauthorized
415 if (IsStandardIce() &&
416 !stun_msg->ValidateMessageIntegrity(data, size, password_)) {
417 LOG_J(LS_ERROR, this) << "Received STUN request with bad M-I "
jiayl@webrtc.orgdacdd942015-01-23 17:33:34 +0000418 << "from " << addr.ToSensitiveString()
419 << ", password_=" << password_;
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000420 SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED,
421 STUN_ERROR_REASON_UNAUTHORIZED);
422 return true;
423 }
424 out_username->assign(remote_ufrag);
425 } else if ((stun_msg->type() == STUN_BINDING_RESPONSE) ||
426 (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE)) {
427 if (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE) {
428 if (const StunErrorCodeAttribute* error_code = stun_msg->GetErrorCode()) {
429 LOG_J(LS_ERROR, this) << "Received STUN binding error:"
430 << " class=" << error_code->eclass()
431 << " number=" << error_code->number()
432 << " reason='" << error_code->reason() << "'"
433 << " from " << addr.ToSensitiveString();
434 // Return message to allow error-specific processing
435 } else {
436 LOG_J(LS_ERROR, this) << "Received STUN binding error without a error "
437 << "code from " << addr.ToSensitiveString();
438 return true;
439 }
440 }
441 // NOTE: Username should not be used in verifying response messages.
442 out_username->clear();
443 } else if (stun_msg->type() == STUN_BINDING_INDICATION) {
444 LOG_J(LS_VERBOSE, this) << "Received STUN binding indication:"
445 << " from " << addr.ToSensitiveString();
446 out_username->clear();
447 // No stun attributes will be verified, if it's stun indication message.
448 // Returning from end of the this method.
449 } else {
450 LOG_J(LS_ERROR, this) << "Received STUN packet with invalid type ("
451 << stun_msg->type() << ") from "
452 << addr.ToSensitiveString();
453 return true;
454 }
455
456 // Return the STUN message found.
457 *out_msg = stun_msg.release();
458 return true;
459}
460
461bool Port::IsCompatibleAddress(const rtc::SocketAddress& addr) {
462 int family = ip().family();
463 // We use single-stack sockets, so families must match.
464 if (addr.family() != family) {
465 return false;
466 }
467 // Link-local IPv6 ports can only connect to other link-local IPv6 ports.
468 if (family == AF_INET6 && (IPIsPrivate(ip()) != IPIsPrivate(addr.ipaddr()))) {
469 return false;
470 }
471 return true;
472}
473
474bool Port::ParseStunUsername(const StunMessage* stun_msg,
475 std::string* local_ufrag,
476 std::string* remote_ufrag,
477 IceProtocolType* remote_protocol_type) const {
478 // The packet must include a username that either begins or ends with our
479 // fragment. It should begin with our fragment if it is a request and it
480 // should end with our fragment if it is a response.
481 local_ufrag->clear();
482 remote_ufrag->clear();
483 const StunByteStringAttribute* username_attr =
484 stun_msg->GetByteString(STUN_ATTR_USERNAME);
485 if (username_attr == NULL)
486 return false;
487
488 const std::string username_attr_str = username_attr->GetString();
489 size_t colon_pos = username_attr_str.find(":");
490 // If we are in hybrid mode set the appropriate ice protocol type based on
491 // the username argument style.
492 if (IsHybridIce()) {
493 *remote_protocol_type = (colon_pos != std::string::npos) ?
494 ICEPROTO_RFC5245 : ICEPROTO_GOOGLE;
495 } else {
496 *remote_protocol_type = ice_protocol_;
497 }
498 if (*remote_protocol_type == ICEPROTO_RFC5245) {
499 if (colon_pos != std::string::npos) { // RFRAG:LFRAG
500 *local_ufrag = username_attr_str.substr(0, colon_pos);
501 *remote_ufrag = username_attr_str.substr(
502 colon_pos + 1, username_attr_str.size());
503 } else {
504 return false;
505 }
506 } else if (*remote_protocol_type == ICEPROTO_GOOGLE) {
507 int remote_frag_len = static_cast<int>(username_attr_str.size());
508 remote_frag_len -= static_cast<int>(username_fragment().size());
509 if (remote_frag_len < 0)
510 return false;
511
512 *local_ufrag = username_attr_str.substr(0, username_fragment().size());
513 *remote_ufrag = username_attr_str.substr(
514 username_fragment().size(), username_attr_str.size());
515 }
516 return true;
517}
518
519bool Port::MaybeIceRoleConflict(
520 const rtc::SocketAddress& addr, IceMessage* stun_msg,
521 const std::string& remote_ufrag) {
522 // Validate ICE_CONTROLLING or ICE_CONTROLLED attributes.
523 bool ret = true;
524 IceRole remote_ice_role = ICEROLE_UNKNOWN;
525 uint64 remote_tiebreaker = 0;
526 const StunUInt64Attribute* stun_attr =
527 stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
528 if (stun_attr) {
529 remote_ice_role = ICEROLE_CONTROLLING;
530 remote_tiebreaker = stun_attr->value();
531 }
532
533 // If |remote_ufrag| is same as port local username fragment and
534 // tie breaker value received in the ping message matches port
535 // tiebreaker value this must be a loopback call.
536 // We will treat this as valid scenario.
537 if (remote_ice_role == ICEROLE_CONTROLLING &&
538 username_fragment() == remote_ufrag &&
539 remote_tiebreaker == IceTiebreaker()) {
540 return true;
541 }
542
543 stun_attr = stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED);
544 if (stun_attr) {
545 remote_ice_role = ICEROLE_CONTROLLED;
546 remote_tiebreaker = stun_attr->value();
547 }
548
549 switch (ice_role_) {
550 case ICEROLE_CONTROLLING:
551 if (ICEROLE_CONTROLLING == remote_ice_role) {
552 if (remote_tiebreaker >= tiebreaker_) {
553 SignalRoleConflict(this);
554 } else {
555 // Send Role Conflict (487) error response.
556 SendBindingErrorResponse(stun_msg, addr,
557 STUN_ERROR_ROLE_CONFLICT, STUN_ERROR_REASON_ROLE_CONFLICT);
558 ret = false;
559 }
560 }
561 break;
562 case ICEROLE_CONTROLLED:
563 if (ICEROLE_CONTROLLED == remote_ice_role) {
564 if (remote_tiebreaker < tiebreaker_) {
565 SignalRoleConflict(this);
566 } else {
567 // Send Role Conflict (487) error response.
568 SendBindingErrorResponse(stun_msg, addr,
569 STUN_ERROR_ROLE_CONFLICT, STUN_ERROR_REASON_ROLE_CONFLICT);
570 ret = false;
571 }
572 }
573 break;
574 default:
575 ASSERT(false);
576 }
577 return ret;
578}
579
580void Port::CreateStunUsername(const std::string& remote_username,
581 std::string* stun_username_attr_str) const {
582 stun_username_attr_str->clear();
583 *stun_username_attr_str = remote_username;
584 if (IsStandardIce()) {
585 // Connectivity checks from L->R will have username RFRAG:LFRAG.
586 stun_username_attr_str->append(":");
587 }
588 stun_username_attr_str->append(username_fragment());
589}
590
591void Port::SendBindingResponse(StunMessage* request,
592 const rtc::SocketAddress& addr) {
593 ASSERT(request->type() == STUN_BINDING_REQUEST);
594
595 // Retrieve the username from the request.
596 const StunByteStringAttribute* username_attr =
597 request->GetByteString(STUN_ATTR_USERNAME);
598 ASSERT(username_attr != NULL);
599 if (username_attr == NULL) {
600 // No valid username, skip the response.
601 return;
602 }
603
604 // Fill in the response message.
605 StunMessage response;
606 response.SetType(STUN_BINDING_RESPONSE);
607 response.SetTransactionID(request->transaction_id());
608 const StunUInt32Attribute* retransmit_attr =
609 request->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
610 if (retransmit_attr) {
611 // Inherit the incoming retransmit value in the response so the other side
612 // can see our view of lost pings.
613 response.AddAttribute(new StunUInt32Attribute(
614 STUN_ATTR_RETRANSMIT_COUNT, retransmit_attr->value()));
615
616 if (retransmit_attr->value() > CONNECTION_WRITE_CONNECT_FAILURES) {
617 LOG_J(LS_INFO, this)
618 << "Received a remote ping with high retransmit count: "
619 << retransmit_attr->value();
620 }
621 }
622
623 // Only GICE messages have USERNAME and MAPPED-ADDRESS in the response.
624 // ICE messages use XOR-MAPPED-ADDRESS, and add MESSAGE-INTEGRITY.
625 if (IsStandardIce()) {
626 response.AddAttribute(
627 new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, addr));
628 response.AddMessageIntegrity(password_);
629 response.AddFingerprint();
630 } else if (IsGoogleIce()) {
631 response.AddAttribute(
632 new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, addr));
633 response.AddAttribute(new StunByteStringAttribute(
634 STUN_ATTR_USERNAME, username_attr->GetString()));
635 }
636
637 // Send the response message.
638 rtc::ByteBuffer buf;
639 response.Write(&buf);
640 rtc::PacketOptions options(DefaultDscpValue());
641 if (SendTo(buf.Data(), buf.Length(), addr, options, false) < 0) {
642 LOG_J(LS_ERROR, this) << "Failed to send STUN ping response to "
643 << addr.ToSensitiveString();
644 }
645
646 // The fact that we received a successful request means that this connection
647 // (if one exists) should now be readable.
648 Connection* conn = GetConnection(addr);
649 ASSERT(conn != NULL);
650 if (conn)
651 conn->ReceivedPing();
652}
653
654void Port::SendBindingErrorResponse(StunMessage* request,
655 const rtc::SocketAddress& addr,
656 int error_code, const std::string& reason) {
657 ASSERT(request->type() == STUN_BINDING_REQUEST);
658
659 // Fill in the response message.
660 StunMessage response;
661 response.SetType(STUN_BINDING_ERROR_RESPONSE);
662 response.SetTransactionID(request->transaction_id());
663
664 // When doing GICE, we need to write out the error code incorrectly to
665 // maintain backwards compatiblility.
666 StunErrorCodeAttribute* error_attr = StunAttribute::CreateErrorCode();
667 if (IsStandardIce()) {
668 error_attr->SetCode(error_code);
669 } else if (IsGoogleIce()) {
670 error_attr->SetClass(error_code / 256);
671 error_attr->SetNumber(error_code % 256);
672 }
673 error_attr->SetReason(reason);
674 response.AddAttribute(error_attr);
675
676 if (IsStandardIce()) {
677 // Per Section 10.1.2, certain error cases don't get a MESSAGE-INTEGRITY,
678 // because we don't have enough information to determine the shared secret.
679 if (error_code != STUN_ERROR_BAD_REQUEST &&
680 error_code != STUN_ERROR_UNAUTHORIZED)
681 response.AddMessageIntegrity(password_);
682 response.AddFingerprint();
683 } else if (IsGoogleIce()) {
684 // GICE responses include a username, if one exists.
685 const StunByteStringAttribute* username_attr =
686 request->GetByteString(STUN_ATTR_USERNAME);
687 if (username_attr)
688 response.AddAttribute(new StunByteStringAttribute(
689 STUN_ATTR_USERNAME, username_attr->GetString()));
690 }
691
692 // Send the response message.
693 rtc::ByteBuffer buf;
694 response.Write(&buf);
695 rtc::PacketOptions options(DefaultDscpValue());
696 SendTo(buf.Data(), buf.Length(), addr, options, false);
697 LOG_J(LS_INFO, this) << "Sending STUN binding error: reason=" << reason
698 << " to " << addr.ToSensitiveString();
699}
700
701void Port::OnMessage(rtc::Message *pmsg) {
702 ASSERT(pmsg->message_id == MSG_CHECKTIMEOUT);
703 CheckTimeout();
704}
705
706std::string Port::ToString() const {
707 std::stringstream ss;
708 ss << "Port[" << content_name_ << ":" << component_
709 << ":" << generation_ << ":" << type_
710 << ":" << network_->ToString() << "]";
711 return ss.str();
712}
713
714void Port::EnablePortPackets() {
715 enable_port_packets_ = true;
716}
717
718void Port::OnConnectionDestroyed(Connection* conn) {
719 AddressMap::iterator iter =
720 connections_.find(conn->remote_candidate().address());
721 ASSERT(iter != connections_.end());
722 connections_.erase(iter);
723
724 // On the controlled side, ports time out, but only after all connections
725 // fail. Note: If a new connection is added after this message is posted,
726 // but it fails and is removed before kPortTimeoutDelay, then this message
727 // will still cause the Port to be destroyed.
728 if (ice_role_ == ICEROLE_CONTROLLED)
729 thread_->PostDelayed(timeout_delay_, this, MSG_CHECKTIMEOUT);
730}
731
732void Port::Destroy() {
733 ASSERT(connections_.empty());
734 LOG_J(LS_INFO, this) << "Port deleted";
735 SignalDestroyed(this);
736 delete this;
737}
738
739void Port::CheckTimeout() {
740 ASSERT(ice_role_ == ICEROLE_CONTROLLED);
741 // If this port has no connections, then there's no reason to keep it around.
742 // When the connections time out (both read and write), they will delete
743 // themselves, so if we have any connections, they are either readable or
744 // writable (or still connecting).
745 if (connections_.empty())
746 Destroy();
747}
748
749const std::string Port::username_fragment() const {
750 if (!IsStandardIce() &&
751 component_ == ICE_CANDIDATE_COMPONENT_RTCP) {
752 // In GICE mode, we should adjust username fragment for rtcp component.
753 return GetRtcpUfragFromRtpUfrag(ice_username_fragment_);
754 } else {
755 return ice_username_fragment_;
756 }
757}
758
759// A ConnectionRequest is a simple STUN ping used to determine writability.
760class ConnectionRequest : public StunRequest {
761 public:
762 explicit ConnectionRequest(Connection* connection)
763 : StunRequest(new IceMessage()),
764 connection_(connection) {
765 }
766
767 virtual ~ConnectionRequest() {
768 }
769
770 virtual void Prepare(StunMessage* request) {
771 request->SetType(STUN_BINDING_REQUEST);
772 std::string username;
773 connection_->port()->CreateStunUsername(
774 connection_->remote_candidate().username(), &username);
775 request->AddAttribute(
776 new StunByteStringAttribute(STUN_ATTR_USERNAME, username));
777
778 // connection_ already holds this ping, so subtract one from count.
779 if (connection_->port()->send_retransmit_count_attribute()) {
780 request->AddAttribute(new StunUInt32Attribute(
781 STUN_ATTR_RETRANSMIT_COUNT,
782 static_cast<uint32>(
783 connection_->pings_since_last_response_.size() - 1)));
784 }
785
786 // Adding ICE-specific attributes to the STUN request message.
787 if (connection_->port()->IsStandardIce()) {
788 // Adding ICE_CONTROLLED or ICE_CONTROLLING attribute based on the role.
789 if (connection_->port()->GetIceRole() == ICEROLE_CONTROLLING) {
790 request->AddAttribute(new StunUInt64Attribute(
791 STUN_ATTR_ICE_CONTROLLING, connection_->port()->IceTiebreaker()));
792 // Since we are trying aggressive nomination, sending USE-CANDIDATE
793 // attribute in every ping.
794 // If we are dealing with a ice-lite end point, nomination flag
795 // in Connection will be set to false by default. Once the connection
796 // becomes "best connection", nomination flag will be turned on.
797 if (connection_->use_candidate_attr()) {
798 request->AddAttribute(new StunByteStringAttribute(
799 STUN_ATTR_USE_CANDIDATE));
800 }
801 } else if (connection_->port()->GetIceRole() == ICEROLE_CONTROLLED) {
802 request->AddAttribute(new StunUInt64Attribute(
803 STUN_ATTR_ICE_CONTROLLED, connection_->port()->IceTiebreaker()));
804 } else {
805 ASSERT(false);
806 }
807
808 // Adding PRIORITY Attribute.
809 // Changing the type preference to Peer Reflexive and local preference
810 // and component id information is unchanged from the original priority.
811 // priority = (2^24)*(type preference) +
812 // (2^8)*(local preference) +
813 // (2^0)*(256 - component ID)
814 uint32 prflx_priority = ICE_TYPE_PREFERENCE_PRFLX << 24 |
815 (connection_->local_candidate().priority() & 0x00FFFFFF);
816 request->AddAttribute(
817 new StunUInt32Attribute(STUN_ATTR_PRIORITY, prflx_priority));
818
819 // Adding Message Integrity attribute.
820 request->AddMessageIntegrity(connection_->remote_candidate().password());
821 // Adding Fingerprint.
822 request->AddFingerprint();
823 }
824 }
825
826 virtual void OnResponse(StunMessage* response) {
827 connection_->OnConnectionRequestResponse(this, response);
828 }
829
830 virtual void OnErrorResponse(StunMessage* response) {
831 connection_->OnConnectionRequestErrorResponse(this, response);
832 }
833
834 virtual void OnTimeout() {
835 connection_->OnConnectionRequestTimeout(this);
836 }
837
838 virtual int GetNextDelay() {
839 // Each request is sent only once. After a single delay , the request will
840 // time out.
841 timeout_ = true;
842 return CONNECTION_RESPONSE_TIMEOUT;
843 }
844
845 private:
846 Connection* connection_;
847};
848
849//
850// Connection
851//
852
guoweis@webrtc.org930e0042014-11-17 19:42:14 +0000853Connection::Connection(Port* port,
854 size_t index,
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000855 const Candidate& remote_candidate)
guoweis@webrtc.org930e0042014-11-17 19:42:14 +0000856 : port_(port),
857 local_candidate_index_(index),
858 remote_candidate_(remote_candidate),
859 read_state_(STATE_READ_INIT),
860 write_state_(STATE_WRITE_INIT),
861 connected_(true),
862 pruned_(false),
863 use_candidate_attr_(false),
864 remote_ice_mode_(ICEMODE_FULL),
865 requests_(port->thread()),
866 rtt_(DEFAULT_RTT),
867 last_ping_sent_(0),
868 last_ping_received_(0),
869 last_data_received_(0),
870 last_ping_response_received_(0),
871 sent_packets_discarded_(0),
872 sent_packets_total_(0),
873 reported_(false),
874 state_(STATE_WAITING) {
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000875 // All of our connections start in WAITING state.
876 // TODO(mallinath) - Start connections from STATE_FROZEN.
877 // Wire up to send stun packets
878 requests_.SignalSendPacket.connect(this, &Connection::OnSendStunPacket);
879 LOG_J(LS_INFO, this) << "Connection created";
880}
881
882Connection::~Connection() {
883}
884
885const Candidate& Connection::local_candidate() const {
886 ASSERT(local_candidate_index_ < port_->Candidates().size());
887 return port_->Candidates()[local_candidate_index_];
888}
889
890uint64 Connection::priority() const {
891 uint64 priority = 0;
892 // RFC 5245 - 5.7.2. Computing Pair Priority and Ordering Pairs
893 // Let G be the priority for the candidate provided by the controlling
894 // agent. Let D be the priority for the candidate provided by the
895 // controlled agent.
896 // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
897 IceRole role = port_->GetIceRole();
898 if (role != ICEROLE_UNKNOWN) {
899 uint32 g = 0;
900 uint32 d = 0;
901 if (role == ICEROLE_CONTROLLING) {
902 g = local_candidate().priority();
903 d = remote_candidate_.priority();
904 } else {
905 g = remote_candidate_.priority();
906 d = local_candidate().priority();
907 }
andresp@webrtc.orgff689be2015-02-12 11:54:26 +0000908 priority = std::min(g, d);
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000909 priority = priority << 32;
andresp@webrtc.orgff689be2015-02-12 11:54:26 +0000910 priority += 2 * std::max(g, d) + (g > d ? 1 : 0);
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000911 }
912 return priority;
913}
914
915void Connection::set_read_state(ReadState value) {
916 ReadState old_value = read_state_;
917 read_state_ = value;
918 if (value != old_value) {
919 LOG_J(LS_VERBOSE, this) << "set_read_state";
920 SignalStateChange(this);
921 CheckTimeout();
922 }
923}
924
925void Connection::set_write_state(WriteState value) {
926 WriteState old_value = write_state_;
927 write_state_ = value;
928 if (value != old_value) {
guoweis@webrtc.org8c9ff202014-12-04 07:56:02 +0000929 LOG_J(LS_VERBOSE, this) << "set_write_state from: " << old_value << " to "
930 << value;
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000931 SignalStateChange(this);
932 CheckTimeout();
933 }
934}
935
936void Connection::set_state(State state) {
937 State old_state = state_;
938 state_ = state;
939 if (state != old_state) {
940 LOG_J(LS_VERBOSE, this) << "set_state";
941 }
942}
943
944void Connection::set_connected(bool value) {
945 bool old_value = connected_;
946 connected_ = value;
947 if (value != old_value) {
Guo-wei Shiehbe508a12015-04-06 12:48:47 -0700948 LOG_J(LS_VERBOSE, this) << "set_connected from: " << old_value << " to "
949 << value;
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +0000950 }
951}
952
953void Connection::set_use_candidate_attr(bool enable) {
954 use_candidate_attr_ = enable;
955}
956
957void Connection::OnSendStunPacket(const void* data, size_t size,
958 StunRequest* req) {
959 rtc::PacketOptions options(port_->DefaultDscpValue());
960 if (port_->SendTo(data, size, remote_candidate_.address(),
961 options, false) < 0) {
962 LOG_J(LS_WARNING, this) << "Failed to send STUN ping " << req->id();
963 }
964}
965
966void Connection::OnReadPacket(
967 const char* data, size_t size, const rtc::PacketTime& packet_time) {
968 rtc::scoped_ptr<IceMessage> msg;
969 std::string remote_ufrag;
970 const rtc::SocketAddress& addr(remote_candidate_.address());
971 if (!port_->GetStunMessage(data, size, addr, msg.accept(), &remote_ufrag)) {
972 // The packet did not parse as a valid STUN message
973
974 // If this connection is readable, then pass along the packet.
975 if (read_state_ == STATE_READABLE) {
976 // readable means data from this address is acceptable
977 // Send it on!
978
979 last_data_received_ = rtc::Time();
980 recv_rate_tracker_.Update(size);
981 SignalReadPacket(this, data, size, packet_time);
982
983 // If timed out sending writability checks, start up again
984 if (!pruned_ && (write_state_ == STATE_WRITE_TIMEOUT)) {
985 LOG(LS_WARNING) << "Received a data packet on a timed-out Connection. "
986 << "Resetting state to STATE_WRITE_INIT.";
987 set_write_state(STATE_WRITE_INIT);
988 }
989 } else {
990 // Not readable means the remote address hasn't sent a valid
991 // binding request yet.
992
993 LOG_J(LS_WARNING, this)
994 << "Received non-STUN packet from an unreadable connection.";
995 }
996 } else if (!msg) {
997 // The packet was STUN, but failed a check and was handled internally.
998 } else {
999 // The packet is STUN and passed the Port checks.
1000 // Perform our own checks to ensure this packet is valid.
1001 // If this is a STUN request, then update the readable bit and respond.
1002 // If this is a STUN response, then update the writable bit.
1003 switch (msg->type()) {
1004 case STUN_BINDING_REQUEST:
1005 if (remote_ufrag == remote_candidate_.username()) {
1006 // Check for role conflicts.
1007 if (port_->IsStandardIce() &&
1008 !port_->MaybeIceRoleConflict(addr, msg.get(), remote_ufrag)) {
1009 // Received conflicting role from the peer.
1010 LOG(LS_INFO) << "Received conflicting role from the peer.";
1011 return;
1012 }
1013
1014 // Incoming, validated stun request from remote peer.
1015 // This call will also set the connection readable.
1016 port_->SendBindingResponse(msg.get(), addr);
1017
1018 // If timed out sending writability checks, start up again
1019 if (!pruned_ && (write_state_ == STATE_WRITE_TIMEOUT))
1020 set_write_state(STATE_WRITE_INIT);
1021
1022 if ((port_->IsStandardIce()) &&
1023 (port_->GetIceRole() == ICEROLE_CONTROLLED)) {
1024 const StunByteStringAttribute* use_candidate_attr =
1025 msg->GetByteString(STUN_ATTR_USE_CANDIDATE);
1026 if (use_candidate_attr)
1027 SignalUseCandidate(this);
1028 }
1029 } else {
1030 // The packet had the right local username, but the remote username
1031 // was not the right one for the remote address.
1032 LOG_J(LS_ERROR, this)
1033 << "Received STUN request with bad remote username "
1034 << remote_ufrag;
1035 port_->SendBindingErrorResponse(msg.get(), addr,
1036 STUN_ERROR_UNAUTHORIZED,
1037 STUN_ERROR_REASON_UNAUTHORIZED);
1038
1039 }
1040 break;
1041
1042 // Response from remote peer. Does it match request sent?
1043 // This doesn't just check, it makes callbacks if transaction
1044 // id's match.
1045 case STUN_BINDING_RESPONSE:
1046 case STUN_BINDING_ERROR_RESPONSE:
1047 if (port_->IsGoogleIce() ||
1048 msg->ValidateMessageIntegrity(
1049 data, size, remote_candidate().password())) {
1050 requests_.CheckResponse(msg.get());
1051 }
1052 // Otherwise silently discard the response message.
1053 break;
1054
1055 // Remote end point sent an STUN indication instead of regular
1056 // binding request. In this case |last_ping_received_| will be updated.
1057 // Otherwise we can mark connection to read timeout. No response will be
1058 // sent in this scenario.
1059 case STUN_BINDING_INDICATION:
1060 if (port_->IsStandardIce() && read_state_ == STATE_READABLE) {
1061 ReceivedPing();
1062 } else {
1063 LOG_J(LS_WARNING, this) << "Received STUN binding indication "
1064 << "from an unreadable connection.";
1065 }
1066 break;
1067
1068 default:
1069 ASSERT(false);
1070 break;
1071 }
1072 }
1073}
1074
1075void Connection::OnReadyToSend() {
1076 if (write_state_ == STATE_WRITABLE) {
1077 SignalReadyToSend(this);
1078 }
1079}
1080
1081void Connection::Prune() {
1082 if (!pruned_) {
1083 LOG_J(LS_VERBOSE, this) << "Connection pruned";
1084 pruned_ = true;
1085 requests_.Clear();
1086 set_write_state(STATE_WRITE_TIMEOUT);
1087 }
1088}
1089
1090void Connection::Destroy() {
1091 LOG_J(LS_VERBOSE, this) << "Connection destroyed";
1092 set_read_state(STATE_READ_TIMEOUT);
1093 set_write_state(STATE_WRITE_TIMEOUT);
1094}
1095
1096void Connection::UpdateState(uint32 now) {
1097 uint32 rtt = ConservativeRTTEstimate(rtt_);
1098
1099 std::string pings;
1100 for (size_t i = 0; i < pings_since_last_response_.size(); ++i) {
1101 char buf[32];
1102 rtc::sprintfn(buf, sizeof(buf), "%u",
1103 pings_since_last_response_[i]);
1104 pings.append(buf).append(" ");
1105 }
guoweis@webrtc.org8c9ff202014-12-04 07:56:02 +00001106 LOG_J(LS_VERBOSE, this) << "UpdateState(): pings_since_last_response_="
1107 << pings << ", rtt=" << rtt << ", now=" << now
1108 << ", last ping received: " << last_ping_received_
1109 << ", last data_received: " << last_data_received_;
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001110
1111 // Check the readable state.
1112 //
1113 // Since we don't know how many pings the other side has attempted, the best
1114 // test we can do is a simple window.
1115 // If other side has not sent ping after connection has become readable, use
1116 // |last_data_received_| as the indication.
1117 // If remote endpoint is doing RFC 5245, it's not required to send ping
1118 // after connection is established. If this connection is serving a data
1119 // channel, it may not be in a position to send media continuously. Do not
1120 // mark connection timeout if it's in RFC5245 mode.
1121 // Below check will be performed with end point if it's doing google-ice.
1122 if (port_->IsGoogleIce() && (read_state_ == STATE_READABLE) &&
1123 (last_ping_received_ + CONNECTION_READ_TIMEOUT <= now) &&
1124 (last_data_received_ + CONNECTION_READ_TIMEOUT <= now)) {
1125 LOG_J(LS_INFO, this) << "Unreadable after "
1126 << now - last_ping_received_
1127 << " ms without a ping,"
1128 << " ms since last received response="
1129 << now - last_ping_response_received_
1130 << " ms since last received data="
1131 << now - last_data_received_
1132 << " rtt=" << rtt;
1133 set_read_state(STATE_READ_TIMEOUT);
1134 }
1135
1136 // Check the writable state. (The order of these checks is important.)
1137 //
1138 // Before becoming unwritable, we allow for a fixed number of pings to fail
1139 // (i.e., receive no response). We also have to give the response time to
1140 // get back, so we include a conservative estimate of this.
1141 //
1142 // Before timing out writability, we give a fixed amount of time. This is to
1143 // allow for changes in network conditions.
1144
1145 if ((write_state_ == STATE_WRITABLE) &&
1146 TooManyFailures(pings_since_last_response_,
1147 CONNECTION_WRITE_CONNECT_FAILURES,
1148 rtt,
1149 now) &&
1150 TooLongWithoutResponse(pings_since_last_response_,
1151 CONNECTION_WRITE_CONNECT_TIMEOUT,
1152 now)) {
1153 uint32 max_pings = CONNECTION_WRITE_CONNECT_FAILURES;
1154 LOG_J(LS_INFO, this) << "Unwritable after " << max_pings
1155 << " ping failures and "
1156 << now - pings_since_last_response_[0]
1157 << " ms without a response,"
1158 << " ms since last received ping="
1159 << now - last_ping_received_
1160 << " ms since last received data="
1161 << now - last_data_received_
1162 << " rtt=" << rtt;
1163 set_write_state(STATE_WRITE_UNRELIABLE);
1164 }
1165
1166 if ((write_state_ == STATE_WRITE_UNRELIABLE ||
1167 write_state_ == STATE_WRITE_INIT) &&
1168 TooLongWithoutResponse(pings_since_last_response_,
1169 CONNECTION_WRITE_TIMEOUT,
1170 now)) {
1171 LOG_J(LS_INFO, this) << "Timed out after "
1172 << now - pings_since_last_response_[0]
1173 << " ms without a response, rtt=" << rtt;
1174 set_write_state(STATE_WRITE_TIMEOUT);
1175 }
1176}
1177
1178void Connection::Ping(uint32 now) {
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001179 last_ping_sent_ = now;
1180 pings_since_last_response_.push_back(now);
1181 ConnectionRequest *req = new ConnectionRequest(this);
1182 LOG_J(LS_VERBOSE, this) << "Sending STUN ping " << req->id() << " at " << now;
1183 requests_.Send(req);
1184 state_ = STATE_INPROGRESS;
1185}
1186
1187void Connection::ReceivedPing() {
1188 last_ping_received_ = rtc::Time();
1189 set_read_state(STATE_READABLE);
1190}
1191
guoweis@webrtc.org8c9ff202014-12-04 07:56:02 +00001192std::string Connection::ToDebugId() const {
1193 std::stringstream ss;
1194 ss << std::hex << this;
1195 return ss.str();
1196}
1197
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001198std::string Connection::ToString() const {
1199 const char CONNECT_STATE_ABBREV[2] = {
1200 '-', // not connected (false)
1201 'C', // connected (true)
1202 };
1203 const char READ_STATE_ABBREV[3] = {
1204 '-', // STATE_READ_INIT
1205 'R', // STATE_READABLE
1206 'x', // STATE_READ_TIMEOUT
1207 };
1208 const char WRITE_STATE_ABBREV[4] = {
1209 'W', // STATE_WRITABLE
1210 'w', // STATE_WRITE_UNRELIABLE
1211 '-', // STATE_WRITE_INIT
1212 'x', // STATE_WRITE_TIMEOUT
1213 };
1214 const std::string ICESTATE[4] = {
1215 "W", // STATE_WAITING
1216 "I", // STATE_INPROGRESS
1217 "S", // STATE_SUCCEEDED
1218 "F" // STATE_FAILED
1219 };
1220 const Candidate& local = local_candidate();
1221 const Candidate& remote = remote_candidate();
1222 std::stringstream ss;
guoweis@webrtc.org8c9ff202014-12-04 07:56:02 +00001223 ss << "Conn[" << ToDebugId()
1224 << ":" << port_->content_name()
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001225 << ":" << local.id() << ":" << local.component()
1226 << ":" << local.generation()
1227 << ":" << local.type() << ":" << local.protocol()
1228 << ":" << local.address().ToSensitiveString()
1229 << "->" << remote.id() << ":" << remote.component()
1230 << ":" << remote.priority()
1231 << ":" << remote.type() << ":"
1232 << remote.protocol() << ":" << remote.address().ToSensitiveString() << "|"
1233 << CONNECT_STATE_ABBREV[connected()]
1234 << READ_STATE_ABBREV[read_state()]
1235 << WRITE_STATE_ABBREV[write_state()]
1236 << ICESTATE[state()] << "|"
1237 << priority() << "|";
1238 if (rtt_ < DEFAULT_RTT) {
1239 ss << rtt_ << "]";
1240 } else {
1241 ss << "-]";
1242 }
1243 return ss.str();
1244}
1245
1246std::string Connection::ToSensitiveString() const {
1247 return ToString();
1248}
1249
1250void Connection::OnConnectionRequestResponse(ConnectionRequest* request,
1251 StunMessage* response) {
1252 // We've already validated that this is a STUN binding response with
1253 // the correct local and remote username for this connection.
1254 // So if we're not already, become writable. We may be bringing a pruned
1255 // connection back to life, but if we don't really want it, we can always
1256 // prune it again.
1257 uint32 rtt = request->Elapsed();
1258 set_write_state(STATE_WRITABLE);
1259 set_state(STATE_SUCCEEDED);
1260
1261 if (remote_ice_mode_ == ICEMODE_LITE) {
1262 // A ice-lite end point never initiates ping requests. This will allow
1263 // us to move to STATE_READABLE.
1264 ReceivedPing();
1265 }
1266
1267 std::string pings;
1268 for (size_t i = 0; i < pings_since_last_response_.size(); ++i) {
1269 char buf[32];
1270 rtc::sprintfn(buf, sizeof(buf), "%u",
1271 pings_since_last_response_[i]);
1272 pings.append(buf).append(" ");
1273 }
1274
1275 rtc::LoggingSeverity level =
1276 (pings_since_last_response_.size() > CONNECTION_WRITE_CONNECT_FAILURES) ?
1277 rtc::LS_INFO : rtc::LS_VERBOSE;
1278
1279 LOG_JV(level, this) << "Received STUN ping response " << request->id()
1280 << ", pings_since_last_response_=" << pings
1281 << ", rtt=" << rtt;
1282
1283 pings_since_last_response_.clear();
1284 last_ping_response_received_ = rtc::Time();
1285 rtt_ = (RTT_RATIO * rtt_ + rtt) / (RTT_RATIO + 1);
1286
1287 // Peer reflexive candidate is only for RFC 5245 ICE.
1288 if (port_->IsStandardIce()) {
1289 MaybeAddPrflxCandidate(request, response);
1290 }
1291}
1292
1293void Connection::OnConnectionRequestErrorResponse(ConnectionRequest* request,
1294 StunMessage* response) {
1295 const StunErrorCodeAttribute* error_attr = response->GetErrorCode();
1296 int error_code = STUN_ERROR_GLOBAL_FAILURE;
1297 if (error_attr) {
1298 if (port_->IsGoogleIce()) {
1299 // When doing GICE, the error code is written out incorrectly, so we need
1300 // to unmunge it here.
1301 error_code = error_attr->eclass() * 256 + error_attr->number();
1302 } else {
1303 error_code = error_attr->code();
1304 }
1305 }
1306
1307 if (error_code == STUN_ERROR_UNKNOWN_ATTRIBUTE ||
1308 error_code == STUN_ERROR_SERVER_ERROR ||
1309 error_code == STUN_ERROR_UNAUTHORIZED) {
1310 // Recoverable error, retry
1311 } else if (error_code == STUN_ERROR_STALE_CREDENTIALS) {
1312 // Race failure, retry
1313 } else if (error_code == STUN_ERROR_ROLE_CONFLICT) {
1314 HandleRoleConflictFromPeer();
1315 } else {
1316 // This is not a valid connection.
1317 LOG_J(LS_ERROR, this) << "Received STUN error response, code="
1318 << error_code << "; killing connection";
1319 set_state(STATE_FAILED);
1320 set_write_state(STATE_WRITE_TIMEOUT);
1321 }
1322}
1323
1324void Connection::OnConnectionRequestTimeout(ConnectionRequest* request) {
1325 // Log at LS_INFO if we miss a ping on a writable connection.
1326 rtc::LoggingSeverity sev = (write_state_ == STATE_WRITABLE) ?
1327 rtc::LS_INFO : rtc::LS_VERBOSE;
1328 LOG_JV(sev, this) << "Timing-out STUN ping " << request->id()
1329 << " after " << request->Elapsed() << " ms";
1330}
1331
1332void Connection::CheckTimeout() {
1333 // If both read and write have timed out or read has never initialized, then
1334 // this connection can contribute no more to p2p socket unless at some later
1335 // date readability were to come back. However, we gave readability a long
1336 // time to timeout, so at this point, it seems fair to get rid of this
1337 // connection.
1338 if ((read_state_ == STATE_READ_TIMEOUT ||
1339 read_state_ == STATE_READ_INIT) &&
1340 write_state_ == STATE_WRITE_TIMEOUT) {
1341 port_->thread()->Post(this, MSG_DELETE);
1342 }
1343}
1344
1345void Connection::HandleRoleConflictFromPeer() {
1346 port_->SignalRoleConflict(port_);
1347}
1348
jiayl@webrtc.orgdacdd942015-01-23 17:33:34 +00001349void Connection::MaybeSetRemoteIceCredentials(const std::string& ice_ufrag,
1350 const std::string& ice_pwd) {
1351 if (remote_candidate_.username() == ice_ufrag &&
1352 remote_candidate_.password().empty()) {
1353 remote_candidate_.set_password(ice_pwd);
1354 }
1355}
1356
1357void Connection::MaybeUpdatePeerReflexiveCandidate(
1358 const Candidate& new_candidate) {
1359 if (remote_candidate_.type() == PRFLX_PORT_TYPE &&
1360 new_candidate.type() != PRFLX_PORT_TYPE &&
1361 remote_candidate_.protocol() == new_candidate.protocol() &&
1362 remote_candidate_.address() == new_candidate.address() &&
1363 remote_candidate_.username() == new_candidate.username() &&
1364 remote_candidate_.password() == new_candidate.password() &&
1365 remote_candidate_.generation() == new_candidate.generation()) {
1366 remote_candidate_ = new_candidate;
1367 }
1368}
1369
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001370void Connection::OnMessage(rtc::Message *pmsg) {
1371 ASSERT(pmsg->message_id == MSG_DELETE);
henrike@webrtc.org43e033e2014-11-10 19:40:29 +00001372 LOG_J(LS_INFO, this) << "Connection deleted due to read or write timeout";
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001373 SignalDestroyed(this);
1374 delete this;
1375}
1376
1377size_t Connection::recv_bytes_second() {
1378 return recv_rate_tracker_.units_second();
1379}
1380
1381size_t Connection::recv_total_bytes() {
1382 return recv_rate_tracker_.total_units();
1383}
1384
1385size_t Connection::sent_bytes_second() {
1386 return send_rate_tracker_.units_second();
1387}
1388
1389size_t Connection::sent_total_bytes() {
1390 return send_rate_tracker_.total_units();
1391}
1392
guoweis@webrtc.org930e0042014-11-17 19:42:14 +00001393size_t Connection::sent_discarded_packets() {
1394 return sent_packets_discarded_;
1395}
1396
1397size_t Connection::sent_total_packets() {
1398 return sent_packets_total_;
1399}
1400
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001401void Connection::MaybeAddPrflxCandidate(ConnectionRequest* request,
1402 StunMessage* response) {
1403 // RFC 5245
1404 // The agent checks the mapped address from the STUN response. If the
1405 // transport address does not match any of the local candidates that the
1406 // agent knows about, the mapped address represents a new candidate -- a
1407 // peer reflexive candidate.
1408 const StunAddressAttribute* addr =
1409 response->GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
1410 if (!addr) {
1411 LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - "
1412 << "No MAPPED-ADDRESS or XOR-MAPPED-ADDRESS found in the "
1413 << "stun response message";
1414 return;
1415 }
1416
1417 bool known_addr = false;
1418 for (size_t i = 0; i < port_->Candidates().size(); ++i) {
1419 if (port_->Candidates()[i].address() == addr->GetAddress()) {
1420 known_addr = true;
1421 break;
1422 }
1423 }
1424 if (known_addr) {
1425 return;
1426 }
1427
1428 // RFC 5245
1429 // Its priority is set equal to the value of the PRIORITY attribute
1430 // in the Binding request.
1431 const StunUInt32Attribute* priority_attr =
1432 request->msg()->GetUInt32(STUN_ATTR_PRIORITY);
1433 if (!priority_attr) {
1434 LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - "
1435 << "No STUN_ATTR_PRIORITY found in the "
1436 << "stun response message";
1437 return;
1438 }
1439 const uint32 priority = priority_attr->value();
1440 std::string id = rtc::CreateRandomString(8);
1441
1442 Candidate new_local_candidate;
1443 new_local_candidate.set_id(id);
1444 new_local_candidate.set_component(local_candidate().component());
1445 new_local_candidate.set_type(PRFLX_PORT_TYPE);
1446 new_local_candidate.set_protocol(local_candidate().protocol());
1447 new_local_candidate.set_address(addr->GetAddress());
1448 new_local_candidate.set_priority(priority);
1449 new_local_candidate.set_username(local_candidate().username());
1450 new_local_candidate.set_password(local_candidate().password());
1451 new_local_candidate.set_network_name(local_candidate().network_name());
guoweis@webrtc.org950c5182014-12-16 23:01:31 +00001452 new_local_candidate.set_network_type(local_candidate().network_type());
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001453 new_local_candidate.set_related_address(local_candidate().address());
1454 new_local_candidate.set_foundation(
1455 ComputeFoundation(PRFLX_PORT_TYPE, local_candidate().protocol(),
1456 local_candidate().address()));
1457
1458 // Change the local candidate of this Connection to the new prflx candidate.
1459 local_candidate_index_ = port_->AddPrflxCandidate(new_local_candidate);
1460
1461 // SignalStateChange to force a re-sort in P2PTransportChannel as this
1462 // Connection's local candidate has changed.
1463 SignalStateChange(this);
1464}
1465
1466ProxyConnection::ProxyConnection(Port* port, size_t index,
1467 const Candidate& candidate)
1468 : Connection(port, index, candidate), error_(0) {
1469}
1470
1471int ProxyConnection::Send(const void* data, size_t size,
1472 const rtc::PacketOptions& options) {
1473 if (write_state_ == STATE_WRITE_INIT || write_state_ == STATE_WRITE_TIMEOUT) {
1474 error_ = EWOULDBLOCK;
1475 return SOCKET_ERROR;
1476 }
guoweis@webrtc.org930e0042014-11-17 19:42:14 +00001477 sent_packets_total_++;
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001478 int sent = port_->SendTo(data, size, remote_candidate_.address(),
1479 options, true);
1480 if (sent <= 0) {
1481 ASSERT(sent < 0);
1482 error_ = port_->GetError();
guoweis@webrtc.org930e0042014-11-17 19:42:14 +00001483 sent_packets_discarded_++;
henrike@webrtc.org269fb4b2014-10-28 22:20:11 +00001484 } else {
1485 send_rate_tracker_.Update(sent);
1486 }
1487 return sent;
1488}
1489
1490} // namespace cricket