blob: f2da101727110d47aeb99c0de2cc43b434ce61a1 [file] [log] [blame]
nisse191b3592016-06-22 08:36:53 -07001/*
2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
Yves Gerey988cc082018-10-23 12:03:01 +020011#include <cstdlib>
nissea0758482016-09-14 00:37:00 -070012#include <limits>
13
Mirko Bonadei92ea95e2017-09-15 06:47:31 +020014#include "rtc_base/checks.h"
15#include "rtc_base/logging.h"
16#include "rtc_base/timestampaligner.h"
17#include "rtc_base/timeutils.h"
nisse191b3592016-06-22 08:36:53 -070018
19namespace rtc {
20
nissea0758482016-09-14 00:37:00 -070021TimestampAligner::TimestampAligner()
22 : frames_seen_(0),
23 offset_us_(0),
24 clip_bias_us_(0),
25 prev_translated_time_us_(std::numeric_limits<int64_t>::min()) {}
nisse76f91cd2016-08-24 01:58:42 -070026
nisse191b3592016-06-22 08:36:53 -070027TimestampAligner::~TimestampAligner() {}
28
nissea0758482016-09-14 00:37:00 -070029int64_t TimestampAligner::TranslateTimestamp(int64_t camera_time_us,
30 int64_t system_time_us) {
31 return ClipTimestamp(
32 camera_time_us + UpdateOffset(camera_time_us, system_time_us),
33 system_time_us);
34}
35
nisse191b3592016-06-22 08:36:53 -070036int64_t TimestampAligner::UpdateOffset(int64_t camera_time_us,
37 int64_t system_time_us) {
38 // Estimate the offset between system monotonic time and the capture
39 // time from the camera. The camera is assumed to provide more
40 // accurate timestamps than we get from the system time. But the
41 // camera may use its own free-running clock with a large offset and
42 // a small drift compared to the system clock. So the model is
43 // basically
44 //
45 // y_k = c_0 + c_1 * x_k + v_k
46 //
47 // where x_k is the camera timestamp, believed to be accurate in its
48 // own scale. y_k is our reading of the system clock. v_k is the
49 // measurement noise, i.e., the delay from frame capture until the
50 // system clock was read.
51 //
52 // It's possible to do (weighted) least-squares estimation of both
53 // c_0 and c_1. Then we get the constants as c_1 = Cov(x,y) /
54 // Var(x), and c_0 = mean(y) - c_1 * mean(x). Substituting this c_0,
55 // we can rearrange the model as
56 //
57 // y_k = mean(y) + (x_k - mean(x)) + (c_1 - 1) * (x_k - mean(x)) + v_k
58 //
59 // Now if we use a weighted average which gradually forgets old
60 // values, x_k - mean(x) is bounded, of the same order as the time
61 // constant (and close to constant for a steady frame rate). In
62 // addition, the frequency error |c_1 - 1| should be small. Cameras
63 // with a frequency error up to 3000 ppm (3 ms drift per second)
64 // have been observed, but frequency errors below 100 ppm could be
65 // expected of any cheap crystal.
66 //
67 // Bottom line is that we ignore the c_1 term, and use only the estimator
68 //
69 // x_k + mean(y-x)
70 //
71 // where mean is plain averaging for initial samples, followed by
72 // exponential averaging.
73
74 // The input for averaging, y_k - x_k in the above notation.
75 int64_t diff_us = system_time_us - camera_time_us;
76 // The deviation from the current average.
77 int64_t error_us = diff_us - offset_us_;
78
79 // If the current difference is far from the currently estimated
80 // offset, the filter is reset. This could happen, e.g., if the
81 // camera clock is reset, or cameras are plugged in and out, or if
nissea0758482016-09-14 00:37:00 -070082 // the application process is temporarily suspended. Expected to
83 // happen for the very first timestamp (|frames_seen_| = 0). The
84 // threshold of 300 ms should make this unlikely in normal
85 // operation, and at the same time, converging gradually rather than
86 // resetting the filter should be tolerable for jumps in camera time
87 // below this threshold.
88 static const int64_t kResetThresholdUs = 300000;
89 if (std::abs(error_us) > kResetThresholdUs) {
Mirko Bonadei675513b2017-11-09 11:09:25 +010090 RTC_LOG(LS_INFO) << "Resetting timestamp translation after averaging "
91 << frames_seen_ << " frames. Old offset: " << offset_us_
92 << ", new offset: " << diff_us;
nisse191b3592016-06-22 08:36:53 -070093 frames_seen_ = 0;
nissea0758482016-09-14 00:37:00 -070094 clip_bias_us_ = 0;
nisse191b3592016-06-22 08:36:53 -070095 }
96
97 static const int kWindowSize = 100;
98 if (frames_seen_ < kWindowSize) {
99 ++frames_seen_;
100 }
101 offset_us_ += error_us / frames_seen_;
102 return offset_us_;
103}
104
nissea0758482016-09-14 00:37:00 -0700105int64_t TimestampAligner::ClipTimestamp(int64_t filtered_time_us,
nisse191b3592016-06-22 08:36:53 -0700106 int64_t system_time_us) {
nissea0758482016-09-14 00:37:00 -0700107 const int64_t kMinFrameIntervalUs = rtc::kNumMicrosecsPerMillisec;
108 // Clip to make sure we don't produce timestamps in the future.
109 int64_t time_us = filtered_time_us - clip_bias_us_;
nisse191b3592016-06-22 08:36:53 -0700110 if (time_us > system_time_us) {
111 clip_bias_us_ += time_us - system_time_us;
112 time_us = system_time_us;
113 }
nissea0758482016-09-14 00:37:00 -0700114 // Make timestamps monotonic, with a minimum inter-frame interval of 1 ms.
115 else if (time_us < prev_translated_time_us_ + kMinFrameIntervalUs) {
116 time_us = prev_translated_time_us_ + kMinFrameIntervalUs;
117 if (time_us > system_time_us) {
118 // In the anomalous case that this function is called with values of
119 // |system_time_us| less than |kMinFrameIntervalUs| apart, we may output
120 // timestamps with with too short inter-frame interval. We may even return
121 // duplicate timestamps in case this function is called several times with
122 // exactly the same |system_time_us|.
Mirko Bonadei675513b2017-11-09 11:09:25 +0100123 RTC_LOG(LS_WARNING) << "too short translated timestamp interval: "
124 << "system time (us) = " << system_time_us
125 << ", interval (us) = "
126 << system_time_us - prev_translated_time_us_;
nissea0758482016-09-14 00:37:00 -0700127 time_us = system_time_us;
128 }
129 }
130 RTC_DCHECK_GE(time_us, prev_translated_time_us_);
131 RTC_DCHECK_LE(time_us, system_time_us);
132 prev_translated_time_us_ = time_us;
nisse191b3592016-06-22 08:36:53 -0700133 return time_us;
134}
135
136} // namespace rtc