Magnus Jedvert | 1927dfa | 2018-09-11 12:56:06 +0200 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
| 11 | #include "rtc_tools/frame_analyzer/linear_least_squares.h" |
| 12 | |
| 13 | #include <numeric> |
| 14 | #include <utility> |
| 15 | |
| 16 | #include "rtc_base/checks.h" |
| 17 | #include "rtc_base/logging.h" |
| 18 | |
| 19 | namespace webrtc { |
| 20 | namespace test { |
| 21 | |
| 22 | template <class T> |
| 23 | using Matrix = std::valarray<std::valarray<T>>; |
| 24 | |
| 25 | namespace { |
| 26 | |
| 27 | template <typename R, typename T> |
| 28 | R DotProduct(const std::valarray<T>& a, const std::valarray<T>& b) { |
| 29 | RTC_CHECK_EQ(a.size(), b.size()); |
| 30 | return std::inner_product(std::begin(a), std::end(a), std::begin(b), R(0)); |
| 31 | } |
| 32 | |
| 33 | // Calculates a^T * b. |
| 34 | template <typename R, typename T> |
| 35 | Matrix<R> MatrixMultiply(const Matrix<T>& a, const Matrix<T>& b) { |
| 36 | Matrix<R> result(std::valarray<R>(a.size()), b.size()); |
| 37 | for (size_t i = 0; i < a.size(); ++i) { |
| 38 | for (size_t j = 0; j < b.size(); ++j) |
| 39 | result[j][i] = DotProduct<R>(a[i], b[j]); |
| 40 | } |
| 41 | |
| 42 | return result; |
| 43 | } |
| 44 | |
| 45 | template <typename T> |
| 46 | Matrix<T> Transpose(const Matrix<T>& matrix) { |
| 47 | if (matrix.size() == 0) |
| 48 | return Matrix<T>(); |
| 49 | const size_t rows = matrix.size(); |
| 50 | const size_t columns = matrix[0].size(); |
| 51 | Matrix<T> result(std::valarray<T>(rows), columns); |
| 52 | |
| 53 | for (size_t i = 0; i < rows; ++i) { |
| 54 | for (size_t j = 0; j < columns; ++j) |
| 55 | result[j][i] = matrix[i][j]; |
| 56 | } |
| 57 | |
| 58 | return result; |
| 59 | } |
| 60 | |
| 61 | // Convert valarray from type T to type R. |
| 62 | template <typename R, typename T> |
| 63 | std::valarray<R> ConvertTo(const std::valarray<T>& v) { |
| 64 | std::valarray<R> result(v.size()); |
| 65 | for (size_t i = 0; i < v.size(); ++i) |
| 66 | result[i] = static_cast<R>(v[i]); |
| 67 | return result; |
| 68 | } |
| 69 | |
| 70 | // Convert valarray Matrix from type T to type R. |
| 71 | template <typename R, typename T> |
| 72 | Matrix<R> ConvertTo(const Matrix<T>& mat) { |
| 73 | Matrix<R> result(mat.size()); |
| 74 | for (size_t i = 0; i < mat.size(); ++i) |
| 75 | result[i] = ConvertTo<R>(mat[i]); |
| 76 | return result; |
| 77 | } |
| 78 | |
| 79 | // Convert from valarray Matrix back to the more conventional std::vector. |
| 80 | template <typename T> |
| 81 | std::vector<std::vector<T>> ToVectorMatrix(const Matrix<T>& m) { |
| 82 | std::vector<std::vector<T>> result; |
| 83 | for (const std::valarray<T>& v : m) |
| 84 | result.emplace_back(std::begin(v), std::end(v)); |
| 85 | return result; |
| 86 | } |
| 87 | |
| 88 | // Create a valarray Matrix from a conventional std::vector. |
| 89 | template <typename T> |
| 90 | Matrix<T> FromVectorMatrix(const std::vector<std::vector<T>>& mat) { |
| 91 | Matrix<T> result(mat.size()); |
| 92 | for (size_t i = 0; i < mat.size(); ++i) |
| 93 | result[i] = std::valarray<T>(mat[i].data(), mat[i].size()); |
| 94 | return result; |
| 95 | } |
| 96 | |
| 97 | // Returns |matrix_to_invert|^-1 * |right_hand_matrix|. |matrix_to_invert| must |
| 98 | // have square size. |
| 99 | Matrix<double> GaussianElimination(Matrix<double> matrix_to_invert, |
| 100 | Matrix<double> right_hand_matrix) { |
| 101 | // |n| is the width/height of |matrix_to_invert|. |
| 102 | const size_t n = matrix_to_invert.size(); |
| 103 | // Make sure |matrix_to_invert| has square size. |
| 104 | for (const std::valarray<double>& column : matrix_to_invert) |
| 105 | RTC_CHECK_EQ(n, column.size()); |
| 106 | // Make sure |right_hand_matrix| has correct size. |
| 107 | for (const std::valarray<double>& column : right_hand_matrix) |
| 108 | RTC_CHECK_EQ(n, column.size()); |
| 109 | |
| 110 | // Transpose the matrices before and after so that we can perform Gaussian |
| 111 | // elimination on the columns instead of the rows, since that is easier with |
| 112 | // our representation. |
| 113 | matrix_to_invert = Transpose(matrix_to_invert); |
| 114 | right_hand_matrix = Transpose(right_hand_matrix); |
| 115 | |
| 116 | // Loop over the diagonal of |matrix_to_invert| and perform column reduction. |
| 117 | // Column reduction is a sequence of elementary column operations that is |
| 118 | // performed on both |matrix_to_invert| and |right_hand_matrix| until |
| 119 | // |matrix_to_invert| has been transformed to the identity matrix. |
| 120 | for (size_t diagonal_index = 0; diagonal_index < n; ++diagonal_index) { |
| 121 | // Make sure the diagonal element has the highest absolute value by |
| 122 | // swapping columns if necessary. |
| 123 | for (size_t column = diagonal_index + 1; column < n; ++column) { |
| 124 | if (std::abs(matrix_to_invert[column][diagonal_index]) > |
| 125 | std::abs(matrix_to_invert[diagonal_index][diagonal_index])) { |
| 126 | std::swap(matrix_to_invert[column], matrix_to_invert[diagonal_index]); |
| 127 | std::swap(right_hand_matrix[column], right_hand_matrix[diagonal_index]); |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | // Reduce the diagonal element to be 1, by dividing the column with that |
| 132 | // value. If the diagonal element is 0, it means the system of equations has |
| 133 | // many solutions, and in that case we will return an arbitrary solution. |
| 134 | if (matrix_to_invert[diagonal_index][diagonal_index] == 0.0) { |
| 135 | RTC_LOG(LS_WARNING) << "Matrix is not invertible, ignoring."; |
| 136 | continue; |
| 137 | } |
| 138 | const double diagonal_element = |
| 139 | matrix_to_invert[diagonal_index][diagonal_index]; |
| 140 | matrix_to_invert[diagonal_index] /= diagonal_element; |
| 141 | right_hand_matrix[diagonal_index] /= diagonal_element; |
| 142 | |
| 143 | // Eliminate the other entries in row |diagonal_index| by making them zero. |
| 144 | for (size_t column = 0; column < n; ++column) { |
| 145 | if (column == diagonal_index) |
| 146 | continue; |
| 147 | const double row_element = matrix_to_invert[column][diagonal_index]; |
| 148 | matrix_to_invert[column] -= |
| 149 | row_element * matrix_to_invert[diagonal_index]; |
| 150 | right_hand_matrix[column] -= |
| 151 | row_element * right_hand_matrix[diagonal_index]; |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | // Transpose the result before returning it, explained in comment above. |
| 156 | return Transpose(right_hand_matrix); |
| 157 | } |
| 158 | |
| 159 | } // namespace |
| 160 | |
| 161 | IncrementalLinearLeastSquares::IncrementalLinearLeastSquares() = default; |
| 162 | IncrementalLinearLeastSquares::~IncrementalLinearLeastSquares() = default; |
| 163 | |
| 164 | void IncrementalLinearLeastSquares::AddObservations( |
| 165 | const std::vector<std::vector<uint8_t>>& x, |
| 166 | const std::vector<std::vector<uint8_t>>& y) { |
| 167 | if (x.empty() || y.empty()) |
| 168 | return; |
| 169 | // Make sure all columns are the same size. |
| 170 | const size_t n = x[0].size(); |
| 171 | for (const std::vector<uint8_t>& column : x) |
| 172 | RTC_CHECK_EQ(n, column.size()); |
| 173 | for (const std::vector<uint8_t>& column : y) |
| 174 | RTC_CHECK_EQ(n, column.size()); |
| 175 | |
| 176 | // We will multiply the uint8_t values together, so we need to expand to a |
| 177 | // type that can safely store those values, i.e. uint16_t. |
| 178 | const Matrix<uint16_t> unpacked_x = ConvertTo<uint16_t>(FromVectorMatrix(x)); |
| 179 | const Matrix<uint16_t> unpacked_y = ConvertTo<uint16_t>(FromVectorMatrix(y)); |
| 180 | |
| 181 | const Matrix<uint64_t> xx = MatrixMultiply<uint64_t>(unpacked_x, unpacked_x); |
| 182 | const Matrix<uint64_t> xy = MatrixMultiply<uint64_t>(unpacked_x, unpacked_y); |
| 183 | if (sum_xx && sum_xy) { |
| 184 | *sum_xx += xx; |
| 185 | *sum_xy += xy; |
| 186 | } else { |
| 187 | sum_xx = xx; |
| 188 | sum_xy = xy; |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | std::vector<std::vector<double>> |
| 193 | IncrementalLinearLeastSquares::GetBestSolution() const { |
| 194 | RTC_CHECK(sum_xx && sum_xy) << "No observations have been added"; |
| 195 | return ToVectorMatrix(GaussianElimination(ConvertTo<double>(*sum_xx), |
| 196 | ConvertTo<double>(*sum_xy))); |
| 197 | } |
| 198 | |
| 199 | } // namespace test |
| 200 | } // namespace webrtc |