blob: 7d5e70d109e3f2ddbc39471d7be491880c81498c [file] [log] [blame]
henrike@webrtc.orgf0488722014-05-13 18:00:26 +00001/*
2 * Copyright 2011 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
Steve Anton10542f22019-01-11 09:11:00 -080011#include "rtc_base/rolling_accumulator.h"
Yves Gerey3e707812018-11-28 16:47:49 +010012
13#include "test/gtest.h"
henrike@webrtc.orgf0488722014-05-13 18:00:26 +000014
15namespace rtc {
16
17namespace {
18
19const double kLearningRate = 0.5;
20
21} // namespace
22
23TEST(RollingAccumulatorTest, ZeroSamples) {
24 RollingAccumulator<int> accum(10);
25
26 EXPECT_EQ(0U, accum.count());
27 EXPECT_DOUBLE_EQ(0.0, accum.ComputeMean());
28 EXPECT_DOUBLE_EQ(0.0, accum.ComputeVariance());
29 EXPECT_EQ(0, accum.ComputeMin());
30 EXPECT_EQ(0, accum.ComputeMax());
31}
32
33TEST(RollingAccumulatorTest, SomeSamples) {
34 RollingAccumulator<int> accum(10);
35 for (int i = 0; i < 4; ++i) {
36 accum.AddSample(i);
37 }
38
39 EXPECT_EQ(4U, accum.count());
40 EXPECT_EQ(6, accum.ComputeSum());
41 EXPECT_DOUBLE_EQ(1.5, accum.ComputeMean());
42 EXPECT_NEAR(2.26666, accum.ComputeWeightedMean(kLearningRate), 0.01);
43 EXPECT_DOUBLE_EQ(1.25, accum.ComputeVariance());
44 EXPECT_EQ(0, accum.ComputeMin());
45 EXPECT_EQ(3, accum.ComputeMax());
46}
47
48TEST(RollingAccumulatorTest, RollingSamples) {
49 RollingAccumulator<int> accum(10);
50 for (int i = 0; i < 12; ++i) {
51 accum.AddSample(i);
52 }
53
54 EXPECT_EQ(10U, accum.count());
55 EXPECT_EQ(65, accum.ComputeSum());
56 EXPECT_DOUBLE_EQ(6.5, accum.ComputeMean());
57 EXPECT_NEAR(10.0, accum.ComputeWeightedMean(kLearningRate), 0.01);
58 EXPECT_NEAR(9.0, accum.ComputeVariance(), 1.0);
59 EXPECT_EQ(2, accum.ComputeMin());
60 EXPECT_EQ(11, accum.ComputeMax());
61}
62
63TEST(RollingAccumulatorTest, ResetSamples) {
64 RollingAccumulator<int> accum(10);
65
66 for (int i = 0; i < 10; ++i) {
67 accum.AddSample(100);
68 }
69 EXPECT_EQ(10U, accum.count());
70 EXPECT_DOUBLE_EQ(100.0, accum.ComputeMean());
71 EXPECT_EQ(100, accum.ComputeMin());
72 EXPECT_EQ(100, accum.ComputeMax());
73
74 accum.Reset();
75 EXPECT_EQ(0U, accum.count());
76
77 for (int i = 0; i < 5; ++i) {
78 accum.AddSample(i);
79 }
80
81 EXPECT_EQ(5U, accum.count());
82 EXPECT_EQ(10, accum.ComputeSum());
83 EXPECT_DOUBLE_EQ(2.0, accum.ComputeMean());
84 EXPECT_EQ(0, accum.ComputeMin());
85 EXPECT_EQ(4, accum.ComputeMax());
86}
87
88TEST(RollingAccumulatorTest, RollingSamplesDouble) {
89 RollingAccumulator<double> accum(10);
90 for (int i = 0; i < 23; ++i) {
91 accum.AddSample(5 * i);
92 }
93
94 EXPECT_EQ(10u, accum.count());
95 EXPECT_DOUBLE_EQ(875.0, accum.ComputeSum());
96 EXPECT_DOUBLE_EQ(87.5, accum.ComputeMean());
97 EXPECT_NEAR(105.049, accum.ComputeWeightedMean(kLearningRate), 0.1);
98 EXPECT_NEAR(229.166667, accum.ComputeVariance(), 25);
99 EXPECT_DOUBLE_EQ(65.0, accum.ComputeMin());
100 EXPECT_DOUBLE_EQ(110.0, accum.ComputeMax());
101}
102
103TEST(RollingAccumulatorTest, ComputeWeightedMeanCornerCases) {
104 RollingAccumulator<int> accum(10);
105 EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(kLearningRate));
106 EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(0.0));
107 EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(1.1));
108
109 for (int i = 0; i < 8; ++i) {
110 accum.AddSample(i);
111 }
112
113 EXPECT_DOUBLE_EQ(3.5, accum.ComputeMean());
114 EXPECT_DOUBLE_EQ(3.5, accum.ComputeWeightedMean(0));
115 EXPECT_DOUBLE_EQ(3.5, accum.ComputeWeightedMean(1.1));
116 EXPECT_NEAR(6.0, accum.ComputeWeightedMean(kLearningRate), 0.1);
117}
118
119} // namespace rtc