Henrik Lundin | b82de30 | 2017-10-20 10:38:56 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license |
| 5 | * that can be found in the LICENSE file in the root of the source |
| 6 | * tree. An additional intellectual property rights grant can be found |
| 7 | * in the file PATENTS. All contributing project authors may |
| 8 | * be found in the AUTHORS file in the root of the source tree. |
| 9 | */ |
| 10 | |
| 11 | #include <cmath> |
| 12 | #include <limits> |
| 13 | #include <memory> |
| 14 | #include <vector> |
| 15 | |
| 16 | #include "api/array_view.h" |
| 17 | #include "modules/audio_coding/codecs/pcm16b/audio_encoder_pcm16b.h" |
| 18 | #include "modules/audio_coding/neteq/tools/audio_checksum.h" |
| 19 | #include "modules/audio_coding/neteq/tools/encode_neteq_input.h" |
| 20 | #include "modules/audio_coding/neteq/tools/neteq_test.h" |
| 21 | #include "modules/rtp_rtcp/source/byte_io.h" |
| 22 | #include "rtc_base/random.h" |
| 23 | #include "rtc_base/safe_conversions.h" |
| 24 | |
| 25 | namespace webrtc { |
| 26 | namespace test { |
| 27 | namespace { |
| 28 | // Helper class to take care of the fuzzer input, read from it, and keep track |
| 29 | // of when the end of the data has been reached. |
| 30 | class FuzzData { |
| 31 | public: |
| 32 | explicit FuzzData(rtc::ArrayView<const uint8_t> data) : data_(data) {} |
| 33 | |
| 34 | // Returns true if n bytes can be read. |
| 35 | bool CanReadBytes(size_t n) const { return data_ix_ + n <= data_.size(); } |
| 36 | |
| 37 | // Reads and returns data of type T. |
| 38 | template <typename T> |
| 39 | T Read() { |
| 40 | RTC_CHECK(CanReadBytes(sizeof(T))); |
| 41 | T x = ByteReader<T>::ReadLittleEndian(&data_[data_ix_]); |
| 42 | data_ix_ += sizeof(T); |
| 43 | return x; |
| 44 | } |
| 45 | |
| 46 | // Reads and returns data of type T. Returns default_value if not enough |
| 47 | // fuzzer input remains to read a T. |
| 48 | template <typename T> |
| 49 | T ReadOrDefaultValue(T default_value) { |
| 50 | if (!CanReadBytes(sizeof(T))) { |
| 51 | return default_value; |
| 52 | } |
| 53 | return Read<T>(); |
| 54 | } |
| 55 | |
| 56 | // Like ReadOrDefaultValue, but replaces the value 0 with default_value. |
| 57 | template <typename T> |
| 58 | T ReadOrDefaultValueNotZero(T default_value) { |
| 59 | static_assert(std::is_integral<T>::value, ""); |
| 60 | T x = ReadOrDefaultValue(default_value); |
| 61 | return x == 0 ? default_value : x; |
| 62 | } |
| 63 | |
| 64 | // Returns one of the elements from the provided input array. The selection |
| 65 | // is based on the fuzzer input data. If not enough fuzzer data is available, |
| 66 | // the method will return the first element in the input array. The reason for |
| 67 | // not flaggin this as an error is that the method is called from the |
| 68 | // FuzzSignalInput constructor, and in constructors we typically do not handle |
| 69 | // errors. The code will work anyway, and the fuzzer will likely see that |
| 70 | // providing more data will actually make this method return something else. |
| 71 | template <typename T> |
| 72 | T SelectOneOf(rtc::ArrayView<const T> select_from) { |
| 73 | RTC_CHECK_LE(select_from.size(), std::numeric_limits<uint8_t>::max()); |
| 74 | // Read an index between 0 and select_from.size() - 1 from the fuzzer data. |
| 75 | uint8_t index = ReadOrDefaultValue<uint8_t>(0) % select_from.size(); |
| 76 | return select_from[index]; |
| 77 | } |
| 78 | |
| 79 | private: |
| 80 | rtc::ArrayView<const uint8_t> data_; |
| 81 | size_t data_ix_ = 0; |
| 82 | }; |
| 83 | |
| 84 | // Generate a mixture of sine wave and gaussian noise. |
| 85 | class SineAndNoiseGenerator : public EncodeNetEqInput::Generator { |
| 86 | public: |
| 87 | // The noise generator is seeded with a value from the fuzzer data, but 0 is |
| 88 | // avoided (since it is not allowed by the Random class). |
| 89 | SineAndNoiseGenerator(int sample_rate_hz, FuzzData* fuzz_data) |
| 90 | : sample_rate_hz_(sample_rate_hz), |
| 91 | fuzz_data_(*fuzz_data), |
| 92 | noise_generator_(fuzz_data_.ReadOrDefaultValueNotZero<uint64_t>(1)) {} |
| 93 | |
| 94 | // Generates num_samples of the sine-gaussian mixture. |
| 95 | rtc::ArrayView<const int16_t> Generate(size_t num_samples) override { |
| 96 | if (samples_.size() < num_samples) { |
| 97 | samples_.resize(num_samples); |
| 98 | } |
| 99 | |
| 100 | rtc::ArrayView<int16_t> output(samples_.data(), num_samples); |
| 101 | // Randomize an amplitude between 0 and 32768; use 65000/2 if we are out of |
| 102 | // fuzzer data. |
| 103 | const float amplitude = fuzz_data_.ReadOrDefaultValue<uint16_t>(65000) / 2; |
| 104 | // Randomize a noise standard deviation between 0 and 1999. |
| 105 | const float noise_std = fuzz_data_.ReadOrDefaultValue<uint16_t>(0) % 2000; |
| 106 | for (auto& x : output) { |
| 107 | x = rtc::saturated_cast<int16_t>(amplitude * std::sin(phase_) + |
| 108 | noise_generator_.Gaussian(0, noise_std)); |
| 109 | phase_ += 2 * kPi * kFreqHz / sample_rate_hz_; |
| 110 | } |
| 111 | return output; |
| 112 | } |
| 113 | |
| 114 | private: |
| 115 | static constexpr int kFreqHz = 300; // The sinewave frequency. |
| 116 | const int sample_rate_hz_; |
| 117 | const double kPi = std::acos(-1); |
| 118 | std::vector<int16_t> samples_; |
| 119 | double phase_ = 0.0; |
| 120 | FuzzData& fuzz_data_; |
| 121 | Random noise_generator_; |
| 122 | }; |
| 123 | |
| 124 | class FuzzSignalInput : public NetEqInput { |
| 125 | public: |
| 126 | explicit FuzzSignalInput(FuzzData* fuzz_data, |
| 127 | int sample_rate, |
| 128 | uint8_t payload_type) |
| 129 | : fuzz_data_(*fuzz_data) { |
| 130 | AudioEncoderPcm16B::Config config; |
| 131 | config.payload_type = payload_type; |
| 132 | config.sample_rate_hz = sample_rate; |
| 133 | std::unique_ptr<AudioEncoder> encoder(new AudioEncoderPcm16B(config)); |
| 134 | std::unique_ptr<EncodeNetEqInput::Generator> generator( |
| 135 | new SineAndNoiseGenerator(config.sample_rate_hz, fuzz_data)); |
| 136 | input_.reset(new EncodeNetEqInput(std::move(generator), std::move(encoder), |
| 137 | std::numeric_limits<int64_t>::max())); |
| 138 | packet_ = input_->PopPacket(); |
| 139 | |
| 140 | // Select an output event period. This is how long time we wait between each |
| 141 | // call to NetEq::GetAudio. 10 ms is nominal, 9 and 11 ms will both lead to |
| 142 | // clock drift (in different directions). |
| 143 | constexpr int output_event_periods[] = {9, 10, 11}; |
| 144 | output_event_period_ms_ = |
| 145 | fuzz_data_.SelectOneOf(rtc::ArrayView<const int>(output_event_periods)); |
| 146 | } |
| 147 | |
| 148 | rtc::Optional<int64_t> NextPacketTime() const override { |
| 149 | return rtc::Optional<int64_t>(packet_->time_ms); |
| 150 | } |
| 151 | |
| 152 | rtc::Optional<int64_t> NextOutputEventTime() const override { |
| 153 | return rtc::Optional<int64_t>(next_output_event_ms_); |
| 154 | } |
| 155 | |
| 156 | std::unique_ptr<PacketData> PopPacket() override { |
| 157 | RTC_DCHECK(packet_); |
| 158 | std::unique_ptr<PacketData> packet_to_return = std::move(packet_); |
| 159 | do { |
| 160 | packet_ = input_->PopPacket(); |
| 161 | // If the next value from the fuzzer input is 0, the packet is discarded |
| 162 | // and the next one is pulled from the source. |
| 163 | } while (fuzz_data_.CanReadBytes(1) && fuzz_data_.Read<uint8_t>() == 0); |
| 164 | if (fuzz_data_.CanReadBytes(1)) { |
| 165 | // Generate jitter by setting an offset for the arrival time. |
| 166 | const int8_t arrival_time_offset_ms = fuzz_data_.Read<int8_t>(); |
| 167 | // The arrival time can not be before the previous packets. |
| 168 | packet_->time_ms = std::max(packet_to_return->time_ms, |
| 169 | packet_->time_ms + arrival_time_offset_ms); |
| 170 | } else { |
| 171 | // Mark that we are at the end of the test. However, the current packet is |
| 172 | // still valid (but it may not have been fuzzed as expected). |
| 173 | ended_ = true; |
| 174 | } |
| 175 | return packet_to_return; |
| 176 | } |
| 177 | |
| 178 | void AdvanceOutputEvent() override { |
| 179 | next_output_event_ms_ += output_event_period_ms_; |
| 180 | } |
| 181 | |
| 182 | bool ended() const override { return ended_; } |
| 183 | |
| 184 | rtc::Optional<RTPHeader> NextHeader() const override { |
| 185 | RTC_DCHECK(packet_); |
| 186 | return rtc::Optional<RTPHeader>(packet_->header); |
| 187 | } |
| 188 | |
| 189 | private: |
| 190 | bool ended_ = false; |
| 191 | FuzzData& fuzz_data_; |
| 192 | std::unique_ptr<EncodeNetEqInput> input_; |
| 193 | std::unique_ptr<PacketData> packet_; |
| 194 | int64_t next_output_event_ms_ = 0; |
| 195 | int64_t output_event_period_ms_ = 10; |
| 196 | }; |
| 197 | } // namespace |
| 198 | |
| 199 | void FuzzOneInputTest(const uint8_t* data, size_t size) { |
| 200 | if (size < 1) |
| 201 | return; |
| 202 | FuzzData fuzz_data(rtc::ArrayView<const uint8_t>(data, size)); |
| 203 | |
| 204 | // Allowed sample rates and payload types used in the test. |
| 205 | std::pair<int, uint8_t> rate_types[] = { |
| 206 | {8000, 93}, {16000, 94}, {32000, 95}, {48000, 96}}; |
| 207 | const auto rate_type = fuzz_data.SelectOneOf( |
| 208 | rtc::ArrayView<const std::pair<int, uint8_t>>(rate_types)); |
| 209 | const int sample_rate = rate_type.first; |
| 210 | const uint8_t payload_type = rate_type.second; |
| 211 | |
| 212 | // Set up the input signal generator. |
| 213 | std::unique_ptr<FuzzSignalInput> input( |
| 214 | new FuzzSignalInput(&fuzz_data, sample_rate, payload_type)); |
| 215 | |
| 216 | // Output sink for the test. |
| 217 | std::unique_ptr<AudioChecksum> output(new AudioChecksum); |
| 218 | |
| 219 | // Configure NetEq and the NetEqTest object. |
| 220 | NetEqTest::Callbacks callbacks; |
| 221 | NetEq::Config config; |
| 222 | config.enable_post_decode_vad = true; |
| 223 | config.enable_fast_accelerate = true; |
| 224 | NetEqTest::DecoderMap codecs; |
| 225 | codecs[0] = std::make_pair(NetEqDecoder::kDecoderPCMu, "pcmu"); |
| 226 | codecs[8] = std::make_pair(NetEqDecoder::kDecoderPCMa, "pcma"); |
| 227 | codecs[103] = std::make_pair(NetEqDecoder::kDecoderISAC, "isac"); |
| 228 | codecs[104] = std::make_pair(NetEqDecoder::kDecoderISACswb, "isac-swb"); |
| 229 | codecs[111] = std::make_pair(NetEqDecoder::kDecoderOpus, "opus"); |
| 230 | codecs[9] = std::make_pair(NetEqDecoder::kDecoderG722, "g722"); |
| 231 | codecs[106] = std::make_pair(NetEqDecoder::kDecoderAVT, "avt"); |
| 232 | codecs[114] = std::make_pair(NetEqDecoder::kDecoderAVT16kHz, "avt-16"); |
| 233 | codecs[115] = std::make_pair(NetEqDecoder::kDecoderAVT32kHz, "avt-32"); |
| 234 | codecs[116] = std::make_pair(NetEqDecoder::kDecoderAVT48kHz, "avt-48"); |
| 235 | codecs[117] = std::make_pair(NetEqDecoder::kDecoderRED, "red"); |
| 236 | codecs[13] = std::make_pair(NetEqDecoder::kDecoderCNGnb, "cng-nb"); |
| 237 | codecs[98] = std::make_pair(NetEqDecoder::kDecoderCNGwb, "cng-wb"); |
| 238 | codecs[99] = std::make_pair(NetEqDecoder::kDecoderCNGswb32kHz, "cng-swb32"); |
| 239 | codecs[100] = std::make_pair(NetEqDecoder::kDecoderCNGswb48kHz, "cng-swb48"); |
| 240 | // One of these payload types will be used for encoding. |
| 241 | codecs[rate_types[0].second] = |
| 242 | std::make_pair(NetEqDecoder::kDecoderPCM16B, "pcm16-nb"); |
| 243 | codecs[rate_types[1].second] = |
| 244 | std::make_pair(NetEqDecoder::kDecoderPCM16Bwb, "pcm16-wb"); |
| 245 | codecs[rate_types[2].second] = |
| 246 | std::make_pair(NetEqDecoder::kDecoderPCM16Bswb32kHz, "pcm16-swb32"); |
| 247 | codecs[rate_types[3].second] = |
| 248 | std::make_pair(NetEqDecoder::kDecoderPCM16Bswb48kHz, "pcm16-swb48"); |
| 249 | NetEqTest::ExtDecoderMap ext_codecs; |
| 250 | |
| 251 | NetEqTest test(config, codecs, ext_codecs, std::move(input), |
| 252 | std::move(output), callbacks); |
| 253 | test.Run(); |
| 254 | } |
| 255 | |
| 256 | } // namespace test |
| 257 | |
| 258 | void FuzzOneInput(const uint8_t* data, size_t size) { |
| 259 | test::FuzzOneInputTest(data, size); |
| 260 | } |
| 261 | |
| 262 | } // namespace webrtc |