blob: e6fc3fa6a73b39aee82ea0e039e2ed6dc70a6f53 [file] [log] [blame]
ekm030249d2015-06-15 13:02:24 -07001/*
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h"
12
13#include <algorithm>
14#include <cmath>
15#include <cstring>
16
17using std::complex;
18
19namespace {
20
21// Return |current| changed towards |target|, with the change being at most
22// |limit|.
23inline float UpdateFactor(float target, float current, float limit) {
24 float delta = fabsf(target - current);
25 float sign = copysign(1.0f, target - current);
26 return current + sign * fminf(delta, limit);
27}
28
29// std::isfinite for complex numbers.
30inline bool cplxfinite(complex<float> c) {
31 return std::isfinite(c.real()) && std::isfinite(c.imag());
32}
33
34// std::isnormal for complex numbers.
35inline bool cplxnormal(complex<float> c) {
36 return std::isnormal(c.real()) && std::isnormal(c.imag());
37}
38
39// Apply a small fudge to degenerate complex values. The numbers in the array
40// were chosen randomly, so that even a series of all zeroes has some small
41// variability.
42inline complex<float> zerofudge(complex<float> c) {
43 const static complex<float> fudge[7] = {
44 {0.001f, 0.002f}, {0.008f, 0.001f}, {0.003f, 0.008f}, {0.0006f, 0.0009f},
45 {0.001f, 0.004f}, {0.003f, 0.004f}, {0.002f, 0.009f}
46 };
47 static int fudge_index = 0;
48 if (cplxfinite(c) && !cplxnormal(c)) {
49 fudge_index = (fudge_index + 1) % 7;
50 return c + fudge[fudge_index];
51 }
52 return c;
53}
54
55// Incremental mean computation. Return the mean of the series with the
56// mean |mean| with added |data|.
57inline complex<float> NewMean(complex<float> mean, complex<float> data,
58 int count) {
59 return mean + (data - mean) / static_cast<float>(count);
60}
61
62inline void AddToMean(complex<float> data, int count, complex<float>* mean) {
63 (*mean) = NewMean(*mean, data, count);
64}
65
66} // namespace
67
68using std::min;
69
70namespace webrtc {
71
72namespace intelligibility {
73
74static const int kWindowBlockSize = 10;
75
76VarianceArray::VarianceArray(int freqs, StepType type, int window_size,
77 float decay)
78 : running_mean_(new complex<float>[freqs]()),
79 running_mean_sq_(new complex<float>[freqs]()),
80 sub_running_mean_(new complex<float>[freqs]()),
81 sub_running_mean_sq_(new complex<float>[freqs]()),
82 variance_(new float[freqs]()),
83 conj_sum_(new float[freqs]()),
84 freqs_(freqs),
85 window_size_(window_size),
86 decay_(decay),
87 history_cursor_(0),
88 count_(0),
89 array_mean_(0.0f) {
90 history_.reset(new scoped_ptr<complex<float>[]>[freqs_]());
91 for (int i = 0; i < freqs_; ++i) {
92 history_[i].reset(new complex<float>[window_size_]());
93 }
94 subhistory_.reset(new scoped_ptr<complex<float>[]>[freqs_]());
95 for (int i = 0; i < freqs_; ++i) {
96 subhistory_[i].reset(new complex<float>[window_size_]());
97 }
98 subhistory_sq_.reset(new scoped_ptr<complex<float>[]>[freqs_]());
99 for (int i = 0; i < freqs_; ++i) {
100 subhistory_sq_[i].reset(new complex<float>[window_size_]());
101 }
102 switch (type) {
103 case kStepInfinite:
104 step_func_ = &VarianceArray::InfiniteStep;
105 break;
106 case kStepDecaying:
107 step_func_ = &VarianceArray::DecayStep;
108 break;
109 case kStepWindowed:
110 step_func_ = &VarianceArray::WindowedStep;
111 break;
112 case kStepBlocked:
113 step_func_ = &VarianceArray::BlockedStep;
114 break;
115 }
116}
117
118// Compute the variance with Welford's algorithm, adding some fudge to
119// the input in case of all-zeroes.
120void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) {
121 array_mean_ = 0.0f;
122 ++count_;
123 for (int i = 0; i < freqs_; ++i) {
124 complex<float> sample = data[i];
125 if (!skip_fudge) {
126 sample = zerofudge(sample);
127 }
128 if (count_ == 1) {
129 running_mean_[i] = sample;
130 variance_[i] = 0.0f;
131 } else {
132 float old_sum = conj_sum_[i];
133 complex<float> old_mean = running_mean_[i];
134 running_mean_[i] = old_mean + (sample - old_mean) /
135 static_cast<float>(count_);
136 conj_sum_[i] = (old_sum + std::conj(sample - old_mean) *
137 (sample - running_mean_[i])).real();
138 variance_[i] = conj_sum_[i] / (count_ - 1); // + fudge[fudge_index].real();
139 if (skip_fudge && false) {
140 //variance_[i] -= fudge[fudge_index].real();
141 }
142 }
143 array_mean_ += (variance_[i] - array_mean_) / (i + 1);
144 }
145}
146
147// Compute the variance from the beginning, with exponential decaying of the
148// series data.
149void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) {
150 array_mean_ = 0.0f;
151 ++count_;
152 for (int i = 0; i < freqs_; ++i) {
153 complex<float> sample = data[i];
154 sample = zerofudge(sample);
155
156 if (count_ == 1) {
157 running_mean_[i] = sample;
158 running_mean_sq_[i] = sample * std::conj(sample);
159 variance_[i] = 0.0f;
160 } else {
161 complex<float> prev = running_mean_[i];
162 complex<float> prev2 = running_mean_sq_[i];
163 running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample;
164 running_mean_sq_[i] = decay_ * prev2 +
165 (1.0f - decay_) * sample * std::conj(sample);
166 //variance_[i] = decay_ * variance_[i] + (1.0f - decay_) * (
167 // (sample - running_mean_[i]) * std::conj(sample - running_mean_[i])).real();
168 variance_[i] = (running_mean_sq_[i] - running_mean_[i] * std::conj(running_mean_[i])).real();
169 }
170
171 array_mean_ += (variance_[i] - array_mean_) / (i + 1);
172 }
173}
174
175// Windowed variance computation. On each step, the variances for the
176// window are recomputed from scratch, using Welford's algorithm.
177void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) {
178 int num = min(count_ + 1, window_size_);
179 array_mean_ = 0.0f;
180 for (int i = 0; i < freqs_; ++i) {
181 complex<float> mean;
182 float conj_sum = 0.0f;
183
184 history_[i][history_cursor_] = data[i];
185
186 mean = history_[i][history_cursor_];
187 variance_[i] = 0.0f;
188 for (int j = 1; j < num; ++j) {
189 complex<float> sample = zerofudge(
190 history_[i][(history_cursor_ + j) % window_size_]);
191 sample = history_[i][(history_cursor_ + j) % window_size_];
192 float old_sum = conj_sum;
193 complex<float> old_mean = mean;
194
195 mean = old_mean + (sample - old_mean) / static_cast<float>(j + 1);
196 conj_sum = (old_sum + std::conj(sample - old_mean) *
197 (sample - mean)).real();
198 variance_[i] = conj_sum / (j);
199 }
200 array_mean_ += (variance_[i] - array_mean_) / (i + 1);
201 }
202 history_cursor_ = (history_cursor_ + 1) % window_size_;
203 ++count_;
204}
205
206// Variance with a window of blocks. Within each block, the variances are
207// recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|.
208// Once a block is filled with kWindowBlockSize samples, it is added to the
209// history window and a new block is started. The variances for the window
210// are recomputed from scratch at each of these transitions.
211void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) {
212 int blocks = min(window_size_, history_cursor_);
213 for (int i = 0; i < freqs_; ++i) {
214 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]);
215 AddToMean(data[i] * std::conj(data[i]), count_ + 1,
216 &sub_running_mean_sq_[i]);
217 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i];
218 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i];
219
220 variance_[i] = (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i],
221 blocks) -
222 NewMean(running_mean_[i], sub_running_mean_[i], blocks) *
223 std::conj(NewMean(running_mean_[i], sub_running_mean_[i],
224 blocks))).real();
225 if (count_ == kWindowBlockSize - 1) {
226 sub_running_mean_[i] = complex<float>(0.0f, 0.0f);
227 sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f);
228 running_mean_[i] = complex<float>(0.0f, 0.0f);
229 running_mean_sq_[i] = complex<float>(0.0f, 0.0f);
230 for (int j = 0; j < min(window_size_, history_cursor_); ++j) {
231 AddToMean(subhistory_[i][j], j, &running_mean_[i]);
232 AddToMean(subhistory_sq_[i][j], j, &running_mean_sq_[i]);
233 }
234 ++history_cursor_;
235 }
236 }
237 ++count_;
238 if (count_ == kWindowBlockSize) {
239 count_ = 0;
240 }
241}
242
243void VarianceArray::Clear() {
244 memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_);
245 memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_);
246 memset(variance_.get(), 0, sizeof(*variance_.get()) * freqs_);
247 memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * freqs_);
248 history_cursor_ = 0;
249 count_ = 0;
250 array_mean_ = 0.0f;
251}
252
253void VarianceArray::ApplyScale(float scale) {
254 array_mean_ = 0.0f;
255 for (int i = 0; i < freqs_; ++i) {
256 variance_[i] *= scale * scale;
257 array_mean_ += (variance_[i] - array_mean_) / (i + 1);
258 }
259}
260
261GainApplier::GainApplier(int freqs, float change_limit)
262 : freqs_(freqs),
263 change_limit_(change_limit),
264 target_(new float[freqs]()),
265 current_(new float[freqs]()) {
266 for (int i = 0; i < freqs; ++i) {
267 target_[i] = 1.0f;
268 current_[i] = 1.0f;
269 }
270}
271
272void GainApplier::Apply(const complex<float>* in_block,
273 complex<float>* out_block) {
274 for (int i = 0; i < freqs_; ++i) {
275 float factor = sqrtf(fabsf(current_[i]));
276 if (!std::isnormal(factor)) {
277 factor = 1.0f;
278 }
279 out_block[i] = factor * in_block[i];
280 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_);
281 }
282}
283
284} // namespace intelligibility
285
286} // namespace webrtc
287