blob: 8290749f132390e0de9ad409030daf79957b9c33 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/system_wrappers/include/rtp_to_ntp.h"
#include "webrtc/base/logging.h"
#include "webrtc/system_wrappers/include/clock.h"
namespace webrtc {
namespace {
// Calculates the RTP timestamp frequency from two pairs of NTP/RTP timestamps.
bool CalculateFrequency(int64_t rtcp_ntp_ms1,
uint32_t rtp_timestamp1,
int64_t rtcp_ntp_ms2,
uint32_t rtp_timestamp2,
double* frequency_khz) {
if (rtcp_ntp_ms1 <= rtcp_ntp_ms2) {
return false;
}
*frequency_khz = static_cast<double>(rtp_timestamp1 - rtp_timestamp2) /
static_cast<double>(rtcp_ntp_ms1 - rtcp_ntp_ms2);
return true;
}
// Detects if there has been a wraparound between |old_timestamp| and
// |new_timestamp|, and compensates by adding 2^32 if that is the case.
bool CompensateForWrapAround(uint32_t new_timestamp,
uint32_t old_timestamp,
int64_t* compensated_timestamp) {
int64_t wraps = CheckForWrapArounds(new_timestamp, old_timestamp);
if (wraps < 0) {
// Reordering, don't use this packet.
return false;
}
*compensated_timestamp = new_timestamp + (wraps << 32);
return true;
}
} // namespace
// Class holding RTP and NTP timestamp from a RTCP SR report.
RtcpMeasurement::RtcpMeasurement()
: ntp_secs(0), ntp_frac(0), rtp_timestamp(0) {}
RtcpMeasurement::RtcpMeasurement(uint32_t ntp_secs,
uint32_t ntp_frac,
uint32_t timestamp)
: ntp_secs(ntp_secs), ntp_frac(ntp_frac), rtp_timestamp(timestamp) {}
bool RtcpMeasurement::IsEqual(const RtcpMeasurement& other) const {
// Use || since two equal timestamps will result in zero frequency and in
// RtpToNtpMs, |rtp_timestamp_ms| is estimated by dividing by the frequency.
return (ntp_secs == other.ntp_secs && ntp_frac == other.ntp_frac) ||
(rtp_timestamp == other.rtp_timestamp);
}
// Class holding list of RTP and NTP timestamp pairs.
RtcpMeasurements::RtcpMeasurements() {}
RtcpMeasurements::~RtcpMeasurements() {}
bool RtcpMeasurements::Contains(const RtcpMeasurement& other) const {
for (const auto& it : list) {
if (it.IsEqual(other))
return true;
}
return false;
}
bool RtcpMeasurements::IsValid(const RtcpMeasurement& other) const {
if (other.ntp_secs == 0 && other.ntp_frac == 0) {
// Invalid or not defined.
return false;
}
int64_t ntp_ms_new = Clock::NtpToMs(other.ntp_secs, other.ntp_frac);
for (const auto& it : list) {
if (ntp_ms_new <= Clock::NtpToMs(it.ntp_secs, it.ntp_frac)) {
// Old report.
return false;
}
int64_t timestamp_new = other.rtp_timestamp;
if (!CompensateForWrapAround(timestamp_new, it.rtp_timestamp,
&timestamp_new)) {
return false;
}
if (timestamp_new <= it.rtp_timestamp) {
LOG(LS_WARNING) << "Newer RTCP SR report with older RTP timestamp.";
return false;
}
}
return true;
}
void RtcpMeasurements::UpdateParameters() {
if (list.size() != 2)
return;
int64_t timestamp_new = list.front().rtp_timestamp;
int64_t timestamp_old = list.back().rtp_timestamp;
if (!CompensateForWrapAround(timestamp_new, timestamp_old, &timestamp_new))
return;
int64_t ntp_ms_new =
Clock::NtpToMs(list.front().ntp_secs, list.front().ntp_frac);
int64_t ntp_ms_old =
Clock::NtpToMs(list.back().ntp_secs, list.back().ntp_frac);
if (!CalculateFrequency(ntp_ms_new, timestamp_new, ntp_ms_old, timestamp_old,
&params.frequency_khz)) {
return;
}
params.offset_ms = timestamp_new - params.frequency_khz * ntp_ms_new;
params.calculated = true;
}
// Updates list holding NTP and RTP timestamp pairs.
bool UpdateRtcpList(uint32_t ntp_secs,
uint32_t ntp_frac,
uint32_t rtp_timestamp,
RtcpMeasurements* rtcp_measurements,
bool* new_rtcp_sr) {
*new_rtcp_sr = false;
RtcpMeasurement measurement(ntp_secs, ntp_frac, rtp_timestamp);
if (rtcp_measurements->Contains(measurement)) {
// RTCP SR report already added.
return true;
}
if (!rtcp_measurements->IsValid(measurement)) {
// Old report or invalid parameters.
return false;
}
// Two RTCP SR reports are needed to map between RTP and NTP.
// More than two will not improve the mapping.
if (rtcp_measurements->list.size() == 2)
rtcp_measurements->list.pop_back();
rtcp_measurements->list.push_front(measurement);
*new_rtcp_sr = true;
// List updated, calculate new parameters.
rtcp_measurements->UpdateParameters();
return true;
}
// Converts |rtp_timestamp| to the NTP time base using the NTP and RTP timestamp
// pairs in |rtcp|. The converted timestamp is returned in
// |rtp_timestamp_in_ms|. This function compensates for wrap arounds in RTP
// timestamps and returns false if it can't do the conversion due to reordering.
bool RtpToNtpMs(int64_t rtp_timestamp,
const RtcpMeasurements& rtcp,
int64_t* rtp_timestamp_in_ms) {
if (!rtcp.params.calculated || rtcp.list.empty())
return false;
uint32_t rtcp_timestamp_old = rtcp.list.back().rtp_timestamp;
int64_t rtp_timestamp_unwrapped;
if (!CompensateForWrapAround(rtp_timestamp, rtcp_timestamp_old,
&rtp_timestamp_unwrapped)) {
return false;
}
double rtp_timestamp_ms =
(static_cast<double>(rtp_timestamp_unwrapped) - rtcp.params.offset_ms) /
rtcp.params.frequency_khz +
0.5f;
if (rtp_timestamp_ms < 0) {
return false;
}
*rtp_timestamp_in_ms = rtp_timestamp_ms;
return true;
}
int CheckForWrapArounds(uint32_t new_timestamp, uint32_t old_timestamp) {
if (new_timestamp < old_timestamp) {
// This difference should be less than -2^31 if we have had a wrap around
// (e.g. |new_timestamp| = 1, |rtcp_rtp_timestamp| = 2^32 - 1). Since it is
// cast to a int32_t, it should be positive.
if (static_cast<int32_t>(new_timestamp - old_timestamp) > 0) {
// Forward wrap around.
return 1;
}
} else if (static_cast<int32_t>(old_timestamp - new_timestamp) > 0) {
// This difference should be less than -2^31 if we have had a backward wrap
// around. Since it is cast to a int32_t, it should be positive.
return -1;
}
return 0;
}
} // namespace webrtc