| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/video_coding/main/source/receiver.h" |
| |
| #include <assert.h> |
| |
| #include "webrtc/modules/video_coding/main/interface/video_coding.h" |
| #include "webrtc/modules/video_coding/main/source/encoded_frame.h" |
| #include "webrtc/modules/video_coding/main/source/internal_defines.h" |
| #include "webrtc/modules/video_coding/main/source/media_opt_util.h" |
| #include "webrtc/system_wrappers/interface/clock.h" |
| #include "webrtc/system_wrappers/interface/trace.h" |
| #include "webrtc/system_wrappers/interface/trace_event.h" |
| |
| namespace webrtc { |
| |
| enum { kMaxReceiverDelayMs = 10000 }; |
| |
| VCMReceiver::VCMReceiver(VCMTiming* timing, |
| Clock* clock, |
| EventFactory* event_factory, |
| int32_t vcm_id, |
| int32_t receiver_id, |
| bool master) |
| : crit_sect_(CriticalSectionWrapper::CreateCriticalSection()), |
| vcm_id_(vcm_id), |
| clock_(clock), |
| receiver_id_(receiver_id), |
| master_(master), |
| jitter_buffer_(clock_, event_factory, vcm_id, receiver_id, master), |
| timing_(timing), |
| render_wait_event_(event_factory->CreateEvent()), |
| state_(kPassive), |
| max_video_delay_ms_(kMaxVideoDelayMs) {} |
| |
| VCMReceiver::~VCMReceiver() { |
| render_wait_event_->Set(); |
| delete crit_sect_; |
| } |
| |
| void VCMReceiver::Reset() { |
| CriticalSectionScoped cs(crit_sect_); |
| if (!jitter_buffer_.Running()) { |
| jitter_buffer_.Start(); |
| } else { |
| jitter_buffer_.Flush(); |
| } |
| render_wait_event_->Reset(); |
| if (master_) { |
| state_ = kReceiving; |
| } else { |
| state_ = kPassive; |
| } |
| } |
| |
| int32_t VCMReceiver::Initialize() { |
| CriticalSectionScoped cs(crit_sect_); |
| Reset(); |
| if (!master_) { |
| SetNackMode(kNoNack, -1, -1); |
| } |
| return VCM_OK; |
| } |
| |
| void VCMReceiver::UpdateRtt(uint32_t rtt) { |
| jitter_buffer_.UpdateRtt(rtt); |
| } |
| |
| int32_t VCMReceiver::InsertPacket(const VCMPacket& packet, |
| uint16_t frame_width, |
| uint16_t frame_height) { |
| // Find an empty frame. |
| VCMEncodedFrame* buffer = NULL; |
| const int32_t error = jitter_buffer_.GetFrame(packet, buffer); |
| if (error == VCM_OLD_PACKET_ERROR) { |
| return VCM_OK; |
| } else if (error != VCM_OK) { |
| return error; |
| } |
| assert(buffer); |
| { |
| CriticalSectionScoped cs(crit_sect_); |
| |
| if (frame_width && frame_height) { |
| buffer->SetEncodedSize(static_cast<uint32_t>(frame_width), |
| static_cast<uint32_t>(frame_height)); |
| } |
| |
| if (master_) { |
| // Only trace the primary receiver to make it possible to parse and plot |
| // the trace file. |
| WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, |
| VCMId(vcm_id_, receiver_id_), |
| "Packet seq_no %u of frame %u at %u", |
| packet.seqNum, packet.timestamp, |
| MaskWord64ToUWord32(clock_->TimeInMilliseconds())); |
| } |
| |
| const int64_t now_ms = clock_->TimeInMilliseconds(); |
| |
| int64_t render_time_ms = timing_->RenderTimeMs(packet.timestamp, now_ms); |
| |
| if (render_time_ms < 0) { |
| // Render time error. Assume that this is due to some change in the |
| // incoming video stream and reset the JB and the timing. |
| jitter_buffer_.Flush(); |
| timing_->Reset(clock_->TimeInMilliseconds()); |
| return VCM_FLUSH_INDICATOR; |
| } else if (render_time_ms < now_ms - max_video_delay_ms_) { |
| WEBRTC_TRACE(webrtc::kTraceWarning, webrtc::kTraceVideoCoding, |
| VCMId(vcm_id_, receiver_id_), |
| "This frame should have been rendered more than %u ms ago." |
| "Flushing jitter buffer and resetting timing.", |
| max_video_delay_ms_); |
| jitter_buffer_.Flush(); |
| timing_->Reset(clock_->TimeInMilliseconds()); |
| return VCM_FLUSH_INDICATOR; |
| } else if (static_cast<int>(timing_->TargetVideoDelay()) > |
| max_video_delay_ms_) { |
| WEBRTC_TRACE(webrtc::kTraceWarning, webrtc::kTraceVideoCoding, |
| VCMId(vcm_id_, receiver_id_), |
| "More than %u ms target delay. Flushing jitter buffer and" |
| "resetting timing.", max_video_delay_ms_); |
| jitter_buffer_.Flush(); |
| timing_->Reset(clock_->TimeInMilliseconds()); |
| return VCM_FLUSH_INDICATOR; |
| } |
| |
| // First packet received belonging to this frame. |
| if (buffer->Length() == 0) { |
| const int64_t now_ms = clock_->TimeInMilliseconds(); |
| if (master_) { |
| // Only trace the primary receiver to make it possible to parse and plot |
| // the trace file. |
| WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, |
| VCMId(vcm_id_, receiver_id_), |
| "First packet of frame %u at %u", packet.timestamp, |
| MaskWord64ToUWord32(now_ms)); |
| } |
| render_time_ms = timing_->RenderTimeMs(packet.timestamp, now_ms); |
| if (render_time_ms >= 0) { |
| buffer->SetRenderTime(render_time_ms); |
| } else { |
| buffer->SetRenderTime(now_ms); |
| } |
| } |
| |
| // Insert packet into the jitter buffer both media and empty packets. |
| const VCMFrameBufferEnum |
| ret = jitter_buffer_.InsertPacket(buffer, packet); |
| if (ret == kFlushIndicator) { |
| return VCM_FLUSH_INDICATOR; |
| } else if (ret < 0) { |
| WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceVideoCoding, |
| VCMId(vcm_id_, receiver_id_), |
| "Error inserting packet seq_no=%u, time_stamp=%u", |
| packet.seqNum, packet.timestamp); |
| return VCM_JITTER_BUFFER_ERROR; |
| } |
| } |
| return VCM_OK; |
| } |
| |
| VCMEncodedFrame* VCMReceiver::FrameForDecoding( |
| uint16_t max_wait_time_ms, |
| int64_t& next_render_time_ms, |
| bool render_timing, |
| VCMReceiver* dual_receiver) { |
| TRACE_EVENT0("webrtc", "Recv::FrameForDecoding"); |
| // No need to enter the critical section here since the jitter buffer |
| // is thread-safe. |
| FrameType incoming_frame_type = kVideoFrameDelta; |
| next_render_time_ms = -1; |
| const int64_t start_time_ms = clock_->TimeInMilliseconds(); |
| int64_t ret = jitter_buffer_.NextTimestamp(max_wait_time_ms, |
| &incoming_frame_type, |
| &next_render_time_ms); |
| if (ret < 0) { |
| // No timestamp in jitter buffer at the moment. |
| return NULL; |
| } |
| const uint32_t time_stamp = static_cast<uint32_t>(ret); |
| |
| // Update the timing. |
| timing_->SetRequiredDelay(jitter_buffer_.EstimatedJitterMs()); |
| timing_->UpdateCurrentDelay(time_stamp); |
| |
| const int32_t temp_wait_time = max_wait_time_ms - |
| static_cast<int32_t>(clock_->TimeInMilliseconds() - start_time_ms); |
| uint16_t new_max_wait_time = static_cast<uint16_t>(VCM_MAX(temp_wait_time, |
| 0)); |
| |
| VCMEncodedFrame* frame = NULL; |
| |
| if (render_timing) { |
| frame = FrameForDecoding(new_max_wait_time, next_render_time_ms, |
| dual_receiver); |
| } else { |
| frame = FrameForRendering(new_max_wait_time, next_render_time_ms, |
| dual_receiver); |
| } |
| |
| if (frame != NULL) { |
| bool retransmitted = false; |
| const int64_t last_packet_time_ms = |
| jitter_buffer_.LastPacketTime(frame, &retransmitted); |
| if (last_packet_time_ms >= 0 && !retransmitted) { |
| // We don't want to include timestamps which have suffered from |
| // retransmission here, since we compensate with extra retransmission |
| // delay within the jitter estimate. |
| timing_->IncomingTimestamp(time_stamp, last_packet_time_ms); |
| } |
| if (dual_receiver != NULL) { |
| dual_receiver->UpdateState(*frame); |
| } |
| } |
| return frame; |
| } |
| |
| VCMEncodedFrame* VCMReceiver::FrameForDecoding( |
| uint16_t max_wait_time_ms, |
| int64_t next_render_time_ms, |
| VCMReceiver* dual_receiver) { |
| TRACE_EVENT1("webrtc", "FrameForDecoding", |
| "max_wait", max_wait_time_ms); |
| // How long can we wait until we must decode the next frame. |
| uint32_t wait_time_ms = timing_->MaxWaitingTime( |
| next_render_time_ms, clock_->TimeInMilliseconds()); |
| |
| // Try to get a complete frame from the jitter buffer. |
| VCMEncodedFrame* frame = jitter_buffer_.GetCompleteFrameForDecoding(0); |
| |
| if (frame == NULL && max_wait_time_ms == 0 && wait_time_ms > 0) { |
| // If we're not allowed to wait for frames to get complete we must |
| // calculate if it's time to decode, and if it's not we will just return |
| // for now. |
| return NULL; |
| } |
| |
| if (frame == NULL && VCM_MIN(wait_time_ms, max_wait_time_ms) == 0) { |
| // No time to wait for a complete frame, check if we have an incomplete. |
| const bool dual_receiver_enabled_and_passive = (dual_receiver != NULL && |
| dual_receiver->State() == kPassive && |
| dual_receiver->NackMode() == kNack); |
| if (dual_receiver_enabled_and_passive && |
| !jitter_buffer_.CompleteSequenceWithNextFrame()) { |
| // Jitter buffer state might get corrupt with this frame. |
| dual_receiver->CopyJitterBufferStateFromReceiver(*this); |
| } |
| frame = jitter_buffer_.MaybeGetIncompleteFrameForDecoding(); |
| } |
| if (frame == NULL) { |
| // Wait for a complete frame. |
| frame = jitter_buffer_.GetCompleteFrameForDecoding(max_wait_time_ms); |
| } |
| if (frame == NULL) { |
| // Get an incomplete frame. |
| if (timing_->MaxWaitingTime(next_render_time_ms, |
| clock_->TimeInMilliseconds()) > 0) { |
| // Still time to wait for a complete frame. |
| return NULL; |
| } |
| |
| // No time left to wait, we must decode this frame now. |
| const bool dual_receiver_enabled_and_passive = (dual_receiver != NULL && |
| dual_receiver->State() == kPassive && |
| dual_receiver->NackMode() == kNack); |
| if (dual_receiver_enabled_and_passive && |
| !jitter_buffer_.CompleteSequenceWithNextFrame()) { |
| // Jitter buffer state might get corrupt with this frame. |
| dual_receiver->CopyJitterBufferStateFromReceiver(*this); |
| } |
| |
| frame = jitter_buffer_.MaybeGetIncompleteFrameForDecoding(); |
| } |
| return frame; |
| } |
| |
| VCMEncodedFrame* VCMReceiver::FrameForRendering(uint16_t max_wait_time_ms, |
| int64_t next_render_time_ms, |
| VCMReceiver* dual_receiver) { |
| TRACE_EVENT0("webrtc", "FrameForRendering"); |
| // How long MUST we wait until we must decode the next frame. This is |
| // different for the case where we have a renderer which can render at a |
| // specified time. Here we must wait as long as possible before giving the |
| // frame to the decoder, which will render the frame as soon as it has been |
| // decoded. |
| uint32_t wait_time_ms = timing_->MaxWaitingTime( |
| next_render_time_ms, clock_->TimeInMilliseconds()); |
| if (max_wait_time_ms < wait_time_ms) { |
| // If we're not allowed to wait until the frame is supposed to be rendered |
| // we will have to return NULL for now. |
| return NULL; |
| } |
| // Wait until it's time to render. |
| render_wait_event_->Wait(wait_time_ms); |
| |
| // Get a complete frame if possible. |
| VCMEncodedFrame* frame = jitter_buffer_.GetCompleteFrameForDecoding(0); |
| |
| if (frame == NULL) { |
| // Get an incomplete frame. |
| const bool dual_receiver_enabled_and_passive = (dual_receiver != NULL && |
| dual_receiver->State() == kPassive && |
| dual_receiver->NackMode() == kNack); |
| if (dual_receiver_enabled_and_passive && |
| !jitter_buffer_.CompleteSequenceWithNextFrame()) { |
| // Jitter buffer state might get corrupt with this frame. |
| dual_receiver->CopyJitterBufferStateFromReceiver(*this); |
| } |
| |
| frame = jitter_buffer_.MaybeGetIncompleteFrameForDecoding(); |
| } |
| return frame; |
| } |
| |
| void VCMReceiver::ReleaseFrame(VCMEncodedFrame* frame) { |
| jitter_buffer_.ReleaseFrame(frame); |
| } |
| |
| void VCMReceiver::ReceiveStatistics(uint32_t* bitrate, |
| uint32_t* framerate) { |
| assert(bitrate); |
| assert(framerate); |
| jitter_buffer_.IncomingRateStatistics(framerate, bitrate); |
| } |
| |
| void VCMReceiver::ReceivedFrameCount(VCMFrameCount* frame_count) const { |
| assert(frame_count); |
| jitter_buffer_.FrameStatistics(&frame_count->numDeltaFrames, |
| &frame_count->numKeyFrames); |
| } |
| |
| uint32_t VCMReceiver::DiscardedPackets() const { |
| return jitter_buffer_.num_discarded_packets(); |
| } |
| |
| void VCMReceiver::SetNackMode(VCMNackMode nackMode, |
| int low_rtt_nack_threshold_ms, |
| int high_rtt_nack_threshold_ms) { |
| CriticalSectionScoped cs(crit_sect_); |
| // Default to always having NACK enabled in hybrid mode. |
| jitter_buffer_.SetNackMode(nackMode, low_rtt_nack_threshold_ms, |
| high_rtt_nack_threshold_ms); |
| if (!master_) { |
| state_ = kPassive; // The dual decoder defaults to passive. |
| } |
| } |
| |
| void VCMReceiver::SetNackSettings(size_t max_nack_list_size, |
| int max_packet_age_to_nack) { |
| jitter_buffer_.SetNackSettings(max_nack_list_size, |
| max_packet_age_to_nack); |
| } |
| |
| VCMNackMode VCMReceiver::NackMode() const { |
| CriticalSectionScoped cs(crit_sect_); |
| return jitter_buffer_.nack_mode(); |
| } |
| |
| VCMNackStatus VCMReceiver::NackList(uint16_t* nack_list, |
| uint16_t size, |
| uint16_t* nack_list_length) { |
| bool request_key_frame = false; |
| uint16_t* internal_nack_list = jitter_buffer_.GetNackList( |
| nack_list_length, &request_key_frame); |
| if (request_key_frame) { |
| // This combination is used to trigger key frame requests. |
| return kNackKeyFrameRequest; |
| } |
| if (*nack_list_length > size) { |
| return kNackNeedMoreMemory; |
| } |
| if (internal_nack_list != NULL && *nack_list_length > 0) { |
| memcpy(nack_list, internal_nack_list, *nack_list_length * sizeof(uint16_t)); |
| } |
| return kNackOk; |
| } |
| |
| // Decide whether we should change decoder state. This should be done if the |
| // dual decoder has caught up with the decoder decoding with packet losses. |
| bool VCMReceiver::DualDecoderCaughtUp(VCMEncodedFrame* dual_frame, |
| VCMReceiver& dual_receiver) const { |
| if (dual_frame == NULL) { |
| return false; |
| } |
| if (jitter_buffer_.LastDecodedTimestamp() == dual_frame->TimeStamp()) { |
| dual_receiver.UpdateState(kWaitForPrimaryDecode); |
| return true; |
| } |
| return false; |
| } |
| |
| void VCMReceiver::CopyJitterBufferStateFromReceiver( |
| const VCMReceiver& receiver) { |
| jitter_buffer_.CopyFrom(receiver.jitter_buffer_); |
| } |
| |
| VCMReceiverState VCMReceiver::State() const { |
| CriticalSectionScoped cs(crit_sect_); |
| return state_; |
| } |
| |
| void VCMReceiver::SetDecodeWithErrors(bool enable){ |
| CriticalSectionScoped cs(crit_sect_); |
| jitter_buffer_.DecodeWithErrors(enable); |
| } |
| |
| bool VCMReceiver::DecodeWithErrors() const { |
| CriticalSectionScoped cs(crit_sect_); |
| return jitter_buffer_.decode_with_errors(); |
| } |
| |
| int VCMReceiver::SetMinReceiverDelay(int desired_delay_ms) { |
| CriticalSectionScoped cs(crit_sect_); |
| if (desired_delay_ms < 0 || desired_delay_ms > kMaxReceiverDelayMs) { |
| return -1; |
| } |
| jitter_buffer_.SetMaxJitterEstimate(desired_delay_ms); |
| max_video_delay_ms_ = desired_delay_ms + kMaxVideoDelayMs; |
| timing_->SetMaxVideoDelay(max_video_delay_ms_); |
| // Initializing timing to the desired delay. |
| timing_->SetRequiredDelay(desired_delay_ms); |
| return 0; |
| } |
| |
| int VCMReceiver::RenderBufferSizeMs() { |
| return jitter_buffer_.RenderBufferSizeMs(); |
| } |
| |
| void VCMReceiver::UpdateState(VCMReceiverState new_state) { |
| CriticalSectionScoped cs(crit_sect_); |
| assert(!(state_ == kPassive && new_state == kWaitForPrimaryDecode)); |
| state_ = new_state; |
| } |
| |
| void VCMReceiver::UpdateState(const VCMEncodedFrame& frame) { |
| if (jitter_buffer_.nack_mode() == kNoNack) { |
| // Dual decoder mode has not been enabled. |
| return; |
| } |
| // Update the dual receiver state. |
| if (frame.Complete() && frame.FrameType() == kVideoFrameKey) { |
| UpdateState(kPassive); |
| } |
| if (State() == kWaitForPrimaryDecode && |
| frame.Complete() && !frame.MissingFrame()) { |
| UpdateState(kPassive); |
| } |
| if (frame.MissingFrame() || !frame.Complete()) { |
| // State was corrupted, enable dual receiver. |
| UpdateState(kReceiving); |
| } |
| } |
| } // namespace webrtc |