blob: 2e562e333a9462a900633e4c09b7a2d23967989b [file] [log] [blame]
John Bauman66b8ab22014-05-06 15:57:45 -04001//
John Baumand4ae8632014-05-06 16:18:33 -04002// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
John Bauman66b8ab22014-05-06 15:57:45 -04003// Use of this source code is governed by a BSD-style license that can be
4// found in the LICENSE file.
5//
6
7//
8// Build the intermediate representation.
9//
10
11#include <float.h>
12#include <limits.h>
13#include <algorithm>
14
15#include "compiler/localintermediate.h"
16#include "compiler/QualifierAlive.h"
17#include "compiler/RemoveTree.h"
John Baumand4ae8632014-05-06 16:18:33 -040018#include "compiler/SymbolTable.h"
John Bauman66b8ab22014-05-06 15:57:45 -040019
20bool CompareStructure(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray);
21
22static TPrecision GetHigherPrecision( TPrecision left, TPrecision right ){
23 return left > right ? left : right;
24}
25
26const char* getOperatorString(TOperator op) {
27 switch (op) {
28 case EOpInitialize: return "=";
29 case EOpAssign: return "=";
30 case EOpAddAssign: return "+=";
31 case EOpSubAssign: return "-=";
32 case EOpDivAssign: return "/=";
33
34 // Fall-through.
35 case EOpMulAssign:
36 case EOpVectorTimesMatrixAssign:
37 case EOpVectorTimesScalarAssign:
38 case EOpMatrixTimesScalarAssign:
39 case EOpMatrixTimesMatrixAssign: return "*=";
40
41 // Fall-through.
42 case EOpIndexDirect:
43 case EOpIndexIndirect: return "[]";
44
45 case EOpIndexDirectStruct: return ".";
46 case EOpVectorSwizzle: return ".";
47 case EOpAdd: return "+";
48 case EOpSub: return "-";
49 case EOpMul: return "*";
50 case EOpDiv: return "/";
51 case EOpMod: UNIMPLEMENTED(); break;
52 case EOpEqual: return "==";
53 case EOpNotEqual: return "!=";
54 case EOpLessThan: return "<";
55 case EOpGreaterThan: return ">";
56 case EOpLessThanEqual: return "<=";
57 case EOpGreaterThanEqual: return ">=";
58
59 // Fall-through.
60 case EOpVectorTimesScalar:
61 case EOpVectorTimesMatrix:
62 case EOpMatrixTimesVector:
63 case EOpMatrixTimesScalar:
64 case EOpMatrixTimesMatrix: return "*";
65
66 case EOpLogicalOr: return "||";
67 case EOpLogicalXor: return "^^";
68 case EOpLogicalAnd: return "&&";
69 case EOpNegative: return "-";
70 case EOpVectorLogicalNot: return "not";
71 case EOpLogicalNot: return "!";
72 case EOpPostIncrement: return "++";
73 case EOpPostDecrement: return "--";
74 case EOpPreIncrement: return "++";
75 case EOpPreDecrement: return "--";
76
77 // Fall-through.
78 case EOpConvIntToBool:
79 case EOpConvFloatToBool: return "bool";
80
81 // Fall-through.
82 case EOpConvBoolToFloat:
83 case EOpConvIntToFloat: return "float";
84
85 // Fall-through.
86 case EOpConvFloatToInt:
87 case EOpConvBoolToInt: return "int";
88
89 case EOpRadians: return "radians";
90 case EOpDegrees: return "degrees";
91 case EOpSin: return "sin";
92 case EOpCos: return "cos";
93 case EOpTan: return "tan";
94 case EOpAsin: return "asin";
95 case EOpAcos: return "acos";
96 case EOpAtan: return "atan";
97 case EOpExp: return "exp";
98 case EOpLog: return "log";
99 case EOpExp2: return "exp2";
100 case EOpLog2: return "log2";
101 case EOpSqrt: return "sqrt";
102 case EOpInverseSqrt: return "inversesqrt";
103 case EOpAbs: return "abs";
104 case EOpSign: return "sign";
105 case EOpFloor: return "floor";
106 case EOpCeil: return "ceil";
107 case EOpFract: return "fract";
108 case EOpLength: return "length";
109 case EOpNormalize: return "normalize";
110 case EOpDFdx: return "dFdx";
111 case EOpDFdy: return "dFdy";
112 case EOpFwidth: return "fwidth";
113 case EOpAny: return "any";
114 case EOpAll: return "all";
115
116 default: break;
117 }
118 return "";
119}
120
121////////////////////////////////////////////////////////////////////////////
122//
123// First set of functions are to help build the intermediate representation.
124// These functions are not member functions of the nodes.
125// They are called from parser productions.
126//
127/////////////////////////////////////////////////////////////////////////////
128
129//
130// Add a terminal node for an identifier in an expression.
131//
132// Returns the added node.
133//
134TIntermSymbol* TIntermediate::addSymbol(int id, const TString& name, const TType& type, TSourceLoc line)
135{
136 TIntermSymbol* node = new TIntermSymbol(id, name, type);
137 node->setLine(line);
138
139 return node;
140}
141
142//
143// Connect two nodes with a new parent that does a binary operation on the nodes.
144//
145// Returns the added node.
146//
John Baumand4ae8632014-05-06 16:18:33 -0400147TIntermTyped* TIntermediate::addBinaryMath(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc line)
John Bauman66b8ab22014-05-06 15:57:45 -0400148{
149 switch (op) {
150 case EOpEqual:
151 case EOpNotEqual:
152 if (left->isArray())
153 return 0;
154 break;
155 case EOpLessThan:
156 case EOpGreaterThan:
157 case EOpLessThanEqual:
158 case EOpGreaterThanEqual:
159 if (left->isMatrix() || left->isArray() || left->isVector() || left->getBasicType() == EbtStruct) {
160 return 0;
161 }
162 break;
163 case EOpLogicalOr:
164 case EOpLogicalXor:
165 case EOpLogicalAnd:
166 if (left->getBasicType() != EbtBool || left->isMatrix() || left->isArray() || left->isVector()) {
167 return 0;
168 }
169 break;
170 case EOpAdd:
171 case EOpSub:
172 case EOpDiv:
173 case EOpMul:
174 if (left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool)
175 return 0;
176 default: break;
177 }
178
179 //
180 // First try converting the children to compatible types.
181 //
182 if (left->getType().getStruct() && right->getType().getStruct()) {
183 if (left->getType() != right->getType())
184 return 0;
185 } else {
186 TIntermTyped* child = addConversion(op, left->getType(), right);
187 if (child)
188 right = child;
189 else {
190 child = addConversion(op, right->getType(), left);
191 if (child)
192 left = child;
193 else
194 return 0;
195 }
196 }
197
198 //
199 // Need a new node holding things together then. Make
200 // one and promote it to the right type.
201 //
202 TIntermBinary* node = new TIntermBinary(op);
203 if (line == 0)
204 line = right->getLine();
205 node->setLine(line);
206
207 node->setLeft(left);
208 node->setRight(right);
209 if (!node->promote(infoSink))
210 return 0;
211
212 //
213 // See if we can fold constants.
214 //
215 TIntermTyped* typedReturnNode = 0;
216 TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion();
217 TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion();
218 if (leftTempConstant && rightTempConstant) {
219 typedReturnNode = leftTempConstant->fold(node->getOp(), rightTempConstant, infoSink);
220
221 if (typedReturnNode)
222 return typedReturnNode;
223 }
224
225 return node;
226}
227
228//
229// Connect two nodes through an assignment.
230//
231// Returns the added node.
232//
233TIntermTyped* TIntermediate::addAssign(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc line)
234{
235 //
236 // Like adding binary math, except the conversion can only go
237 // from right to left.
238 //
239 TIntermBinary* node = new TIntermBinary(op);
240 if (line == 0)
241 line = left->getLine();
242 node->setLine(line);
243
244 TIntermTyped* child = addConversion(op, left->getType(), right);
245 if (child == 0)
246 return 0;
247
248 node->setLeft(left);
249 node->setRight(child);
250 if (! node->promote(infoSink))
251 return 0;
252
253 return node;
254}
255
256//
257// Connect two nodes through an index operator, where the left node is the base
258// of an array or struct, and the right node is a direct or indirect offset.
259//
260// Returns the added node.
261// The caller should set the type of the returned node.
262//
263TIntermTyped* TIntermediate::addIndex(TOperator op, TIntermTyped* base, TIntermTyped* index, TSourceLoc line)
264{
265 TIntermBinary* node = new TIntermBinary(op);
266 if (line == 0)
267 line = index->getLine();
268 node->setLine(line);
269 node->setLeft(base);
270 node->setRight(index);
271
272 // caller should set the type
273
274 return node;
275}
276
277//
278// Add one node as the parent of another that it operates on.
279//
280// Returns the added node.
281//
John Baumand4ae8632014-05-06 16:18:33 -0400282TIntermTyped* TIntermediate::addUnaryMath(TOperator op, TIntermNode* childNode, TSourceLoc line)
John Bauman66b8ab22014-05-06 15:57:45 -0400283{
284 TIntermUnary* node;
285 TIntermTyped* child = childNode->getAsTyped();
286
287 if (child == 0) {
288 infoSink.info.message(EPrefixInternalError, "Bad type in AddUnaryMath", line);
289 return 0;
290 }
291
292 switch (op) {
293 case EOpLogicalNot:
294 if (child->getType().getBasicType() != EbtBool || child->getType().isMatrix() || child->getType().isArray() || child->getType().isVector()) {
295 return 0;
296 }
297 break;
298
299 case EOpPostIncrement:
300 case EOpPreIncrement:
301 case EOpPostDecrement:
302 case EOpPreDecrement:
303 case EOpNegative:
304 if (child->getType().getBasicType() == EbtStruct || child->getType().isArray())
305 return 0;
306 default: break;
307 }
308
309 //
310 // Do we need to promote the operand?
311 //
312 // Note: Implicit promotions were removed from the language.
313 //
314 TBasicType newType = EbtVoid;
315 switch (op) {
316 case EOpConstructInt: newType = EbtInt; break;
317 case EOpConstructBool: newType = EbtBool; break;
318 case EOpConstructFloat: newType = EbtFloat; break;
319 default: break;
320 }
321
322 if (newType != EbtVoid) {
323 child = addConversion(op, TType(newType, child->getPrecision(), EvqTemporary,
324 child->getNominalSize(),
325 child->isMatrix(),
326 child->isArray()),
327 child);
328 if (child == 0)
329 return 0;
330 }
331
332 //
333 // For constructors, we are now done, it's all in the conversion.
334 //
335 switch (op) {
336 case EOpConstructInt:
337 case EOpConstructBool:
338 case EOpConstructFloat:
339 return child;
340 default: break;
341 }
342
343 TIntermConstantUnion *childTempConstant = 0;
344 if (child->getAsConstantUnion())
345 childTempConstant = child->getAsConstantUnion();
346
347 //
348 // Make a new node for the operator.
349 //
350 node = new TIntermUnary(op);
351 if (line == 0)
352 line = child->getLine();
353 node->setLine(line);
354 node->setOperand(child);
355
356 if (! node->promote(infoSink))
357 return 0;
358
359 if (childTempConstant) {
360 TIntermTyped* newChild = childTempConstant->fold(op, 0, infoSink);
361
362 if (newChild)
363 return newChild;
364 }
365
366 return node;
367}
368
369//
370// This is the safe way to change the operator on an aggregate, as it
371// does lots of error checking and fixing. Especially for establishing
372// a function call's operation on it's set of parameters. Sequences
373// of instructions are also aggregates, but they just direnctly set
374// their operator to EOpSequence.
375//
376// Returns an aggregate node, which could be the one passed in if
377// it was already an aggregate but no operator was set.
378//
379TIntermAggregate* TIntermediate::setAggregateOperator(TIntermNode* node, TOperator op, TSourceLoc line)
380{
381 TIntermAggregate* aggNode;
382
383 //
384 // Make sure we have an aggregate. If not turn it into one.
385 //
386 if (node) {
387 aggNode = node->getAsAggregate();
388 if (aggNode == 0 || aggNode->getOp() != EOpNull) {
389 //
390 // Make an aggregate containing this node.
391 //
392 aggNode = new TIntermAggregate();
393 aggNode->getSequence().push_back(node);
394 if (line == 0)
395 line = node->getLine();
396 }
397 } else
398 aggNode = new TIntermAggregate();
399
400 //
401 // Set the operator.
402 //
403 aggNode->setOp(op);
404 if (line != 0)
405 aggNode->setLine(line);
406
407 return aggNode;
408}
409
410//
411// Convert one type to another.
412//
413// Returns the node representing the conversion, which could be the same
414// node passed in if no conversion was needed.
415//
416// Return 0 if a conversion can't be done.
417//
418TIntermTyped* TIntermediate::addConversion(TOperator op, const TType& type, TIntermTyped* node)
419{
420 //
421 // Does the base type allow operation?
422 //
Nicolas Capense9c5e4f2014-05-28 22:46:43 -0400423 if (node->getBasicType() == EbtVoid || IsSampler(node->getBasicType()))
424 {
425 return 0;
John Bauman66b8ab22014-05-06 15:57:45 -0400426 }
427
428 //
429 // Otherwise, if types are identical, no problem
430 //
431 if (type == node->getType())
432 return node;
433
434 //
435 // If one's a structure, then no conversions.
436 //
437 if (type.getStruct() || node->getType().getStruct())
438 return 0;
439
440 //
441 // If one's an array, then no conversions.
442 //
443 if (type.isArray() || node->getType().isArray())
444 return 0;
445
446 TBasicType promoteTo;
447
448 switch (op) {
449 //
450 // Explicit conversions
451 //
452 case EOpConstructBool:
453 promoteTo = EbtBool;
454 break;
455 case EOpConstructFloat:
456 promoteTo = EbtFloat;
457 break;
458 case EOpConstructInt:
459 promoteTo = EbtInt;
460 break;
461 default:
462 //
463 // implicit conversions were removed from the language.
464 //
465 if (type.getBasicType() != node->getType().getBasicType())
466 return 0;
467 //
468 // Size and structure could still differ, but that's
469 // handled by operator promotion.
470 //
471 return node;
472 }
473
474 if (node->getAsConstantUnion()) {
475
476 return (promoteConstantUnion(promoteTo, node->getAsConstantUnion()));
477 } else {
478
479 //
480 // Add a new newNode for the conversion.
481 //
482 TIntermUnary* newNode = 0;
483
484 TOperator newOp = EOpNull;
485 switch (promoteTo) {
486 case EbtFloat:
487 switch (node->getBasicType()) {
488 case EbtInt: newOp = EOpConvIntToFloat; break;
489 case EbtBool: newOp = EOpConvBoolToFloat; break;
490 default:
491 infoSink.info.message(EPrefixInternalError, "Bad promotion node", node->getLine());
492 return 0;
493 }
494 break;
495 case EbtBool:
496 switch (node->getBasicType()) {
497 case EbtInt: newOp = EOpConvIntToBool; break;
498 case EbtFloat: newOp = EOpConvFloatToBool; break;
499 default:
500 infoSink.info.message(EPrefixInternalError, "Bad promotion node", node->getLine());
501 return 0;
502 }
503 break;
504 case EbtInt:
505 switch (node->getBasicType()) {
506 case EbtBool: newOp = EOpConvBoolToInt; break;
507 case EbtFloat: newOp = EOpConvFloatToInt; break;
508 default:
509 infoSink.info.message(EPrefixInternalError, "Bad promotion node", node->getLine());
510 return 0;
511 }
512 break;
513 default:
514 infoSink.info.message(EPrefixInternalError, "Bad promotion type", node->getLine());
515 return 0;
516 }
517
518 TType type(promoteTo, node->getPrecision(), EvqTemporary, node->getNominalSize(), node->isMatrix(), node->isArray());
519 newNode = new TIntermUnary(newOp, type);
520 newNode->setLine(node->getLine());
521 newNode->setOperand(node);
522
523 return newNode;
524 }
525}
526
527//
528// Safe way to combine two nodes into an aggregate. Works with null pointers,
529// a node that's not a aggregate yet, etc.
530//
531// Returns the resulting aggregate, unless 0 was passed in for
532// both existing nodes.
533//
534TIntermAggregate* TIntermediate::growAggregate(TIntermNode* left, TIntermNode* right, TSourceLoc line)
535{
536 if (left == 0 && right == 0)
537 return 0;
538
539 TIntermAggregate* aggNode = 0;
540 if (left)
541 aggNode = left->getAsAggregate();
542 if (!aggNode || aggNode->getOp() != EOpNull) {
543 aggNode = new TIntermAggregate;
544 if (left)
545 aggNode->getSequence().push_back(left);
546 }
547
548 if (right)
549 aggNode->getSequence().push_back(right);
550
551 if (line != 0)
552 aggNode->setLine(line);
553
554 return aggNode;
555}
556
557//
558// Turn an existing node into an aggregate.
559//
560// Returns an aggregate, unless 0 was passed in for the existing node.
561//
562TIntermAggregate* TIntermediate::makeAggregate(TIntermNode* node, TSourceLoc line)
563{
564 if (node == 0)
565 return 0;
566
567 TIntermAggregate* aggNode = new TIntermAggregate;
568 aggNode->getSequence().push_back(node);
569
570 if (line != 0)
571 aggNode->setLine(line);
572 else
573 aggNode->setLine(node->getLine());
574
575 return aggNode;
576}
577
578//
579// For "if" test nodes. There are three children; a condition,
580// a true path, and a false path. The two paths are in the
581// nodePair.
582//
583// Returns the selection node created.
584//
585TIntermNode* TIntermediate::addSelection(TIntermTyped* cond, TIntermNodePair nodePair, TSourceLoc line)
586{
587 //
588 // For compile time constant selections, prune the code and
589 // test now.
590 //
591
592 if (cond->getAsTyped() && cond->getAsTyped()->getAsConstantUnion()) {
593 if (cond->getAsTyped()->getAsConstantUnion()->getUnionArrayPointer()->getBConst() == true)
594 return nodePair.node1 ? setAggregateOperator(nodePair.node1, EOpSequence, nodePair.node1->getLine()) : NULL;
595 else
596 return nodePair.node2 ? setAggregateOperator(nodePair.node2, EOpSequence, nodePair.node2->getLine()) : NULL;
597 }
598
599 TIntermSelection* node = new TIntermSelection(cond, nodePair.node1, nodePair.node2);
600 node->setLine(line);
601
602 return node;
603}
604
605
606TIntermTyped* TIntermediate::addComma(TIntermTyped* left, TIntermTyped* right, TSourceLoc line)
607{
608 if (left->getType().getQualifier() == EvqConst && right->getType().getQualifier() == EvqConst) {
609 return right;
610 } else {
611 TIntermTyped *commaAggregate = growAggregate(left, right, line);
612 commaAggregate->getAsAggregate()->setOp(EOpComma);
613 commaAggregate->setType(right->getType());
614 commaAggregate->getTypePointer()->setQualifier(EvqTemporary);
615 return commaAggregate;
616 }
617}
618
619//
620// For "?:" test nodes. There are three children; a condition,
621// a true path, and a false path. The two paths are specified
622// as separate parameters.
623//
624// Returns the selection node created, or 0 if one could not be.
625//
626TIntermTyped* TIntermediate::addSelection(TIntermTyped* cond, TIntermTyped* trueBlock, TIntermTyped* falseBlock, TSourceLoc line)
627{
628 //
629 // Get compatible types.
630 //
631 TIntermTyped* child = addConversion(EOpSequence, trueBlock->getType(), falseBlock);
632 if (child)
633 falseBlock = child;
634 else {
635 child = addConversion(EOpSequence, falseBlock->getType(), trueBlock);
636 if (child)
637 trueBlock = child;
638 else
639 return 0;
640 }
641
642 //
643 // See if all the operands are constant, then fold it otherwise not.
644 //
645
646 if (cond->getAsConstantUnion() && trueBlock->getAsConstantUnion() && falseBlock->getAsConstantUnion()) {
647 if (cond->getAsConstantUnion()->getUnionArrayPointer()->getBConst())
648 return trueBlock;
649 else
650 return falseBlock;
651 }
652
653 //
654 // Make a selection node.
655 //
656 TIntermSelection* node = new TIntermSelection(cond, trueBlock, falseBlock, trueBlock->getType());
657 node->getTypePointer()->setQualifier(EvqTemporary);
658 node->setLine(line);
659
660 return node;
661}
662
663//
664// Constant terminal nodes. Has a union that contains bool, float or int constants
665//
666// Returns the constant union node created.
667//
668
669TIntermConstantUnion* TIntermediate::addConstantUnion(ConstantUnion* unionArrayPointer, const TType& t, TSourceLoc line)
670{
671 TIntermConstantUnion* node = new TIntermConstantUnion(unionArrayPointer, t);
672 node->setLine(line);
673
674 return node;
675}
676
677TIntermTyped* TIntermediate::addSwizzle(TVectorFields& fields, TSourceLoc line)
678{
679
680 TIntermAggregate* node = new TIntermAggregate(EOpSequence);
681
682 node->setLine(line);
683 TIntermConstantUnion* constIntNode;
684 TIntermSequence &sequenceVector = node->getSequence();
685 ConstantUnion* unionArray;
686
687 for (int i = 0; i < fields.num; i++) {
688 unionArray = new ConstantUnion[1];
689 unionArray->setIConst(fields.offsets[i]);
690 constIntNode = addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), line);
691 sequenceVector.push_back(constIntNode);
692 }
693
694 return node;
695}
696
697//
698// Create loop nodes.
699//
700TIntermNode* TIntermediate::addLoop(TLoopType type, TIntermNode* init, TIntermTyped* cond, TIntermTyped* expr, TIntermNode* body, TSourceLoc line)
701{
702 TIntermNode* node = new TIntermLoop(type, init, cond, expr, body);
703 node->setLine(line);
704
705 return node;
706}
707
708//
709// Add branches.
710//
711TIntermBranch* TIntermediate::addBranch(TOperator branchOp, TSourceLoc line)
712{
713 return addBranch(branchOp, 0, line);
714}
715
716TIntermBranch* TIntermediate::addBranch(TOperator branchOp, TIntermTyped* expression, TSourceLoc line)
717{
718 TIntermBranch* node = new TIntermBranch(branchOp, expression);
719 node->setLine(line);
720
721 return node;
722}
723
724//
725// This is to be executed once the final root is put on top by the parsing
726// process.
727//
728bool TIntermediate::postProcess(TIntermNode* root)
729{
730 if (root == 0)
731 return true;
732
733 //
734 // First, finish off the top level sequence, if any
735 //
736 TIntermAggregate* aggRoot = root->getAsAggregate();
737 if (aggRoot && aggRoot->getOp() == EOpNull)
738 aggRoot->setOp(EOpSequence);
739
740 return true;
741}
742
743//
744// This deletes the tree.
745//
746void TIntermediate::remove(TIntermNode* root)
747{
748 if (root)
749 RemoveAllTreeNodes(root);
750}
751
752////////////////////////////////////////////////////////////////
753//
754// Member functions of the nodes used for building the tree.
755//
756////////////////////////////////////////////////////////////////
757
758//
759// Say whether or not an operation node changes the value of a variable.
760//
761// Returns true if state is modified.
762//
763bool TIntermOperator::modifiesState() const
764{
765 switch (op) {
766 case EOpPostIncrement:
767 case EOpPostDecrement:
768 case EOpPreIncrement:
769 case EOpPreDecrement:
770 case EOpAssign:
771 case EOpAddAssign:
772 case EOpSubAssign:
773 case EOpMulAssign:
774 case EOpVectorTimesMatrixAssign:
775 case EOpVectorTimesScalarAssign:
776 case EOpMatrixTimesScalarAssign:
777 case EOpMatrixTimesMatrixAssign:
778 case EOpDivAssign:
779 return true;
780 default:
781 return false;
782 }
783}
784
785//
786// returns true if the operator is for one of the constructors
787//
788bool TIntermOperator::isConstructor() const
789{
790 switch (op) {
791 case EOpConstructVec2:
792 case EOpConstructVec3:
793 case EOpConstructVec4:
794 case EOpConstructMat2:
795 case EOpConstructMat3:
796 case EOpConstructMat4:
797 case EOpConstructFloat:
798 case EOpConstructIVec2:
799 case EOpConstructIVec3:
800 case EOpConstructIVec4:
801 case EOpConstructInt:
802 case EOpConstructBVec2:
803 case EOpConstructBVec3:
804 case EOpConstructBVec4:
805 case EOpConstructBool:
806 case EOpConstructStruct:
807 return true;
808 default:
809 return false;
810 }
811}
812//
813// Make sure the type of a unary operator is appropriate for its
814// combination of operation and operand type.
815//
816// Returns false in nothing makes sense.
817//
818bool TIntermUnary::promote(TInfoSink&)
819{
820 switch (op) {
821 case EOpLogicalNot:
822 if (operand->getBasicType() != EbtBool)
823 return false;
824 break;
825 case EOpNegative:
826 case EOpPostIncrement:
827 case EOpPostDecrement:
828 case EOpPreIncrement:
829 case EOpPreDecrement:
830 if (operand->getBasicType() == EbtBool)
831 return false;
832 break;
833
834 // operators for built-ins are already type checked against their prototype
835 case EOpAny:
836 case EOpAll:
837 case EOpVectorLogicalNot:
838 return true;
839
840 default:
841 if (operand->getBasicType() != EbtFloat)
842 return false;
843 }
844
845 setType(operand->getType());
846
847 // Unary operations results in temporary variables unless const.
848 if (operand->getQualifier() != EvqConst) {
849 getTypePointer()->setQualifier(EvqTemporary);
850 }
851
852 return true;
853}
854
855//
856// Establishes the type of the resultant operation, as well as
857// makes the operator the correct one for the operands.
858//
859// Returns false if operator can't work on operands.
860//
861bool TIntermBinary::promote(TInfoSink& infoSink)
862{
863 // This function only handles scalars, vectors, and matrices.
864 if (left->isArray() || right->isArray()) {
865 infoSink.info.message(EPrefixInternalError, "Invalid operation for arrays", getLine());
866 return false;
867 }
868
869 // GLSL ES 2.0 does not support implicit type casting.
870 // So the basic type should always match.
871 if (left->getBasicType() != right->getBasicType())
872 return false;
873
874 //
875 // Base assumption: just make the type the same as the left
876 // operand. Then only deviations from this need be coded.
877 //
878 setType(left->getType());
879
880 // The result gets promoted to the highest precision.
881 TPrecision higherPrecision = GetHigherPrecision(left->getPrecision(), right->getPrecision());
882 getTypePointer()->setPrecision(higherPrecision);
883
884 // Binary operations results in temporary variables unless both
885 // operands are const.
886 if (left->getQualifier() != EvqConst || right->getQualifier() != EvqConst) {
887 getTypePointer()->setQualifier(EvqTemporary);
888 }
889
890 int size = std::max(left->getNominalSize(), right->getNominalSize());
891
892 //
893 // All scalars. Code after this test assumes this case is removed!
894 //
895 if (size == 1) {
896 switch (op) {
897 //
898 // Promote to conditional
899 //
900 case EOpEqual:
901 case EOpNotEqual:
902 case EOpLessThan:
903 case EOpGreaterThan:
904 case EOpLessThanEqual:
905 case EOpGreaterThanEqual:
906 setType(TType(EbtBool, EbpUndefined));
907 break;
908
909 //
910 // And and Or operate on conditionals
911 //
912 case EOpLogicalAnd:
913 case EOpLogicalOr:
914 // Both operands must be of type bool.
915 if (left->getBasicType() != EbtBool || right->getBasicType() != EbtBool)
916 return false;
917 setType(TType(EbtBool, EbpUndefined));
918 break;
919
920 default:
921 break;
922 }
923 return true;
924 }
925
926 // If we reach here, at least one of the operands is vector or matrix.
927 // The other operand could be a scalar, vector, or matrix.
928 // Are the sizes compatible?
929 //
930 if (left->getNominalSize() != right->getNominalSize()) {
931 // If the nominal size of operands do not match:
932 // One of them must be scalar.
933 if (left->getNominalSize() != 1 && right->getNominalSize() != 1)
934 return false;
935 // Operator cannot be of type pure assignment.
936 if (op == EOpAssign || op == EOpInitialize)
937 return false;
938 }
939
940 //
941 // Can these two operands be combined?
942 //
943 TBasicType basicType = left->getBasicType();
944 switch (op) {
945 case EOpMul:
946 if (!left->isMatrix() && right->isMatrix()) {
947 if (left->isVector())
948 op = EOpVectorTimesMatrix;
949 else {
950 op = EOpMatrixTimesScalar;
951 setType(TType(basicType, higherPrecision, EvqTemporary, size, true));
952 }
953 } else if (left->isMatrix() && !right->isMatrix()) {
954 if (right->isVector()) {
955 op = EOpMatrixTimesVector;
956 setType(TType(basicType, higherPrecision, EvqTemporary, size, false));
957 } else {
958 op = EOpMatrixTimesScalar;
959 }
960 } else if (left->isMatrix() && right->isMatrix()) {
961 op = EOpMatrixTimesMatrix;
962 } else if (!left->isMatrix() && !right->isMatrix()) {
963 if (left->isVector() && right->isVector()) {
964 // leave as component product
965 } else if (left->isVector() || right->isVector()) {
966 op = EOpVectorTimesScalar;
967 setType(TType(basicType, higherPrecision, EvqTemporary, size, false));
968 }
969 } else {
970 infoSink.info.message(EPrefixInternalError, "Missing elses", getLine());
971 return false;
972 }
973 break;
974 case EOpMulAssign:
975 if (!left->isMatrix() && right->isMatrix()) {
976 if (left->isVector())
977 op = EOpVectorTimesMatrixAssign;
978 else {
979 return false;
980 }
981 } else if (left->isMatrix() && !right->isMatrix()) {
982 if (right->isVector()) {
983 return false;
984 } else {
985 op = EOpMatrixTimesScalarAssign;
986 }
987 } else if (left->isMatrix() && right->isMatrix()) {
988 op = EOpMatrixTimesMatrixAssign;
989 } else if (!left->isMatrix() && !right->isMatrix()) {
990 if (left->isVector() && right->isVector()) {
991 // leave as component product
992 } else if (left->isVector() || right->isVector()) {
993 if (! left->isVector())
994 return false;
995 op = EOpVectorTimesScalarAssign;
996 setType(TType(basicType, higherPrecision, EvqTemporary, size, false));
997 }
998 } else {
999 infoSink.info.message(EPrefixInternalError, "Missing elses", getLine());
1000 return false;
1001 }
1002 break;
1003
1004 case EOpAssign:
1005 case EOpInitialize:
1006 case EOpAdd:
1007 case EOpSub:
1008 case EOpDiv:
1009 case EOpAddAssign:
1010 case EOpSubAssign:
1011 case EOpDivAssign:
1012 if ((left->isMatrix() && right->isVector()) ||
1013 (left->isVector() && right->isMatrix()))
1014 return false;
1015 setType(TType(basicType, higherPrecision, EvqTemporary, size, left->isMatrix() || right->isMatrix()));
1016 break;
1017
1018 case EOpEqual:
1019 case EOpNotEqual:
1020 case EOpLessThan:
1021 case EOpGreaterThan:
1022 case EOpLessThanEqual:
1023 case EOpGreaterThanEqual:
1024 if ((left->isMatrix() && right->isVector()) ||
1025 (left->isVector() && right->isMatrix()))
1026 return false;
1027 setType(TType(EbtBool, EbpUndefined));
1028 break;
1029
1030 default:
1031 return false;
1032 }
1033
1034 return true;
1035}
1036
1037bool CompareStruct(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray)
1038{
1039 const TTypeList* fields = leftNodeType.getStruct();
1040
1041 size_t structSize = fields->size();
1042 int index = 0;
1043
1044 for (size_t j = 0; j < structSize; j++) {
1045 int size = (*fields)[j].type->getObjectSize();
1046 for (int i = 0; i < size; i++) {
1047 if ((*fields)[j].type->getBasicType() == EbtStruct) {
1048 if (!CompareStructure(*(*fields)[j].type, &rightUnionArray[index], &leftUnionArray[index]))
1049 return false;
1050 } else {
1051 if (leftUnionArray[index] != rightUnionArray[index])
1052 return false;
1053 index++;
1054 }
1055
1056 }
1057 }
1058 return true;
1059}
1060
1061bool CompareStructure(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray)
1062{
1063 if (leftNodeType.isArray()) {
1064 TType typeWithoutArrayness = leftNodeType;
1065 typeWithoutArrayness.clearArrayness();
1066
1067 int arraySize = leftNodeType.getArraySize();
1068
1069 for (int i = 0; i < arraySize; ++i) {
1070 int offset = typeWithoutArrayness.getObjectSize() * i;
1071 if (!CompareStruct(typeWithoutArrayness, &rightUnionArray[offset], &leftUnionArray[offset]))
1072 return false;
1073 }
1074 } else
1075 return CompareStruct(leftNodeType, rightUnionArray, leftUnionArray);
1076
1077 return true;
1078}
1079
1080//
1081// The fold functions see if an operation on a constant can be done in place,
1082// without generating run-time code.
1083//
1084// Returns the node to keep using, which may or may not be the node passed in.
1085//
1086
1087TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNode, TInfoSink& infoSink)
1088{
1089 ConstantUnion *unionArray = getUnionArrayPointer();
1090 int objectSize = getType().getObjectSize();
1091
1092 if (constantNode) { // binary operations
1093 TIntermConstantUnion *node = constantNode->getAsConstantUnion();
1094 ConstantUnion *rightUnionArray = node->getUnionArrayPointer();
1095 TType returnType = getType();
1096
1097 // for a case like float f = 1.2 + vec4(2,3,4,5);
1098 if (constantNode->getType().getObjectSize() == 1 && objectSize > 1) {
1099 rightUnionArray = new ConstantUnion[objectSize];
1100 for (int i = 0; i < objectSize; ++i)
1101 rightUnionArray[i] = *node->getUnionArrayPointer();
1102 returnType = getType();
1103 } else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1) {
1104 // for a case like float f = vec4(2,3,4,5) + 1.2;
1105 unionArray = new ConstantUnion[constantNode->getType().getObjectSize()];
1106 for (int i = 0; i < constantNode->getType().getObjectSize(); ++i)
1107 unionArray[i] = *getUnionArrayPointer();
1108 returnType = node->getType();
1109 objectSize = constantNode->getType().getObjectSize();
1110 }
1111
1112 ConstantUnion* tempConstArray = 0;
1113 TIntermConstantUnion *tempNode;
1114
1115 bool boolNodeFlag = false;
1116 switch(op) {
1117 case EOpAdd:
1118 tempConstArray = new ConstantUnion[objectSize];
1119 {// support MSVC++6.0
1120 for (int i = 0; i < objectSize; i++)
1121 tempConstArray[i] = unionArray[i] + rightUnionArray[i];
1122 }
1123 break;
1124 case EOpSub:
1125 tempConstArray = new ConstantUnion[objectSize];
1126 {// support MSVC++6.0
1127 for (int i = 0; i < objectSize; i++)
1128 tempConstArray[i] = unionArray[i] - rightUnionArray[i];
1129 }
1130 break;
1131
1132 case EOpMul:
1133 case EOpVectorTimesScalar:
1134 case EOpMatrixTimesScalar:
1135 tempConstArray = new ConstantUnion[objectSize];
1136 {// support MSVC++6.0
1137 for (int i = 0; i < objectSize; i++)
1138 tempConstArray[i] = unionArray[i] * rightUnionArray[i];
1139 }
1140 break;
1141 case EOpMatrixTimesMatrix:
1142 if (getType().getBasicType() != EbtFloat || node->getBasicType() != EbtFloat) {
1143 infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for matrix multiply", getLine());
1144 return 0;
1145 }
1146 {// support MSVC++6.0
1147 int size = getNominalSize();
1148 tempConstArray = new ConstantUnion[size*size];
1149 for (int row = 0; row < size; row++) {
1150 for (int column = 0; column < size; column++) {
1151 tempConstArray[size * column + row].setFConst(0.0f);
1152 for (int i = 0; i < size; i++) {
1153 tempConstArray[size * column + row].setFConst(tempConstArray[size * column + row].getFConst() + unionArray[i * size + row].getFConst() * (rightUnionArray[column * size + i].getFConst()));
1154 }
1155 }
1156 }
1157 }
1158 break;
1159 case EOpDiv:
1160 tempConstArray = new ConstantUnion[objectSize];
1161 {// support MSVC++6.0
1162 for (int i = 0; i < objectSize; i++) {
1163 switch (getType().getBasicType()) {
1164 case EbtFloat:
1165 if (rightUnionArray[i] == 0.0f) {
1166 infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
1167 tempConstArray[i].setFConst(FLT_MAX);
1168 } else
1169 tempConstArray[i].setFConst(unionArray[i].getFConst() / rightUnionArray[i].getFConst());
1170 break;
1171
1172 case EbtInt:
1173 if (rightUnionArray[i] == 0) {
1174 infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
1175 tempConstArray[i].setIConst(INT_MAX);
1176 } else
1177 tempConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst());
1178 break;
1179 default:
1180 infoSink.info.message(EPrefixInternalError, "Constant folding cannot be done for \"/\"", getLine());
1181 return 0;
1182 }
1183 }
1184 }
1185 break;
1186
1187 case EOpMatrixTimesVector:
1188 if (node->getBasicType() != EbtFloat) {
1189 infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for matrix times vector", getLine());
1190 return 0;
1191 }
1192 tempConstArray = new ConstantUnion[getNominalSize()];
1193
1194 {// support MSVC++6.0
1195 for (int size = getNominalSize(), i = 0; i < size; i++) {
1196 tempConstArray[i].setFConst(0.0f);
1197 for (int j = 0; j < size; j++) {
1198 tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j*size + i].getFConst()) * rightUnionArray[j].getFConst()));
1199 }
1200 }
1201 }
1202
1203 tempNode = new TIntermConstantUnion(tempConstArray, node->getType());
1204 tempNode->setLine(getLine());
1205
1206 return tempNode;
1207
1208 case EOpVectorTimesMatrix:
1209 if (getType().getBasicType() != EbtFloat) {
1210 infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for vector times matrix", getLine());
1211 return 0;
1212 }
1213
1214 tempConstArray = new ConstantUnion[getNominalSize()];
1215 {// support MSVC++6.0
1216 for (int size = getNominalSize(), i = 0; i < size; i++) {
1217 tempConstArray[i].setFConst(0.0f);
1218 for (int j = 0; j < size; j++) {
1219 tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j].getFConst()) * rightUnionArray[i*size + j].getFConst()));
1220 }
1221 }
1222 }
1223 break;
1224
1225 case EOpLogicalAnd: // this code is written for possible future use, will not get executed currently
1226 tempConstArray = new ConstantUnion[objectSize];
1227 {// support MSVC++6.0
1228 for (int i = 0; i < objectSize; i++)
1229 tempConstArray[i] = unionArray[i] && rightUnionArray[i];
1230 }
1231 break;
1232
1233 case EOpLogicalOr: // this code is written for possible future use, will not get executed currently
1234 tempConstArray = new ConstantUnion[objectSize];
1235 {// support MSVC++6.0
1236 for (int i = 0; i < objectSize; i++)
1237 tempConstArray[i] = unionArray[i] || rightUnionArray[i];
1238 }
1239 break;
1240
1241 case EOpLogicalXor:
1242 tempConstArray = new ConstantUnion[objectSize];
1243 {// support MSVC++6.0
1244 for (int i = 0; i < objectSize; i++)
1245 switch (getType().getBasicType()) {
1246 case EbtBool: tempConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true); break;
1247 default: assert(false && "Default missing");
1248 }
1249 }
1250 break;
1251
1252 case EOpLessThan:
1253 assert(objectSize == 1);
1254 tempConstArray = new ConstantUnion[1];
1255 tempConstArray->setBConst(*unionArray < *rightUnionArray);
1256 returnType = TType(EbtBool, EbpUndefined, EvqConst);
1257 break;
1258 case EOpGreaterThan:
1259 assert(objectSize == 1);
1260 tempConstArray = new ConstantUnion[1];
1261 tempConstArray->setBConst(*unionArray > *rightUnionArray);
1262 returnType = TType(EbtBool, EbpUndefined, EvqConst);
1263 break;
1264 case EOpLessThanEqual:
1265 {
1266 assert(objectSize == 1);
1267 ConstantUnion constant;
1268 constant.setBConst(*unionArray > *rightUnionArray);
1269 tempConstArray = new ConstantUnion[1];
1270 tempConstArray->setBConst(!constant.getBConst());
1271 returnType = TType(EbtBool, EbpUndefined, EvqConst);
1272 break;
1273 }
1274 case EOpGreaterThanEqual:
1275 {
1276 assert(objectSize == 1);
1277 ConstantUnion constant;
1278 constant.setBConst(*unionArray < *rightUnionArray);
1279 tempConstArray = new ConstantUnion[1];
1280 tempConstArray->setBConst(!constant.getBConst());
1281 returnType = TType(EbtBool, EbpUndefined, EvqConst);
1282 break;
1283 }
1284
1285 case EOpEqual:
1286 if (getType().getBasicType() == EbtStruct) {
1287 if (!CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
1288 boolNodeFlag = true;
1289 } else {
1290 for (int i = 0; i < objectSize; i++) {
1291 if (unionArray[i] != rightUnionArray[i]) {
1292 boolNodeFlag = true;
1293 break; // break out of for loop
1294 }
1295 }
1296 }
1297
1298 tempConstArray = new ConstantUnion[1];
1299 if (!boolNodeFlag) {
1300 tempConstArray->setBConst(true);
1301 }
1302 else {
1303 tempConstArray->setBConst(false);
1304 }
1305
1306 tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
1307 tempNode->setLine(getLine());
1308
1309 return tempNode;
1310
1311 case EOpNotEqual:
1312 if (getType().getBasicType() == EbtStruct) {
1313 if (CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
1314 boolNodeFlag = true;
1315 } else {
1316 for (int i = 0; i < objectSize; i++) {
1317 if (unionArray[i] == rightUnionArray[i]) {
1318 boolNodeFlag = true;
1319 break; // break out of for loop
1320 }
1321 }
1322 }
1323
1324 tempConstArray = new ConstantUnion[1];
1325 if (!boolNodeFlag) {
1326 tempConstArray->setBConst(true);
1327 }
1328 else {
1329 tempConstArray->setBConst(false);
1330 }
1331
1332 tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
1333 tempNode->setLine(getLine());
1334
1335 return tempNode;
1336
1337 default:
1338 infoSink.info.message(EPrefixInternalError, "Invalid operator for constant folding", getLine());
1339 return 0;
1340 }
1341 tempNode = new TIntermConstantUnion(tempConstArray, returnType);
1342 tempNode->setLine(getLine());
1343
1344 return tempNode;
1345 } else {
1346 //
1347 // Do unary operations
1348 //
1349 TIntermConstantUnion *newNode = 0;
1350 ConstantUnion* tempConstArray = new ConstantUnion[objectSize];
1351 for (int i = 0; i < objectSize; i++) {
1352 switch(op) {
1353 case EOpNegative:
1354 switch (getType().getBasicType()) {
1355 case EbtFloat: tempConstArray[i].setFConst(-unionArray[i].getFConst()); break;
1356 case EbtInt: tempConstArray[i].setIConst(-unionArray[i].getIConst()); break;
1357 default:
1358 infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine());
1359 return 0;
1360 }
1361 break;
1362 case EOpLogicalNot: // this code is written for possible future use, will not get executed currently
1363 switch (getType().getBasicType()) {
1364 case EbtBool: tempConstArray[i].setBConst(!unionArray[i].getBConst()); break;
1365 default:
1366 infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine());
1367 return 0;
1368 }
1369 break;
1370 default:
1371 return 0;
1372 }
1373 }
1374 newNode = new TIntermConstantUnion(tempConstArray, getType());
1375 newNode->setLine(getLine());
1376 return newNode;
1377 }
1378}
1379
1380TIntermTyped* TIntermediate::promoteConstantUnion(TBasicType promoteTo, TIntermConstantUnion* node)
1381{
1382 ConstantUnion *rightUnionArray = node->getUnionArrayPointer();
1383 int size = node->getType().getObjectSize();
1384
1385 ConstantUnion *leftUnionArray = new ConstantUnion[size];
1386
1387 for (int i=0; i < size; i++) {
1388
1389 switch (promoteTo) {
1390 case EbtFloat:
1391 switch (node->getType().getBasicType()) {
1392 case EbtInt:
1393 leftUnionArray[i].setFConst(static_cast<float>(rightUnionArray[i].getIConst()));
1394 break;
1395 case EbtBool:
1396 leftUnionArray[i].setFConst(static_cast<float>(rightUnionArray[i].getBConst()));
1397 break;
1398 case EbtFloat:
1399 leftUnionArray[i] = rightUnionArray[i];
1400 break;
1401 default:
1402 infoSink.info.message(EPrefixInternalError, "Cannot promote", node->getLine());
1403 return 0;
1404 }
1405 break;
1406 case EbtInt:
1407 switch (node->getType().getBasicType()) {
1408 case EbtInt:
1409 leftUnionArray[i] = rightUnionArray[i];
1410 break;
1411 case EbtBool:
1412 leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getBConst()));
1413 break;
1414 case EbtFloat:
1415 leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getFConst()));
1416 break;
1417 default:
1418 infoSink.info.message(EPrefixInternalError, "Cannot promote", node->getLine());
1419 return 0;
1420 }
1421 break;
1422 case EbtBool:
1423 switch (node->getType().getBasicType()) {
1424 case EbtInt:
1425 leftUnionArray[i].setBConst(rightUnionArray[i].getIConst() != 0);
1426 break;
1427 case EbtBool:
1428 leftUnionArray[i] = rightUnionArray[i];
1429 break;
1430 case EbtFloat:
1431 leftUnionArray[i].setBConst(rightUnionArray[i].getFConst() != 0.0f);
1432 break;
1433 default:
1434 infoSink.info.message(EPrefixInternalError, "Cannot promote", node->getLine());
1435 return 0;
1436 }
1437
1438 break;
1439 default:
1440 infoSink.info.message(EPrefixInternalError, "Incorrect data type found", node->getLine());
1441 return 0;
1442 }
1443
1444 }
1445
1446 const TType& t = node->getType();
1447
1448 return addConstantUnion(leftUnionArray, TType(promoteTo, t.getPrecision(), t.getQualifier(), t.getNominalSize(), t.isMatrix(), t.isArray()), node->getLine());
1449}
1450