blob: af8fbbf6bffc08c6d57bcdb0d0fcc25c972edad0 [file] [log] [blame]
John Bauman66b8ab22014-05-06 15:57:45 -04001//
John Baumand4ae8632014-05-06 16:18:33 -04002// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
John Bauman66b8ab22014-05-06 15:57:45 -04003// Use of this source code is governed by a BSD-style license that can be
4// found in the LICENSE file.
5//
6
7#include "compiler/ParseHelper.h"
8
9#include <stdarg.h>
10#include <stdio.h>
11
12#include "compiler/glslang.h"
13#include "compiler/preprocessor/SourceLocation.h"
14
15///////////////////////////////////////////////////////////////////////
16//
17// Sub- vector and matrix fields
18//
19////////////////////////////////////////////////////////////////////////
20
21//
22// Look at a '.' field selector string and change it into offsets
23// for a vector.
24//
25bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, int line)
26{
27 fields.num = (int) compString.size();
28 if (fields.num > 4) {
29 error(line, "illegal vector field selection", compString.c_str());
30 return false;
31 }
32
33 enum {
34 exyzw,
35 ergba,
John Baumand4ae8632014-05-06 16:18:33 -040036 estpq
John Bauman66b8ab22014-05-06 15:57:45 -040037 } fieldSet[4];
38
39 for (int i = 0; i < fields.num; ++i) {
40 switch (compString[i]) {
41 case 'x':
42 fields.offsets[i] = 0;
43 fieldSet[i] = exyzw;
44 break;
45 case 'r':
46 fields.offsets[i] = 0;
47 fieldSet[i] = ergba;
48 break;
49 case 's':
50 fields.offsets[i] = 0;
51 fieldSet[i] = estpq;
52 break;
53 case 'y':
54 fields.offsets[i] = 1;
55 fieldSet[i] = exyzw;
56 break;
57 case 'g':
58 fields.offsets[i] = 1;
59 fieldSet[i] = ergba;
60 break;
61 case 't':
62 fields.offsets[i] = 1;
63 fieldSet[i] = estpq;
64 break;
65 case 'z':
66 fields.offsets[i] = 2;
67 fieldSet[i] = exyzw;
68 break;
69 case 'b':
70 fields.offsets[i] = 2;
71 fieldSet[i] = ergba;
72 break;
73 case 'p':
74 fields.offsets[i] = 2;
75 fieldSet[i] = estpq;
76 break;
77
78 case 'w':
79 fields.offsets[i] = 3;
80 fieldSet[i] = exyzw;
81 break;
82 case 'a':
83 fields.offsets[i] = 3;
84 fieldSet[i] = ergba;
85 break;
86 case 'q':
87 fields.offsets[i] = 3;
88 fieldSet[i] = estpq;
89 break;
90 default:
91 error(line, "illegal vector field selection", compString.c_str());
92 return false;
93 }
94 }
95
96 for (int i = 0; i < fields.num; ++i) {
97 if (fields.offsets[i] >= vecSize) {
98 error(line, "vector field selection out of range", compString.c_str());
99 return false;
100 }
101
102 if (i > 0) {
103 if (fieldSet[i] != fieldSet[i-1]) {
104 error(line, "illegal - vector component fields not from the same set", compString.c_str());
105 return false;
106 }
107 }
108 }
109
110 return true;
111}
112
113
114//
115// Look at a '.' field selector string and change it into offsets
116// for a matrix.
117//
118bool TParseContext::parseMatrixFields(const TString& compString, int matSize, TMatrixFields& fields, int line)
119{
120 fields.wholeRow = false;
121 fields.wholeCol = false;
122 fields.row = -1;
123 fields.col = -1;
124
125 if (compString.size() != 2) {
126 error(line, "illegal length of matrix field selection", compString.c_str());
127 return false;
128 }
129
130 if (compString[0] == '_') {
131 if (compString[1] < '0' || compString[1] > '3') {
132 error(line, "illegal matrix field selection", compString.c_str());
133 return false;
134 }
135 fields.wholeCol = true;
136 fields.col = compString[1] - '0';
137 } else if (compString[1] == '_') {
138 if (compString[0] < '0' || compString[0] > '3') {
139 error(line, "illegal matrix field selection", compString.c_str());
140 return false;
141 }
142 fields.wholeRow = true;
143 fields.row = compString[0] - '0';
144 } else {
145 if (compString[0] < '0' || compString[0] > '3' ||
146 compString[1] < '0' || compString[1] > '3') {
147 error(line, "illegal matrix field selection", compString.c_str());
148 return false;
149 }
150 fields.row = compString[0] - '0';
151 fields.col = compString[1] - '0';
152 }
153
154 if (fields.row >= matSize || fields.col >= matSize) {
155 error(line, "matrix field selection out of range", compString.c_str());
156 return false;
157 }
158
159 return true;
160}
161
162///////////////////////////////////////////////////////////////////////
163//
164// Errors
165//
166////////////////////////////////////////////////////////////////////////
167
168//
169// Track whether errors have occurred.
170//
171void TParseContext::recover()
172{
173}
174
175//
176// Used by flex/bison to output all syntax and parsing errors.
177//
178void TParseContext::error(TSourceLoc loc,
179 const char* reason, const char* token,
180 const char* extraInfo)
181{
182 pp::SourceLocation srcLoc;
183 DecodeSourceLoc(loc, &srcLoc.file, &srcLoc.line);
184 diagnostics.writeInfo(pp::Diagnostics::PP_ERROR,
185 srcLoc, reason, token, extraInfo);
186
187}
188
189void TParseContext::warning(TSourceLoc loc,
190 const char* reason, const char* token,
191 const char* extraInfo) {
192 pp::SourceLocation srcLoc;
193 DecodeSourceLoc(loc, &srcLoc.file, &srcLoc.line);
194 diagnostics.writeInfo(pp::Diagnostics::PP_WARNING,
195 srcLoc, reason, token, extraInfo);
196}
197
198void TParseContext::trace(const char* str)
199{
200 diagnostics.writeDebug(str);
201}
202
203//
204// Same error message for all places assignments don't work.
205//
206void TParseContext::assignError(int line, const char* op, TString left, TString right)
207{
208 std::stringstream extraInfoStream;
209 extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'";
210 std::string extraInfo = extraInfoStream.str();
211 error(line, "", op, extraInfo.c_str());
212}
213
214//
215// Same error message for all places unary operations don't work.
216//
217void TParseContext::unaryOpError(int line, const char* op, TString operand)
218{
219 std::stringstream extraInfoStream;
220 extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand
221 << " (or there is no acceptable conversion)";
222 std::string extraInfo = extraInfoStream.str();
223 error(line, " wrong operand type", op, extraInfo.c_str());
224}
225
226//
227// Same error message for all binary operations don't work.
228//
229void TParseContext::binaryOpError(int line, const char* op, TString left, TString right)
230{
231 std::stringstream extraInfoStream;
232 extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left
233 << "' and a right operand of type '" << right << "' (or there is no acceptable conversion)";
234 std::string extraInfo = extraInfoStream.str();
235 error(line, " wrong operand types ", op, extraInfo.c_str());
236}
237
238bool TParseContext::precisionErrorCheck(int line, TPrecision precision, TBasicType type){
239 if (!checksPrecisionErrors)
240 return false;
241 switch( type ){
242 case EbtFloat:
243 if( precision == EbpUndefined ){
244 error( line, "No precision specified for (float)", "" );
245 return true;
246 }
247 break;
248 case EbtInt:
249 if( precision == EbpUndefined ){
250 error( line, "No precision specified (int)", "" );
251 return true;
252 }
253 break;
254 default:
255 return false;
256 }
257 return false;
258}
259
260//
261// Both test and if necessary, spit out an error, to see if the node is really
262// an l-value that can be operated on this way.
263//
264// Returns true if the was an error.
265//
266bool TParseContext::lValueErrorCheck(int line, const char* op, TIntermTyped* node)
267{
268 TIntermSymbol* symNode = node->getAsSymbolNode();
269 TIntermBinary* binaryNode = node->getAsBinaryNode();
270
271 if (binaryNode) {
272 bool errorReturn;
273
274 switch(binaryNode->getOp()) {
275 case EOpIndexDirect:
276 case EOpIndexIndirect:
277 case EOpIndexDirectStruct:
278 return lValueErrorCheck(line, op, binaryNode->getLeft());
279 case EOpVectorSwizzle:
280 errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft());
281 if (!errorReturn) {
282 int offset[4] = {0,0,0,0};
283
284 TIntermTyped* rightNode = binaryNode->getRight();
285 TIntermAggregate *aggrNode = rightNode->getAsAggregate();
286
287 for (TIntermSequence::iterator p = aggrNode->getSequence().begin();
288 p != aggrNode->getSequence().end(); p++) {
289 int value = (*p)->getAsTyped()->getAsConstantUnion()->getUnionArrayPointer()->getIConst();
290 offset[value]++;
291 if (offset[value] > 1) {
292 error(line, " l-value of swizzle cannot have duplicate components", op);
293
294 return true;
295 }
296 }
297 }
298
299 return errorReturn;
300 default:
301 break;
302 }
303 error(line, " l-value required", op);
304
305 return true;
306 }
307
308
309 const char* symbol = 0;
310 if (symNode != 0)
311 symbol = symNode->getSymbol().c_str();
312
313 const char* message = 0;
314 switch (node->getQualifier()) {
315 case EvqConst: message = "can't modify a const"; break;
316 case EvqConstReadOnly: message = "can't modify a const"; break;
317 case EvqAttribute: message = "can't modify an attribute"; break;
318 case EvqUniform: message = "can't modify a uniform"; break;
319 case EvqVaryingIn: message = "can't modify a varying"; break;
320 case EvqInput: message = "can't modify an input"; break;
321 case EvqFragCoord: message = "can't modify gl_FragCoord"; break;
322 case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break;
323 case EvqPointCoord: message = "can't modify gl_PointCoord"; break;
324 default:
325
326 //
327 // Type that can't be written to?
328 //
329 switch (node->getBasicType()) {
330 case EbtSampler2D:
331 case EbtSamplerCube:
332 message = "can't modify a sampler";
333 break;
334 case EbtVoid:
335 message = "can't modify void";
336 break;
337 default:
338 break;
339 }
340 }
341
342 if (message == 0 && binaryNode == 0 && symNode == 0) {
343 error(line, " l-value required", op);
344
345 return true;
346 }
347
348
349 //
350 // Everything else is okay, no error.
351 //
352 if (message == 0)
353 return false;
354
355 //
356 // If we get here, we have an error and a message.
357 //
358 if (symNode) {
359 std::stringstream extraInfoStream;
360 extraInfoStream << "\"" << symbol << "\" (" << message << ")";
361 std::string extraInfo = extraInfoStream.str();
362 error(line, " l-value required", op, extraInfo.c_str());
363 }
364 else {
365 std::stringstream extraInfoStream;
366 extraInfoStream << "(" << message << ")";
367 std::string extraInfo = extraInfoStream.str();
368 error(line, " l-value required", op, extraInfo.c_str());
369 }
370
371 return true;
372}
373
374//
375// Both test, and if necessary spit out an error, to see if the node is really
376// a constant.
377//
378// Returns true if the was an error.
379//
380bool TParseContext::constErrorCheck(TIntermTyped* node)
381{
382 if (node->getQualifier() == EvqConst)
383 return false;
384
385 error(node->getLine(), "constant expression required", "");
386
387 return true;
388}
389
390//
391// Both test, and if necessary spit out an error, to see if the node is really
392// an integer.
393//
394// Returns true if the was an error.
395//
396bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token)
397{
398 if (node->getBasicType() == EbtInt && node->getNominalSize() == 1)
399 return false;
400
401 error(node->getLine(), "integer expression required", token);
402
403 return true;
404}
405
406//
407// Both test, and if necessary spit out an error, to see if we are currently
408// globally scoped.
409//
410// Returns true if the was an error.
411//
412bool TParseContext::globalErrorCheck(int line, bool global, const char* token)
413{
414 if (global)
415 return false;
416
417 error(line, "only allowed at global scope", token);
418
419 return true;
420}
421
422//
423// For now, keep it simple: if it starts "gl_", it's reserved, independent
424// of scope. Except, if the symbol table is at the built-in push-level,
425// which is when we are parsing built-ins.
426// Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a
427// webgl shader.
428//
429// Returns true if there was an error.
430//
431bool TParseContext::reservedErrorCheck(int line, const TString& identifier)
432{
433 static const char* reservedErrMsg = "reserved built-in name";
434 if (!symbolTable.atBuiltInLevel()) {
435 if (identifier.compare(0, 3, "gl_") == 0) {
436 error(line, reservedErrMsg, "gl_");
437 return true;
438 }
439 if (shaderSpec == SH_WEBGL_SPEC) {
440 if (identifier.compare(0, 6, "webgl_") == 0) {
441 error(line, reservedErrMsg, "webgl_");
442 return true;
443 }
444 if (identifier.compare(0, 7, "_webgl_") == 0) {
445 error(line, reservedErrMsg, "_webgl_");
446 return true;
447 }
448 }
449 if (identifier.find("__") != TString::npos) {
450 error(line, "identifiers containing two consecutive underscores (__) are reserved as possible future keywords", identifier.c_str());
451 return true;
452 }
453 }
454
455 return false;
456}
457
458//
459// Make sure there is enough data provided to the constructor to build
460// something of the type of the constructor. Also returns the type of
461// the constructor.
462//
463// Returns true if there was an error in construction.
464//
465bool TParseContext::constructorErrorCheck(int line, TIntermNode* node, TFunction& function, TOperator op, TType* type)
466{
467 *type = function.getReturnType();
468
469 bool constructingMatrix = false;
470 switch(op) {
471 case EOpConstructMat2:
472 case EOpConstructMat3:
473 case EOpConstructMat4:
474 constructingMatrix = true;
475 break;
476 default:
477 break;
478 }
479
480 //
481 // Note: It's okay to have too many components available, but not okay to have unused
482 // arguments. 'full' will go to true when enough args have been seen. If we loop
483 // again, there is an extra argument, so 'overfull' will become true.
484 //
485
486 int size = 0;
487 bool constType = true;
488 bool full = false;
489 bool overFull = false;
490 bool matrixInMatrix = false;
491 bool arrayArg = false;
492 for (int i = 0; i < function.getParamCount(); ++i) {
493 const TParameter& param = function.getParam(i);
494 size += param.type->getObjectSize();
495
496 if (constructingMatrix && param.type->isMatrix())
497 matrixInMatrix = true;
498 if (full)
499 overFull = true;
500 if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize())
501 full = true;
502 if (param.type->getQualifier() != EvqConst)
503 constType = false;
504 if (param.type->isArray())
505 arrayArg = true;
506 }
507
508 if (constType)
509 type->setQualifier(EvqConst);
510
511 if (type->isArray() && type->getArraySize() != function.getParamCount()) {
512 error(line, "array constructor needs one argument per array element", "constructor");
513 return true;
514 }
515
516 if (arrayArg && op != EOpConstructStruct) {
517 error(line, "constructing from a non-dereferenced array", "constructor");
518 return true;
519 }
520
521 if (matrixInMatrix && !type->isArray()) {
522 if (function.getParamCount() != 1) {
523 error(line, "constructing matrix from matrix can only take one argument", "constructor");
524 return true;
525 }
526 }
527
528 if (overFull) {
529 error(line, "too many arguments", "constructor");
530 return true;
531 }
532
533 if (op == EOpConstructStruct && !type->isArray() && int(type->getStruct()->size()) != function.getParamCount()) {
534 error(line, "Number of constructor parameters does not match the number of structure fields", "constructor");
535 return true;
536 }
537
538 if (!type->isMatrix() || !matrixInMatrix) {
539 if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) ||
540 (op == EOpConstructStruct && size < type->getObjectSize())) {
541 error(line, "not enough data provided for construction", "constructor");
542 return true;
543 }
544 }
545
546 TIntermTyped *typed = node ? node->getAsTyped() : 0;
547 if (typed == 0) {
548 error(line, "constructor argument does not have a type", "constructor");
549 return true;
550 }
551 if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) {
552 error(line, "cannot convert a sampler", "constructor");
553 return true;
554 }
555 if (typed->getBasicType() == EbtVoid) {
556 error(line, "cannot convert a void", "constructor");
557 return true;
558 }
559
560 return false;
561}
562
563// This function checks to see if a void variable has been declared and raise an error message for such a case
564//
565// returns true in case of an error
566//
567bool TParseContext::voidErrorCheck(int line, const TString& identifier, const TPublicType& pubType)
568{
569 if (pubType.type == EbtVoid) {
570 error(line, "illegal use of type 'void'", identifier.c_str());
571 return true;
572 }
573
574 return false;
575}
576
577// This function checks to see if the node (for the expression) contains a scalar boolean expression or not
578//
579// returns true in case of an error
580//
581bool TParseContext::boolErrorCheck(int line, const TIntermTyped* type)
582{
583 if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) {
584 error(line, "boolean expression expected", "");
585 return true;
586 }
587
588 return false;
589}
590
591// This function checks to see if the node (for the expression) contains a scalar boolean expression or not
592//
593// returns true in case of an error
594//
595bool TParseContext::boolErrorCheck(int line, const TPublicType& pType)
596{
597 if (pType.type != EbtBool || pType.array || pType.matrix || (pType.size > 1)) {
598 error(line, "boolean expression expected", "");
599 return true;
600 }
601
602 return false;
603}
604
605bool TParseContext::samplerErrorCheck(int line, const TPublicType& pType, const char* reason)
606{
607 if (pType.type == EbtStruct) {
608 if (containsSampler(*pType.userDef)) {
609 error(line, reason, getBasicString(pType.type), "(structure contains a sampler)");
610
611 return true;
612 }
613
614 return false;
615 } else if (IsSampler(pType.type)) {
616 error(line, reason, getBasicString(pType.type));
617
618 return true;
619 }
620
621 return false;
622}
623
624bool TParseContext::structQualifierErrorCheck(int line, const TPublicType& pType)
625{
626 if ((pType.qualifier == EvqVaryingIn || pType.qualifier == EvqVaryingOut || pType.qualifier == EvqAttribute) &&
627 pType.type == EbtStruct) {
628 error(line, "cannot be used with a structure", getQualifierString(pType.qualifier));
629
630 return true;
631 }
632
633 if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform"))
634 return true;
635
636 return false;
637}
638
639bool TParseContext::parameterSamplerErrorCheck(int line, TQualifier qualifier, const TType& type)
640{
641 if ((qualifier == EvqOut || qualifier == EvqInOut) &&
642 type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) {
643 error(line, "samplers cannot be output parameters", type.getBasicString());
644 return true;
645 }
646
647 return false;
648}
649
650bool TParseContext::containsSampler(TType& type)
651{
652 if (IsSampler(type.getBasicType()))
653 return true;
654
655 if (type.getBasicType() == EbtStruct) {
656 TTypeList& structure = *type.getStruct();
657 for (unsigned int i = 0; i < structure.size(); ++i) {
658 if (containsSampler(*structure[i].type))
659 return true;
660 }
661 }
662
663 return false;
664}
665
666//
667// Do size checking for an array type's size.
668//
669// Returns true if there was an error.
670//
671bool TParseContext::arraySizeErrorCheck(int line, TIntermTyped* expr, int& size)
672{
673 TIntermConstantUnion* constant = expr->getAsConstantUnion();
674 if (constant == 0 || constant->getBasicType() != EbtInt) {
675 error(line, "array size must be a constant integer expression", "");
676 return true;
677 }
678
679 size = constant->getUnionArrayPointer()->getIConst();
680
681 if (size <= 0) {
682 error(line, "array size must be a positive integer", "");
683 size = 1;
684 return true;
685 }
686
687 return false;
688}
689
690//
691// See if this qualifier can be an array.
692//
693// Returns true if there is an error.
694//
695bool TParseContext::arrayQualifierErrorCheck(int line, TPublicType type)
696{
697 if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqConst)) {
698 error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str());
699 return true;
700 }
701
702 return false;
703}
704
705//
706// See if this type can be an array.
707//
708// Returns true if there is an error.
709//
710bool TParseContext::arrayTypeErrorCheck(int line, TPublicType type)
711{
712 //
713 // Can the type be an array?
714 //
715 if (type.array) {
716 error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str());
717 return true;
718 }
719
720 return false;
721}
722
723//
724// Do all the semantic checking for declaring an array, with and
725// without a size, and make the right changes to the symbol table.
726//
727// size == 0 means no specified size.
728//
729// Returns true if there was an error.
730//
731bool TParseContext::arrayErrorCheck(int line, TString& identifier, TPublicType type, TVariable*& variable)
732{
733 //
734 // Don't check for reserved word use until after we know it's not in the symbol table,
735 // because reserved arrays can be redeclared.
736 //
737
738 bool builtIn = false;
739 bool sameScope = false;
740 TSymbol* symbol = symbolTable.find(identifier, &builtIn, &sameScope);
741 if (symbol == 0 || !sameScope) {
742 if (reservedErrorCheck(line, identifier))
743 return true;
744
745 variable = new TVariable(&identifier, TType(type));
746
747 if (type.arraySize)
748 variable->getType().setArraySize(type.arraySize);
749
750 if (! symbolTable.insert(*variable)) {
751 delete variable;
752 error(line, "INTERNAL ERROR inserting new symbol", identifier.c_str());
753 return true;
754 }
755 } else {
756 if (! symbol->isVariable()) {
757 error(line, "variable expected", identifier.c_str());
758 return true;
759 }
760
761 variable = static_cast<TVariable*>(symbol);
762 if (! variable->getType().isArray()) {
763 error(line, "redeclaring non-array as array", identifier.c_str());
764 return true;
765 }
766 if (variable->getType().getArraySize() > 0) {
767 error(line, "redeclaration of array with size", identifier.c_str());
768 return true;
769 }
770
771 if (! variable->getType().sameElementType(TType(type))) {
772 error(line, "redeclaration of array with a different type", identifier.c_str());
773 return true;
774 }
775
776 TType* t = variable->getArrayInformationType();
777 while (t != 0) {
778 if (t->getMaxArraySize() > type.arraySize) {
779 error(line, "higher index value already used for the array", identifier.c_str());
780 return true;
781 }
782 t->setArraySize(type.arraySize);
783 t = t->getArrayInformationType();
784 }
785
786 if (type.arraySize)
787 variable->getType().setArraySize(type.arraySize);
788 }
789
790 if (voidErrorCheck(line, identifier, type))
791 return true;
792
793 return false;
794}
795
796bool TParseContext::arraySetMaxSize(TIntermSymbol *node, TType* type, int size, bool updateFlag, TSourceLoc line)
797{
798 bool builtIn = false;
799 TSymbol* symbol = symbolTable.find(node->getSymbol(), &builtIn);
800 if (symbol == 0) {
801 error(line, " undeclared identifier", node->getSymbol().c_str());
802 return true;
803 }
804 TVariable* variable = static_cast<TVariable*>(symbol);
805
806 type->setArrayInformationType(variable->getArrayInformationType());
807 variable->updateArrayInformationType(type);
808
809 // special casing to test index value of gl_FragData. If the accessed index is >= gl_MaxDrawBuffers
810 // its an error
811 if (node->getSymbol() == "gl_FragData") {
812 TSymbol* fragData = symbolTable.find("gl_MaxDrawBuffers", &builtIn);
813 ASSERT(fragData);
814
815 int fragDataValue = static_cast<TVariable*>(fragData)->getConstPointer()[0].getIConst();
816 if (fragDataValue <= size) {
817 error(line, "", "[", "gl_FragData can only have a max array size of up to gl_MaxDrawBuffers");
818 return true;
819 }
820 }
821
822 // we dont want to update the maxArraySize when this flag is not set, we just want to include this
823 // node type in the chain of node types so that its updated when a higher maxArraySize comes in.
824 if (!updateFlag)
825 return false;
826
827 size++;
828 variable->getType().setMaxArraySize(size);
829 type->setMaxArraySize(size);
830 TType* tt = type;
831
832 while(tt->getArrayInformationType() != 0) {
833 tt = tt->getArrayInformationType();
834 tt->setMaxArraySize(size);
835 }
836
837 return false;
838}
839
840//
841// Enforce non-initializer type/qualifier rules.
842//
843// Returns true if there was an error.
844//
845bool TParseContext::nonInitConstErrorCheck(int line, TString& identifier, TPublicType& type, bool array)
846{
847 if (type.qualifier == EvqConst)
848 {
849 // Make the qualifier make sense.
850 type.qualifier = EvqTemporary;
851
852 if (array)
853 {
854 error(line, "arrays may not be declared constant since they cannot be initialized", identifier.c_str());
855 }
856 else if (type.isStructureContainingArrays())
857 {
858 error(line, "structures containing arrays may not be declared constant since they cannot be initialized", identifier.c_str());
859 }
860 else
861 {
862 error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
863 }
864
865 return true;
866 }
867
868 return false;
869}
870
871//
872// Do semantic checking for a variable declaration that has no initializer,
873// and update the symbol table.
874//
875// Returns true if there was an error.
876//
877bool TParseContext::nonInitErrorCheck(int line, TString& identifier, TPublicType& type, TVariable*& variable)
878{
879 if (reservedErrorCheck(line, identifier))
880 recover();
881
882 variable = new TVariable(&identifier, TType(type));
883
884 if (! symbolTable.insert(*variable)) {
885 error(line, "redefinition", variable->getName().c_str());
886 delete variable;
887 variable = 0;
888 return true;
889 }
890
891 if (voidErrorCheck(line, identifier, type))
892 return true;
893
894 return false;
895}
896
897bool TParseContext::paramErrorCheck(int line, TQualifier qualifier, TQualifier paramQualifier, TType* type)
898{
899 if (qualifier != EvqConst && qualifier != EvqTemporary) {
900 error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier));
901 return true;
902 }
903 if (qualifier == EvqConst && paramQualifier != EvqIn) {
904 error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier));
905 return true;
906 }
907
908 if (qualifier == EvqConst)
909 type->setQualifier(EvqConstReadOnly);
910 else
911 type->setQualifier(paramQualifier);
912
913 return false;
914}
915
916bool TParseContext::extensionErrorCheck(int line, const TString& extension)
917{
918 const TExtensionBehavior& extBehavior = extensionBehavior();
919 TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str());
920 if (iter == extBehavior.end()) {
921 error(line, "extension", extension.c_str(), "is not supported");
922 return true;
923 }
924 // In GLSL ES, an extension's default behavior is "disable".
925 if (iter->second == EBhDisable || iter->second == EBhUndefined) {
926 error(line, "extension", extension.c_str(), "is disabled");
927 return true;
928 }
929 if (iter->second == EBhWarn) {
930 warning(line, "extension", extension.c_str(), "is being used");
931 return false;
932 }
933
934 return false;
935}
936
937bool TParseContext::supportsExtension(const char* extension)
938{
939 const TExtensionBehavior& extbehavior = extensionBehavior();
940 TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
941 return (iter != extbehavior.end());
942}
943
944void TParseContext::handleExtensionDirective(int line, const char* extName, const char* behavior)
945{
946 pp::SourceLocation loc;
947 DecodeSourceLoc(line, &loc.file, &loc.line);
948 directiveHandler.handleExtension(loc, extName, behavior);
949}
950
951void TParseContext::handlePragmaDirective(int line, const char* name, const char* value)
952{
953 pp::SourceLocation loc;
954 DecodeSourceLoc(line, &loc.file, &loc.line);
955 directiveHandler.handlePragma(loc, name, value);
956}
957
958/////////////////////////////////////////////////////////////////////////////////
959//
960// Non-Errors.
961//
962/////////////////////////////////////////////////////////////////////////////////
963
964//
965// Look up a function name in the symbol table, and make sure it is a function.
966//
967// Return the function symbol if found, otherwise 0.
968//
969const TFunction* TParseContext::findFunction(int line, TFunction* call, bool *builtIn)
970{
971 // First find by unmangled name to check whether the function name has been
972 // hidden by a variable name or struct typename.
973 const TSymbol* symbol = symbolTable.find(call->getName(), builtIn);
974 if (symbol == 0) {
975 symbol = symbolTable.find(call->getMangledName(), builtIn);
976 }
977
978 if (symbol == 0) {
979 error(line, "no matching overloaded function found", call->getName().c_str());
980 return 0;
981 }
982
983 if (!symbol->isFunction()) {
984 error(line, "function name expected", call->getName().c_str());
985 return 0;
986 }
987
988 return static_cast<const TFunction*>(symbol);
989}
990
991//
992// Initializers show up in several places in the grammar. Have one set of
993// code to handle them here.
994//
995bool TParseContext::executeInitializer(TSourceLoc line, TString& identifier, TPublicType& pType,
996 TIntermTyped* initializer, TIntermNode*& intermNode, TVariable* variable)
997{
998 TType type = TType(pType);
999
1000 if (variable == 0) {
1001 if (reservedErrorCheck(line, identifier))
1002 return true;
1003
1004 if (voidErrorCheck(line, identifier, pType))
1005 return true;
1006
1007 //
1008 // add variable to symbol table
1009 //
1010 variable = new TVariable(&identifier, type);
1011 if (! symbolTable.insert(*variable)) {
1012 error(line, "redefinition", variable->getName().c_str());
1013 return true;
1014 // don't delete variable, it's used by error recovery, and the pool
1015 // pop will take care of the memory
1016 }
1017 }
1018
1019 //
1020 // identifier must be of type constant, a global, or a temporary
1021 //
1022 TQualifier qualifier = variable->getType().getQualifier();
1023 if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) {
1024 error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString());
1025 return true;
1026 }
1027 //
1028 // test for and propagate constant
1029 //
1030
1031 if (qualifier == EvqConst) {
1032 if (qualifier != initializer->getType().getQualifier()) {
1033 std::stringstream extraInfoStream;
1034 extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
1035 std::string extraInfo = extraInfoStream.str();
1036 error(line, " assigning non-constant to", "=", extraInfo.c_str());
1037 variable->getType().setQualifier(EvqTemporary);
1038 return true;
1039 }
1040 if (type != initializer->getType()) {
1041 error(line, " non-matching types for const initializer ",
1042 variable->getType().getQualifierString());
1043 variable->getType().setQualifier(EvqTemporary);
1044 return true;
1045 }
1046 if (initializer->getAsConstantUnion()) {
1047 ConstantUnion* unionArray = variable->getConstPointer();
1048
1049 if (type.getObjectSize() == 1 && type.getBasicType() != EbtStruct) {
1050 *unionArray = (initializer->getAsConstantUnion()->getUnionArrayPointer())[0];
1051 } else {
1052 variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
1053 }
1054 } else if (initializer->getAsSymbolNode()) {
1055 const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol());
1056 const TVariable* tVar = static_cast<const TVariable*>(symbol);
1057
1058 ConstantUnion* constArray = tVar->getConstPointer();
1059 variable->shareConstPointer(constArray);
1060 } else {
1061 std::stringstream extraInfoStream;
1062 extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
1063 std::string extraInfo = extraInfoStream.str();
1064 error(line, " cannot assign to", "=", extraInfo.c_str());
1065 variable->getType().setQualifier(EvqTemporary);
1066 return true;
1067 }
1068 }
1069
1070 if (qualifier != EvqConst) {
1071 TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line);
1072 intermNode = intermediate.addAssign(EOpInitialize, intermSymbol, initializer, line);
1073 if (intermNode == 0) {
1074 assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
1075 return true;
1076 }
1077 } else
1078 intermNode = 0;
1079
1080 return false;
1081}
1082
1083bool TParseContext::areAllChildConst(TIntermAggregate* aggrNode)
1084{
1085 ASSERT(aggrNode != NULL);
1086 if (!aggrNode->isConstructor())
1087 return false;
1088
1089 bool allConstant = true;
1090
1091 // check if all the child nodes are constants so that they can be inserted into
1092 // the parent node
1093 TIntermSequence &sequence = aggrNode->getSequence() ;
1094 for (TIntermSequence::iterator p = sequence.begin(); p != sequence.end(); ++p) {
1095 if (!(*p)->getAsTyped()->getAsConstantUnion())
1096 return false;
1097 }
1098
1099 return allConstant;
1100}
1101
1102// This function is used to test for the correctness of the parameters passed to various constructor functions
1103// and also convert them to the right datatype if it is allowed and required.
1104//
1105// Returns 0 for an error or the constructed node (aggregate or typed) for no error.
1106//
1107TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType* type, TOperator op, TFunction* fnCall, TSourceLoc line)
1108{
1109 if (node == 0)
1110 return 0;
1111
1112 TIntermAggregate* aggrNode = node->getAsAggregate();
1113
1114 TTypeList::const_iterator memberTypes;
1115 if (op == EOpConstructStruct)
1116 memberTypes = type->getStruct()->begin();
1117
1118 TType elementType = *type;
1119 if (type->isArray())
1120 elementType.clearArrayness();
1121
1122 bool singleArg;
1123 if (aggrNode) {
1124 if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1)
1125 singleArg = true;
1126 else
1127 singleArg = false;
1128 } else
1129 singleArg = true;
1130
1131 TIntermTyped *newNode;
1132 if (singleArg) {
1133 // If structure constructor or array constructor is being called
1134 // for only one parameter inside the structure, we need to call constructStruct function once.
1135 if (type->isArray())
1136 newNode = constructStruct(node, &elementType, 1, node->getLine(), false);
1137 else if (op == EOpConstructStruct)
1138 newNode = constructStruct(node, (*memberTypes).type, 1, node->getLine(), false);
1139 else
1140 newNode = constructBuiltIn(type, op, node, node->getLine(), false);
1141
1142 if (newNode && newNode->getAsAggregate()) {
1143 TIntermTyped* constConstructor = foldConstConstructor(newNode->getAsAggregate(), *type);
1144 if (constConstructor)
1145 return constConstructor;
1146 }
1147
1148 return newNode;
1149 }
1150
1151 //
1152 // Handle list of arguments.
1153 //
1154 TIntermSequence &sequenceVector = aggrNode->getSequence() ; // Stores the information about the parameter to the constructor
1155 // if the structure constructor contains more than one parameter, then construct
1156 // each parameter
1157
1158 int paramCount = 0; // keeps a track of the constructor parameter number being checked
1159
1160 // for each parameter to the constructor call, check to see if the right type is passed or convert them
1161 // to the right type if possible (and allowed).
1162 // for structure constructors, just check if the right type is passed, no conversion is allowed.
1163
1164 for (TIntermSequence::iterator p = sequenceVector.begin();
1165 p != sequenceVector.end(); p++, paramCount++) {
1166 if (type->isArray())
1167 newNode = constructStruct(*p, &elementType, paramCount+1, node->getLine(), true);
1168 else if (op == EOpConstructStruct)
1169 newNode = constructStruct(*p, (memberTypes[paramCount]).type, paramCount+1, node->getLine(), true);
1170 else
1171 newNode = constructBuiltIn(type, op, *p, node->getLine(), true);
1172
1173 if (newNode) {
1174 *p = newNode;
1175 }
1176 }
1177
1178 TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, line);
1179 TIntermTyped* constConstructor = foldConstConstructor(constructor->getAsAggregate(), *type);
1180 if (constConstructor)
1181 return constConstructor;
1182
1183 return constructor;
1184}
1185
1186TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type)
1187{
1188 bool canBeFolded = areAllChildConst(aggrNode);
1189 aggrNode->setType(type);
1190 if (canBeFolded) {
1191 bool returnVal = false;
1192 ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()];
1193 if (aggrNode->getSequence().size() == 1) {
John Baumand4ae8632014-05-06 16:18:33 -04001194 returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type, true);
John Bauman66b8ab22014-05-06 15:57:45 -04001195 }
1196 else {
John Baumand4ae8632014-05-06 16:18:33 -04001197 returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type);
John Bauman66b8ab22014-05-06 15:57:45 -04001198 }
1199 if (returnVal)
1200 return 0;
1201
1202 return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine());
1203 }
1204
1205 return 0;
1206}
1207
1208// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
1209// for the parameter to the constructor (passed to this function). Essentially, it converts
1210// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
1211// float, then float is converted to int.
1212//
1213// Returns 0 for an error or the constructed node.
1214//
1215TIntermTyped* TParseContext::constructBuiltIn(const TType* type, TOperator op, TIntermNode* node, TSourceLoc line, bool subset)
1216{
1217 TIntermTyped* newNode;
1218 TOperator basicOp;
1219
1220 //
1221 // First, convert types as needed.
1222 //
1223 switch (op) {
1224 case EOpConstructVec2:
1225 case EOpConstructVec3:
1226 case EOpConstructVec4:
1227 case EOpConstructMat2:
1228 case EOpConstructMat3:
1229 case EOpConstructMat4:
1230 case EOpConstructFloat:
1231 basicOp = EOpConstructFloat;
1232 break;
1233
1234 case EOpConstructIVec2:
1235 case EOpConstructIVec3:
1236 case EOpConstructIVec4:
1237 case EOpConstructInt:
1238 basicOp = EOpConstructInt;
1239 break;
1240
1241 case EOpConstructBVec2:
1242 case EOpConstructBVec3:
1243 case EOpConstructBVec4:
1244 case EOpConstructBool:
1245 basicOp = EOpConstructBool;
1246 break;
1247
1248 default:
1249 error(line, "unsupported construction", "");
1250 recover();
1251
1252 return 0;
1253 }
John Baumand4ae8632014-05-06 16:18:33 -04001254 newNode = intermediate.addUnaryMath(basicOp, node, node->getLine());
John Bauman66b8ab22014-05-06 15:57:45 -04001255 if (newNode == 0) {
1256 error(line, "can't convert", "constructor");
1257 return 0;
1258 }
1259
1260 //
1261 // Now, if there still isn't an operation to do the construction, and we need one, add one.
1262 //
1263
1264 // Otherwise, skip out early.
1265 if (subset || (newNode != node && newNode->getType() == *type))
1266 return newNode;
1267
1268 // setAggregateOperator will insert a new node for the constructor, as needed.
1269 return intermediate.setAggregateOperator(newNode, op, line);
1270}
1271
1272// This function tests for the type of the parameters to the structures constructors. Raises
1273// an error message if the expected type does not match the parameter passed to the constructor.
1274//
1275// Returns 0 for an error or the input node itself if the expected and the given parameter types match.
1276//
1277TIntermTyped* TParseContext::constructStruct(TIntermNode* node, TType* type, int paramCount, TSourceLoc line, bool subset)
1278{
1279 if (*type == node->getAsTyped()->getType()) {
1280 if (subset)
1281 return node->getAsTyped();
1282 else
1283 return intermediate.setAggregateOperator(node->getAsTyped(), EOpConstructStruct, line);
1284 } else {
1285 std::stringstream extraInfoStream;
1286 extraInfoStream << "cannot convert parameter " << paramCount
1287 << " from '" << node->getAsTyped()->getType().getBasicString()
1288 << "' to '" << type->getBasicString() << "'";
1289 std::string extraInfo = extraInfoStream.str();
1290 error(line, "", "constructor", extraInfo.c_str());
1291 recover();
1292 }
1293
1294 return 0;
1295}
1296
1297//
1298// This function returns the tree representation for the vector field(s) being accessed from contant vector.
1299// If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is
1300// returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol
1301// node or it could be the intermediate tree representation of accessing fields in a constant structure or column of
1302// a constant matrix.
1303//
1304TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, TSourceLoc line)
1305{
1306 TIntermTyped* typedNode;
1307 TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1308
1309 ConstantUnion *unionArray;
1310 if (tempConstantNode) {
1311 unionArray = tempConstantNode->getUnionArrayPointer();
1312 ASSERT(unionArray);
1313
1314 if (!unionArray) {
1315 return node;
1316 }
1317 } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error
1318 error(line, "Cannot offset into the vector", "Error");
1319 recover();
1320
1321 return 0;
1322 }
1323
1324 ConstantUnion* constArray = new ConstantUnion[fields.num];
1325
1326 for (int i = 0; i < fields.num; i++) {
1327 if (fields.offsets[i] >= node->getType().getObjectSize()) {
1328 std::stringstream extraInfoStream;
1329 extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'";
1330 std::string extraInfo = extraInfoStream.str();
1331 error(line, "", "[", extraInfo.c_str());
1332 recover();
1333 fields.offsets[i] = 0;
1334 }
1335
1336 constArray[i] = unionArray[fields.offsets[i]];
1337
1338 }
1339 typedNode = intermediate.addConstantUnion(constArray, node->getType(), line);
1340 return typedNode;
1341}
1342
1343//
1344// This function returns the column being accessed from a constant matrix. The values are retrieved from
1345// the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input
1346// to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a
1347// constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
1348//
1349TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, TSourceLoc line)
1350{
1351 TIntermTyped* typedNode;
1352 TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1353
1354 if (index >= node->getType().getNominalSize()) {
1355 std::stringstream extraInfoStream;
1356 extraInfoStream << "matrix field selection out of range '" << index << "'";
1357 std::string extraInfo = extraInfoStream.str();
1358 error(line, "", "[", extraInfo.c_str());
1359 recover();
1360 index = 0;
1361 }
1362
1363 if (tempConstantNode) {
1364 ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
1365 int size = tempConstantNode->getType().getNominalSize();
1366 typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line);
1367 } else {
1368 error(line, "Cannot offset into the matrix", "Error");
1369 recover();
1370
1371 return 0;
1372 }
1373
1374 return typedNode;
1375}
1376
1377
1378//
1379// This function returns an element of an array accessed from a constant array. The values are retrieved from
1380// the symbol table and parse-tree is built for the type of the element. The input
1381// to the function could either be a symbol node (a[0] where a is a constant array)that represents a
1382// constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure)
1383//
1384TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, TSourceLoc line)
1385{
1386 TIntermTyped* typedNode;
1387 TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1388 TType arrayElementType = node->getType();
1389 arrayElementType.clearArrayness();
1390
1391 if (index >= node->getType().getArraySize()) {
1392 std::stringstream extraInfoStream;
1393 extraInfoStream << "array field selection out of range '" << index << "'";
1394 std::string extraInfo = extraInfoStream.str();
1395 error(line, "", "[", extraInfo.c_str());
1396 recover();
1397 index = 0;
1398 }
1399
1400 int arrayElementSize = arrayElementType.getObjectSize();
1401
1402 if (tempConstantNode) {
1403 ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
1404 typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line);
1405 } else {
1406 error(line, "Cannot offset into the array", "Error");
1407 recover();
1408
1409 return 0;
1410 }
1411
1412 return typedNode;
1413}
1414
1415
1416//
1417// This function returns the value of a particular field inside a constant structure from the symbol table.
1418// If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr
1419// function and returns the parse-tree with the values of the embedded/nested struct.
1420//
1421TIntermTyped* TParseContext::addConstStruct(TString& identifier, TIntermTyped* node, TSourceLoc line)
1422{
1423 const TTypeList* fields = node->getType().getStruct();
1424 TIntermTyped *typedNode;
1425 int instanceSize = 0;
1426 unsigned int index = 0;
1427 TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion();
1428
1429 for ( index = 0; index < fields->size(); ++index) {
1430 if ((*fields)[index].type->getFieldName() == identifier) {
1431 break;
1432 } else {
1433 instanceSize += (*fields)[index].type->getObjectSize();
1434 }
1435 }
1436
1437 if (tempConstantNode) {
1438 ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer();
1439
1440 typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function
1441 } else {
1442 error(line, "Cannot offset into the structure", "Error");
1443 recover();
1444
1445 return 0;
1446 }
1447
1448 return typedNode;
1449}
1450
1451bool TParseContext::enterStructDeclaration(int line, const TString& identifier)
1452{
1453 ++structNestingLevel;
1454
1455 // Embedded structure definitions are not supported per GLSL ES spec.
1456 // They aren't allowed in GLSL either, but we need to detect this here
1457 // so we don't rely on the GLSL compiler to catch it.
1458 if (structNestingLevel > 1) {
1459 error(line, "", "Embedded struct definitions are not allowed");
1460 return true;
1461 }
1462
1463 return false;
1464}
1465
1466void TParseContext::exitStructDeclaration()
1467{
1468 --structNestingLevel;
1469}
1470
1471namespace {
1472
1473const int kWebGLMaxStructNesting = 4;
1474
1475} // namespace
1476
1477bool TParseContext::structNestingErrorCheck(TSourceLoc line, const TType& fieldType)
1478{
1479 if (shaderSpec != SH_WEBGL_SPEC) {
1480 return false;
1481 }
1482
1483 if (fieldType.getBasicType() != EbtStruct) {
1484 return false;
1485 }
1486
1487 // We're already inside a structure definition at this point, so add
1488 // one to the field's struct nesting.
1489 if (1 + fieldType.getDeepestStructNesting() > kWebGLMaxStructNesting) {
1490 std::stringstream extraInfoStream;
1491 extraInfoStream << "Reference of struct type " << fieldType.getTypeName()
1492 << " exceeds maximum struct nesting of " << kWebGLMaxStructNesting;
1493 std::string extraInfo = extraInfoStream.str();
1494 error(line, "", "", extraInfo.c_str());
1495 return true;
1496 }
1497
1498 return false;
1499}
1500
1501//
1502// Parse an array of strings using yyparse.
1503//
1504// Returns 0 for success.
1505//
1506int PaParseStrings(int count, const char* const string[], const int length[],
1507 TParseContext* context) {
1508 if ((count == 0) || (string == NULL))
1509 return 1;
1510
1511 if (glslang_initialize(context))
1512 return 1;
1513
1514 int error = glslang_scan(count, string, length, context);
1515 if (!error)
1516 error = glslang_parse(context);
1517
1518 glslang_finalize(context);
1519
1520 return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
1521}
1522
1523
1524