Edward Cree | f1174f7 | 2017-08-07 15:26:19 +0100 | [diff] [blame^] | 1 | /* tnum: tracked (or tristate) numbers |
| 2 | * |
| 3 | * A tnum tracks knowledge about the bits of a value. Each bit can be either |
| 4 | * known (0 or 1), or unknown (x). Arithmetic operations on tnums will |
| 5 | * propagate the unknown bits such that the tnum result represents all the |
| 6 | * possible results for possible values of the operands. |
| 7 | */ |
| 8 | #include <linux/kernel.h> |
| 9 | #include <linux/tnum.h> |
| 10 | |
| 11 | #define TNUM(_v, _m) (struct tnum){.value = _v, .mask = _m} |
| 12 | /* A completely unknown value */ |
| 13 | const struct tnum tnum_unknown = { .value = 0, .mask = -1 }; |
| 14 | |
| 15 | struct tnum tnum_const(u64 value) |
| 16 | { |
| 17 | return TNUM(value, 0); |
| 18 | } |
| 19 | |
| 20 | struct tnum tnum_lshift(struct tnum a, u8 shift) |
| 21 | { |
| 22 | return TNUM(a.value << shift, a.mask << shift); |
| 23 | } |
| 24 | |
| 25 | struct tnum tnum_rshift(struct tnum a, u8 shift) |
| 26 | { |
| 27 | return TNUM(a.value >> shift, a.mask >> shift); |
| 28 | } |
| 29 | |
| 30 | struct tnum tnum_add(struct tnum a, struct tnum b) |
| 31 | { |
| 32 | u64 sm, sv, sigma, chi, mu; |
| 33 | |
| 34 | sm = a.mask + b.mask; |
| 35 | sv = a.value + b.value; |
| 36 | sigma = sm + sv; |
| 37 | chi = sigma ^ sv; |
| 38 | mu = chi | a.mask | b.mask; |
| 39 | return TNUM(sv & ~mu, mu); |
| 40 | } |
| 41 | |
| 42 | struct tnum tnum_sub(struct tnum a, struct tnum b) |
| 43 | { |
| 44 | u64 dv, alpha, beta, chi, mu; |
| 45 | |
| 46 | dv = a.value - b.value; |
| 47 | alpha = dv + a.mask; |
| 48 | beta = dv - b.mask; |
| 49 | chi = alpha ^ beta; |
| 50 | mu = chi | a.mask | b.mask; |
| 51 | return TNUM(dv & ~mu, mu); |
| 52 | } |
| 53 | |
| 54 | struct tnum tnum_and(struct tnum a, struct tnum b) |
| 55 | { |
| 56 | u64 alpha, beta, v; |
| 57 | |
| 58 | alpha = a.value | a.mask; |
| 59 | beta = b.value | b.mask; |
| 60 | v = a.value & b.value; |
| 61 | return TNUM(v, alpha & beta & ~v); |
| 62 | } |
| 63 | |
| 64 | struct tnum tnum_or(struct tnum a, struct tnum b) |
| 65 | { |
| 66 | u64 v, mu; |
| 67 | |
| 68 | v = a.value | b.value; |
| 69 | mu = a.mask | b.mask; |
| 70 | return TNUM(v, mu & ~v); |
| 71 | } |
| 72 | |
| 73 | struct tnum tnum_xor(struct tnum a, struct tnum b) |
| 74 | { |
| 75 | u64 v, mu; |
| 76 | |
| 77 | v = a.value ^ b.value; |
| 78 | mu = a.mask | b.mask; |
| 79 | return TNUM(v & ~mu, mu); |
| 80 | } |
| 81 | |
| 82 | /* half-multiply add: acc += (unknown * mask * value). |
| 83 | * An intermediate step in the multiply algorithm. |
| 84 | */ |
| 85 | static struct tnum hma(struct tnum acc, u64 value, u64 mask) |
| 86 | { |
| 87 | while (mask) { |
| 88 | if (mask & 1) |
| 89 | acc = tnum_add(acc, TNUM(0, value)); |
| 90 | mask >>= 1; |
| 91 | value <<= 1; |
| 92 | } |
| 93 | return acc; |
| 94 | } |
| 95 | |
| 96 | struct tnum tnum_mul(struct tnum a, struct tnum b) |
| 97 | { |
| 98 | struct tnum acc; |
| 99 | u64 pi; |
| 100 | |
| 101 | pi = a.value * b.value; |
| 102 | acc = hma(TNUM(pi, 0), a.mask, b.mask | b.value); |
| 103 | return hma(acc, b.mask, a.value); |
| 104 | } |
| 105 | |
| 106 | /* Note that if a and b disagree - i.e. one has a 'known 1' where the other has |
| 107 | * a 'known 0' - this will return a 'known 1' for that bit. |
| 108 | */ |
| 109 | struct tnum tnum_intersect(struct tnum a, struct tnum b) |
| 110 | { |
| 111 | u64 v, mu; |
| 112 | |
| 113 | v = a.value | b.value; |
| 114 | mu = a.mask & b.mask; |
| 115 | return TNUM(v & ~mu, mu); |
| 116 | } |
| 117 | |
| 118 | struct tnum tnum_cast(struct tnum a, u8 size) |
| 119 | { |
| 120 | a.value &= (1ULL << (size * 8)) - 1; |
| 121 | a.mask &= (1ULL << (size * 8)) - 1; |
| 122 | return a; |
| 123 | } |
| 124 | |
| 125 | bool tnum_is_aligned(struct tnum a, u64 size) |
| 126 | { |
| 127 | if (!size) |
| 128 | return true; |
| 129 | return !((a.value | a.mask) & (size - 1)); |
| 130 | } |
| 131 | |
| 132 | bool tnum_in(struct tnum a, struct tnum b) |
| 133 | { |
| 134 | if (b.mask & ~a.mask) |
| 135 | return false; |
| 136 | b.value &= ~a.mask; |
| 137 | return a.value == b.value; |
| 138 | } |
| 139 | |
| 140 | int tnum_strn(char *str, size_t size, struct tnum a) |
| 141 | { |
| 142 | return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask); |
| 143 | } |
| 144 | EXPORT_SYMBOL_GPL(tnum_strn); |
| 145 | |
| 146 | int tnum_sbin(char *str, size_t size, struct tnum a) |
| 147 | { |
| 148 | size_t n; |
| 149 | |
| 150 | for (n = 64; n; n--) { |
| 151 | if (n < size) { |
| 152 | if (a.mask & 1) |
| 153 | str[n - 1] = 'x'; |
| 154 | else if (a.value & 1) |
| 155 | str[n - 1] = '1'; |
| 156 | else |
| 157 | str[n - 1] = '0'; |
| 158 | } |
| 159 | a.mask >>= 1; |
| 160 | a.value >>= 1; |
| 161 | } |
| 162 | str[min(size - 1, (size_t)64)] = 0; |
| 163 | return 64; |
| 164 | } |