blob: fe3c152d0c68ea0d593998eb0a727d9cbdcfbddc [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
Ingo Molnarc31f2e82007-07-09 18:52:01 +020019 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
Linus Torvalds1da177e2005-04-16 15:20:36 -070025 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
Ingo Molnardff06c12007-07-09 18:52:00 +020031#include <linux/uaccess.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080036#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#include <linux/completion.h>
38#include <linux/kernel_stat.h>
Ingo Molnar9a11b49a2006-07-03 00:24:33 -070039#include <linux/debug_locks.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070040#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
Nigel Cunningham7dfb7102006-12-06 20:34:23 -080043#include <linux/freezer.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080044#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
Nick Piggine692ab52007-07-26 13:40:43 +020056#include <linux/sysctl.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070057#include <linux/syscalls.h>
58#include <linux/times.h>
Jay Lan8f0ab512006-09-30 23:28:59 -070059#include <linux/tsacct_kern.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080060#include <linux/kprobes.h>
Shailabh Nagar0ff92242006-07-14 00:24:37 -070061#include <linux/delayacct.h>
Eric Dumazet5517d862007-05-08 00:32:57 -070062#include <linux/reciprocal_div.h>
Ingo Molnardff06c12007-07-09 18:52:00 +020063#include <linux/unistd.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070064
Eric Dumazet5517d862007-05-08 00:32:57 -070065#include <asm/tlb.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070066
67/*
Alexey Dobriyanb035b6d2007-02-10 01:45:10 -080068 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72unsigned long long __attribute__((weak)) sched_clock(void)
73{
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75}
76
77/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070078 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200101#define NICE_0_LOAD SCHED_LOAD_SCALE
102#define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
Linus Torvalds1da177e2005-04-16 15:20:36 -0700104/*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112#define DEF_TIMESLICE (100 * HZ / 1000)
Peter Williams2dd73a42006-06-27 02:54:34 -0700113
Eric Dumazet5517d862007-05-08 00:32:57 -0700114#ifdef CONFIG_SMP
115/*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120{
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122}
123
124/*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129{
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132}
133#endif
134
Ingo Molnar634fa8c2007-07-09 18:52:00 +0200135#define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
Borislav Petkov91fcdd42006-10-19 23:28:29 -0700137
Ingo Molnar634fa8c2007-07-09 18:52:00 +0200138/*
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
141 */
142static unsigned int static_prio_timeslice(int static_prio)
Peter Williams2dd73a42006-06-27 02:54:34 -0700143{
Ingo Molnar634fa8c2007-07-09 18:52:00 +0200144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
Peter Williams2dd73a42006-06-27 02:54:34 -0700151}
152
Ingo Molnare05606d2007-07-09 18:51:59 +0200153static inline int rt_policy(int policy)
154{
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158}
159
160static inline int task_has_rt_policy(struct task_struct *p)
161{
162 return rt_policy(p->policy);
163}
164
Linus Torvalds1da177e2005-04-16 15:20:36 -0700165/*
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200166 * This is the priority-queue data structure of the RT scheduling class:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700167 */
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200168struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700172
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200173struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177};
178
179/* CFS-related fields in a runqueue */
180struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193#ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208#endif
209};
210
211/* Real-Time classes' related field in a runqueue: */
212struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216};
217
218/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700225struct rq {
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200226 spinlock_t lock; /* runqueue lock */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -0700235 unsigned char idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -0700236#ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244#ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700246#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200247 struct rt_rq rt;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
Ingo Molnar36c8b582006-07-03 00:25:41 -0700257 struct task_struct *curr, *idle;
Christoph Lameterc9819f42006-12-10 02:20:25 -0800258 unsigned long next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700259 struct mm_struct *prev_mm;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200260
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
266
Linus Torvalds1da177e2005-04-16 15:20:36 -0700267 atomic_t nr_iowait;
268
269#ifdef CONFIG_SMP
270 struct sched_domain *sd;
271
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700275 int cpu; /* cpu of this runqueue */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700276
Ingo Molnar36c8b582006-07-03 00:25:41 -0700277 struct task_struct *migration_thread;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700278 struct list_head migration_queue;
279#endif
280
281#ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
284
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
290
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
295
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299#endif
Ingo Molnarfcb99372006-07-03 00:25:10 -0700300 struct lock_class_key rq_lock_key;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301};
302
Fenghua Yuf34e3b62007-07-19 01:48:13 -0700303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
Gautham R Shenoy5be93612007-05-09 02:34:04 -0700304static DEFINE_MUTEX(sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700305
Ingo Molnardd41f592007-07-09 18:51:59 +0200306static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
307{
308 rq->curr->sched_class->check_preempt_curr(rq, p);
309}
310
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700311static inline int cpu_of(struct rq *rq)
312{
313#ifdef CONFIG_SMP
314 return rq->cpu;
315#else
316 return 0;
317#endif
318}
319
Nick Piggin674311d2005-06-25 14:57:27 -0700320/*
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200321 * Update the per-runqueue clock, as finegrained as the platform can give
322 * us, but without assuming monotonicity, etc.:
Ingo Molnar20d315d2007-07-09 18:51:58 +0200323 */
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200324static void __update_rq_clock(struct rq *rq)
Ingo Molnar20d315d2007-07-09 18:51:58 +0200325{
326 u64 prev_raw = rq->prev_clock_raw;
327 u64 now = sched_clock();
328 s64 delta = now - prev_raw;
329 u64 clock = rq->clock;
330
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200331#ifdef CONFIG_SCHED_DEBUG
332 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
333#endif
Ingo Molnar20d315d2007-07-09 18:51:58 +0200334 /*
335 * Protect against sched_clock() occasionally going backwards:
336 */
337 if (unlikely(delta < 0)) {
338 clock++;
339 rq->clock_warps++;
340 } else {
341 /*
342 * Catch too large forward jumps too:
343 */
344 if (unlikely(delta > 2*TICK_NSEC)) {
345 clock++;
346 rq->clock_overflows++;
347 } else {
348 if (unlikely(delta > rq->clock_max_delta))
349 rq->clock_max_delta = delta;
350 clock += delta;
351 }
352 }
353
354 rq->prev_clock_raw = now;
355 rq->clock = clock;
Ingo Molnar20d315d2007-07-09 18:51:58 +0200356}
357
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200358static void update_rq_clock(struct rq *rq)
Ingo Molnar20d315d2007-07-09 18:51:58 +0200359{
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200360 if (likely(smp_processor_id() == cpu_of(rq)))
361 __update_rq_clock(rq);
362}
Ingo Molnar20d315d2007-07-09 18:51:58 +0200363
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200364static u64 __rq_clock(struct rq *rq)
365{
366 __update_rq_clock(rq);
Ingo Molnar20d315d2007-07-09 18:51:58 +0200367
368 return rq->clock;
369}
370
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200371static u64 rq_clock(struct rq *rq)
372{
373 update_rq_clock(rq);
374 return rq->clock;
375}
376
Ingo Molnar20d315d2007-07-09 18:51:58 +0200377/*
Nick Piggin674311d2005-06-25 14:57:27 -0700378 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700379 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700380 *
381 * The domain tree of any CPU may only be accessed from within
382 * preempt-disabled sections.
383 */
Ingo Molnar48f24c42006-07-03 00:25:40 -0700384#define for_each_domain(cpu, __sd) \
385 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700386
387#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
388#define this_rq() (&__get_cpu_var(runqueues))
389#define task_rq(p) cpu_rq(task_cpu(p))
390#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
391
Ingo Molnare436d802007-07-19 21:28:35 +0200392/*
393 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
394 * clock constructed from sched_clock():
395 */
396unsigned long long cpu_clock(int cpu)
397{
Ingo Molnare436d802007-07-19 21:28:35 +0200398 unsigned long long now;
399 unsigned long flags;
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200400 struct rq *rq;
Ingo Molnare436d802007-07-19 21:28:35 +0200401
Ingo Molnar2cd4d0e2007-07-26 13:40:43 +0200402 local_irq_save(flags);
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200403 rq = cpu_rq(cpu);
404 update_rq_clock(rq);
405 now = rq->clock;
Ingo Molnar2cd4d0e2007-07-26 13:40:43 +0200406 local_irq_restore(flags);
Ingo Molnare436d802007-07-19 21:28:35 +0200407
408 return now;
409}
410
Ingo Molnar138a8ae2007-07-09 18:51:58 +0200411#ifdef CONFIG_FAIR_GROUP_SCHED
412/* Change a task's ->cfs_rq if it moves across CPUs */
413static inline void set_task_cfs_rq(struct task_struct *p)
414{
415 p->se.cfs_rq = &task_rq(p)->cfs;
416}
417#else
418static inline void set_task_cfs_rq(struct task_struct *p)
419{
420}
421#endif
422
Linus Torvalds1da177e2005-04-16 15:20:36 -0700423#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700424# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700425#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700426#ifndef finish_arch_switch
427# define finish_arch_switch(prev) do { } while (0)
428#endif
429
430#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar70b97a72006-07-03 00:25:42 -0700431static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700432{
433 return rq->curr == p;
434}
435
Ingo Molnar70b97a72006-07-03 00:25:42 -0700436static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700437{
438}
439
Ingo Molnar70b97a72006-07-03 00:25:42 -0700440static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700441{
Ingo Molnarda04c032005-09-13 11:17:59 +0200442#ifdef CONFIG_DEBUG_SPINLOCK
443 /* this is a valid case when another task releases the spinlock */
444 rq->lock.owner = current;
445#endif
Ingo Molnar8a25d5d2006-07-03 00:24:54 -0700446 /*
447 * If we are tracking spinlock dependencies then we have to
448 * fix up the runqueue lock - which gets 'carried over' from
449 * prev into current:
450 */
451 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
452
Nick Piggin4866cde2005-06-25 14:57:23 -0700453 spin_unlock_irq(&rq->lock);
454}
455
456#else /* __ARCH_WANT_UNLOCKED_CTXSW */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700457static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700458{
459#ifdef CONFIG_SMP
460 return p->oncpu;
461#else
462 return rq->curr == p;
463#endif
464}
465
Ingo Molnar70b97a72006-07-03 00:25:42 -0700466static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700467{
468#ifdef CONFIG_SMP
469 /*
470 * We can optimise this out completely for !SMP, because the
471 * SMP rebalancing from interrupt is the only thing that cares
472 * here.
473 */
474 next->oncpu = 1;
475#endif
476#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
477 spin_unlock_irq(&rq->lock);
478#else
479 spin_unlock(&rq->lock);
480#endif
481}
482
Ingo Molnar70b97a72006-07-03 00:25:42 -0700483static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700484{
485#ifdef CONFIG_SMP
486 /*
487 * After ->oncpu is cleared, the task can be moved to a different CPU.
488 * We must ensure this doesn't happen until the switch is completely
489 * finished.
490 */
491 smp_wmb();
492 prev->oncpu = 0;
493#endif
494#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
495 local_irq_enable();
496#endif
497}
498#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700499
500/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700501 * __task_rq_lock - lock the runqueue a given task resides on.
502 * Must be called interrupts disabled.
503 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700504static inline struct rq *__task_rq_lock(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700505 __acquires(rq->lock)
506{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700507 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -0700508
509repeat_lock_task:
510 rq = task_rq(p);
511 spin_lock(&rq->lock);
512 if (unlikely(rq != task_rq(p))) {
513 spin_unlock(&rq->lock);
514 goto repeat_lock_task;
515 }
516 return rq;
517}
518
519/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700520 * task_rq_lock - lock the runqueue a given task resides on and disable
521 * interrupts. Note the ordering: we can safely lookup the task_rq without
522 * explicitly disabling preemption.
523 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700524static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700525 __acquires(rq->lock)
526{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700527 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528
529repeat_lock_task:
530 local_irq_save(*flags);
531 rq = task_rq(p);
532 spin_lock(&rq->lock);
533 if (unlikely(rq != task_rq(p))) {
534 spin_unlock_irqrestore(&rq->lock, *flags);
535 goto repeat_lock_task;
536 }
537 return rq;
538}
539
Ingo Molnar70b97a72006-07-03 00:25:42 -0700540static inline void __task_rq_unlock(struct rq *rq)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700541 __releases(rq->lock)
542{
543 spin_unlock(&rq->lock);
544}
545
Ingo Molnar70b97a72006-07-03 00:25:42 -0700546static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700547 __releases(rq->lock)
548{
549 spin_unlock_irqrestore(&rq->lock, *flags);
550}
551
Linus Torvalds1da177e2005-04-16 15:20:36 -0700552/*
Robert P. J. Daycc2a73b2006-12-10 02:20:00 -0800553 * this_rq_lock - lock this runqueue and disable interrupts.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700554 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700555static inline struct rq *this_rq_lock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700556 __acquires(rq->lock)
557{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700558 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700559
560 local_irq_disable();
561 rq = this_rq();
562 spin_lock(&rq->lock);
563
564 return rq;
565}
566
Ingo Molnarc24d20d2007-07-09 18:51:59 +0200567/*
Ingo Molnar1b9f19c2007-07-09 18:51:59 +0200568 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
569 */
570void sched_clock_unstable_event(void)
571{
572 unsigned long flags;
573 struct rq *rq;
574
575 rq = task_rq_lock(current, &flags);
576 rq->prev_clock_raw = sched_clock();
577 rq->clock_unstable_events++;
578 task_rq_unlock(rq, &flags);
579}
580
581/*
Ingo Molnarc24d20d2007-07-09 18:51:59 +0200582 * resched_task - mark a task 'to be rescheduled now'.
583 *
584 * On UP this means the setting of the need_resched flag, on SMP it
585 * might also involve a cross-CPU call to trigger the scheduler on
586 * the target CPU.
587 */
588#ifdef CONFIG_SMP
589
590#ifndef tsk_is_polling
591#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
592#endif
593
594static void resched_task(struct task_struct *p)
595{
596 int cpu;
597
598 assert_spin_locked(&task_rq(p)->lock);
599
600 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
601 return;
602
603 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
604
605 cpu = task_cpu(p);
606 if (cpu == smp_processor_id())
607 return;
608
609 /* NEED_RESCHED must be visible before we test polling */
610 smp_mb();
611 if (!tsk_is_polling(p))
612 smp_send_reschedule(cpu);
613}
614
615static void resched_cpu(int cpu)
616{
617 struct rq *rq = cpu_rq(cpu);
618 unsigned long flags;
619
620 if (!spin_trylock_irqsave(&rq->lock, flags))
621 return;
622 resched_task(cpu_curr(cpu));
623 spin_unlock_irqrestore(&rq->lock, flags);
624}
625#else
626static inline void resched_task(struct task_struct *p)
627{
628 assert_spin_locked(&task_rq(p)->lock);
629 set_tsk_need_resched(p);
630}
631#endif
632
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200633static u64 div64_likely32(u64 divident, unsigned long divisor)
634{
635#if BITS_PER_LONG == 32
636 if (likely(divident <= 0xffffffffULL))
637 return (u32)divident / divisor;
638 do_div(divident, divisor);
639
640 return divident;
641#else
642 return divident / divisor;
643#endif
644}
645
646#if BITS_PER_LONG == 32
647# define WMULT_CONST (~0UL)
648#else
649# define WMULT_CONST (1UL << 32)
650#endif
651
652#define WMULT_SHIFT 32
653
Ingo Molnarcb1c4fc2007-08-02 17:41:40 +0200654static unsigned long
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200655calc_delta_mine(unsigned long delta_exec, unsigned long weight,
656 struct load_weight *lw)
657{
658 u64 tmp;
659
660 if (unlikely(!lw->inv_weight))
661 lw->inv_weight = WMULT_CONST / lw->weight;
662
663 tmp = (u64)delta_exec * weight;
664 /*
665 * Check whether we'd overflow the 64-bit multiplication:
666 */
667 if (unlikely(tmp > WMULT_CONST)) {
668 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
669 >> (WMULT_SHIFT/2);
670 } else {
671 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
672 }
673
Ingo Molnarecf691d2007-08-02 17:41:40 +0200674 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200675}
676
677static inline unsigned long
678calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
679{
680 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
681}
682
683static void update_load_add(struct load_weight *lw, unsigned long inc)
684{
685 lw->weight += inc;
686 lw->inv_weight = 0;
687}
688
689static void update_load_sub(struct load_weight *lw, unsigned long dec)
690{
691 lw->weight -= dec;
692 lw->inv_weight = 0;
693}
694
Linus Torvalds1da177e2005-04-16 15:20:36 -0700695/*
Peter Williams2dd73a42006-06-27 02:54:34 -0700696 * To aid in avoiding the subversion of "niceness" due to uneven distribution
697 * of tasks with abnormal "nice" values across CPUs the contribution that
698 * each task makes to its run queue's load is weighted according to its
699 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
700 * scaled version of the new time slice allocation that they receive on time
701 * slice expiry etc.
702 */
703
Ingo Molnardd41f592007-07-09 18:51:59 +0200704#define WEIGHT_IDLEPRIO 2
705#define WMULT_IDLEPRIO (1 << 31)
706
707/*
708 * Nice levels are multiplicative, with a gentle 10% change for every
709 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
710 * nice 1, it will get ~10% less CPU time than another CPU-bound task
711 * that remained on nice 0.
712 *
713 * The "10% effect" is relative and cumulative: from _any_ nice level,
714 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
Ingo Molnarf9153ee62007-07-16 09:46:30 +0200715 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
716 * If a task goes up by ~10% and another task goes down by ~10% then
717 * the relative distance between them is ~25%.)
Ingo Molnardd41f592007-07-09 18:51:59 +0200718 */
719static const int prio_to_weight[40] = {
720/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
721/* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
722/* 0 */ NICE_0_LOAD /* 1024 */,
723/* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
724/* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
725};
726
Ingo Molnar5714d2d2007-07-16 09:46:31 +0200727/*
728 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
729 *
730 * In cases where the weight does not change often, we can use the
731 * precalculated inverse to speed up arithmetics by turning divisions
732 * into multiplications:
733 */
Ingo Molnardd41f592007-07-09 18:51:59 +0200734static const u32 prio_to_wmult[40] = {
Ingo Molnare4af30b2007-07-16 09:46:31 +0200735/* -20 */ 48356, 60446, 75558, 94446, 118058,
736/* -15 */ 147573, 184467, 230589, 288233, 360285,
737/* -10 */ 450347, 562979, 703746, 879575, 1099582,
738/* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
739/* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
740/* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
741/* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
742/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
Ingo Molnardd41f592007-07-09 18:51:59 +0200743};
Peter Williams2dd73a42006-06-27 02:54:34 -0700744
Ingo Molnardd41f592007-07-09 18:51:59 +0200745static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
746
747/*
748 * runqueue iterator, to support SMP load-balancing between different
749 * scheduling classes, without having to expose their internal data
750 * structures to the load-balancing proper:
751 */
752struct rq_iterator {
753 void *arg;
754 struct task_struct *(*start)(void *);
755 struct task_struct *(*next)(void *);
756};
757
758static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
759 unsigned long max_nr_move, unsigned long max_load_move,
760 struct sched_domain *sd, enum cpu_idle_type idle,
761 int *all_pinned, unsigned long *load_moved,
Peter Williamsa4ac01c2007-08-09 11:16:46 +0200762 int *this_best_prio, struct rq_iterator *iterator);
Ingo Molnardd41f592007-07-09 18:51:59 +0200763
764#include "sched_stats.h"
765#include "sched_rt.c"
766#include "sched_fair.c"
767#include "sched_idletask.c"
768#ifdef CONFIG_SCHED_DEBUG
769# include "sched_debug.c"
770#endif
771
772#define sched_class_highest (&rt_sched_class)
773
Ingo Molnar9c217242007-08-02 17:41:40 +0200774static void __update_curr_load(struct rq *rq, struct load_stat *ls)
775{
776 if (rq->curr != rq->idle && ls->load.weight) {
777 ls->delta_exec += ls->delta_stat;
778 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
779 ls->delta_stat = 0;
780 }
781}
782
783/*
784 * Update delta_exec, delta_fair fields for rq.
785 *
786 * delta_fair clock advances at a rate inversely proportional to
787 * total load (rq->ls.load.weight) on the runqueue, while
788 * delta_exec advances at the same rate as wall-clock (provided
789 * cpu is not idle).
790 *
791 * delta_exec / delta_fair is a measure of the (smoothened) load on this
792 * runqueue over any given interval. This (smoothened) load is used
793 * during load balance.
794 *
795 * This function is called /before/ updating rq->ls.load
796 * and when switching tasks.
797 */
798static void update_curr_load(struct rq *rq, u64 now)
799{
800 struct load_stat *ls = &rq->ls;
801 u64 start;
802
803 start = ls->load_update_start;
804 ls->load_update_start = now;
805 ls->delta_stat += now - start;
806 /*
807 * Stagger updates to ls->delta_fair. Very frequent updates
808 * can be expensive.
809 */
810 if (ls->delta_stat >= sysctl_sched_stat_granularity)
811 __update_curr_load(rq, ls);
812}
813
814static inline void
815inc_load(struct rq *rq, const struct task_struct *p, u64 now)
816{
817 update_curr_load(rq, now);
818 update_load_add(&rq->ls.load, p->se.load.weight);
819}
820
821static inline void
822dec_load(struct rq *rq, const struct task_struct *p, u64 now)
823{
824 update_curr_load(rq, now);
825 update_load_sub(&rq->ls.load, p->se.load.weight);
826}
827
828static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
829{
830 rq->nr_running++;
831 inc_load(rq, p, now);
832}
833
834static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
835{
836 rq->nr_running--;
837 dec_load(rq, p, now);
838}
839
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200840static void set_load_weight(struct task_struct *p)
841{
Ingo Molnardd41f592007-07-09 18:51:59 +0200842 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
843 p->se.wait_runtime = 0;
844
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200845 if (task_has_rt_policy(p)) {
Ingo Molnardd41f592007-07-09 18:51:59 +0200846 p->se.load.weight = prio_to_weight[0] * 2;
847 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
848 return;
849 }
850
851 /*
852 * SCHED_IDLE tasks get minimal weight:
853 */
854 if (p->policy == SCHED_IDLE) {
855 p->se.load.weight = WEIGHT_IDLEPRIO;
856 p->se.load.inv_weight = WMULT_IDLEPRIO;
857 return;
858 }
859
860 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
861 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200862}
863
Ingo Molnardd41f592007-07-09 18:51:59 +0200864static void
865enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200866{
867 sched_info_queued(p);
Ingo Molnardd41f592007-07-09 18:51:59 +0200868 p->sched_class->enqueue_task(rq, p, wakeup, now);
869 p->se.on_rq = 1;
870}
871
872static void
873dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
874{
875 p->sched_class->dequeue_task(rq, p, sleep, now);
876 p->se.on_rq = 0;
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200877}
878
879/*
Ingo Molnardd41f592007-07-09 18:51:59 +0200880 * __normal_prio - return the priority that is based on the static prio
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200881 */
Ingo Molnar14531182007-07-09 18:51:59 +0200882static inline int __normal_prio(struct task_struct *p)
883{
Ingo Molnardd41f592007-07-09 18:51:59 +0200884 return p->static_prio;
Ingo Molnar14531182007-07-09 18:51:59 +0200885}
886
887/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700888 * Calculate the expected normal priority: i.e. priority
889 * without taking RT-inheritance into account. Might be
890 * boosted by interactivity modifiers. Changes upon fork,
891 * setprio syscalls, and whenever the interactivity
892 * estimator recalculates.
893 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700894static inline int normal_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700895{
896 int prio;
897
Ingo Molnare05606d2007-07-09 18:51:59 +0200898 if (task_has_rt_policy(p))
Ingo Molnarb29739f2006-06-27 02:54:51 -0700899 prio = MAX_RT_PRIO-1 - p->rt_priority;
900 else
901 prio = __normal_prio(p);
902 return prio;
903}
904
905/*
906 * Calculate the current priority, i.e. the priority
907 * taken into account by the scheduler. This value might
908 * be boosted by RT tasks, or might be boosted by
909 * interactivity modifiers. Will be RT if the task got
910 * RT-boosted. If not then it returns p->normal_prio.
911 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700912static int effective_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700913{
914 p->normal_prio = normal_prio(p);
915 /*
916 * If we are RT tasks or we were boosted to RT priority,
917 * keep the priority unchanged. Otherwise, update priority
918 * to the normal priority:
919 */
920 if (!rt_prio(p->prio))
921 return p->normal_prio;
922 return p->prio;
923}
924
925/*
Ingo Molnardd41f592007-07-09 18:51:59 +0200926 * activate_task - move a task to the runqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700927 */
Ingo Molnardd41f592007-07-09 18:51:59 +0200928static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700929{
Ingo Molnara8e504d2007-08-09 11:16:47 +0200930 u64 now;
931
932 update_rq_clock(rq);
933 now = rq->clock;
Con Kolivasd425b272006-03-31 02:31:29 -0800934
Ingo Molnardd41f592007-07-09 18:51:59 +0200935 if (p->state == TASK_UNINTERRUPTIBLE)
936 rq->nr_uninterruptible--;
937
938 enqueue_task(rq, p, wakeup, now);
939 inc_nr_running(p, rq, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700940}
941
942/*
Ingo Molnardd41f592007-07-09 18:51:59 +0200943 * activate_idle_task - move idle task to the _front_ of runqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700944 */
Ingo Molnardd41f592007-07-09 18:51:59 +0200945static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700946{
Ingo Molnara8e504d2007-08-09 11:16:47 +0200947 u64 now;
948
949 update_rq_clock(rq);
950 now = rq->clock;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700951
Ingo Molnardd41f592007-07-09 18:51:59 +0200952 if (p->state == TASK_UNINTERRUPTIBLE)
953 rq->nr_uninterruptible--;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700954
Ingo Molnardd41f592007-07-09 18:51:59 +0200955 enqueue_task(rq, p, 0, now);
956 inc_nr_running(p, rq, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700957}
958
959/*
960 * deactivate_task - remove a task from the runqueue.
961 */
Ingo Molnar8e717b12007-08-09 11:16:46 +0200962static void
963deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700964{
Ingo Molnardd41f592007-07-09 18:51:59 +0200965 if (p->state == TASK_UNINTERRUPTIBLE)
966 rq->nr_uninterruptible++;
967
968 dequeue_task(rq, p, sleep, now);
969 dec_nr_running(p, rq, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700970}
971
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972/**
973 * task_curr - is this task currently executing on a CPU?
974 * @p: the task in question.
975 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700976inline int task_curr(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700977{
978 return cpu_curr(task_cpu(p)) == p;
979}
980
Peter Williams2dd73a42006-06-27 02:54:34 -0700981/* Used instead of source_load when we know the type == 0 */
982unsigned long weighted_cpuload(const int cpu)
983{
Ingo Molnardd41f592007-07-09 18:51:59 +0200984 return cpu_rq(cpu)->ls.load.weight;
985}
986
987static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
988{
989#ifdef CONFIG_SMP
990 task_thread_info(p)->cpu = cpu;
991 set_task_cfs_rq(p);
992#endif
Peter Williams2dd73a42006-06-27 02:54:34 -0700993}
994
Linus Torvalds1da177e2005-04-16 15:20:36 -0700995#ifdef CONFIG_SMP
Ingo Molnarc65cc872007-07-09 18:51:58 +0200996
Ingo Molnardd41f592007-07-09 18:51:59 +0200997void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
Ingo Molnarc65cc872007-07-09 18:51:58 +0200998{
Ingo Molnardd41f592007-07-09 18:51:59 +0200999 int old_cpu = task_cpu(p);
1000 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1001 u64 clock_offset, fair_clock_offset;
1002
1003 clock_offset = old_rq->clock - new_rq->clock;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02001004 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
1005
Ingo Molnardd41f592007-07-09 18:51:59 +02001006 if (p->se.wait_start_fair)
1007 p->se.wait_start_fair -= fair_clock_offset;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02001008 if (p->se.sleep_start_fair)
1009 p->se.sleep_start_fair -= fair_clock_offset;
1010
1011#ifdef CONFIG_SCHEDSTATS
1012 if (p->se.wait_start)
1013 p->se.wait_start -= clock_offset;
Ingo Molnardd41f592007-07-09 18:51:59 +02001014 if (p->se.sleep_start)
1015 p->se.sleep_start -= clock_offset;
1016 if (p->se.block_start)
1017 p->se.block_start -= clock_offset;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02001018#endif
Ingo Molnardd41f592007-07-09 18:51:59 +02001019
1020 __set_task_cpu(p, new_cpu);
Ingo Molnarc65cc872007-07-09 18:51:58 +02001021}
1022
Ingo Molnar70b97a72006-07-03 00:25:42 -07001023struct migration_req {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001024 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001025
Ingo Molnar36c8b582006-07-03 00:25:41 -07001026 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001027 int dest_cpu;
1028
Linus Torvalds1da177e2005-04-16 15:20:36 -07001029 struct completion done;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001030};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001031
1032/*
1033 * The task's runqueue lock must be held.
1034 * Returns true if you have to wait for migration thread.
1035 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001036static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07001037migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001038{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001039 struct rq *rq = task_rq(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001040
1041 /*
1042 * If the task is not on a runqueue (and not running), then
1043 * it is sufficient to simply update the task's cpu field.
1044 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001045 if (!p->se.on_rq && !task_running(rq, p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001046 set_task_cpu(p, dest_cpu);
1047 return 0;
1048 }
1049
1050 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001051 req->task = p;
1052 req->dest_cpu = dest_cpu;
1053 list_add(&req->list, &rq->migration_queue);
Ingo Molnar48f24c42006-07-03 00:25:40 -07001054
Linus Torvalds1da177e2005-04-16 15:20:36 -07001055 return 1;
1056}
1057
1058/*
1059 * wait_task_inactive - wait for a thread to unschedule.
1060 *
1061 * The caller must ensure that the task *will* unschedule sometime soon,
1062 * else this function might spin for a *long* time. This function can't
1063 * be called with interrupts off, or it may introduce deadlock with
1064 * smp_call_function() if an IPI is sent by the same process we are
1065 * waiting to become inactive.
1066 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001067void wait_task_inactive(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001068{
1069 unsigned long flags;
Ingo Molnardd41f592007-07-09 18:51:59 +02001070 int running, on_rq;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001071 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001072
1073repeat:
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001074 /*
1075 * We do the initial early heuristics without holding
1076 * any task-queue locks at all. We'll only try to get
1077 * the runqueue lock when things look like they will
1078 * work out!
1079 */
1080 rq = task_rq(p);
1081
1082 /*
1083 * If the task is actively running on another CPU
1084 * still, just relax and busy-wait without holding
1085 * any locks.
1086 *
1087 * NOTE! Since we don't hold any locks, it's not
1088 * even sure that "rq" stays as the right runqueue!
1089 * But we don't care, since "task_running()" will
1090 * return false if the runqueue has changed and p
1091 * is actually now running somewhere else!
1092 */
1093 while (task_running(rq, p))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001094 cpu_relax();
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001095
1096 /*
1097 * Ok, time to look more closely! We need the rq
1098 * lock now, to be *sure*. If we're wrong, we'll
1099 * just go back and repeat.
1100 */
1101 rq = task_rq_lock(p, &flags);
1102 running = task_running(rq, p);
Ingo Molnardd41f592007-07-09 18:51:59 +02001103 on_rq = p->se.on_rq;
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001104 task_rq_unlock(rq, &flags);
1105
1106 /*
1107 * Was it really running after all now that we
1108 * checked with the proper locks actually held?
1109 *
1110 * Oops. Go back and try again..
1111 */
1112 if (unlikely(running)) {
1113 cpu_relax();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001114 goto repeat;
1115 }
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001116
1117 /*
1118 * It's not enough that it's not actively running,
1119 * it must be off the runqueue _entirely_, and not
1120 * preempted!
1121 *
1122 * So if it wa still runnable (but just not actively
1123 * running right now), it's preempted, and we should
1124 * yield - it could be a while.
1125 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001126 if (unlikely(on_rq)) {
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001127 yield();
1128 goto repeat;
1129 }
1130
1131 /*
1132 * Ahh, all good. It wasn't running, and it wasn't
1133 * runnable, which means that it will never become
1134 * running in the future either. We're all done!
1135 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001136}
1137
1138/***
1139 * kick_process - kick a running thread to enter/exit the kernel
1140 * @p: the to-be-kicked thread
1141 *
1142 * Cause a process which is running on another CPU to enter
1143 * kernel-mode, without any delay. (to get signals handled.)
1144 *
1145 * NOTE: this function doesnt have to take the runqueue lock,
1146 * because all it wants to ensure is that the remote task enters
1147 * the kernel. If the IPI races and the task has been migrated
1148 * to another CPU then no harm is done and the purpose has been
1149 * achieved as well.
1150 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001151void kick_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001152{
1153 int cpu;
1154
1155 preempt_disable();
1156 cpu = task_cpu(p);
1157 if ((cpu != smp_processor_id()) && task_curr(p))
1158 smp_send_reschedule(cpu);
1159 preempt_enable();
1160}
1161
1162/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001163 * Return a low guess at the load of a migration-source cpu weighted
1164 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001165 *
1166 * We want to under-estimate the load of migration sources, to
1167 * balance conservatively.
1168 */
Con Kolivasb9104722005-11-08 21:38:55 -08001169static inline unsigned long source_load(int cpu, int type)
1170{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001171 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02001172 unsigned long total = weighted_cpuload(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001173
Peter Williams2dd73a42006-06-27 02:54:34 -07001174 if (type == 0)
Ingo Molnardd41f592007-07-09 18:51:59 +02001175 return total;
Peter Williams2dd73a42006-06-27 02:54:34 -07001176
Ingo Molnardd41f592007-07-09 18:51:59 +02001177 return min(rq->cpu_load[type-1], total);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001178}
1179
1180/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001181 * Return a high guess at the load of a migration-target cpu weighted
1182 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001183 */
Con Kolivasb9104722005-11-08 21:38:55 -08001184static inline unsigned long target_load(int cpu, int type)
1185{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001186 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02001187 unsigned long total = weighted_cpuload(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001188
Peter Williams2dd73a42006-06-27 02:54:34 -07001189 if (type == 0)
Ingo Molnardd41f592007-07-09 18:51:59 +02001190 return total;
Peter Williams2dd73a42006-06-27 02:54:34 -07001191
Ingo Molnardd41f592007-07-09 18:51:59 +02001192 return max(rq->cpu_load[type-1], total);
Peter Williams2dd73a42006-06-27 02:54:34 -07001193}
1194
1195/*
1196 * Return the average load per task on the cpu's run queue
1197 */
1198static inline unsigned long cpu_avg_load_per_task(int cpu)
1199{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001200 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02001201 unsigned long total = weighted_cpuload(cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001202 unsigned long n = rq->nr_running;
1203
Ingo Molnardd41f592007-07-09 18:51:59 +02001204 return n ? total / n : SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001205}
1206
Nick Piggin147cbb42005-06-25 14:57:19 -07001207/*
1208 * find_idlest_group finds and returns the least busy CPU group within the
1209 * domain.
1210 */
1211static struct sched_group *
1212find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1213{
1214 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1215 unsigned long min_load = ULONG_MAX, this_load = 0;
1216 int load_idx = sd->forkexec_idx;
1217 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1218
1219 do {
1220 unsigned long load, avg_load;
1221 int local_group;
1222 int i;
1223
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001224 /* Skip over this group if it has no CPUs allowed */
1225 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1226 goto nextgroup;
1227
Nick Piggin147cbb42005-06-25 14:57:19 -07001228 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -07001229
1230 /* Tally up the load of all CPUs in the group */
1231 avg_load = 0;
1232
1233 for_each_cpu_mask(i, group->cpumask) {
1234 /* Bias balancing toward cpus of our domain */
1235 if (local_group)
1236 load = source_load(i, load_idx);
1237 else
1238 load = target_load(i, load_idx);
1239
1240 avg_load += load;
1241 }
1242
1243 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07001244 avg_load = sg_div_cpu_power(group,
1245 avg_load * SCHED_LOAD_SCALE);
Nick Piggin147cbb42005-06-25 14:57:19 -07001246
1247 if (local_group) {
1248 this_load = avg_load;
1249 this = group;
1250 } else if (avg_load < min_load) {
1251 min_load = avg_load;
1252 idlest = group;
1253 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001254nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001255 group = group->next;
1256 } while (group != sd->groups);
1257
1258 if (!idlest || 100*this_load < imbalance*min_load)
1259 return NULL;
1260 return idlest;
1261}
1262
1263/*
Satoru Takeuchi0feaece2006-10-03 01:14:10 -07001264 * find_idlest_cpu - find the idlest cpu among the cpus in group.
Nick Piggin147cbb42005-06-25 14:57:19 -07001265 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001266static int
1267find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001268{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001269 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001270 unsigned long load, min_load = ULONG_MAX;
1271 int idlest = -1;
1272 int i;
1273
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001274 /* Traverse only the allowed CPUs */
1275 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1276
1277 for_each_cpu_mask(i, tmp) {
Peter Williams2dd73a42006-06-27 02:54:34 -07001278 load = weighted_cpuload(i);
Nick Piggin147cbb42005-06-25 14:57:19 -07001279
1280 if (load < min_load || (load == min_load && i == this_cpu)) {
1281 min_load = load;
1282 idlest = i;
1283 }
1284 }
1285
1286 return idlest;
1287}
1288
Nick Piggin476d1392005-06-25 14:57:29 -07001289/*
1290 * sched_balance_self: balance the current task (running on cpu) in domains
1291 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1292 * SD_BALANCE_EXEC.
1293 *
1294 * Balance, ie. select the least loaded group.
1295 *
1296 * Returns the target CPU number, or the same CPU if no balancing is needed.
1297 *
1298 * preempt must be disabled.
1299 */
1300static int sched_balance_self(int cpu, int flag)
1301{
1302 struct task_struct *t = current;
1303 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001304
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001305 for_each_domain(cpu, tmp) {
Ingo Molnar9761eea2007-07-09 18:52:00 +02001306 /*
1307 * If power savings logic is enabled for a domain, stop there.
1308 */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07001309 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1310 break;
Nick Piggin476d1392005-06-25 14:57:29 -07001311 if (tmp->flags & flag)
1312 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001313 }
Nick Piggin476d1392005-06-25 14:57:29 -07001314
1315 while (sd) {
1316 cpumask_t span;
1317 struct sched_group *group;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001318 int new_cpu, weight;
1319
1320 if (!(sd->flags & flag)) {
1321 sd = sd->child;
1322 continue;
1323 }
Nick Piggin476d1392005-06-25 14:57:29 -07001324
1325 span = sd->span;
1326 group = find_idlest_group(sd, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001327 if (!group) {
1328 sd = sd->child;
1329 continue;
1330 }
Nick Piggin476d1392005-06-25 14:57:29 -07001331
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001332 new_cpu = find_idlest_cpu(group, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001333 if (new_cpu == -1 || new_cpu == cpu) {
1334 /* Now try balancing at a lower domain level of cpu */
1335 sd = sd->child;
1336 continue;
1337 }
Nick Piggin476d1392005-06-25 14:57:29 -07001338
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001339 /* Now try balancing at a lower domain level of new_cpu */
Nick Piggin476d1392005-06-25 14:57:29 -07001340 cpu = new_cpu;
Nick Piggin476d1392005-06-25 14:57:29 -07001341 sd = NULL;
1342 weight = cpus_weight(span);
1343 for_each_domain(cpu, tmp) {
1344 if (weight <= cpus_weight(tmp->span))
1345 break;
1346 if (tmp->flags & flag)
1347 sd = tmp;
1348 }
1349 /* while loop will break here if sd == NULL */
1350 }
1351
1352 return cpu;
1353}
1354
1355#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001356
1357/*
1358 * wake_idle() will wake a task on an idle cpu if task->cpu is
1359 * not idle and an idle cpu is available. The span of cpus to
1360 * search starts with cpus closest then further out as needed,
1361 * so we always favor a closer, idle cpu.
1362 *
1363 * Returns the CPU we should wake onto.
1364 */
1365#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
Ingo Molnar36c8b582006-07-03 00:25:41 -07001366static int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001367{
1368 cpumask_t tmp;
1369 struct sched_domain *sd;
1370 int i;
1371
Siddha, Suresh B49531982007-05-08 00:33:01 -07001372 /*
1373 * If it is idle, then it is the best cpu to run this task.
1374 *
1375 * This cpu is also the best, if it has more than one task already.
1376 * Siblings must be also busy(in most cases) as they didn't already
1377 * pickup the extra load from this cpu and hence we need not check
1378 * sibling runqueue info. This will avoid the checks and cache miss
1379 * penalities associated with that.
1380 */
1381 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001382 return cpu;
1383
1384 for_each_domain(cpu, sd) {
1385 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001386 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001387 for_each_cpu_mask(i, tmp) {
1388 if (idle_cpu(i))
1389 return i;
1390 }
Ingo Molnar9761eea2007-07-09 18:52:00 +02001391 } else {
Nick Piggine0f364f2005-06-25 14:57:06 -07001392 break;
Ingo Molnar9761eea2007-07-09 18:52:00 +02001393 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001394 }
1395 return cpu;
1396}
1397#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001398static inline int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001399{
1400 return cpu;
1401}
1402#endif
1403
1404/***
1405 * try_to_wake_up - wake up a thread
1406 * @p: the to-be-woken-up thread
1407 * @state: the mask of task states that can be woken
1408 * @sync: do a synchronous wakeup?
1409 *
1410 * Put it on the run-queue if it's not already there. The "current"
1411 * thread is always on the run-queue (except when the actual
1412 * re-schedule is in progress), and as such you're allowed to do
1413 * the simpler "current->state = TASK_RUNNING" to mark yourself
1414 * runnable without the overhead of this.
1415 *
1416 * returns failure only if the task is already active.
1417 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001418static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001419{
1420 int cpu, this_cpu, success = 0;
1421 unsigned long flags;
1422 long old_state;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001423 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001424#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -07001425 struct sched_domain *sd, *this_sd = NULL;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001426 unsigned long load, this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001427 int new_cpu;
1428#endif
1429
1430 rq = task_rq_lock(p, &flags);
1431 old_state = p->state;
1432 if (!(old_state & state))
1433 goto out;
1434
Ingo Molnardd41f592007-07-09 18:51:59 +02001435 if (p->se.on_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001436 goto out_running;
1437
1438 cpu = task_cpu(p);
1439 this_cpu = smp_processor_id();
1440
1441#ifdef CONFIG_SMP
1442 if (unlikely(task_running(rq, p)))
1443 goto out_activate;
1444
Nick Piggin78979862005-06-25 14:57:13 -07001445 new_cpu = cpu;
1446
Linus Torvalds1da177e2005-04-16 15:20:36 -07001447 schedstat_inc(rq, ttwu_cnt);
1448 if (cpu == this_cpu) {
1449 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001450 goto out_set_cpu;
1451 }
1452
1453 for_each_domain(this_cpu, sd) {
1454 if (cpu_isset(cpu, sd->span)) {
1455 schedstat_inc(sd, ttwu_wake_remote);
1456 this_sd = sd;
1457 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001458 }
1459 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001460
Nick Piggin78979862005-06-25 14:57:13 -07001461 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001462 goto out_set_cpu;
1463
Linus Torvalds1da177e2005-04-16 15:20:36 -07001464 /*
Nick Piggin78979862005-06-25 14:57:13 -07001465 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001466 */
Nick Piggin78979862005-06-25 14:57:13 -07001467 if (this_sd) {
1468 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001469 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001470
Nick Piggina3f21bc2005-06-25 14:57:15 -07001471 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1472
Nick Piggin78979862005-06-25 14:57:13 -07001473 load = source_load(cpu, idx);
1474 this_load = target_load(this_cpu, idx);
1475
Nick Piggin78979862005-06-25 14:57:13 -07001476 new_cpu = this_cpu; /* Wake to this CPU if we can */
1477
Nick Piggina3f21bc2005-06-25 14:57:15 -07001478 if (this_sd->flags & SD_WAKE_AFFINE) {
1479 unsigned long tl = this_load;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08001480 unsigned long tl_per_task;
1481
1482 tl_per_task = cpu_avg_load_per_task(this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001483
Linus Torvalds1da177e2005-04-16 15:20:36 -07001484 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001485 * If sync wakeup then subtract the (maximum possible)
1486 * effect of the currently running task from the load
1487 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001488 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001489 if (sync)
Ingo Molnardd41f592007-07-09 18:51:59 +02001490 tl -= current->se.load.weight;
Nick Piggina3f21bc2005-06-25 14:57:15 -07001491
1492 if ((tl <= load &&
Peter Williams2dd73a42006-06-27 02:54:34 -07001493 tl + target_load(cpu, idx) <= tl_per_task) ||
Ingo Molnardd41f592007-07-09 18:51:59 +02001494 100*(tl + p->se.load.weight) <= imbalance*load) {
Nick Piggina3f21bc2005-06-25 14:57:15 -07001495 /*
1496 * This domain has SD_WAKE_AFFINE and
1497 * p is cache cold in this domain, and
1498 * there is no bad imbalance.
1499 */
1500 schedstat_inc(this_sd, ttwu_move_affine);
1501 goto out_set_cpu;
1502 }
1503 }
1504
1505 /*
1506 * Start passive balancing when half the imbalance_pct
1507 * limit is reached.
1508 */
1509 if (this_sd->flags & SD_WAKE_BALANCE) {
1510 if (imbalance*this_load <= 100*load) {
1511 schedstat_inc(this_sd, ttwu_move_balance);
1512 goto out_set_cpu;
1513 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001514 }
1515 }
1516
1517 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1518out_set_cpu:
1519 new_cpu = wake_idle(new_cpu, p);
1520 if (new_cpu != cpu) {
1521 set_task_cpu(p, new_cpu);
1522 task_rq_unlock(rq, &flags);
1523 /* might preempt at this point */
1524 rq = task_rq_lock(p, &flags);
1525 old_state = p->state;
1526 if (!(old_state & state))
1527 goto out;
Ingo Molnardd41f592007-07-09 18:51:59 +02001528 if (p->se.on_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001529 goto out_running;
1530
1531 this_cpu = smp_processor_id();
1532 cpu = task_cpu(p);
1533 }
1534
1535out_activate:
1536#endif /* CONFIG_SMP */
Ingo Molnardd41f592007-07-09 18:51:59 +02001537 activate_task(rq, p, 1);
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001538 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001539 * Sync wakeups (i.e. those types of wakeups where the waker
1540 * has indicated that it will leave the CPU in short order)
1541 * don't trigger a preemption, if the woken up task will run on
1542 * this cpu. (in this case the 'I will reschedule' promise of
1543 * the waker guarantees that the freshly woken up task is going
1544 * to be considered on this CPU.)
1545 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001546 if (!sync || cpu != this_cpu)
1547 check_preempt_curr(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001548 success = 1;
1549
1550out_running:
1551 p->state = TASK_RUNNING;
1552out:
1553 task_rq_unlock(rq, &flags);
1554
1555 return success;
1556}
1557
Ingo Molnar36c8b582006-07-03 00:25:41 -07001558int fastcall wake_up_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001559{
1560 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1561 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1562}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001563EXPORT_SYMBOL(wake_up_process);
1564
Ingo Molnar36c8b582006-07-03 00:25:41 -07001565int fastcall wake_up_state(struct task_struct *p, unsigned int state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001566{
1567 return try_to_wake_up(p, state, 0);
1568}
1569
Linus Torvalds1da177e2005-04-16 15:20:36 -07001570/*
1571 * Perform scheduler related setup for a newly forked process p.
1572 * p is forked by current.
Ingo Molnardd41f592007-07-09 18:51:59 +02001573 *
1574 * __sched_fork() is basic setup used by init_idle() too:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001575 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001576static void __sched_fork(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001577{
Ingo Molnardd41f592007-07-09 18:51:59 +02001578 p->se.wait_start_fair = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02001579 p->se.exec_start = 0;
1580 p->se.sum_exec_runtime = 0;
1581 p->se.delta_exec = 0;
1582 p->se.delta_fair_run = 0;
1583 p->se.delta_fair_sleep = 0;
1584 p->se.wait_runtime = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02001585 p->se.sleep_start_fair = 0;
1586
1587#ifdef CONFIG_SCHEDSTATS
1588 p->se.wait_start = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02001589 p->se.sum_wait_runtime = 0;
1590 p->se.sum_sleep_runtime = 0;
1591 p->se.sleep_start = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02001592 p->se.block_start = 0;
1593 p->se.sleep_max = 0;
1594 p->se.block_max = 0;
1595 p->se.exec_max = 0;
1596 p->se.wait_max = 0;
1597 p->se.wait_runtime_overruns = 0;
1598 p->se.wait_runtime_underruns = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02001599#endif
Nick Piggin476d1392005-06-25 14:57:29 -07001600
Ingo Molnardd41f592007-07-09 18:51:59 +02001601 INIT_LIST_HEAD(&p->run_list);
1602 p->se.on_rq = 0;
Nick Piggin476d1392005-06-25 14:57:29 -07001603
Avi Kivitye107be32007-07-26 13:40:43 +02001604#ifdef CONFIG_PREEMPT_NOTIFIERS
1605 INIT_HLIST_HEAD(&p->preempt_notifiers);
1606#endif
1607
Linus Torvalds1da177e2005-04-16 15:20:36 -07001608 /*
1609 * We mark the process as running here, but have not actually
1610 * inserted it onto the runqueue yet. This guarantees that
1611 * nobody will actually run it, and a signal or other external
1612 * event cannot wake it up and insert it on the runqueue either.
1613 */
1614 p->state = TASK_RUNNING;
Ingo Molnardd41f592007-07-09 18:51:59 +02001615}
1616
1617/*
1618 * fork()/clone()-time setup:
1619 */
1620void sched_fork(struct task_struct *p, int clone_flags)
1621{
1622 int cpu = get_cpu();
1623
1624 __sched_fork(p);
1625
1626#ifdef CONFIG_SMP
1627 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1628#endif
1629 __set_task_cpu(p, cpu);
Ingo Molnarb29739f2006-06-27 02:54:51 -07001630
1631 /*
1632 * Make sure we do not leak PI boosting priority to the child:
1633 */
1634 p->prio = current->normal_prio;
1635
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001636#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
Ingo Molnardd41f592007-07-09 18:51:59 +02001637 if (likely(sched_info_on()))
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001638 memset(&p->sched_info, 0, sizeof(p->sched_info));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001639#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001640#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001641 p->oncpu = 0;
1642#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001643#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001644 /* Want to start with kernel preemption disabled. */
Al Viroa1261f542005-11-13 16:06:55 -08001645 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001646#endif
Nick Piggin476d1392005-06-25 14:57:29 -07001647 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001648}
1649
1650/*
Ingo Molnardd41f592007-07-09 18:51:59 +02001651 * After fork, child runs first. (default) If set to 0 then
1652 * parent will (try to) run first.
1653 */
1654unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1655
1656/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001657 * wake_up_new_task - wake up a newly created task for the first time.
1658 *
1659 * This function will do some initial scheduler statistics housekeeping
1660 * that must be done for every newly created context, then puts the task
1661 * on the runqueue and wakes it.
1662 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001663void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001664{
1665 unsigned long flags;
Ingo Molnardd41f592007-07-09 18:51:59 +02001666 struct rq *rq;
1667 int this_cpu;
Ingo Molnarcad60d92007-08-02 17:41:40 +02001668 u64 now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001669
1670 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001671 BUG_ON(p->state != TASK_RUNNING);
Ingo Molnardd41f592007-07-09 18:51:59 +02001672 this_cpu = smp_processor_id(); /* parent's CPU */
Ingo Molnara8e504d2007-08-09 11:16:47 +02001673 update_rq_clock(rq);
1674 now = rq->clock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001675
1676 p->prio = effective_prio(p);
1677
Ingo Molnarcad60d92007-08-02 17:41:40 +02001678 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1679 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1680 !current->se.on_rq) {
1681
Ingo Molnardd41f592007-07-09 18:51:59 +02001682 activate_task(rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001683 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001684 /*
Ingo Molnardd41f592007-07-09 18:51:59 +02001685 * Let the scheduling class do new task startup
1686 * management (if any):
Linus Torvalds1da177e2005-04-16 15:20:36 -07001687 */
Ingo Molnarcad60d92007-08-02 17:41:40 +02001688 p->sched_class->task_new(rq, p, now);
1689 inc_nr_running(p, rq, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001690 }
Ingo Molnardd41f592007-07-09 18:51:59 +02001691 check_preempt_curr(rq, p);
1692 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001693}
1694
Avi Kivitye107be32007-07-26 13:40:43 +02001695#ifdef CONFIG_PREEMPT_NOTIFIERS
1696
1697/**
Randy Dunlap421cee22007-07-31 00:37:50 -07001698 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1699 * @notifier: notifier struct to register
Avi Kivitye107be32007-07-26 13:40:43 +02001700 */
1701void preempt_notifier_register(struct preempt_notifier *notifier)
1702{
1703 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1704}
1705EXPORT_SYMBOL_GPL(preempt_notifier_register);
1706
1707/**
1708 * preempt_notifier_unregister - no longer interested in preemption notifications
Randy Dunlap421cee22007-07-31 00:37:50 -07001709 * @notifier: notifier struct to unregister
Avi Kivitye107be32007-07-26 13:40:43 +02001710 *
1711 * This is safe to call from within a preemption notifier.
1712 */
1713void preempt_notifier_unregister(struct preempt_notifier *notifier)
1714{
1715 hlist_del(&notifier->link);
1716}
1717EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1718
1719static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1720{
1721 struct preempt_notifier *notifier;
1722 struct hlist_node *node;
1723
1724 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1725 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1726}
1727
1728static void
1729fire_sched_out_preempt_notifiers(struct task_struct *curr,
1730 struct task_struct *next)
1731{
1732 struct preempt_notifier *notifier;
1733 struct hlist_node *node;
1734
1735 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1736 notifier->ops->sched_out(notifier, next);
1737}
1738
1739#else
1740
1741static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1742{
1743}
1744
1745static void
1746fire_sched_out_preempt_notifiers(struct task_struct *curr,
1747 struct task_struct *next)
1748{
1749}
1750
1751#endif
1752
Linus Torvalds1da177e2005-04-16 15:20:36 -07001753/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001754 * prepare_task_switch - prepare to switch tasks
1755 * @rq: the runqueue preparing to switch
Randy Dunlap421cee22007-07-31 00:37:50 -07001756 * @prev: the current task that is being switched out
Nick Piggin4866cde2005-06-25 14:57:23 -07001757 * @next: the task we are going to switch to.
1758 *
1759 * This is called with the rq lock held and interrupts off. It must
1760 * be paired with a subsequent finish_task_switch after the context
1761 * switch.
1762 *
1763 * prepare_task_switch sets up locking and calls architecture specific
1764 * hooks.
1765 */
Avi Kivitye107be32007-07-26 13:40:43 +02001766static inline void
1767prepare_task_switch(struct rq *rq, struct task_struct *prev,
1768 struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -07001769{
Avi Kivitye107be32007-07-26 13:40:43 +02001770 fire_sched_out_preempt_notifiers(prev, next);
Nick Piggin4866cde2005-06-25 14:57:23 -07001771 prepare_lock_switch(rq, next);
1772 prepare_arch_switch(next);
1773}
1774
1775/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001776 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001777 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001778 * @prev: the thread we just switched away from.
1779 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001780 * finish_task_switch must be called after the context switch, paired
1781 * with a prepare_task_switch call before the context switch.
1782 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1783 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001784 *
1785 * Note that we may have delayed dropping an mm in context_switch(). If
1786 * so, we finish that here outside of the runqueue lock. (Doing it
1787 * with the lock held can cause deadlocks; see schedule() for
1788 * details.)
1789 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001790static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001791 __releases(rq->lock)
1792{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001793 struct mm_struct *mm = rq->prev_mm;
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001794 long prev_state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001795
1796 rq->prev_mm = NULL;
1797
1798 /*
1799 * A task struct has one reference for the use as "current".
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001800 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001801 * schedule one last time. The schedule call will never return, and
1802 * the scheduled task must drop that reference.
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001803 * The test for TASK_DEAD must occur while the runqueue locks are
Linus Torvalds1da177e2005-04-16 15:20:36 -07001804 * still held, otherwise prev could be scheduled on another cpu, die
1805 * there before we look at prev->state, and then the reference would
1806 * be dropped twice.
1807 * Manfred Spraul <manfred@colorfullife.com>
1808 */
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001809 prev_state = prev->state;
Nick Piggin4866cde2005-06-25 14:57:23 -07001810 finish_arch_switch(prev);
1811 finish_lock_switch(rq, prev);
Avi Kivitye107be32007-07-26 13:40:43 +02001812 fire_sched_in_preempt_notifiers(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001813 if (mm)
1814 mmdrop(mm);
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001815 if (unlikely(prev_state == TASK_DEAD)) {
bibo maoc6fd91f2006-03-26 01:38:20 -08001816 /*
1817 * Remove function-return probe instances associated with this
1818 * task and put them back on the free list.
Ingo Molnar9761eea2007-07-09 18:52:00 +02001819 */
bibo maoc6fd91f2006-03-26 01:38:20 -08001820 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001821 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001822 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001823}
1824
1825/**
1826 * schedule_tail - first thing a freshly forked thread must call.
1827 * @prev: the thread we just switched away from.
1828 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001829asmlinkage void schedule_tail(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001830 __releases(rq->lock)
1831{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001832 struct rq *rq = this_rq();
1833
Nick Piggin4866cde2005-06-25 14:57:23 -07001834 finish_task_switch(rq, prev);
1835#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1836 /* In this case, finish_task_switch does not reenable preemption */
1837 preempt_enable();
1838#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001839 if (current->set_child_tid)
1840 put_user(current->pid, current->set_child_tid);
1841}
1842
1843/*
1844 * context_switch - switch to the new MM and the new
1845 * thread's register state.
1846 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001847static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -07001848context_switch(struct rq *rq, struct task_struct *prev,
Ingo Molnar36c8b582006-07-03 00:25:41 -07001849 struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001850{
Ingo Molnardd41f592007-07-09 18:51:59 +02001851 struct mm_struct *mm, *oldmm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001852
Avi Kivitye107be32007-07-26 13:40:43 +02001853 prepare_task_switch(rq, prev, next);
Ingo Molnardd41f592007-07-09 18:51:59 +02001854 mm = next->mm;
1855 oldmm = prev->active_mm;
Zachary Amsden9226d122007-02-13 13:26:21 +01001856 /*
1857 * For paravirt, this is coupled with an exit in switch_to to
1858 * combine the page table reload and the switch backend into
1859 * one hypercall.
1860 */
1861 arch_enter_lazy_cpu_mode();
1862
Ingo Molnardd41f592007-07-09 18:51:59 +02001863 if (unlikely(!mm)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001864 next->active_mm = oldmm;
1865 atomic_inc(&oldmm->mm_count);
1866 enter_lazy_tlb(oldmm, next);
1867 } else
1868 switch_mm(oldmm, mm, next);
1869
Ingo Molnardd41f592007-07-09 18:51:59 +02001870 if (unlikely(!prev->mm)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001871 prev->active_mm = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001872 rq->prev_mm = oldmm;
1873 }
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001874 /*
1875 * Since the runqueue lock will be released by the next
1876 * task (which is an invalid locking op but in the case
1877 * of the scheduler it's an obvious special-case), so we
1878 * do an early lockdep release here:
1879 */
1880#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07001881 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001882#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001883
1884 /* Here we just switch the register state and the stack. */
1885 switch_to(prev, next, prev);
1886
Ingo Molnardd41f592007-07-09 18:51:59 +02001887 barrier();
1888 /*
1889 * this_rq must be evaluated again because prev may have moved
1890 * CPUs since it called schedule(), thus the 'rq' on its stack
1891 * frame will be invalid.
1892 */
1893 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001894}
1895
1896/*
1897 * nr_running, nr_uninterruptible and nr_context_switches:
1898 *
1899 * externally visible scheduler statistics: current number of runnable
1900 * threads, current number of uninterruptible-sleeping threads, total
1901 * number of context switches performed since bootup.
1902 */
1903unsigned long nr_running(void)
1904{
1905 unsigned long i, sum = 0;
1906
1907 for_each_online_cpu(i)
1908 sum += cpu_rq(i)->nr_running;
1909
1910 return sum;
1911}
1912
1913unsigned long nr_uninterruptible(void)
1914{
1915 unsigned long i, sum = 0;
1916
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001917 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001918 sum += cpu_rq(i)->nr_uninterruptible;
1919
1920 /*
1921 * Since we read the counters lockless, it might be slightly
1922 * inaccurate. Do not allow it to go below zero though:
1923 */
1924 if (unlikely((long)sum < 0))
1925 sum = 0;
1926
1927 return sum;
1928}
1929
1930unsigned long long nr_context_switches(void)
1931{
Steven Rostedtcc94abf2006-06-27 02:54:31 -07001932 int i;
1933 unsigned long long sum = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001934
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001935 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001936 sum += cpu_rq(i)->nr_switches;
1937
1938 return sum;
1939}
1940
1941unsigned long nr_iowait(void)
1942{
1943 unsigned long i, sum = 0;
1944
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001945 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001946 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1947
1948 return sum;
1949}
1950
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08001951unsigned long nr_active(void)
1952{
1953 unsigned long i, running = 0, uninterruptible = 0;
1954
1955 for_each_online_cpu(i) {
1956 running += cpu_rq(i)->nr_running;
1957 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1958 }
1959
1960 if (unlikely((long)uninterruptible < 0))
1961 uninterruptible = 0;
1962
1963 return running + uninterruptible;
1964}
1965
Linus Torvalds1da177e2005-04-16 15:20:36 -07001966/*
Ingo Molnardd41f592007-07-09 18:51:59 +02001967 * Update rq->cpu_load[] statistics. This function is usually called every
1968 * scheduler tick (TICK_NSEC).
Ingo Molnar48f24c42006-07-03 00:25:40 -07001969 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001970static void update_cpu_load(struct rq *this_rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07001971{
Ingo Molnardd41f592007-07-09 18:51:59 +02001972 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1973 unsigned long total_load = this_rq->ls.load.weight;
1974 unsigned long this_load = total_load;
1975 struct load_stat *ls = &this_rq->ls;
1976 u64 now = __rq_clock(this_rq);
1977 int i, scale;
1978
1979 this_rq->nr_load_updates++;
1980 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1981 goto do_avg;
1982
1983 /* Update delta_fair/delta_exec fields first */
1984 update_curr_load(this_rq, now);
1985
1986 fair_delta64 = ls->delta_fair + 1;
1987 ls->delta_fair = 0;
1988
1989 exec_delta64 = ls->delta_exec + 1;
1990 ls->delta_exec = 0;
1991
1992 sample_interval64 = now - ls->load_update_last;
1993 ls->load_update_last = now;
1994
1995 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1996 sample_interval64 = TICK_NSEC;
1997
1998 if (exec_delta64 > sample_interval64)
1999 exec_delta64 = sample_interval64;
2000
2001 idle_delta64 = sample_interval64 - exec_delta64;
2002
2003 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
2004 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
2005
2006 this_load = (unsigned long)tmp64;
2007
2008do_avg:
2009
2010 /* Update our load: */
2011 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2012 unsigned long old_load, new_load;
2013
2014 /* scale is effectively 1 << i now, and >> i divides by scale */
2015
2016 old_load = this_rq->cpu_load[i];
2017 new_load = this_load;
2018
2019 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2020 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002021}
2022
Ingo Molnardd41f592007-07-09 18:51:59 +02002023#ifdef CONFIG_SMP
2024
Ingo Molnar48f24c42006-07-03 00:25:40 -07002025/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002026 * double_rq_lock - safely lock two runqueues
2027 *
2028 * Note this does not disable interrupts like task_rq_lock,
2029 * you need to do so manually before calling.
2030 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002031static void double_rq_lock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002032 __acquires(rq1->lock)
2033 __acquires(rq2->lock)
2034{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002035 BUG_ON(!irqs_disabled());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002036 if (rq1 == rq2) {
2037 spin_lock(&rq1->lock);
2038 __acquire(rq2->lock); /* Fake it out ;) */
2039 } else {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002040 if (rq1 < rq2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002041 spin_lock(&rq1->lock);
2042 spin_lock(&rq2->lock);
2043 } else {
2044 spin_lock(&rq2->lock);
2045 spin_lock(&rq1->lock);
2046 }
2047 }
2048}
2049
2050/*
2051 * double_rq_unlock - safely unlock two runqueues
2052 *
2053 * Note this does not restore interrupts like task_rq_unlock,
2054 * you need to do so manually after calling.
2055 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002056static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002057 __releases(rq1->lock)
2058 __releases(rq2->lock)
2059{
2060 spin_unlock(&rq1->lock);
2061 if (rq1 != rq2)
2062 spin_unlock(&rq2->lock);
2063 else
2064 __release(rq2->lock);
2065}
2066
2067/*
2068 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2069 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002070static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002071 __releases(this_rq->lock)
2072 __acquires(busiest->lock)
2073 __acquires(this_rq->lock)
2074{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002075 if (unlikely(!irqs_disabled())) {
2076 /* printk() doesn't work good under rq->lock */
2077 spin_unlock(&this_rq->lock);
2078 BUG_ON(1);
2079 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002080 if (unlikely(!spin_trylock(&busiest->lock))) {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002081 if (busiest < this_rq) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002082 spin_unlock(&this_rq->lock);
2083 spin_lock(&busiest->lock);
2084 spin_lock(&this_rq->lock);
2085 } else
2086 spin_lock(&busiest->lock);
2087 }
2088}
2089
2090/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002091 * If dest_cpu is allowed for this process, migrate the task to it.
2092 * This is accomplished by forcing the cpu_allowed mask to only
2093 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2094 * the cpu_allowed mask is restored.
2095 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07002096static void sched_migrate_task(struct task_struct *p, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002097{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002098 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002099 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002100 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002101
2102 rq = task_rq_lock(p, &flags);
2103 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2104 || unlikely(cpu_is_offline(dest_cpu)))
2105 goto out;
2106
2107 /* force the process onto the specified CPU */
2108 if (migrate_task(p, dest_cpu, &req)) {
2109 /* Need to wait for migration thread (might exit: take ref). */
2110 struct task_struct *mt = rq->migration_thread;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002111
Linus Torvalds1da177e2005-04-16 15:20:36 -07002112 get_task_struct(mt);
2113 task_rq_unlock(rq, &flags);
2114 wake_up_process(mt);
2115 put_task_struct(mt);
2116 wait_for_completion(&req.done);
Ingo Molnar36c8b582006-07-03 00:25:41 -07002117
Linus Torvalds1da177e2005-04-16 15:20:36 -07002118 return;
2119 }
2120out:
2121 task_rq_unlock(rq, &flags);
2122}
2123
2124/*
Nick Piggin476d1392005-06-25 14:57:29 -07002125 * sched_exec - execve() is a valuable balancing opportunity, because at
2126 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002127 */
2128void sched_exec(void)
2129{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002130 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002131 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002132 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002133 if (new_cpu != this_cpu)
2134 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002135}
2136
2137/*
2138 * pull_task - move a task from a remote runqueue to the local runqueue.
2139 * Both runqueues must be locked.
2140 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002141static void pull_task(struct rq *src_rq, struct task_struct *p,
2142 struct rq *this_rq, int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002143{
Ingo Molnara8e504d2007-08-09 11:16:47 +02002144 update_rq_clock(src_rq);
2145 deactivate_task(src_rq, p, 0, src_rq->clock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002146 set_task_cpu(p, this_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02002147 activate_task(this_rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002148 /*
2149 * Note that idle threads have a prio of MAX_PRIO, for this test
2150 * to be always true for them.
2151 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002152 check_preempt_curr(this_rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002153}
2154
2155/*
2156 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2157 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002158static
Ingo Molnar70b97a72006-07-03 00:25:42 -07002159int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002160 struct sched_domain *sd, enum cpu_idle_type idle,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07002161 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002162{
2163 /*
2164 * We do not migrate tasks that are:
2165 * 1) running (obviously), or
2166 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2167 * 3) are cache-hot on their current CPU.
2168 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002169 if (!cpu_isset(this_cpu, p->cpus_allowed))
2170 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07002171 *all_pinned = 0;
2172
2173 if (task_running(rq, p))
2174 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002175
2176 /*
Ingo Molnardd41f592007-07-09 18:51:59 +02002177 * Aggressive migration if too many balance attempts have failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002178 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002179 if (sd->nr_balance_failed > sd->cache_nice_tries)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002180 return 1;
2181
Linus Torvalds1da177e2005-04-16 15:20:36 -07002182 return 1;
2183}
2184
Ingo Molnardd41f592007-07-09 18:51:59 +02002185static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2186 unsigned long max_nr_move, unsigned long max_load_move,
2187 struct sched_domain *sd, enum cpu_idle_type idle,
2188 int *all_pinned, unsigned long *load_moved,
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002189 int *this_best_prio, struct rq_iterator *iterator)
Ingo Molnardd41f592007-07-09 18:51:59 +02002190{
2191 int pulled = 0, pinned = 0, skip_for_load;
2192 struct task_struct *p;
2193 long rem_load_move = max_load_move;
2194
2195 if (max_nr_move == 0 || max_load_move == 0)
2196 goto out;
2197
2198 pinned = 1;
2199
2200 /*
2201 * Start the load-balancing iterator:
2202 */
2203 p = iterator->start(iterator->arg);
2204next:
2205 if (!p)
2206 goto out;
2207 /*
2208 * To help distribute high priority tasks accross CPUs we don't
2209 * skip a task if it will be the highest priority task (i.e. smallest
2210 * prio value) on its new queue regardless of its load weight
2211 */
2212 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2213 SCHED_LOAD_SCALE_FUZZ;
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002214 if ((skip_for_load && p->prio >= *this_best_prio) ||
Ingo Molnardd41f592007-07-09 18:51:59 +02002215 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
Ingo Molnardd41f592007-07-09 18:51:59 +02002216 p = iterator->next(iterator->arg);
2217 goto next;
2218 }
2219
2220 pull_task(busiest, p, this_rq, this_cpu);
2221 pulled++;
2222 rem_load_move -= p->se.load.weight;
2223
2224 /*
2225 * We only want to steal up to the prescribed number of tasks
2226 * and the prescribed amount of weighted load.
2227 */
2228 if (pulled < max_nr_move && rem_load_move > 0) {
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002229 if (p->prio < *this_best_prio)
2230 *this_best_prio = p->prio;
Ingo Molnardd41f592007-07-09 18:51:59 +02002231 p = iterator->next(iterator->arg);
2232 goto next;
2233 }
2234out:
2235 /*
2236 * Right now, this is the only place pull_task() is called,
2237 * so we can safely collect pull_task() stats here rather than
2238 * inside pull_task().
2239 */
2240 schedstat_add(sd, lb_gained[idle], pulled);
2241
2242 if (all_pinned)
2243 *all_pinned = pinned;
2244 *load_moved = max_load_move - rem_load_move;
2245 return pulled;
2246}
Ingo Molnar48f24c42006-07-03 00:25:40 -07002247
Linus Torvalds1da177e2005-04-16 15:20:36 -07002248/*
Peter Williams43010652007-08-09 11:16:46 +02002249 * move_tasks tries to move up to max_load_move weighted load from busiest to
2250 * this_rq, as part of a balancing operation within domain "sd".
2251 * Returns 1 if successful and 0 otherwise.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002252 *
2253 * Called with both runqueues locked.
2254 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002255static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
Peter Williams43010652007-08-09 11:16:46 +02002256 unsigned long max_load_move,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002257 struct sched_domain *sd, enum cpu_idle_type idle,
Peter Williams2dd73a42006-06-27 02:54:34 -07002258 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002259{
Ingo Molnardd41f592007-07-09 18:51:59 +02002260 struct sched_class *class = sched_class_highest;
Peter Williams43010652007-08-09 11:16:46 +02002261 unsigned long total_load_moved = 0;
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002262 int this_best_prio = this_rq->curr->prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002263
Ingo Molnardd41f592007-07-09 18:51:59 +02002264 do {
Peter Williams43010652007-08-09 11:16:46 +02002265 total_load_moved +=
2266 class->load_balance(this_rq, this_cpu, busiest,
2267 ULONG_MAX, max_load_move - total_load_moved,
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002268 sd, idle, all_pinned, &this_best_prio);
Ingo Molnardd41f592007-07-09 18:51:59 +02002269 class = class->next;
Peter Williams43010652007-08-09 11:16:46 +02002270 } while (class && max_load_move > total_load_moved);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002271
Peter Williams43010652007-08-09 11:16:46 +02002272 return total_load_moved > 0;
2273}
2274
2275/*
2276 * move_one_task tries to move exactly one task from busiest to this_rq, as
2277 * part of active balancing operations within "domain".
2278 * Returns 1 if successful and 0 otherwise.
2279 *
2280 * Called with both runqueues locked.
2281 */
2282static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2283 struct sched_domain *sd, enum cpu_idle_type idle)
2284{
2285 struct sched_class *class;
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002286 int this_best_prio = MAX_PRIO;
Peter Williams43010652007-08-09 11:16:46 +02002287
2288 for (class = sched_class_highest; class; class = class->next)
2289 if (class->load_balance(this_rq, this_cpu, busiest,
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002290 1, ULONG_MAX, sd, idle, NULL,
2291 &this_best_prio))
Peter Williams43010652007-08-09 11:16:46 +02002292 return 1;
2293
2294 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002295}
2296
2297/*
2298 * find_busiest_group finds and returns the busiest CPU group within the
Ingo Molnar48f24c42006-07-03 00:25:40 -07002299 * domain. It calculates and returns the amount of weighted load which
2300 * should be moved to restore balance via the imbalance parameter.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002301 */
2302static struct sched_group *
2303find_busiest_group(struct sched_domain *sd, int this_cpu,
Ingo Molnardd41f592007-07-09 18:51:59 +02002304 unsigned long *imbalance, enum cpu_idle_type idle,
2305 int *sd_idle, cpumask_t *cpus, int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002306{
2307 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2308 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002309 unsigned long max_pull;
Peter Williams2dd73a42006-06-27 02:54:34 -07002310 unsigned long busiest_load_per_task, busiest_nr_running;
2311 unsigned long this_load_per_task, this_nr_running;
Nick Piggin78979862005-06-25 14:57:13 -07002312 int load_idx;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002313#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2314 int power_savings_balance = 1;
2315 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2316 unsigned long min_nr_running = ULONG_MAX;
2317 struct sched_group *group_min = NULL, *group_leader = NULL;
2318#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002319
2320 max_load = this_load = total_load = total_pwr = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002321 busiest_load_per_task = busiest_nr_running = 0;
2322 this_load_per_task = this_nr_running = 0;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002323 if (idle == CPU_NOT_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002324 load_idx = sd->busy_idx;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002325 else if (idle == CPU_NEWLY_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002326 load_idx = sd->newidle_idx;
2327 else
2328 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002329
2330 do {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002331 unsigned long load, group_capacity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002332 int local_group;
2333 int i;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002334 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002335 unsigned long sum_nr_running, sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002336
2337 local_group = cpu_isset(this_cpu, group->cpumask);
2338
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002339 if (local_group)
2340 balance_cpu = first_cpu(group->cpumask);
2341
Linus Torvalds1da177e2005-04-16 15:20:36 -07002342 /* Tally up the load of all CPUs in the group */
Peter Williams2dd73a42006-06-27 02:54:34 -07002343 sum_weighted_load = sum_nr_running = avg_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002344
2345 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002346 struct rq *rq;
2347
2348 if (!cpu_isset(i, *cpus))
2349 continue;
2350
2351 rq = cpu_rq(i);
Peter Williams2dd73a42006-06-27 02:54:34 -07002352
Suresh Siddha9439aab2007-07-19 21:28:35 +02002353 if (*sd_idle && rq->nr_running)
Nick Piggin5969fe02005-09-10 00:26:19 -07002354 *sd_idle = 0;
2355
Linus Torvalds1da177e2005-04-16 15:20:36 -07002356 /* Bias balancing toward cpus of our domain */
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002357 if (local_group) {
2358 if (idle_cpu(i) && !first_idle_cpu) {
2359 first_idle_cpu = 1;
2360 balance_cpu = i;
2361 }
2362
Nick Piggina2000572006-02-10 01:51:02 -08002363 load = target_load(i, load_idx);
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002364 } else
Nick Piggina2000572006-02-10 01:51:02 -08002365 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002366
2367 avg_load += load;
Peter Williams2dd73a42006-06-27 02:54:34 -07002368 sum_nr_running += rq->nr_running;
Ingo Molnardd41f592007-07-09 18:51:59 +02002369 sum_weighted_load += weighted_cpuload(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002370 }
2371
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002372 /*
2373 * First idle cpu or the first cpu(busiest) in this sched group
2374 * is eligible for doing load balancing at this and above
Suresh Siddha9439aab2007-07-19 21:28:35 +02002375 * domains. In the newly idle case, we will allow all the cpu's
2376 * to do the newly idle load balance.
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002377 */
Suresh Siddha9439aab2007-07-19 21:28:35 +02002378 if (idle != CPU_NEWLY_IDLE && local_group &&
2379 balance_cpu != this_cpu && balance) {
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002380 *balance = 0;
2381 goto ret;
2382 }
2383
Linus Torvalds1da177e2005-04-16 15:20:36 -07002384 total_load += avg_load;
Eric Dumazet5517d862007-05-08 00:32:57 -07002385 total_pwr += group->__cpu_power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002386
2387 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07002388 avg_load = sg_div_cpu_power(group,
2389 avg_load * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002390
Eric Dumazet5517d862007-05-08 00:32:57 -07002391 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002392
Linus Torvalds1da177e2005-04-16 15:20:36 -07002393 if (local_group) {
2394 this_load = avg_load;
2395 this = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002396 this_nr_running = sum_nr_running;
2397 this_load_per_task = sum_weighted_load;
2398 } else if (avg_load > max_load &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002399 sum_nr_running > group_capacity) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002400 max_load = avg_load;
2401 busiest = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002402 busiest_nr_running = sum_nr_running;
2403 busiest_load_per_task = sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002404 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002405
2406#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2407 /*
2408 * Busy processors will not participate in power savings
2409 * balance.
2410 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002411 if (idle == CPU_NOT_IDLE ||
2412 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2413 goto group_next;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002414
2415 /*
2416 * If the local group is idle or completely loaded
2417 * no need to do power savings balance at this domain
2418 */
2419 if (local_group && (this_nr_running >= group_capacity ||
2420 !this_nr_running))
2421 power_savings_balance = 0;
2422
Ingo Molnardd41f592007-07-09 18:51:59 +02002423 /*
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002424 * If a group is already running at full capacity or idle,
2425 * don't include that group in power savings calculations
Ingo Molnardd41f592007-07-09 18:51:59 +02002426 */
2427 if (!power_savings_balance || sum_nr_running >= group_capacity
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002428 || !sum_nr_running)
Ingo Molnardd41f592007-07-09 18:51:59 +02002429 goto group_next;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002430
Ingo Molnardd41f592007-07-09 18:51:59 +02002431 /*
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002432 * Calculate the group which has the least non-idle load.
Ingo Molnardd41f592007-07-09 18:51:59 +02002433 * This is the group from where we need to pick up the load
2434 * for saving power
2435 */
2436 if ((sum_nr_running < min_nr_running) ||
2437 (sum_nr_running == min_nr_running &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002438 first_cpu(group->cpumask) <
2439 first_cpu(group_min->cpumask))) {
Ingo Molnardd41f592007-07-09 18:51:59 +02002440 group_min = group;
2441 min_nr_running = sum_nr_running;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002442 min_load_per_task = sum_weighted_load /
2443 sum_nr_running;
Ingo Molnardd41f592007-07-09 18:51:59 +02002444 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002445
Ingo Molnardd41f592007-07-09 18:51:59 +02002446 /*
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002447 * Calculate the group which is almost near its
Ingo Molnardd41f592007-07-09 18:51:59 +02002448 * capacity but still has some space to pick up some load
2449 * from other group and save more power
2450 */
2451 if (sum_nr_running <= group_capacity - 1) {
2452 if (sum_nr_running > leader_nr_running ||
2453 (sum_nr_running == leader_nr_running &&
2454 first_cpu(group->cpumask) >
2455 first_cpu(group_leader->cpumask))) {
2456 group_leader = group;
2457 leader_nr_running = sum_nr_running;
2458 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002459 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002460group_next:
2461#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002462 group = group->next;
2463 } while (group != sd->groups);
2464
Peter Williams2dd73a42006-06-27 02:54:34 -07002465 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002466 goto out_balanced;
2467
2468 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2469
2470 if (this_load >= avg_load ||
2471 100*max_load <= sd->imbalance_pct*this_load)
2472 goto out_balanced;
2473
Peter Williams2dd73a42006-06-27 02:54:34 -07002474 busiest_load_per_task /= busiest_nr_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002475 /*
2476 * We're trying to get all the cpus to the average_load, so we don't
2477 * want to push ourselves above the average load, nor do we wish to
2478 * reduce the max loaded cpu below the average load, as either of these
2479 * actions would just result in more rebalancing later, and ping-pong
2480 * tasks around. Thus we look for the minimum possible imbalance.
2481 * Negative imbalances (*we* are more loaded than anyone else) will
2482 * be counted as no imbalance for these purposes -- we can't fix that
2483 * by pulling tasks to us. Be careful of negative numbers as they'll
2484 * appear as very large values with unsigned longs.
2485 */
Peter Williams2dd73a42006-06-27 02:54:34 -07002486 if (max_load <= busiest_load_per_task)
2487 goto out_balanced;
2488
2489 /*
2490 * In the presence of smp nice balancing, certain scenarios can have
2491 * max load less than avg load(as we skip the groups at or below
2492 * its cpu_power, while calculating max_load..)
2493 */
2494 if (max_load < avg_load) {
2495 *imbalance = 0;
2496 goto small_imbalance;
2497 }
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002498
2499 /* Don't want to pull so many tasks that a group would go idle */
Peter Williams2dd73a42006-06-27 02:54:34 -07002500 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002501
Linus Torvalds1da177e2005-04-16 15:20:36 -07002502 /* How much load to actually move to equalise the imbalance */
Eric Dumazet5517d862007-05-08 00:32:57 -07002503 *imbalance = min(max_pull * busiest->__cpu_power,
2504 (avg_load - this_load) * this->__cpu_power)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002505 / SCHED_LOAD_SCALE;
2506
Peter Williams2dd73a42006-06-27 02:54:34 -07002507 /*
2508 * if *imbalance is less than the average load per runnable task
2509 * there is no gaurantee that any tasks will be moved so we'll have
2510 * a think about bumping its value to force at least one task to be
2511 * moved
2512 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002513 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002514 unsigned long tmp, pwr_now, pwr_move;
Peter Williams2dd73a42006-06-27 02:54:34 -07002515 unsigned int imbn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002516
Peter Williams2dd73a42006-06-27 02:54:34 -07002517small_imbalance:
2518 pwr_move = pwr_now = 0;
2519 imbn = 2;
2520 if (this_nr_running) {
2521 this_load_per_task /= this_nr_running;
2522 if (busiest_load_per_task > this_load_per_task)
2523 imbn = 1;
2524 } else
2525 this_load_per_task = SCHED_LOAD_SCALE;
2526
Ingo Molnardd41f592007-07-09 18:51:59 +02002527 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2528 busiest_load_per_task * imbn) {
Peter Williams2dd73a42006-06-27 02:54:34 -07002529 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002530 return busiest;
2531 }
2532
2533 /*
2534 * OK, we don't have enough imbalance to justify moving tasks,
2535 * however we may be able to increase total CPU power used by
2536 * moving them.
2537 */
2538
Eric Dumazet5517d862007-05-08 00:32:57 -07002539 pwr_now += busiest->__cpu_power *
2540 min(busiest_load_per_task, max_load);
2541 pwr_now += this->__cpu_power *
2542 min(this_load_per_task, this_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002543 pwr_now /= SCHED_LOAD_SCALE;
2544
2545 /* Amount of load we'd subtract */
Eric Dumazet5517d862007-05-08 00:32:57 -07002546 tmp = sg_div_cpu_power(busiest,
2547 busiest_load_per_task * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002548 if (max_load > tmp)
Eric Dumazet5517d862007-05-08 00:32:57 -07002549 pwr_move += busiest->__cpu_power *
Peter Williams2dd73a42006-06-27 02:54:34 -07002550 min(busiest_load_per_task, max_load - tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002551
2552 /* Amount of load we'd add */
Eric Dumazet5517d862007-05-08 00:32:57 -07002553 if (max_load * busiest->__cpu_power <
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08002554 busiest_load_per_task * SCHED_LOAD_SCALE)
Eric Dumazet5517d862007-05-08 00:32:57 -07002555 tmp = sg_div_cpu_power(this,
2556 max_load * busiest->__cpu_power);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002557 else
Eric Dumazet5517d862007-05-08 00:32:57 -07002558 tmp = sg_div_cpu_power(this,
2559 busiest_load_per_task * SCHED_LOAD_SCALE);
2560 pwr_move += this->__cpu_power *
2561 min(this_load_per_task, this_load + tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002562 pwr_move /= SCHED_LOAD_SCALE;
2563
2564 /* Move if we gain throughput */
2565 if (pwr_move <= pwr_now)
2566 goto out_balanced;
2567
Peter Williams2dd73a42006-06-27 02:54:34 -07002568 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002569 }
2570
Linus Torvalds1da177e2005-04-16 15:20:36 -07002571 return busiest;
2572
2573out_balanced:
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002574#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002575 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002576 goto ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002577
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002578 if (this == group_leader && group_leader != group_min) {
2579 *imbalance = min_load_per_task;
2580 return group_min;
2581 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002582#endif
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002583ret:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002584 *imbalance = 0;
2585 return NULL;
2586}
2587
2588/*
2589 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2590 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002591static struct rq *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002592find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002593 unsigned long imbalance, cpumask_t *cpus)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002594{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002595 struct rq *busiest = NULL, *rq;
Peter Williams2dd73a42006-06-27 02:54:34 -07002596 unsigned long max_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002597 int i;
2598
2599 for_each_cpu_mask(i, group->cpumask) {
Ingo Molnardd41f592007-07-09 18:51:59 +02002600 unsigned long wl;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002601
2602 if (!cpu_isset(i, *cpus))
2603 continue;
2604
Ingo Molnar48f24c42006-07-03 00:25:40 -07002605 rq = cpu_rq(i);
Ingo Molnardd41f592007-07-09 18:51:59 +02002606 wl = weighted_cpuload(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002607
Ingo Molnardd41f592007-07-09 18:51:59 +02002608 if (rq->nr_running == 1 && wl > imbalance)
Peter Williams2dd73a42006-06-27 02:54:34 -07002609 continue;
2610
Ingo Molnardd41f592007-07-09 18:51:59 +02002611 if (wl > max_load) {
2612 max_load = wl;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002613 busiest = rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002614 }
2615 }
2616
2617 return busiest;
2618}
2619
2620/*
Nick Piggin77391d72005-06-25 14:57:30 -07002621 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2622 * so long as it is large enough.
2623 */
2624#define MAX_PINNED_INTERVAL 512
2625
2626/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002627 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2628 * tasks if there is an imbalance.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002629 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002630static int load_balance(int this_cpu, struct rq *this_rq,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002631 struct sched_domain *sd, enum cpu_idle_type idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002632 int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002633{
Peter Williams43010652007-08-09 11:16:46 +02002634 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002635 struct sched_group *group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002636 unsigned long imbalance;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002637 struct rq *busiest;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002638 cpumask_t cpus = CPU_MASK_ALL;
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002639 unsigned long flags;
Nick Piggin5969fe02005-09-10 00:26:19 -07002640
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002641 /*
2642 * When power savings policy is enabled for the parent domain, idle
2643 * sibling can pick up load irrespective of busy siblings. In this case,
Ingo Molnardd41f592007-07-09 18:51:59 +02002644 * let the state of idle sibling percolate up as CPU_IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002645 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002646 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002647 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002648 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002649 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002650
Linus Torvalds1da177e2005-04-16 15:20:36 -07002651 schedstat_inc(sd, lb_cnt[idle]);
2652
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002653redo:
2654 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002655 &cpus, balance);
2656
Chen, Kenneth W06066712006-12-10 02:20:35 -08002657 if (*balance == 0)
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002658 goto out_balanced;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002659
Linus Torvalds1da177e2005-04-16 15:20:36 -07002660 if (!group) {
2661 schedstat_inc(sd, lb_nobusyg[idle]);
2662 goto out_balanced;
2663 }
2664
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002665 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002666 if (!busiest) {
2667 schedstat_inc(sd, lb_nobusyq[idle]);
2668 goto out_balanced;
2669 }
2670
Nick Piggindb935db2005-06-25 14:57:11 -07002671 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002672
2673 schedstat_add(sd, lb_imbalance[idle], imbalance);
2674
Peter Williams43010652007-08-09 11:16:46 +02002675 ld_moved = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002676 if (busiest->nr_running > 1) {
2677 /*
2678 * Attempt to move tasks. If find_busiest_group has found
2679 * an imbalance but busiest->nr_running <= 1, the group is
Peter Williams43010652007-08-09 11:16:46 +02002680 * still unbalanced. ld_moved simply stays zero, so it is
Linus Torvalds1da177e2005-04-16 15:20:36 -07002681 * correctly treated as an imbalance.
2682 */
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002683 local_irq_save(flags);
Nick Piggine17224b2005-09-10 00:26:18 -07002684 double_rq_lock(this_rq, busiest);
Peter Williams43010652007-08-09 11:16:46 +02002685 ld_moved = move_tasks(this_rq, this_cpu, busiest,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002686 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002687 double_rq_unlock(this_rq, busiest);
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002688 local_irq_restore(flags);
Nick Piggin81026792005-06-25 14:57:07 -07002689
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002690 /*
2691 * some other cpu did the load balance for us.
2692 */
Peter Williams43010652007-08-09 11:16:46 +02002693 if (ld_moved && this_cpu != smp_processor_id())
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002694 resched_cpu(this_cpu);
2695
Nick Piggin81026792005-06-25 14:57:07 -07002696 /* All tasks on this runqueue were pinned by CPU affinity */
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002697 if (unlikely(all_pinned)) {
2698 cpu_clear(cpu_of(busiest), cpus);
2699 if (!cpus_empty(cpus))
2700 goto redo;
Nick Piggin81026792005-06-25 14:57:07 -07002701 goto out_balanced;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002702 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002703 }
Nick Piggin81026792005-06-25 14:57:07 -07002704
Peter Williams43010652007-08-09 11:16:46 +02002705 if (!ld_moved) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002706 schedstat_inc(sd, lb_failed[idle]);
2707 sd->nr_balance_failed++;
2708
2709 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002710
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002711 spin_lock_irqsave(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002712
2713 /* don't kick the migration_thread, if the curr
2714 * task on busiest cpu can't be moved to this_cpu
2715 */
2716 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002717 spin_unlock_irqrestore(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002718 all_pinned = 1;
2719 goto out_one_pinned;
2720 }
2721
Linus Torvalds1da177e2005-04-16 15:20:36 -07002722 if (!busiest->active_balance) {
2723 busiest->active_balance = 1;
2724 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002725 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002726 }
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002727 spin_unlock_irqrestore(&busiest->lock, flags);
Nick Piggin81026792005-06-25 14:57:07 -07002728 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002729 wake_up_process(busiest->migration_thread);
2730
2731 /*
2732 * We've kicked active balancing, reset the failure
2733 * counter.
2734 */
Nick Piggin39507452005-06-25 14:57:09 -07002735 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002736 }
Nick Piggin81026792005-06-25 14:57:07 -07002737 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002738 sd->nr_balance_failed = 0;
2739
Nick Piggin81026792005-06-25 14:57:07 -07002740 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002741 /* We were unbalanced, so reset the balancing interval */
2742 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002743 } else {
2744 /*
2745 * If we've begun active balancing, start to back off. This
2746 * case may not be covered by the all_pinned logic if there
2747 * is only 1 task on the busy runqueue (because we don't call
2748 * move_tasks).
2749 */
2750 if (sd->balance_interval < sd->max_interval)
2751 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002752 }
2753
Peter Williams43010652007-08-09 11:16:46 +02002754 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002755 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002756 return -1;
Peter Williams43010652007-08-09 11:16:46 +02002757 return ld_moved;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002758
2759out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002760 schedstat_inc(sd, lb_balanced[idle]);
2761
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002762 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002763
2764out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002765 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002766 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2767 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002768 sd->balance_interval *= 2;
2769
Ingo Molnar48f24c42006-07-03 00:25:40 -07002770 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002771 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002772 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002773 return 0;
2774}
2775
2776/*
2777 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2778 * tasks if there is an imbalance.
2779 *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002780 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
Linus Torvalds1da177e2005-04-16 15:20:36 -07002781 * this_rq is locked.
2782 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002783static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07002784load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002785{
2786 struct sched_group *group;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002787 struct rq *busiest = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002788 unsigned long imbalance;
Peter Williams43010652007-08-09 11:16:46 +02002789 int ld_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002790 int sd_idle = 0;
Suresh Siddha969bb4e2007-07-19 21:28:35 +02002791 int all_pinned = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002792 cpumask_t cpus = CPU_MASK_ALL;
Nick Piggin5969fe02005-09-10 00:26:19 -07002793
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002794 /*
2795 * When power savings policy is enabled for the parent domain, idle
2796 * sibling can pick up load irrespective of busy siblings. In this case,
2797 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002798 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002799 */
2800 if (sd->flags & SD_SHARE_CPUPOWER &&
2801 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002802 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002803
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002804 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002805redo:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002806 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002807 &sd_idle, &cpus, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002808 if (!group) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002809 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002810 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002811 }
2812
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002813 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002814 &cpus);
Nick Piggindb935db2005-06-25 14:57:11 -07002815 if (!busiest) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002816 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002817 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002818 }
2819
Nick Piggindb935db2005-06-25 14:57:11 -07002820 BUG_ON(busiest == this_rq);
2821
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002822 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002823
Peter Williams43010652007-08-09 11:16:46 +02002824 ld_moved = 0;
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002825 if (busiest->nr_running > 1) {
2826 /* Attempt to move tasks */
2827 double_lock_balance(this_rq, busiest);
Peter Williams43010652007-08-09 11:16:46 +02002828 ld_moved = move_tasks(this_rq, this_cpu, busiest,
Suresh Siddha969bb4e2007-07-19 21:28:35 +02002829 imbalance, sd, CPU_NEWLY_IDLE,
2830 &all_pinned);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002831 spin_unlock(&busiest->lock);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002832
Suresh Siddha969bb4e2007-07-19 21:28:35 +02002833 if (unlikely(all_pinned)) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002834 cpu_clear(cpu_of(busiest), cpus);
2835 if (!cpus_empty(cpus))
2836 goto redo;
2837 }
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002838 }
2839
Peter Williams43010652007-08-09 11:16:46 +02002840 if (!ld_moved) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002841 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002842 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2843 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002844 return -1;
2845 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002846 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002847
Peter Williams43010652007-08-09 11:16:46 +02002848 return ld_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002849
2850out_balanced:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002851 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002852 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002853 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002854 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002855 sd->nr_balance_failed = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002856
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002857 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002858}
2859
2860/*
2861 * idle_balance is called by schedule() if this_cpu is about to become
2862 * idle. Attempts to pull tasks from other CPUs.
2863 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002864static void idle_balance(int this_cpu, struct rq *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002865{
2866 struct sched_domain *sd;
Ingo Molnardd41f592007-07-09 18:51:59 +02002867 int pulled_task = -1;
2868 unsigned long next_balance = jiffies + HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002869
2870 for_each_domain(this_cpu, sd) {
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002871 unsigned long interval;
2872
2873 if (!(sd->flags & SD_LOAD_BALANCE))
2874 continue;
2875
2876 if (sd->flags & SD_BALANCE_NEWIDLE)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002877 /* If we've pulled tasks over stop searching: */
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002878 pulled_task = load_balance_newidle(this_cpu,
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002879 this_rq, sd);
2880
2881 interval = msecs_to_jiffies(sd->balance_interval);
2882 if (time_after(next_balance, sd->last_balance + interval))
2883 next_balance = sd->last_balance + interval;
2884 if (pulled_task)
2885 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002886 }
Ingo Molnardd41f592007-07-09 18:51:59 +02002887 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002888 /*
2889 * We are going idle. next_balance may be set based on
2890 * a busy processor. So reset next_balance.
2891 */
2892 this_rq->next_balance = next_balance;
Ingo Molnardd41f592007-07-09 18:51:59 +02002893 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002894}
2895
2896/*
2897 * active_load_balance is run by migration threads. It pushes running tasks
2898 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2899 * running on each physical CPU where possible, and avoids physical /
2900 * logical imbalances.
2901 *
2902 * Called with busiest_rq locked.
2903 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002904static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002905{
Nick Piggin39507452005-06-25 14:57:09 -07002906 int target_cpu = busiest_rq->push_cpu;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002907 struct sched_domain *sd;
2908 struct rq *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002909
Ingo Molnar48f24c42006-07-03 00:25:40 -07002910 /* Is there any task to move? */
Nick Piggin39507452005-06-25 14:57:09 -07002911 if (busiest_rq->nr_running <= 1)
Nick Piggin39507452005-06-25 14:57:09 -07002912 return;
2913
2914 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002915
2916 /*
Nick Piggin39507452005-06-25 14:57:09 -07002917 * This condition is "impossible", if it occurs
2918 * we need to fix it. Originally reported by
2919 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002920 */
Nick Piggin39507452005-06-25 14:57:09 -07002921 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002922
Nick Piggin39507452005-06-25 14:57:09 -07002923 /* move a task from busiest_rq to target_rq */
2924 double_lock_balance(busiest_rq, target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002925
Nick Piggin39507452005-06-25 14:57:09 -07002926 /* Search for an sd spanning us and the target CPU. */
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002927 for_each_domain(target_cpu, sd) {
Nick Piggin39507452005-06-25 14:57:09 -07002928 if ((sd->flags & SD_LOAD_BALANCE) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07002929 cpu_isset(busiest_cpu, sd->span))
Nick Piggin39507452005-06-25 14:57:09 -07002930 break;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002931 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002932
Ingo Molnar48f24c42006-07-03 00:25:40 -07002933 if (likely(sd)) {
2934 schedstat_inc(sd, alb_cnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002935
Peter Williams43010652007-08-09 11:16:46 +02002936 if (move_one_task(target_rq, target_cpu, busiest_rq,
2937 sd, CPU_IDLE))
Ingo Molnar48f24c42006-07-03 00:25:40 -07002938 schedstat_inc(sd, alb_pushed);
2939 else
2940 schedstat_inc(sd, alb_failed);
2941 }
Nick Piggin39507452005-06-25 14:57:09 -07002942 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002943}
2944
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002945#ifdef CONFIG_NO_HZ
2946static struct {
2947 atomic_t load_balancer;
2948 cpumask_t cpu_mask;
2949} nohz ____cacheline_aligned = {
2950 .load_balancer = ATOMIC_INIT(-1),
2951 .cpu_mask = CPU_MASK_NONE,
2952};
2953
Christoph Lameter7835b982006-12-10 02:20:22 -08002954/*
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002955 * This routine will try to nominate the ilb (idle load balancing)
2956 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2957 * load balancing on behalf of all those cpus. If all the cpus in the system
2958 * go into this tickless mode, then there will be no ilb owner (as there is
2959 * no need for one) and all the cpus will sleep till the next wakeup event
2960 * arrives...
Christoph Lameter7835b982006-12-10 02:20:22 -08002961 *
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002962 * For the ilb owner, tick is not stopped. And this tick will be used
2963 * for idle load balancing. ilb owner will still be part of
2964 * nohz.cpu_mask..
2965 *
2966 * While stopping the tick, this cpu will become the ilb owner if there
2967 * is no other owner. And will be the owner till that cpu becomes busy
2968 * or if all cpus in the system stop their ticks at which point
2969 * there is no need for ilb owner.
2970 *
2971 * When the ilb owner becomes busy, it nominates another owner, during the
2972 * next busy scheduler_tick()
2973 */
2974int select_nohz_load_balancer(int stop_tick)
2975{
2976 int cpu = smp_processor_id();
2977
2978 if (stop_tick) {
2979 cpu_set(cpu, nohz.cpu_mask);
2980 cpu_rq(cpu)->in_nohz_recently = 1;
2981
2982 /*
2983 * If we are going offline and still the leader, give up!
2984 */
2985 if (cpu_is_offline(cpu) &&
2986 atomic_read(&nohz.load_balancer) == cpu) {
2987 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2988 BUG();
2989 return 0;
2990 }
2991
2992 /* time for ilb owner also to sleep */
2993 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2994 if (atomic_read(&nohz.load_balancer) == cpu)
2995 atomic_set(&nohz.load_balancer, -1);
2996 return 0;
2997 }
2998
2999 if (atomic_read(&nohz.load_balancer) == -1) {
3000 /* make me the ilb owner */
3001 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3002 return 1;
3003 } else if (atomic_read(&nohz.load_balancer) == cpu)
3004 return 1;
3005 } else {
3006 if (!cpu_isset(cpu, nohz.cpu_mask))
3007 return 0;
3008
3009 cpu_clear(cpu, nohz.cpu_mask);
3010
3011 if (atomic_read(&nohz.load_balancer) == cpu)
3012 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3013 BUG();
3014 }
3015 return 0;
3016}
3017#endif
3018
3019static DEFINE_SPINLOCK(balancing);
3020
3021/*
Christoph Lameter7835b982006-12-10 02:20:22 -08003022 * It checks each scheduling domain to see if it is due to be balanced,
3023 * and initiates a balancing operation if so.
3024 *
3025 * Balancing parameters are set up in arch_init_sched_domains.
3026 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003027static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
Christoph Lameter7835b982006-12-10 02:20:22 -08003028{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003029 int balance = 1;
3030 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003031 unsigned long interval;
3032 struct sched_domain *sd;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003033 /* Earliest time when we have to do rebalance again */
Christoph Lameterc9819f42006-12-10 02:20:25 -08003034 unsigned long next_balance = jiffies + 60*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003035
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003036 for_each_domain(cpu, sd) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003037 if (!(sd->flags & SD_LOAD_BALANCE))
3038 continue;
3039
3040 interval = sd->balance_interval;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003041 if (idle != CPU_IDLE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003042 interval *= sd->busy_factor;
3043
3044 /* scale ms to jiffies */
3045 interval = msecs_to_jiffies(interval);
3046 if (unlikely(!interval))
3047 interval = 1;
Ingo Molnardd41f592007-07-09 18:51:59 +02003048 if (interval > HZ*NR_CPUS/10)
3049 interval = HZ*NR_CPUS/10;
3050
Linus Torvalds1da177e2005-04-16 15:20:36 -07003051
Christoph Lameter08c183f2006-12-10 02:20:29 -08003052 if (sd->flags & SD_SERIALIZE) {
3053 if (!spin_trylock(&balancing))
3054 goto out;
3055 }
3056
Christoph Lameterc9819f42006-12-10 02:20:25 -08003057 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003058 if (load_balance(cpu, rq, sd, idle, &balance)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07003059 /*
3060 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07003061 * longer idle, or one of our SMT siblings is
3062 * not idle.
3063 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003064 idle = CPU_NOT_IDLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003065 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08003066 sd->last_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003067 }
Christoph Lameter08c183f2006-12-10 02:20:29 -08003068 if (sd->flags & SD_SERIALIZE)
3069 spin_unlock(&balancing);
3070out:
Christoph Lameterc9819f42006-12-10 02:20:25 -08003071 if (time_after(next_balance, sd->last_balance + interval))
3072 next_balance = sd->last_balance + interval;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08003073
3074 /*
3075 * Stop the load balance at this level. There is another
3076 * CPU in our sched group which is doing load balancing more
3077 * actively.
3078 */
3079 if (!balance)
3080 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003081 }
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003082 rq->next_balance = next_balance;
3083}
3084
3085/*
3086 * run_rebalance_domains is triggered when needed from the scheduler tick.
3087 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3088 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3089 */
3090static void run_rebalance_domains(struct softirq_action *h)
3091{
Ingo Molnardd41f592007-07-09 18:51:59 +02003092 int this_cpu = smp_processor_id();
3093 struct rq *this_rq = cpu_rq(this_cpu);
3094 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3095 CPU_IDLE : CPU_NOT_IDLE;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003096
Ingo Molnardd41f592007-07-09 18:51:59 +02003097 rebalance_domains(this_cpu, idle);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003098
3099#ifdef CONFIG_NO_HZ
3100 /*
3101 * If this cpu is the owner for idle load balancing, then do the
3102 * balancing on behalf of the other idle cpus whose ticks are
3103 * stopped.
3104 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003105 if (this_rq->idle_at_tick &&
3106 atomic_read(&nohz.load_balancer) == this_cpu) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003107 cpumask_t cpus = nohz.cpu_mask;
3108 struct rq *rq;
3109 int balance_cpu;
3110
Ingo Molnardd41f592007-07-09 18:51:59 +02003111 cpu_clear(this_cpu, cpus);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003112 for_each_cpu_mask(balance_cpu, cpus) {
3113 /*
3114 * If this cpu gets work to do, stop the load balancing
3115 * work being done for other cpus. Next load
3116 * balancing owner will pick it up.
3117 */
3118 if (need_resched())
3119 break;
3120
Ingo Molnardd41f592007-07-09 18:51:59 +02003121 rebalance_domains(balance_cpu, SCHED_IDLE);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003122
3123 rq = cpu_rq(balance_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02003124 if (time_after(this_rq->next_balance, rq->next_balance))
3125 this_rq->next_balance = rq->next_balance;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003126 }
3127 }
3128#endif
3129}
3130
3131/*
3132 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3133 *
3134 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3135 * idle load balancing owner or decide to stop the periodic load balancing,
3136 * if the whole system is idle.
3137 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003138static inline void trigger_load_balance(struct rq *rq, int cpu)
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003139{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003140#ifdef CONFIG_NO_HZ
3141 /*
3142 * If we were in the nohz mode recently and busy at the current
3143 * scheduler tick, then check if we need to nominate new idle
3144 * load balancer.
3145 */
3146 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3147 rq->in_nohz_recently = 0;
3148
3149 if (atomic_read(&nohz.load_balancer) == cpu) {
3150 cpu_clear(cpu, nohz.cpu_mask);
3151 atomic_set(&nohz.load_balancer, -1);
3152 }
3153
3154 if (atomic_read(&nohz.load_balancer) == -1) {
3155 /*
3156 * simple selection for now: Nominate the
3157 * first cpu in the nohz list to be the next
3158 * ilb owner.
3159 *
3160 * TBD: Traverse the sched domains and nominate
3161 * the nearest cpu in the nohz.cpu_mask.
3162 */
3163 int ilb = first_cpu(nohz.cpu_mask);
3164
3165 if (ilb != NR_CPUS)
3166 resched_cpu(ilb);
3167 }
3168 }
3169
3170 /*
3171 * If this cpu is idle and doing idle load balancing for all the
3172 * cpus with ticks stopped, is it time for that to stop?
3173 */
3174 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3175 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3176 resched_cpu(cpu);
3177 return;
3178 }
3179
3180 /*
3181 * If this cpu is idle and the idle load balancing is done by
3182 * someone else, then no need raise the SCHED_SOFTIRQ
3183 */
3184 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3185 cpu_isset(cpu, nohz.cpu_mask))
3186 return;
3187#endif
3188 if (time_after_eq(jiffies, rq->next_balance))
3189 raise_softirq(SCHED_SOFTIRQ);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003190}
Ingo Molnardd41f592007-07-09 18:51:59 +02003191
3192#else /* CONFIG_SMP */
3193
Linus Torvalds1da177e2005-04-16 15:20:36 -07003194/*
3195 * on UP we do not need to balance between CPUs:
3196 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003197static inline void idle_balance(int cpu, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003198{
3199}
Ingo Molnardd41f592007-07-09 18:51:59 +02003200
3201/* Avoid "used but not defined" warning on UP */
3202static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3203 unsigned long max_nr_move, unsigned long max_load_move,
3204 struct sched_domain *sd, enum cpu_idle_type idle,
3205 int *all_pinned, unsigned long *load_moved,
Peter Williamsa4ac01c2007-08-09 11:16:46 +02003206 int *this_best_prio, struct rq_iterator *iterator)
Ingo Molnardd41f592007-07-09 18:51:59 +02003207{
3208 *load_moved = 0;
3209
3210 return 0;
3211}
3212
Linus Torvalds1da177e2005-04-16 15:20:36 -07003213#endif
3214
Linus Torvalds1da177e2005-04-16 15:20:36 -07003215DEFINE_PER_CPU(struct kernel_stat, kstat);
3216
3217EXPORT_PER_CPU_SYMBOL(kstat);
3218
3219/*
Ingo Molnar41b86e92007-07-09 18:51:58 +02003220 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3221 * that have not yet been banked in case the task is currently running.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003222 */
Ingo Molnar41b86e92007-07-09 18:51:58 +02003223unsigned long long task_sched_runtime(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003224{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003225 unsigned long flags;
Ingo Molnar41b86e92007-07-09 18:51:58 +02003226 u64 ns, delta_exec;
3227 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003228
Ingo Molnar41b86e92007-07-09 18:51:58 +02003229 rq = task_rq_lock(p, &flags);
3230 ns = p->se.sum_exec_runtime;
3231 if (rq->curr == p) {
Ingo Molnara8e504d2007-08-09 11:16:47 +02003232 update_rq_clock(rq);
3233 delta_exec = rq->clock - p->se.exec_start;
Ingo Molnar41b86e92007-07-09 18:51:58 +02003234 if ((s64)delta_exec > 0)
3235 ns += delta_exec;
3236 }
3237 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07003238
Linus Torvalds1da177e2005-04-16 15:20:36 -07003239 return ns;
3240}
3241
3242/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07003243 * Account user cpu time to a process.
3244 * @p: the process that the cpu time gets accounted to
3245 * @hardirq_offset: the offset to subtract from hardirq_count()
3246 * @cputime: the cpu time spent in user space since the last update
3247 */
3248void account_user_time(struct task_struct *p, cputime_t cputime)
3249{
3250 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3251 cputime64_t tmp;
3252
3253 p->utime = cputime_add(p->utime, cputime);
3254
3255 /* Add user time to cpustat. */
3256 tmp = cputime_to_cputime64(cputime);
3257 if (TASK_NICE(p) > 0)
3258 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3259 else
3260 cpustat->user = cputime64_add(cpustat->user, tmp);
3261}
3262
3263/*
3264 * Account system cpu time to a process.
3265 * @p: the process that the cpu time gets accounted to
3266 * @hardirq_offset: the offset to subtract from hardirq_count()
3267 * @cputime: the cpu time spent in kernel space since the last update
3268 */
3269void account_system_time(struct task_struct *p, int hardirq_offset,
3270 cputime_t cputime)
3271{
3272 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003273 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003274 cputime64_t tmp;
3275
3276 p->stime = cputime_add(p->stime, cputime);
3277
3278 /* Add system time to cpustat. */
3279 tmp = cputime_to_cputime64(cputime);
3280 if (hardirq_count() - hardirq_offset)
3281 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3282 else if (softirq_count())
3283 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3284 else if (p != rq->idle)
3285 cpustat->system = cputime64_add(cpustat->system, tmp);
3286 else if (atomic_read(&rq->nr_iowait) > 0)
3287 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3288 else
3289 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3290 /* Account for system time used */
3291 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003292}
3293
3294/*
3295 * Account for involuntary wait time.
3296 * @p: the process from which the cpu time has been stolen
3297 * @steal: the cpu time spent in involuntary wait
3298 */
3299void account_steal_time(struct task_struct *p, cputime_t steal)
3300{
3301 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3302 cputime64_t tmp = cputime_to_cputime64(steal);
Ingo Molnar70b97a72006-07-03 00:25:42 -07003303 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003304
3305 if (p == rq->idle) {
3306 p->stime = cputime_add(p->stime, steal);
3307 if (atomic_read(&rq->nr_iowait) > 0)
3308 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3309 else
3310 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3311 } else
3312 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3313}
3314
Christoph Lameter7835b982006-12-10 02:20:22 -08003315/*
3316 * This function gets called by the timer code, with HZ frequency.
3317 * We call it with interrupts disabled.
3318 *
3319 * It also gets called by the fork code, when changing the parent's
3320 * timeslices.
3321 */
3322void scheduler_tick(void)
3323{
Christoph Lameter7835b982006-12-10 02:20:22 -08003324 int cpu = smp_processor_id();
3325 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02003326 struct task_struct *curr = rq->curr;
Christoph Lameter7835b982006-12-10 02:20:22 -08003327
Ingo Molnardd41f592007-07-09 18:51:59 +02003328 spin_lock(&rq->lock);
Ingo Molnarf1a438d2007-08-09 11:16:45 +02003329 update_cpu_load(rq);
Ingo Molnardd41f592007-07-09 18:51:59 +02003330 if (curr != rq->idle) /* FIXME: needed? */
3331 curr->sched_class->task_tick(rq, curr);
Ingo Molnardd41f592007-07-09 18:51:59 +02003332 spin_unlock(&rq->lock);
3333
Christoph Lametere418e1c2006-12-10 02:20:23 -08003334#ifdef CONFIG_SMP
Ingo Molnardd41f592007-07-09 18:51:59 +02003335 rq->idle_at_tick = idle_cpu(cpu);
3336 trigger_load_balance(rq, cpu);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003337#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003338}
3339
Linus Torvalds1da177e2005-04-16 15:20:36 -07003340#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3341
3342void fastcall add_preempt_count(int val)
3343{
3344 /*
3345 * Underflow?
3346 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003347 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3348 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003349 preempt_count() += val;
3350 /*
3351 * Spinlock count overflowing soon?
3352 */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08003353 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3354 PREEMPT_MASK - 10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003355}
3356EXPORT_SYMBOL(add_preempt_count);
3357
3358void fastcall sub_preempt_count(int val)
3359{
3360 /*
3361 * Underflow?
3362 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003363 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3364 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003365 /*
3366 * Is the spinlock portion underflowing?
3367 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003368 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3369 !(preempt_count() & PREEMPT_MASK)))
3370 return;
3371
Linus Torvalds1da177e2005-04-16 15:20:36 -07003372 preempt_count() -= val;
3373}
3374EXPORT_SYMBOL(sub_preempt_count);
3375
3376#endif
3377
3378/*
Ingo Molnardd41f592007-07-09 18:51:59 +02003379 * Print scheduling while atomic bug:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003380 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003381static noinline void __schedule_bug(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003382{
Ingo Molnardd41f592007-07-09 18:51:59 +02003383 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3384 prev->comm, preempt_count(), prev->pid);
3385 debug_show_held_locks(prev);
3386 if (irqs_disabled())
3387 print_irqtrace_events(prev);
3388 dump_stack();
3389}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003390
Ingo Molnardd41f592007-07-09 18:51:59 +02003391/*
3392 * Various schedule()-time debugging checks and statistics:
3393 */
3394static inline void schedule_debug(struct task_struct *prev)
3395{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003396 /*
3397 * Test if we are atomic. Since do_exit() needs to call into
3398 * schedule() atomically, we ignore that path for now.
3399 * Otherwise, whine if we are scheduling when we should not be.
3400 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003401 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3402 __schedule_bug(prev);
3403
Linus Torvalds1da177e2005-04-16 15:20:36 -07003404 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3405
Ingo Molnardd41f592007-07-09 18:51:59 +02003406 schedstat_inc(this_rq(), sched_cnt);
3407}
3408
3409/*
3410 * Pick up the highest-prio task:
3411 */
3412static inline struct task_struct *
3413pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3414{
3415 struct sched_class *class;
3416 struct task_struct *p;
3417
3418 /*
3419 * Optimization: we know that if all tasks are in
3420 * the fair class we can call that function directly:
3421 */
3422 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3423 p = fair_sched_class.pick_next_task(rq, now);
3424 if (likely(p))
3425 return p;
3426 }
3427
3428 class = sched_class_highest;
3429 for ( ; ; ) {
3430 p = class->pick_next_task(rq, now);
3431 if (p)
3432 return p;
3433 /*
3434 * Will never be NULL as the idle class always
3435 * returns a non-NULL p:
3436 */
3437 class = class->next;
3438 }
3439}
3440
3441/*
3442 * schedule() is the main scheduler function.
3443 */
3444asmlinkage void __sched schedule(void)
3445{
3446 struct task_struct *prev, *next;
3447 long *switch_count;
3448 struct rq *rq;
3449 u64 now;
3450 int cpu;
3451
Linus Torvalds1da177e2005-04-16 15:20:36 -07003452need_resched:
3453 preempt_disable();
Ingo Molnardd41f592007-07-09 18:51:59 +02003454 cpu = smp_processor_id();
3455 rq = cpu_rq(cpu);
3456 rcu_qsctr_inc(cpu);
3457 prev = rq->curr;
3458 switch_count = &prev->nivcsw;
3459
Linus Torvalds1da177e2005-04-16 15:20:36 -07003460 release_kernel_lock(prev);
3461need_resched_nonpreemptible:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003462
Ingo Molnardd41f592007-07-09 18:51:59 +02003463 schedule_debug(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003464
3465 spin_lock_irq(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003466 clear_tsk_need_resched(prev);
Ingo Molnar8e717b12007-08-09 11:16:46 +02003467 now = __rq_clock(rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003468
Ingo Molnardd41f592007-07-09 18:51:59 +02003469 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3470 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3471 unlikely(signal_pending(prev)))) {
3472 prev->state = TASK_RUNNING;
3473 } else {
Ingo Molnar8e717b12007-08-09 11:16:46 +02003474 deactivate_task(rq, prev, 1, now);
Ingo Molnardd41f592007-07-09 18:51:59 +02003475 }
3476 switch_count = &prev->nvcsw;
3477 }
3478
3479 if (unlikely(!rq->nr_running))
3480 idle_balance(cpu, rq);
3481
Ingo Molnardd41f592007-07-09 18:51:59 +02003482 prev->sched_class->put_prev_task(rq, prev, now);
3483 next = pick_next_task(rq, prev, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003484
3485 sched_info_switch(prev, next);
Ingo Molnardd41f592007-07-09 18:51:59 +02003486
Linus Torvalds1da177e2005-04-16 15:20:36 -07003487 if (likely(prev != next)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003488 rq->nr_switches++;
3489 rq->curr = next;
3490 ++*switch_count;
3491
Ingo Molnardd41f592007-07-09 18:51:59 +02003492 context_switch(rq, prev, next); /* unlocks the rq */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003493 } else
3494 spin_unlock_irq(&rq->lock);
3495
Ingo Molnardd41f592007-07-09 18:51:59 +02003496 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3497 cpu = smp_processor_id();
3498 rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003499 goto need_resched_nonpreemptible;
Ingo Molnardd41f592007-07-09 18:51:59 +02003500 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003501 preempt_enable_no_resched();
3502 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3503 goto need_resched;
3504}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003505EXPORT_SYMBOL(schedule);
3506
3507#ifdef CONFIG_PREEMPT
3508/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003509 * this is the entry point to schedule() from in-kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003510 * off of preempt_enable. Kernel preemptions off return from interrupt
3511 * occur there and call schedule directly.
3512 */
3513asmlinkage void __sched preempt_schedule(void)
3514{
3515 struct thread_info *ti = current_thread_info();
3516#ifdef CONFIG_PREEMPT_BKL
3517 struct task_struct *task = current;
3518 int saved_lock_depth;
3519#endif
3520 /*
3521 * If there is a non-zero preempt_count or interrupts are disabled,
3522 * we do not want to preempt the current task. Just return..
3523 */
Nick Pigginbeed33a2006-10-11 01:21:52 -07003524 if (likely(ti->preempt_count || irqs_disabled()))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003525 return;
3526
3527need_resched:
3528 add_preempt_count(PREEMPT_ACTIVE);
3529 /*
3530 * We keep the big kernel semaphore locked, but we
3531 * clear ->lock_depth so that schedule() doesnt
3532 * auto-release the semaphore:
3533 */
3534#ifdef CONFIG_PREEMPT_BKL
3535 saved_lock_depth = task->lock_depth;
3536 task->lock_depth = -1;
3537#endif
3538 schedule();
3539#ifdef CONFIG_PREEMPT_BKL
3540 task->lock_depth = saved_lock_depth;
3541#endif
3542 sub_preempt_count(PREEMPT_ACTIVE);
3543
3544 /* we could miss a preemption opportunity between schedule and now */
3545 barrier();
3546 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3547 goto need_resched;
3548}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003549EXPORT_SYMBOL(preempt_schedule);
3550
3551/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003552 * this is the entry point to schedule() from kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003553 * off of irq context.
3554 * Note, that this is called and return with irqs disabled. This will
3555 * protect us against recursive calling from irq.
3556 */
3557asmlinkage void __sched preempt_schedule_irq(void)
3558{
3559 struct thread_info *ti = current_thread_info();
3560#ifdef CONFIG_PREEMPT_BKL
3561 struct task_struct *task = current;
3562 int saved_lock_depth;
3563#endif
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003564 /* Catch callers which need to be fixed */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003565 BUG_ON(ti->preempt_count || !irqs_disabled());
3566
3567need_resched:
3568 add_preempt_count(PREEMPT_ACTIVE);
3569 /*
3570 * We keep the big kernel semaphore locked, but we
3571 * clear ->lock_depth so that schedule() doesnt
3572 * auto-release the semaphore:
3573 */
3574#ifdef CONFIG_PREEMPT_BKL
3575 saved_lock_depth = task->lock_depth;
3576 task->lock_depth = -1;
3577#endif
3578 local_irq_enable();
3579 schedule();
3580 local_irq_disable();
3581#ifdef CONFIG_PREEMPT_BKL
3582 task->lock_depth = saved_lock_depth;
3583#endif
3584 sub_preempt_count(PREEMPT_ACTIVE);
3585
3586 /* we could miss a preemption opportunity between schedule and now */
3587 barrier();
3588 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3589 goto need_resched;
3590}
3591
3592#endif /* CONFIG_PREEMPT */
3593
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003594int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3595 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003596{
Ingo Molnar48f24c42006-07-03 00:25:40 -07003597 return try_to_wake_up(curr->private, mode, sync);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003598}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003599EXPORT_SYMBOL(default_wake_function);
3600
3601/*
3602 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3603 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3604 * number) then we wake all the non-exclusive tasks and one exclusive task.
3605 *
3606 * There are circumstances in which we can try to wake a task which has already
3607 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3608 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3609 */
3610static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3611 int nr_exclusive, int sync, void *key)
3612{
3613 struct list_head *tmp, *next;
3614
3615 list_for_each_safe(tmp, next, &q->task_list) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07003616 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3617 unsigned flags = curr->flags;
3618
Linus Torvalds1da177e2005-04-16 15:20:36 -07003619 if (curr->func(curr, mode, sync, key) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07003620 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003621 break;
3622 }
3623}
3624
3625/**
3626 * __wake_up - wake up threads blocked on a waitqueue.
3627 * @q: the waitqueue
3628 * @mode: which threads
3629 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003630 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003631 */
3632void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003633 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003634{
3635 unsigned long flags;
3636
3637 spin_lock_irqsave(&q->lock, flags);
3638 __wake_up_common(q, mode, nr_exclusive, 0, key);
3639 spin_unlock_irqrestore(&q->lock, flags);
3640}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003641EXPORT_SYMBOL(__wake_up);
3642
3643/*
3644 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3645 */
3646void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3647{
3648 __wake_up_common(q, mode, 1, 0, NULL);
3649}
3650
3651/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003652 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003653 * @q: the waitqueue
3654 * @mode: which threads
3655 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3656 *
3657 * The sync wakeup differs that the waker knows that it will schedule
3658 * away soon, so while the target thread will be woken up, it will not
3659 * be migrated to another CPU - ie. the two threads are 'synchronized'
3660 * with each other. This can prevent needless bouncing between CPUs.
3661 *
3662 * On UP it can prevent extra preemption.
3663 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003664void fastcall
3665__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003666{
3667 unsigned long flags;
3668 int sync = 1;
3669
3670 if (unlikely(!q))
3671 return;
3672
3673 if (unlikely(!nr_exclusive))
3674 sync = 0;
3675
3676 spin_lock_irqsave(&q->lock, flags);
3677 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3678 spin_unlock_irqrestore(&q->lock, flags);
3679}
3680EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3681
3682void fastcall complete(struct completion *x)
3683{
3684 unsigned long flags;
3685
3686 spin_lock_irqsave(&x->wait.lock, flags);
3687 x->done++;
3688 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3689 1, 0, NULL);
3690 spin_unlock_irqrestore(&x->wait.lock, flags);
3691}
3692EXPORT_SYMBOL(complete);
3693
3694void fastcall complete_all(struct completion *x)
3695{
3696 unsigned long flags;
3697
3698 spin_lock_irqsave(&x->wait.lock, flags);
3699 x->done += UINT_MAX/2;
3700 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3701 0, 0, NULL);
3702 spin_unlock_irqrestore(&x->wait.lock, flags);
3703}
3704EXPORT_SYMBOL(complete_all);
3705
3706void fastcall __sched wait_for_completion(struct completion *x)
3707{
3708 might_sleep();
Ingo Molnar48f24c42006-07-03 00:25:40 -07003709
Linus Torvalds1da177e2005-04-16 15:20:36 -07003710 spin_lock_irq(&x->wait.lock);
3711 if (!x->done) {
3712 DECLARE_WAITQUEUE(wait, current);
3713
3714 wait.flags |= WQ_FLAG_EXCLUSIVE;
3715 __add_wait_queue_tail(&x->wait, &wait);
3716 do {
3717 __set_current_state(TASK_UNINTERRUPTIBLE);
3718 spin_unlock_irq(&x->wait.lock);
3719 schedule();
3720 spin_lock_irq(&x->wait.lock);
3721 } while (!x->done);
3722 __remove_wait_queue(&x->wait, &wait);
3723 }
3724 x->done--;
3725 spin_unlock_irq(&x->wait.lock);
3726}
3727EXPORT_SYMBOL(wait_for_completion);
3728
3729unsigned long fastcall __sched
3730wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3731{
3732 might_sleep();
3733
3734 spin_lock_irq(&x->wait.lock);
3735 if (!x->done) {
3736 DECLARE_WAITQUEUE(wait, current);
3737
3738 wait.flags |= WQ_FLAG_EXCLUSIVE;
3739 __add_wait_queue_tail(&x->wait, &wait);
3740 do {
3741 __set_current_state(TASK_UNINTERRUPTIBLE);
3742 spin_unlock_irq(&x->wait.lock);
3743 timeout = schedule_timeout(timeout);
3744 spin_lock_irq(&x->wait.lock);
3745 if (!timeout) {
3746 __remove_wait_queue(&x->wait, &wait);
3747 goto out;
3748 }
3749 } while (!x->done);
3750 __remove_wait_queue(&x->wait, &wait);
3751 }
3752 x->done--;
3753out:
3754 spin_unlock_irq(&x->wait.lock);
3755 return timeout;
3756}
3757EXPORT_SYMBOL(wait_for_completion_timeout);
3758
3759int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3760{
3761 int ret = 0;
3762
3763 might_sleep();
3764
3765 spin_lock_irq(&x->wait.lock);
3766 if (!x->done) {
3767 DECLARE_WAITQUEUE(wait, current);
3768
3769 wait.flags |= WQ_FLAG_EXCLUSIVE;
3770 __add_wait_queue_tail(&x->wait, &wait);
3771 do {
3772 if (signal_pending(current)) {
3773 ret = -ERESTARTSYS;
3774 __remove_wait_queue(&x->wait, &wait);
3775 goto out;
3776 }
3777 __set_current_state(TASK_INTERRUPTIBLE);
3778 spin_unlock_irq(&x->wait.lock);
3779 schedule();
3780 spin_lock_irq(&x->wait.lock);
3781 } while (!x->done);
3782 __remove_wait_queue(&x->wait, &wait);
3783 }
3784 x->done--;
3785out:
3786 spin_unlock_irq(&x->wait.lock);
3787
3788 return ret;
3789}
3790EXPORT_SYMBOL(wait_for_completion_interruptible);
3791
3792unsigned long fastcall __sched
3793wait_for_completion_interruptible_timeout(struct completion *x,
3794 unsigned long timeout)
3795{
3796 might_sleep();
3797
3798 spin_lock_irq(&x->wait.lock);
3799 if (!x->done) {
3800 DECLARE_WAITQUEUE(wait, current);
3801
3802 wait.flags |= WQ_FLAG_EXCLUSIVE;
3803 __add_wait_queue_tail(&x->wait, &wait);
3804 do {
3805 if (signal_pending(current)) {
3806 timeout = -ERESTARTSYS;
3807 __remove_wait_queue(&x->wait, &wait);
3808 goto out;
3809 }
3810 __set_current_state(TASK_INTERRUPTIBLE);
3811 spin_unlock_irq(&x->wait.lock);
3812 timeout = schedule_timeout(timeout);
3813 spin_lock_irq(&x->wait.lock);
3814 if (!timeout) {
3815 __remove_wait_queue(&x->wait, &wait);
3816 goto out;
3817 }
3818 } while (!x->done);
3819 __remove_wait_queue(&x->wait, &wait);
3820 }
3821 x->done--;
3822out:
3823 spin_unlock_irq(&x->wait.lock);
3824 return timeout;
3825}
3826EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3827
Ingo Molnar0fec1712007-07-09 18:52:01 +02003828static inline void
3829sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003830{
Ingo Molnar0fec1712007-07-09 18:52:01 +02003831 spin_lock_irqsave(&q->lock, *flags);
3832 __add_wait_queue(q, wait);
3833 spin_unlock(&q->lock);
3834}
3835
3836static inline void
3837sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3838{
3839 spin_lock_irq(&q->lock);
3840 __remove_wait_queue(q, wait);
3841 spin_unlock_irqrestore(&q->lock, *flags);
3842}
3843
3844void __sched interruptible_sleep_on(wait_queue_head_t *q)
3845{
3846 unsigned long flags;
3847 wait_queue_t wait;
3848
3849 init_waitqueue_entry(&wait, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003850
3851 current->state = TASK_INTERRUPTIBLE;
3852
Ingo Molnar0fec1712007-07-09 18:52:01 +02003853 sleep_on_head(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003854 schedule();
Ingo Molnar0fec1712007-07-09 18:52:01 +02003855 sleep_on_tail(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003856}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003857EXPORT_SYMBOL(interruptible_sleep_on);
3858
Ingo Molnar0fec1712007-07-09 18:52:01 +02003859long __sched
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003860interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003861{
Ingo Molnar0fec1712007-07-09 18:52:01 +02003862 unsigned long flags;
3863 wait_queue_t wait;
3864
3865 init_waitqueue_entry(&wait, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003866
3867 current->state = TASK_INTERRUPTIBLE;
3868
Ingo Molnar0fec1712007-07-09 18:52:01 +02003869 sleep_on_head(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003870 timeout = schedule_timeout(timeout);
Ingo Molnar0fec1712007-07-09 18:52:01 +02003871 sleep_on_tail(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003872
3873 return timeout;
3874}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003875EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3876
Ingo Molnar0fec1712007-07-09 18:52:01 +02003877void __sched sleep_on(wait_queue_head_t *q)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003878{
Ingo Molnar0fec1712007-07-09 18:52:01 +02003879 unsigned long flags;
3880 wait_queue_t wait;
3881
3882 init_waitqueue_entry(&wait, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003883
3884 current->state = TASK_UNINTERRUPTIBLE;
3885
Ingo Molnar0fec1712007-07-09 18:52:01 +02003886 sleep_on_head(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003887 schedule();
Ingo Molnar0fec1712007-07-09 18:52:01 +02003888 sleep_on_tail(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003889}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003890EXPORT_SYMBOL(sleep_on);
3891
Ingo Molnar0fec1712007-07-09 18:52:01 +02003892long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003893{
Ingo Molnar0fec1712007-07-09 18:52:01 +02003894 unsigned long flags;
3895 wait_queue_t wait;
3896
3897 init_waitqueue_entry(&wait, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003898
3899 current->state = TASK_UNINTERRUPTIBLE;
3900
Ingo Molnar0fec1712007-07-09 18:52:01 +02003901 sleep_on_head(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003902 timeout = schedule_timeout(timeout);
Ingo Molnar0fec1712007-07-09 18:52:01 +02003903 sleep_on_tail(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003904
3905 return timeout;
3906}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003907EXPORT_SYMBOL(sleep_on_timeout);
3908
Ingo Molnarb29739f2006-06-27 02:54:51 -07003909#ifdef CONFIG_RT_MUTEXES
3910
3911/*
3912 * rt_mutex_setprio - set the current priority of a task
3913 * @p: task
3914 * @prio: prio value (kernel-internal form)
3915 *
3916 * This function changes the 'effective' priority of a task. It does
3917 * not touch ->normal_prio like __setscheduler().
3918 *
3919 * Used by the rt_mutex code to implement priority inheritance logic.
3920 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003921void rt_mutex_setprio(struct task_struct *p, int prio)
Ingo Molnarb29739f2006-06-27 02:54:51 -07003922{
3923 unsigned long flags;
Ingo Molnardd41f592007-07-09 18:51:59 +02003924 int oldprio, on_rq;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003925 struct rq *rq;
Ingo Molnardd41f592007-07-09 18:51:59 +02003926 u64 now;
Ingo Molnarb29739f2006-06-27 02:54:51 -07003927
3928 BUG_ON(prio < 0 || prio > MAX_PRIO);
3929
3930 rq = task_rq_lock(p, &flags);
Ingo Molnara8e504d2007-08-09 11:16:47 +02003931 update_rq_clock(rq);
3932 now = rq->clock;
Ingo Molnarb29739f2006-06-27 02:54:51 -07003933
Andrew Mortond5f9f942007-05-08 20:27:06 -07003934 oldprio = p->prio;
Ingo Molnardd41f592007-07-09 18:51:59 +02003935 on_rq = p->se.on_rq;
3936 if (on_rq)
3937 dequeue_task(rq, p, 0, now);
3938
3939 if (rt_prio(prio))
3940 p->sched_class = &rt_sched_class;
3941 else
3942 p->sched_class = &fair_sched_class;
3943
Ingo Molnarb29739f2006-06-27 02:54:51 -07003944 p->prio = prio;
3945
Ingo Molnardd41f592007-07-09 18:51:59 +02003946 if (on_rq) {
3947 enqueue_task(rq, p, 0, now);
Ingo Molnarb29739f2006-06-27 02:54:51 -07003948 /*
3949 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07003950 * our priority decreased, or if we are not currently running on
3951 * this runqueue and our priority is higher than the current's
Ingo Molnarb29739f2006-06-27 02:54:51 -07003952 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07003953 if (task_running(rq, p)) {
3954 if (p->prio > oldprio)
3955 resched_task(rq->curr);
Ingo Molnardd41f592007-07-09 18:51:59 +02003956 } else {
3957 check_preempt_curr(rq, p);
3958 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07003959 }
3960 task_rq_unlock(rq, &flags);
3961}
3962
3963#endif
3964
Ingo Molnar36c8b582006-07-03 00:25:41 -07003965void set_user_nice(struct task_struct *p, long nice)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003966{
Ingo Molnardd41f592007-07-09 18:51:59 +02003967 int old_prio, delta, on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003968 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003969 struct rq *rq;
Ingo Molnardd41f592007-07-09 18:51:59 +02003970 u64 now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003971
3972 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3973 return;
3974 /*
3975 * We have to be careful, if called from sys_setpriority(),
3976 * the task might be in the middle of scheduling on another CPU.
3977 */
3978 rq = task_rq_lock(p, &flags);
Ingo Molnara8e504d2007-08-09 11:16:47 +02003979 update_rq_clock(rq);
3980 now = rq->clock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003981 /*
3982 * The RT priorities are set via sched_setscheduler(), but we still
3983 * allow the 'normal' nice value to be set - but as expected
3984 * it wont have any effect on scheduling until the task is
Ingo Molnardd41f592007-07-09 18:51:59 +02003985 * SCHED_FIFO/SCHED_RR:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003986 */
Ingo Molnare05606d2007-07-09 18:51:59 +02003987 if (task_has_rt_policy(p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003988 p->static_prio = NICE_TO_PRIO(nice);
3989 goto out_unlock;
3990 }
Ingo Molnardd41f592007-07-09 18:51:59 +02003991 on_rq = p->se.on_rq;
3992 if (on_rq) {
3993 dequeue_task(rq, p, 0, now);
3994 dec_load(rq, p, now);
Peter Williams2dd73a42006-06-27 02:54:34 -07003995 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003996
Linus Torvalds1da177e2005-04-16 15:20:36 -07003997 p->static_prio = NICE_TO_PRIO(nice);
Peter Williams2dd73a42006-06-27 02:54:34 -07003998 set_load_weight(p);
Ingo Molnarb29739f2006-06-27 02:54:51 -07003999 old_prio = p->prio;
4000 p->prio = effective_prio(p);
4001 delta = p->prio - old_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004002
Ingo Molnardd41f592007-07-09 18:51:59 +02004003 if (on_rq) {
4004 enqueue_task(rq, p, 0, now);
4005 inc_load(rq, p, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004006 /*
Andrew Mortond5f9f942007-05-08 20:27:06 -07004007 * If the task increased its priority or is running and
4008 * lowered its priority, then reschedule its CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004009 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004010 if (delta < 0 || (delta > 0 && task_running(rq, p)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004011 resched_task(rq->curr);
4012 }
4013out_unlock:
4014 task_rq_unlock(rq, &flags);
4015}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004016EXPORT_SYMBOL(set_user_nice);
4017
Matt Mackalle43379f2005-05-01 08:59:00 -07004018/*
4019 * can_nice - check if a task can reduce its nice value
4020 * @p: task
4021 * @nice: nice value
4022 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004023int can_nice(const struct task_struct *p, const int nice)
Matt Mackalle43379f2005-05-01 08:59:00 -07004024{
Matt Mackall024f4742005-08-18 11:24:19 -07004025 /* convert nice value [19,-20] to rlimit style value [1,40] */
4026 int nice_rlim = 20 - nice;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004027
Matt Mackalle43379f2005-05-01 08:59:00 -07004028 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4029 capable(CAP_SYS_NICE));
4030}
4031
Linus Torvalds1da177e2005-04-16 15:20:36 -07004032#ifdef __ARCH_WANT_SYS_NICE
4033
4034/*
4035 * sys_nice - change the priority of the current process.
4036 * @increment: priority increment
4037 *
4038 * sys_setpriority is a more generic, but much slower function that
4039 * does similar things.
4040 */
4041asmlinkage long sys_nice(int increment)
4042{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004043 long nice, retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004044
4045 /*
4046 * Setpriority might change our priority at the same moment.
4047 * We don't have to worry. Conceptually one call occurs first
4048 * and we have a single winner.
4049 */
Matt Mackalle43379f2005-05-01 08:59:00 -07004050 if (increment < -40)
4051 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004052 if (increment > 40)
4053 increment = 40;
4054
4055 nice = PRIO_TO_NICE(current->static_prio) + increment;
4056 if (nice < -20)
4057 nice = -20;
4058 if (nice > 19)
4059 nice = 19;
4060
Matt Mackalle43379f2005-05-01 08:59:00 -07004061 if (increment < 0 && !can_nice(current, nice))
4062 return -EPERM;
4063
Linus Torvalds1da177e2005-04-16 15:20:36 -07004064 retval = security_task_setnice(current, nice);
4065 if (retval)
4066 return retval;
4067
4068 set_user_nice(current, nice);
4069 return 0;
4070}
4071
4072#endif
4073
4074/**
4075 * task_prio - return the priority value of a given task.
4076 * @p: the task in question.
4077 *
4078 * This is the priority value as seen by users in /proc.
4079 * RT tasks are offset by -200. Normal tasks are centered
4080 * around 0, value goes from -16 to +15.
4081 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004082int task_prio(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004083{
4084 return p->prio - MAX_RT_PRIO;
4085}
4086
4087/**
4088 * task_nice - return the nice value of a given task.
4089 * @p: the task in question.
4090 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004091int task_nice(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004092{
4093 return TASK_NICE(p);
4094}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004095EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004096
4097/**
4098 * idle_cpu - is a given cpu idle currently?
4099 * @cpu: the processor in question.
4100 */
4101int idle_cpu(int cpu)
4102{
4103 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4104}
4105
Linus Torvalds1da177e2005-04-16 15:20:36 -07004106/**
4107 * idle_task - return the idle task for a given cpu.
4108 * @cpu: the processor in question.
4109 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004110struct task_struct *idle_task(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004111{
4112 return cpu_rq(cpu)->idle;
4113}
4114
4115/**
4116 * find_process_by_pid - find a process with a matching PID value.
4117 * @pid: the pid in question.
4118 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004119static inline struct task_struct *find_process_by_pid(pid_t pid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004120{
4121 return pid ? find_task_by_pid(pid) : current;
4122}
4123
4124/* Actually do priority change: must hold rq lock. */
Ingo Molnardd41f592007-07-09 18:51:59 +02004125static void
4126__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004127{
Ingo Molnardd41f592007-07-09 18:51:59 +02004128 BUG_ON(p->se.on_rq);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004129
Linus Torvalds1da177e2005-04-16 15:20:36 -07004130 p->policy = policy;
Ingo Molnardd41f592007-07-09 18:51:59 +02004131 switch (p->policy) {
4132 case SCHED_NORMAL:
4133 case SCHED_BATCH:
4134 case SCHED_IDLE:
4135 p->sched_class = &fair_sched_class;
4136 break;
4137 case SCHED_FIFO:
4138 case SCHED_RR:
4139 p->sched_class = &rt_sched_class;
4140 break;
4141 }
4142
Linus Torvalds1da177e2005-04-16 15:20:36 -07004143 p->rt_priority = prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004144 p->normal_prio = normal_prio(p);
4145 /* we are holding p->pi_lock already */
4146 p->prio = rt_mutex_getprio(p);
Peter Williams2dd73a42006-06-27 02:54:34 -07004147 set_load_weight(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004148}
4149
4150/**
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004151 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004152 * @p: the task in question.
4153 * @policy: new policy.
4154 * @param: structure containing the new RT priority.
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004155 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004156 * NOTE that the task may be already dead.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004157 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004158int sched_setscheduler(struct task_struct *p, int policy,
4159 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004160{
Ingo Molnardd41f592007-07-09 18:51:59 +02004161 int retval, oldprio, oldpolicy = -1, on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004162 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004163 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004164
Steven Rostedt66e53932006-06-27 02:54:44 -07004165 /* may grab non-irq protected spin_locks */
4166 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004167recheck:
4168 /* double check policy once rq lock held */
4169 if (policy < 0)
4170 policy = oldpolicy = p->policy;
4171 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnardd41f592007-07-09 18:51:59 +02004172 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4173 policy != SCHED_IDLE)
Ingo Molnarb0a94992006-01-14 13:20:41 -08004174 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004175 /*
4176 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnardd41f592007-07-09 18:51:59 +02004177 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4178 * SCHED_BATCH and SCHED_IDLE is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004179 */
4180 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004181 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04004182 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004183 return -EINVAL;
Ingo Molnare05606d2007-07-09 18:51:59 +02004184 if (rt_policy(policy) != (param->sched_priority != 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004185 return -EINVAL;
4186
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004187 /*
4188 * Allow unprivileged RT tasks to decrease priority:
4189 */
4190 if (!capable(CAP_SYS_NICE)) {
Ingo Molnare05606d2007-07-09 18:51:59 +02004191 if (rt_policy(policy)) {
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004192 unsigned long rlim_rtprio;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004193
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004194 if (!lock_task_sighand(p, &flags))
4195 return -ESRCH;
4196 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4197 unlock_task_sighand(p, &flags);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004198
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004199 /* can't set/change the rt policy */
4200 if (policy != p->policy && !rlim_rtprio)
4201 return -EPERM;
4202
4203 /* can't increase priority */
4204 if (param->sched_priority > p->rt_priority &&
4205 param->sched_priority > rlim_rtprio)
4206 return -EPERM;
4207 }
Ingo Molnardd41f592007-07-09 18:51:59 +02004208 /*
4209 * Like positive nice levels, dont allow tasks to
4210 * move out of SCHED_IDLE either:
4211 */
4212 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4213 return -EPERM;
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004214
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004215 /* can't change other user's priorities */
4216 if ((current->euid != p->euid) &&
4217 (current->euid != p->uid))
4218 return -EPERM;
4219 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004220
4221 retval = security_task_setscheduler(p, policy, param);
4222 if (retval)
4223 return retval;
4224 /*
Ingo Molnarb29739f2006-06-27 02:54:51 -07004225 * make sure no PI-waiters arrive (or leave) while we are
4226 * changing the priority of the task:
4227 */
4228 spin_lock_irqsave(&p->pi_lock, flags);
4229 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07004230 * To be able to change p->policy safely, the apropriate
4231 * runqueue lock must be held.
4232 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004233 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004234 /* recheck policy now with rq lock held */
4235 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4236 policy = oldpolicy = -1;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004237 __task_rq_unlock(rq);
4238 spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004239 goto recheck;
4240 }
Ingo Molnardd41f592007-07-09 18:51:59 +02004241 on_rq = p->se.on_rq;
Ingo Molnara8e504d2007-08-09 11:16:47 +02004242 if (on_rq) {
4243 update_rq_clock(rq);
4244 deactivate_task(rq, p, 0, rq->clock);
4245 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004246 oldprio = p->prio;
Ingo Molnardd41f592007-07-09 18:51:59 +02004247 __setscheduler(rq, p, policy, param->sched_priority);
4248 if (on_rq) {
4249 activate_task(rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004250 /*
4251 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004252 * our priority decreased, or if we are not currently running on
4253 * this runqueue and our priority is higher than the current's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004254 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004255 if (task_running(rq, p)) {
4256 if (p->prio > oldprio)
4257 resched_task(rq->curr);
Ingo Molnardd41f592007-07-09 18:51:59 +02004258 } else {
4259 check_preempt_curr(rq, p);
4260 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004261 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07004262 __task_rq_unlock(rq);
4263 spin_unlock_irqrestore(&p->pi_lock, flags);
4264
Thomas Gleixner95e02ca2006-06-27 02:55:02 -07004265 rt_mutex_adjust_pi(p);
4266
Linus Torvalds1da177e2005-04-16 15:20:36 -07004267 return 0;
4268}
4269EXPORT_SYMBOL_GPL(sched_setscheduler);
4270
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004271static int
4272do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004273{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004274 struct sched_param lparam;
4275 struct task_struct *p;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004276 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004277
4278 if (!param || pid < 0)
4279 return -EINVAL;
4280 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4281 return -EFAULT;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004282
4283 rcu_read_lock();
4284 retval = -ESRCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004285 p = find_process_by_pid(pid);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004286 if (p != NULL)
4287 retval = sched_setscheduler(p, policy, &lparam);
4288 rcu_read_unlock();
Ingo Molnar36c8b582006-07-03 00:25:41 -07004289
Linus Torvalds1da177e2005-04-16 15:20:36 -07004290 return retval;
4291}
4292
4293/**
4294 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4295 * @pid: the pid in question.
4296 * @policy: new policy.
4297 * @param: structure containing the new RT priority.
4298 */
4299asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4300 struct sched_param __user *param)
4301{
Jason Baronc21761f2006-01-18 17:43:03 -08004302 /* negative values for policy are not valid */
4303 if (policy < 0)
4304 return -EINVAL;
4305
Linus Torvalds1da177e2005-04-16 15:20:36 -07004306 return do_sched_setscheduler(pid, policy, param);
4307}
4308
4309/**
4310 * sys_sched_setparam - set/change the RT priority of a thread
4311 * @pid: the pid in question.
4312 * @param: structure containing the new RT priority.
4313 */
4314asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4315{
4316 return do_sched_setscheduler(pid, -1, param);
4317}
4318
4319/**
4320 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4321 * @pid: the pid in question.
4322 */
4323asmlinkage long sys_sched_getscheduler(pid_t pid)
4324{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004325 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004326 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004327
4328 if (pid < 0)
4329 goto out_nounlock;
4330
4331 retval = -ESRCH;
4332 read_lock(&tasklist_lock);
4333 p = find_process_by_pid(pid);
4334 if (p) {
4335 retval = security_task_getscheduler(p);
4336 if (!retval)
4337 retval = p->policy;
4338 }
4339 read_unlock(&tasklist_lock);
4340
4341out_nounlock:
4342 return retval;
4343}
4344
4345/**
4346 * sys_sched_getscheduler - get the RT priority of a thread
4347 * @pid: the pid in question.
4348 * @param: structure containing the RT priority.
4349 */
4350asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4351{
4352 struct sched_param lp;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004353 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004354 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004355
4356 if (!param || pid < 0)
4357 goto out_nounlock;
4358
4359 read_lock(&tasklist_lock);
4360 p = find_process_by_pid(pid);
4361 retval = -ESRCH;
4362 if (!p)
4363 goto out_unlock;
4364
4365 retval = security_task_getscheduler(p);
4366 if (retval)
4367 goto out_unlock;
4368
4369 lp.sched_priority = p->rt_priority;
4370 read_unlock(&tasklist_lock);
4371
4372 /*
4373 * This one might sleep, we cannot do it with a spinlock held ...
4374 */
4375 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4376
4377out_nounlock:
4378 return retval;
4379
4380out_unlock:
4381 read_unlock(&tasklist_lock);
4382 return retval;
4383}
4384
4385long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4386{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004387 cpumask_t cpus_allowed;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004388 struct task_struct *p;
4389 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004390
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004391 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004392 read_lock(&tasklist_lock);
4393
4394 p = find_process_by_pid(pid);
4395 if (!p) {
4396 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004397 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004398 return -ESRCH;
4399 }
4400
4401 /*
4402 * It is not safe to call set_cpus_allowed with the
4403 * tasklist_lock held. We will bump the task_struct's
4404 * usage count and then drop tasklist_lock.
4405 */
4406 get_task_struct(p);
4407 read_unlock(&tasklist_lock);
4408
4409 retval = -EPERM;
4410 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4411 !capable(CAP_SYS_NICE))
4412 goto out_unlock;
4413
David Quigleye7834f82006-06-23 02:03:59 -07004414 retval = security_task_setscheduler(p, 0, NULL);
4415 if (retval)
4416 goto out_unlock;
4417
Linus Torvalds1da177e2005-04-16 15:20:36 -07004418 cpus_allowed = cpuset_cpus_allowed(p);
4419 cpus_and(new_mask, new_mask, cpus_allowed);
4420 retval = set_cpus_allowed(p, new_mask);
4421
4422out_unlock:
4423 put_task_struct(p);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004424 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004425 return retval;
4426}
4427
4428static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4429 cpumask_t *new_mask)
4430{
4431 if (len < sizeof(cpumask_t)) {
4432 memset(new_mask, 0, sizeof(cpumask_t));
4433 } else if (len > sizeof(cpumask_t)) {
4434 len = sizeof(cpumask_t);
4435 }
4436 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4437}
4438
4439/**
4440 * sys_sched_setaffinity - set the cpu affinity of a process
4441 * @pid: pid of the process
4442 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4443 * @user_mask_ptr: user-space pointer to the new cpu mask
4444 */
4445asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4446 unsigned long __user *user_mask_ptr)
4447{
4448 cpumask_t new_mask;
4449 int retval;
4450
4451 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4452 if (retval)
4453 return retval;
4454
4455 return sched_setaffinity(pid, new_mask);
4456}
4457
4458/*
4459 * Represents all cpu's present in the system
4460 * In systems capable of hotplug, this map could dynamically grow
4461 * as new cpu's are detected in the system via any platform specific
4462 * method, such as ACPI for e.g.
4463 */
4464
Andi Kleen4cef0c62006-01-11 22:44:57 +01004465cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004466EXPORT_SYMBOL(cpu_present_map);
4467
4468#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01004469cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004470EXPORT_SYMBOL(cpu_online_map);
4471
Andi Kleen4cef0c62006-01-11 22:44:57 +01004472cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004473EXPORT_SYMBOL(cpu_possible_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004474#endif
4475
4476long sched_getaffinity(pid_t pid, cpumask_t *mask)
4477{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004478 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004479 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004480
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004481 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004482 read_lock(&tasklist_lock);
4483
4484 retval = -ESRCH;
4485 p = find_process_by_pid(pid);
4486 if (!p)
4487 goto out_unlock;
4488
David Quigleye7834f82006-06-23 02:03:59 -07004489 retval = security_task_getscheduler(p);
4490 if (retval)
4491 goto out_unlock;
4492
Jack Steiner2f7016d2006-02-01 03:05:18 -08004493 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004494
4495out_unlock:
4496 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004497 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004498
Ulrich Drepper9531b622007-08-09 11:16:46 +02004499 return retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004500}
4501
4502/**
4503 * sys_sched_getaffinity - get the cpu affinity of a process
4504 * @pid: pid of the process
4505 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4506 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4507 */
4508asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4509 unsigned long __user *user_mask_ptr)
4510{
4511 int ret;
4512 cpumask_t mask;
4513
4514 if (len < sizeof(cpumask_t))
4515 return -EINVAL;
4516
4517 ret = sched_getaffinity(pid, &mask);
4518 if (ret < 0)
4519 return ret;
4520
4521 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4522 return -EFAULT;
4523
4524 return sizeof(cpumask_t);
4525}
4526
4527/**
4528 * sys_sched_yield - yield the current processor to other threads.
4529 *
Ingo Molnardd41f592007-07-09 18:51:59 +02004530 * This function yields the current CPU to other tasks. If there are no
4531 * other threads running on this CPU then this function will return.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004532 */
4533asmlinkage long sys_sched_yield(void)
4534{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004535 struct rq *rq = this_rq_lock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004536
4537 schedstat_inc(rq, yld_cnt);
Ingo Molnardd41f592007-07-09 18:51:59 +02004538 if (unlikely(rq->nr_running == 1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004539 schedstat_inc(rq, yld_act_empty);
Ingo Molnardd41f592007-07-09 18:51:59 +02004540 else
4541 current->sched_class->yield_task(rq, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004542
4543 /*
4544 * Since we are going to call schedule() anyway, there's
4545 * no need to preempt or enable interrupts:
4546 */
4547 __release(rq->lock);
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004548 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004549 _raw_spin_unlock(&rq->lock);
4550 preempt_enable_no_resched();
4551
4552 schedule();
4553
4554 return 0;
4555}
4556
Andrew Mortone7b38402006-06-30 01:56:00 -07004557static void __cond_resched(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004558{
Ingo Molnar8e0a43d2006-06-23 02:05:23 -07004559#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4560 __might_sleep(__FILE__, __LINE__);
4561#endif
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004562 /*
4563 * The BKS might be reacquired before we have dropped
4564 * PREEMPT_ACTIVE, which could trigger a second
4565 * cond_resched() call.
4566 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004567 do {
4568 add_preempt_count(PREEMPT_ACTIVE);
4569 schedule();
4570 sub_preempt_count(PREEMPT_ACTIVE);
4571 } while (need_resched());
4572}
4573
4574int __sched cond_resched(void)
4575{
Ingo Molnar94142322006-12-29 16:48:13 -08004576 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4577 system_state == SYSTEM_RUNNING) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004578 __cond_resched();
4579 return 1;
4580 }
4581 return 0;
4582}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004583EXPORT_SYMBOL(cond_resched);
4584
4585/*
4586 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4587 * call schedule, and on return reacquire the lock.
4588 *
4589 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4590 * operations here to prevent schedule() from being called twice (once via
4591 * spin_unlock(), once by hand).
4592 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004593int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004594{
Jan Kara6df3cec2005-06-13 15:52:32 -07004595 int ret = 0;
4596
Linus Torvalds1da177e2005-04-16 15:20:36 -07004597 if (need_lockbreak(lock)) {
4598 spin_unlock(lock);
4599 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004600 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004601 spin_lock(lock);
4602 }
Ingo Molnar94142322006-12-29 16:48:13 -08004603 if (need_resched() && system_state == SYSTEM_RUNNING) {
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004604 spin_release(&lock->dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004605 _raw_spin_unlock(lock);
4606 preempt_enable_no_resched();
4607 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004608 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004609 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004610 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004611 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004612}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004613EXPORT_SYMBOL(cond_resched_lock);
4614
4615int __sched cond_resched_softirq(void)
4616{
4617 BUG_ON(!in_softirq());
4618
Ingo Molnar94142322006-12-29 16:48:13 -08004619 if (need_resched() && system_state == SYSTEM_RUNNING) {
Thomas Gleixner98d825672007-05-23 13:58:18 -07004620 local_bh_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004621 __cond_resched();
4622 local_bh_disable();
4623 return 1;
4624 }
4625 return 0;
4626}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004627EXPORT_SYMBOL(cond_resched_softirq);
4628
Linus Torvalds1da177e2005-04-16 15:20:36 -07004629/**
4630 * yield - yield the current processor to other threads.
4631 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004632 * This is a shortcut for kernel-space yielding - it marks the
Linus Torvalds1da177e2005-04-16 15:20:36 -07004633 * thread runnable and calls sys_sched_yield().
4634 */
4635void __sched yield(void)
4636{
4637 set_current_state(TASK_RUNNING);
4638 sys_sched_yield();
4639}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004640EXPORT_SYMBOL(yield);
4641
4642/*
4643 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4644 * that process accounting knows that this is a task in IO wait state.
4645 *
4646 * But don't do that if it is a deliberate, throttling IO wait (this task
4647 * has set its backing_dev_info: the queue against which it should throttle)
4648 */
4649void __sched io_schedule(void)
4650{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004651 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004652
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004653 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004654 atomic_inc(&rq->nr_iowait);
4655 schedule();
4656 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004657 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004658}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004659EXPORT_SYMBOL(io_schedule);
4660
4661long __sched io_schedule_timeout(long timeout)
4662{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004663 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004664 long ret;
4665
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004666 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004667 atomic_inc(&rq->nr_iowait);
4668 ret = schedule_timeout(timeout);
4669 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004670 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004671 return ret;
4672}
4673
4674/**
4675 * sys_sched_get_priority_max - return maximum RT priority.
4676 * @policy: scheduling class.
4677 *
4678 * this syscall returns the maximum rt_priority that can be used
4679 * by a given scheduling class.
4680 */
4681asmlinkage long sys_sched_get_priority_max(int policy)
4682{
4683 int ret = -EINVAL;
4684
4685 switch (policy) {
4686 case SCHED_FIFO:
4687 case SCHED_RR:
4688 ret = MAX_USER_RT_PRIO-1;
4689 break;
4690 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004691 case SCHED_BATCH:
Ingo Molnardd41f592007-07-09 18:51:59 +02004692 case SCHED_IDLE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004693 ret = 0;
4694 break;
4695 }
4696 return ret;
4697}
4698
4699/**
4700 * sys_sched_get_priority_min - return minimum RT priority.
4701 * @policy: scheduling class.
4702 *
4703 * this syscall returns the minimum rt_priority that can be used
4704 * by a given scheduling class.
4705 */
4706asmlinkage long sys_sched_get_priority_min(int policy)
4707{
4708 int ret = -EINVAL;
4709
4710 switch (policy) {
4711 case SCHED_FIFO:
4712 case SCHED_RR:
4713 ret = 1;
4714 break;
4715 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004716 case SCHED_BATCH:
Ingo Molnardd41f592007-07-09 18:51:59 +02004717 case SCHED_IDLE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004718 ret = 0;
4719 }
4720 return ret;
4721}
4722
4723/**
4724 * sys_sched_rr_get_interval - return the default timeslice of a process.
4725 * @pid: pid of the process.
4726 * @interval: userspace pointer to the timeslice value.
4727 *
4728 * this syscall writes the default timeslice value of a given process
4729 * into the user-space timespec buffer. A value of '0' means infinity.
4730 */
4731asmlinkage
4732long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4733{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004734 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004735 int retval = -EINVAL;
4736 struct timespec t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004737
4738 if (pid < 0)
4739 goto out_nounlock;
4740
4741 retval = -ESRCH;
4742 read_lock(&tasklist_lock);
4743 p = find_process_by_pid(pid);
4744 if (!p)
4745 goto out_unlock;
4746
4747 retval = security_task_getscheduler(p);
4748 if (retval)
4749 goto out_unlock;
4750
Peter Williamsb78709c2006-06-26 16:58:00 +10004751 jiffies_to_timespec(p->policy == SCHED_FIFO ?
Ingo Molnardd41f592007-07-09 18:51:59 +02004752 0 : static_prio_timeslice(p->static_prio), &t);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004753 read_unlock(&tasklist_lock);
4754 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4755out_nounlock:
4756 return retval;
4757out_unlock:
4758 read_unlock(&tasklist_lock);
4759 return retval;
4760}
4761
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004762static const char stat_nam[] = "RSDTtZX";
Ingo Molnar36c8b582006-07-03 00:25:41 -07004763
4764static void show_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004765{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004766 unsigned long free = 0;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004767 unsigned state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004768
Linus Torvalds1da177e2005-04-16 15:20:36 -07004769 state = p->state ? __ffs(p->state) + 1 : 0;
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004770 printk("%-13.13s %c", p->comm,
4771 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
Ingo Molnar4bd77322007-07-11 21:21:47 +02004772#if BITS_PER_LONG == 32
Linus Torvalds1da177e2005-04-16 15:20:36 -07004773 if (state == TASK_RUNNING)
Ingo Molnar4bd77322007-07-11 21:21:47 +02004774 printk(" running ");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004775 else
Ingo Molnar4bd77322007-07-11 21:21:47 +02004776 printk(" %08lx ", thread_saved_pc(p));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004777#else
4778 if (state == TASK_RUNNING)
Ingo Molnar4bd77322007-07-11 21:21:47 +02004779 printk(" running task ");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004780 else
4781 printk(" %016lx ", thread_saved_pc(p));
4782#endif
4783#ifdef CONFIG_DEBUG_STACK_USAGE
4784 {
Al Viro10ebffd2005-11-13 16:06:56 -08004785 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004786 while (!*n)
4787 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08004788 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004789 }
4790#endif
Ingo Molnar4bd77322007-07-11 21:21:47 +02004791 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004792
4793 if (state != TASK_RUNNING)
4794 show_stack(p, NULL);
4795}
4796
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004797void show_state_filter(unsigned long state_filter)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004798{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004799 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004800
Ingo Molnar4bd77322007-07-11 21:21:47 +02004801#if BITS_PER_LONG == 32
4802 printk(KERN_INFO
4803 " task PC stack pid father\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004804#else
Ingo Molnar4bd77322007-07-11 21:21:47 +02004805 printk(KERN_INFO
4806 " task PC stack pid father\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004807#endif
4808 read_lock(&tasklist_lock);
4809 do_each_thread(g, p) {
4810 /*
4811 * reset the NMI-timeout, listing all files on a slow
4812 * console might take alot of time:
4813 */
4814 touch_nmi_watchdog();
Ingo Molnar39bc89f2007-04-25 20:50:03 -07004815 if (!state_filter || (p->state & state_filter))
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004816 show_task(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004817 } while_each_thread(g, p);
4818
Jeremy Fitzhardinge04c91672007-05-08 00:28:05 -07004819 touch_all_softlockup_watchdogs();
4820
Ingo Molnardd41f592007-07-09 18:51:59 +02004821#ifdef CONFIG_SCHED_DEBUG
4822 sysrq_sched_debug_show();
4823#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004824 read_unlock(&tasklist_lock);
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004825 /*
4826 * Only show locks if all tasks are dumped:
4827 */
4828 if (state_filter == -1)
4829 debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004830}
4831
Ingo Molnar1df21052007-07-09 18:51:58 +02004832void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4833{
Ingo Molnardd41f592007-07-09 18:51:59 +02004834 idle->sched_class = &idle_sched_class;
Ingo Molnar1df21052007-07-09 18:51:58 +02004835}
4836
Ingo Molnarf340c0d2005-06-28 16:40:42 +02004837/**
4838 * init_idle - set up an idle thread for a given CPU
4839 * @idle: task in question
4840 * @cpu: cpu the idle task belongs to
4841 *
4842 * NOTE: this function does not set the idle thread's NEED_RESCHED
4843 * flag, to make booting more robust.
4844 */
Nick Piggin5c1e1762006-10-03 01:14:04 -07004845void __cpuinit init_idle(struct task_struct *idle, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004846{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004847 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004848 unsigned long flags;
4849
Ingo Molnardd41f592007-07-09 18:51:59 +02004850 __sched_fork(idle);
4851 idle->se.exec_start = sched_clock();
4852
Ingo Molnarb29739f2006-06-27 02:54:51 -07004853 idle->prio = idle->normal_prio = MAX_PRIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004854 idle->cpus_allowed = cpumask_of_cpu(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02004855 __set_task_cpu(idle, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004856
4857 spin_lock_irqsave(&rq->lock, flags);
4858 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07004859#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4860 idle->oncpu = 1;
4861#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004862 spin_unlock_irqrestore(&rq->lock, flags);
4863
4864 /* Set the preempt count _outside_ the spinlocks! */
4865#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f542005-11-13 16:06:55 -08004866 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004867#else
Al Viroa1261f542005-11-13 16:06:55 -08004868 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004869#endif
Ingo Molnardd41f592007-07-09 18:51:59 +02004870 /*
4871 * The idle tasks have their own, simple scheduling class:
4872 */
4873 idle->sched_class = &idle_sched_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004874}
4875
4876/*
4877 * In a system that switches off the HZ timer nohz_cpu_mask
4878 * indicates which cpus entered this state. This is used
4879 * in the rcu update to wait only for active cpus. For system
4880 * which do not switch off the HZ timer nohz_cpu_mask should
4881 * always be CPU_MASK_NONE.
4882 */
4883cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4884
Ingo Molnardd41f592007-07-09 18:51:59 +02004885/*
4886 * Increase the granularity value when there are more CPUs,
4887 * because with more CPUs the 'effective latency' as visible
4888 * to users decreases. But the relationship is not linear,
4889 * so pick a second-best guess by going with the log2 of the
4890 * number of CPUs.
4891 *
4892 * This idea comes from the SD scheduler of Con Kolivas:
4893 */
4894static inline void sched_init_granularity(void)
4895{
4896 unsigned int factor = 1 + ilog2(num_online_cpus());
Ingo Molnara5968df2007-07-11 21:21:47 +02004897 const unsigned long gran_limit = 100000000;
Ingo Molnardd41f592007-07-09 18:51:59 +02004898
4899 sysctl_sched_granularity *= factor;
4900 if (sysctl_sched_granularity > gran_limit)
4901 sysctl_sched_granularity = gran_limit;
4902
4903 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4904 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4905}
4906
Linus Torvalds1da177e2005-04-16 15:20:36 -07004907#ifdef CONFIG_SMP
4908/*
4909 * This is how migration works:
4910 *
Ingo Molnar70b97a72006-07-03 00:25:42 -07004911 * 1) we queue a struct migration_req structure in the source CPU's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004912 * runqueue and wake up that CPU's migration thread.
4913 * 2) we down() the locked semaphore => thread blocks.
4914 * 3) migration thread wakes up (implicitly it forces the migrated
4915 * thread off the CPU)
4916 * 4) it gets the migration request and checks whether the migrated
4917 * task is still in the wrong runqueue.
4918 * 5) if it's in the wrong runqueue then the migration thread removes
4919 * it and puts it into the right queue.
4920 * 6) migration thread up()s the semaphore.
4921 * 7) we wake up and the migration is done.
4922 */
4923
4924/*
4925 * Change a given task's CPU affinity. Migrate the thread to a
4926 * proper CPU and schedule it away if the CPU it's executing on
4927 * is removed from the allowed bitmask.
4928 *
4929 * NOTE: the caller must have a valid reference to the task, the
4930 * task must not exit() & deallocate itself prematurely. The
4931 * call is not atomic; no spinlocks may be held.
4932 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004933int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004934{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004935 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004936 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004937 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004938 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004939
4940 rq = task_rq_lock(p, &flags);
4941 if (!cpus_intersects(new_mask, cpu_online_map)) {
4942 ret = -EINVAL;
4943 goto out;
4944 }
4945
4946 p->cpus_allowed = new_mask;
4947 /* Can the task run on the task's current CPU? If so, we're done */
4948 if (cpu_isset(task_cpu(p), new_mask))
4949 goto out;
4950
4951 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4952 /* Need help from migration thread: drop lock and wait. */
4953 task_rq_unlock(rq, &flags);
4954 wake_up_process(rq->migration_thread);
4955 wait_for_completion(&req.done);
4956 tlb_migrate_finish(p->mm);
4957 return 0;
4958 }
4959out:
4960 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004961
Linus Torvalds1da177e2005-04-16 15:20:36 -07004962 return ret;
4963}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004964EXPORT_SYMBOL_GPL(set_cpus_allowed);
4965
4966/*
4967 * Move (not current) task off this cpu, onto dest cpu. We're doing
4968 * this because either it can't run here any more (set_cpus_allowed()
4969 * away from this CPU, or CPU going down), or because we're
4970 * attempting to rebalance this task on exec (sched_exec).
4971 *
4972 * So we race with normal scheduler movements, but that's OK, as long
4973 * as the task is no longer on this CPU.
Kirill Korotaevefc30812006-06-27 02:54:32 -07004974 *
4975 * Returns non-zero if task was successfully migrated.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004976 */
Kirill Korotaevefc30812006-06-27 02:54:32 -07004977static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004978{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004979 struct rq *rq_dest, *rq_src;
Ingo Molnardd41f592007-07-09 18:51:59 +02004980 int ret = 0, on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004981
4982 if (unlikely(cpu_is_offline(dest_cpu)))
Kirill Korotaevefc30812006-06-27 02:54:32 -07004983 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004984
4985 rq_src = cpu_rq(src_cpu);
4986 rq_dest = cpu_rq(dest_cpu);
4987
4988 double_rq_lock(rq_src, rq_dest);
4989 /* Already moved. */
4990 if (task_cpu(p) != src_cpu)
4991 goto out;
4992 /* Affinity changed (again). */
4993 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4994 goto out;
4995
Ingo Molnardd41f592007-07-09 18:51:59 +02004996 on_rq = p->se.on_rq;
Ingo Molnara8e504d2007-08-09 11:16:47 +02004997 if (on_rq) {
4998 update_rq_clock(rq_src);
4999 deactivate_task(rq_src, p, 0, rq_src->clock);
5000 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005001 set_task_cpu(p, dest_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02005002 if (on_rq) {
5003 activate_task(rq_dest, p, 0);
5004 check_preempt_curr(rq_dest, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005005 }
Kirill Korotaevefc30812006-06-27 02:54:32 -07005006 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005007out:
5008 double_rq_unlock(rq_src, rq_dest);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005009 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005010}
5011
5012/*
5013 * migration_thread - this is a highprio system thread that performs
5014 * thread migration by bumping thread off CPU then 'pushing' onto
5015 * another runqueue.
5016 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07005017static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005018{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005019 int cpu = (long)data;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005020 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005021
5022 rq = cpu_rq(cpu);
5023 BUG_ON(rq->migration_thread != current);
5024
5025 set_current_state(TASK_INTERRUPTIBLE);
5026 while (!kthread_should_stop()) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005027 struct migration_req *req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005028 struct list_head *head;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005029
Linus Torvalds1da177e2005-04-16 15:20:36 -07005030 spin_lock_irq(&rq->lock);
5031
5032 if (cpu_is_offline(cpu)) {
5033 spin_unlock_irq(&rq->lock);
5034 goto wait_to_die;
5035 }
5036
5037 if (rq->active_balance) {
5038 active_load_balance(rq, cpu);
5039 rq->active_balance = 0;
5040 }
5041
5042 head = &rq->migration_queue;
5043
5044 if (list_empty(head)) {
5045 spin_unlock_irq(&rq->lock);
5046 schedule();
5047 set_current_state(TASK_INTERRUPTIBLE);
5048 continue;
5049 }
Ingo Molnar70b97a72006-07-03 00:25:42 -07005050 req = list_entry(head->next, struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005051 list_del_init(head->next);
5052
Nick Piggin674311d2005-06-25 14:57:27 -07005053 spin_unlock(&rq->lock);
5054 __migrate_task(req->task, cpu, req->dest_cpu);
5055 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005056
5057 complete(&req->done);
5058 }
5059 __set_current_state(TASK_RUNNING);
5060 return 0;
5061
5062wait_to_die:
5063 /* Wait for kthread_stop */
5064 set_current_state(TASK_INTERRUPTIBLE);
5065 while (!kthread_should_stop()) {
5066 schedule();
5067 set_current_state(TASK_INTERRUPTIBLE);
5068 }
5069 __set_current_state(TASK_RUNNING);
5070 return 0;
5071}
5072
5073#ifdef CONFIG_HOTPLUG_CPU
Kirill Korotaev054b9102006-12-10 02:20:11 -08005074/*
5075 * Figure out where task on dead CPU should go, use force if neccessary.
5076 * NOTE: interrupts should be disabled by the caller
5077 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005078static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005079{
Kirill Korotaevefc30812006-06-27 02:54:32 -07005080 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005081 cpumask_t mask;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005082 struct rq *rq;
5083 int dest_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005084
Kirill Korotaevefc30812006-06-27 02:54:32 -07005085restart:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005086 /* On same node? */
5087 mask = node_to_cpumask(cpu_to_node(dead_cpu));
Ingo Molnar48f24c42006-07-03 00:25:40 -07005088 cpus_and(mask, mask, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005089 dest_cpu = any_online_cpu(mask);
5090
5091 /* On any allowed CPU? */
5092 if (dest_cpu == NR_CPUS)
Ingo Molnar48f24c42006-07-03 00:25:40 -07005093 dest_cpu = any_online_cpu(p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005094
5095 /* No more Mr. Nice Guy. */
5096 if (dest_cpu == NR_CPUS) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07005097 rq = task_rq_lock(p, &flags);
5098 cpus_setall(p->cpus_allowed);
5099 dest_cpu = any_online_cpu(p->cpus_allowed);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005100 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005101
5102 /*
5103 * Don't tell them about moving exiting tasks or
5104 * kernel threads (both mm NULL), since they never
5105 * leave kernel.
5106 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005107 if (p->mm && printk_ratelimit())
Linus Torvalds1da177e2005-04-16 15:20:36 -07005108 printk(KERN_INFO "process %d (%s) no "
5109 "longer affine to cpu%d\n",
Ingo Molnar48f24c42006-07-03 00:25:40 -07005110 p->pid, p->comm, dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005111 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07005112 if (!__migrate_task(p, dead_cpu, dest_cpu))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005113 goto restart;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005114}
5115
5116/*
5117 * While a dead CPU has no uninterruptible tasks queued at this point,
5118 * it might still have a nonzero ->nr_uninterruptible counter, because
5119 * for performance reasons the counter is not stricly tracking tasks to
5120 * their home CPUs. So we just add the counter to another CPU's counter,
5121 * to keep the global sum constant after CPU-down:
5122 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07005123static void migrate_nr_uninterruptible(struct rq *rq_src)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005124{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005125 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005126 unsigned long flags;
5127
5128 local_irq_save(flags);
5129 double_rq_lock(rq_src, rq_dest);
5130 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5131 rq_src->nr_uninterruptible = 0;
5132 double_rq_unlock(rq_src, rq_dest);
5133 local_irq_restore(flags);
5134}
5135
5136/* Run through task list and migrate tasks from the dead cpu. */
5137static void migrate_live_tasks(int src_cpu)
5138{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005139 struct task_struct *p, *t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005140
5141 write_lock_irq(&tasklist_lock);
5142
Ingo Molnar48f24c42006-07-03 00:25:40 -07005143 do_each_thread(t, p) {
5144 if (p == current)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005145 continue;
5146
Ingo Molnar48f24c42006-07-03 00:25:40 -07005147 if (task_cpu(p) == src_cpu)
5148 move_task_off_dead_cpu(src_cpu, p);
5149 } while_each_thread(t, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005150
5151 write_unlock_irq(&tasklist_lock);
5152}
5153
Ingo Molnardd41f592007-07-09 18:51:59 +02005154/*
5155 * Schedules idle task to be the next runnable task on current CPU.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005156 * It does so by boosting its priority to highest possible and adding it to
Ingo Molnar48f24c42006-07-03 00:25:40 -07005157 * the _front_ of the runqueue. Used by CPU offline code.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005158 */
5159void sched_idle_next(void)
5160{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005161 int this_cpu = smp_processor_id();
Ingo Molnar70b97a72006-07-03 00:25:42 -07005162 struct rq *rq = cpu_rq(this_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005163 struct task_struct *p = rq->idle;
5164 unsigned long flags;
5165
5166 /* cpu has to be offline */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005167 BUG_ON(cpu_online(this_cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005168
Ingo Molnar48f24c42006-07-03 00:25:40 -07005169 /*
5170 * Strictly not necessary since rest of the CPUs are stopped by now
5171 * and interrupts disabled on the current cpu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005172 */
5173 spin_lock_irqsave(&rq->lock, flags);
5174
Ingo Molnardd41f592007-07-09 18:51:59 +02005175 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005176
5177 /* Add idle task to the _front_ of its priority queue: */
Ingo Molnardd41f592007-07-09 18:51:59 +02005178 activate_idle_task(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005179
5180 spin_unlock_irqrestore(&rq->lock, flags);
5181}
5182
Ingo Molnar48f24c42006-07-03 00:25:40 -07005183/*
5184 * Ensures that the idle task is using init_mm right before its cpu goes
Linus Torvalds1da177e2005-04-16 15:20:36 -07005185 * offline.
5186 */
5187void idle_task_exit(void)
5188{
5189 struct mm_struct *mm = current->active_mm;
5190
5191 BUG_ON(cpu_online(smp_processor_id()));
5192
5193 if (mm != &init_mm)
5194 switch_mm(mm, &init_mm, current);
5195 mmdrop(mm);
5196}
5197
Kirill Korotaev054b9102006-12-10 02:20:11 -08005198/* called under rq->lock with disabled interrupts */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005199static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005200{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005201 struct rq *rq = cpu_rq(dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005202
5203 /* Must be exiting, otherwise would be on tasklist. */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005204 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005205
5206 /* Cannot have done final schedule yet: would have vanished. */
Oleg Nesterovc394cc92006-09-29 02:01:11 -07005207 BUG_ON(p->state == TASK_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005208
Ingo Molnar48f24c42006-07-03 00:25:40 -07005209 get_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005210
5211 /*
5212 * Drop lock around migration; if someone else moves it,
5213 * that's OK. No task can be added to this CPU, so iteration is
5214 * fine.
Kirill Korotaev054b9102006-12-10 02:20:11 -08005215 * NOTE: interrupts should be left disabled --dev@
Linus Torvalds1da177e2005-04-16 15:20:36 -07005216 */
Kirill Korotaev054b9102006-12-10 02:20:11 -08005217 spin_unlock(&rq->lock);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005218 move_task_off_dead_cpu(dead_cpu, p);
Kirill Korotaev054b9102006-12-10 02:20:11 -08005219 spin_lock(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005220
Ingo Molnar48f24c42006-07-03 00:25:40 -07005221 put_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005222}
5223
5224/* release_task() removes task from tasklist, so we won't find dead tasks. */
5225static void migrate_dead_tasks(unsigned int dead_cpu)
5226{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005227 struct rq *rq = cpu_rq(dead_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02005228 struct task_struct *next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005229
Ingo Molnardd41f592007-07-09 18:51:59 +02005230 for ( ; ; ) {
5231 if (!rq->nr_running)
5232 break;
Ingo Molnara8e504d2007-08-09 11:16:47 +02005233 update_rq_clock(rq);
5234 next = pick_next_task(rq, rq->curr, rq->clock);
Ingo Molnardd41f592007-07-09 18:51:59 +02005235 if (!next)
5236 break;
5237 migrate_dead(dead_cpu, next);
Nick Piggine692ab52007-07-26 13:40:43 +02005238
Linus Torvalds1da177e2005-04-16 15:20:36 -07005239 }
5240}
5241#endif /* CONFIG_HOTPLUG_CPU */
5242
Nick Piggine692ab52007-07-26 13:40:43 +02005243#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5244
5245static struct ctl_table sd_ctl_dir[] = {
Alexey Dobriyane0361852007-08-09 11:16:46 +02005246 {
5247 .procname = "sched_domain",
5248 .mode = 0755,
5249 },
Nick Piggine692ab52007-07-26 13:40:43 +02005250 {0,},
5251};
5252
5253static struct ctl_table sd_ctl_root[] = {
Alexey Dobriyane0361852007-08-09 11:16:46 +02005254 {
5255 .procname = "kernel",
5256 .mode = 0755,
5257 .child = sd_ctl_dir,
5258 },
Nick Piggine692ab52007-07-26 13:40:43 +02005259 {0,},
5260};
5261
5262static struct ctl_table *sd_alloc_ctl_entry(int n)
5263{
5264 struct ctl_table *entry =
5265 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5266
5267 BUG_ON(!entry);
5268 memset(entry, 0, n * sizeof(struct ctl_table));
5269
5270 return entry;
5271}
5272
5273static void
Alexey Dobriyane0361852007-08-09 11:16:46 +02005274set_table_entry(struct ctl_table *entry,
Nick Piggine692ab52007-07-26 13:40:43 +02005275 const char *procname, void *data, int maxlen,
5276 mode_t mode, proc_handler *proc_handler)
5277{
Nick Piggine692ab52007-07-26 13:40:43 +02005278 entry->procname = procname;
5279 entry->data = data;
5280 entry->maxlen = maxlen;
5281 entry->mode = mode;
5282 entry->proc_handler = proc_handler;
5283}
5284
5285static struct ctl_table *
5286sd_alloc_ctl_domain_table(struct sched_domain *sd)
5287{
5288 struct ctl_table *table = sd_alloc_ctl_entry(14);
5289
Alexey Dobriyane0361852007-08-09 11:16:46 +02005290 set_table_entry(&table[0], "min_interval", &sd->min_interval,
Nick Piggine692ab52007-07-26 13:40:43 +02005291 sizeof(long), 0644, proc_doulongvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005292 set_table_entry(&table[1], "max_interval", &sd->max_interval,
Nick Piggine692ab52007-07-26 13:40:43 +02005293 sizeof(long), 0644, proc_doulongvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005294 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
Nick Piggine692ab52007-07-26 13:40:43 +02005295 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005296 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
Nick Piggine692ab52007-07-26 13:40:43 +02005297 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005298 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
Nick Piggine692ab52007-07-26 13:40:43 +02005299 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005300 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
Nick Piggine692ab52007-07-26 13:40:43 +02005301 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005302 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
Nick Piggine692ab52007-07-26 13:40:43 +02005303 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005304 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
Nick Piggine692ab52007-07-26 13:40:43 +02005305 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005306 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
Nick Piggine692ab52007-07-26 13:40:43 +02005307 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005308 set_table_entry(&table[10], "cache_nice_tries",
Nick Piggine692ab52007-07-26 13:40:43 +02005309 &sd->cache_nice_tries,
5310 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005311 set_table_entry(&table[12], "flags", &sd->flags,
Nick Piggine692ab52007-07-26 13:40:43 +02005312 sizeof(int), 0644, proc_dointvec_minmax);
5313
5314 return table;
5315}
5316
5317static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5318{
5319 struct ctl_table *entry, *table;
5320 struct sched_domain *sd;
5321 int domain_num = 0, i;
5322 char buf[32];
5323
5324 for_each_domain(cpu, sd)
5325 domain_num++;
5326 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5327
5328 i = 0;
5329 for_each_domain(cpu, sd) {
5330 snprintf(buf, 32, "domain%d", i);
Nick Piggine692ab52007-07-26 13:40:43 +02005331 entry->procname = kstrdup(buf, GFP_KERNEL);
5332 entry->mode = 0755;
5333 entry->child = sd_alloc_ctl_domain_table(sd);
5334 entry++;
5335 i++;
5336 }
5337 return table;
5338}
5339
5340static struct ctl_table_header *sd_sysctl_header;
5341static void init_sched_domain_sysctl(void)
5342{
5343 int i, cpu_num = num_online_cpus();
5344 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5345 char buf[32];
5346
5347 sd_ctl_dir[0].child = entry;
5348
5349 for (i = 0; i < cpu_num; i++, entry++) {
5350 snprintf(buf, 32, "cpu%d", i);
Nick Piggine692ab52007-07-26 13:40:43 +02005351 entry->procname = kstrdup(buf, GFP_KERNEL);
5352 entry->mode = 0755;
5353 entry->child = sd_alloc_ctl_cpu_table(i);
5354 }
5355 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5356}
5357#else
5358static void init_sched_domain_sysctl(void)
5359{
5360}
5361#endif
5362
Linus Torvalds1da177e2005-04-16 15:20:36 -07005363/*
5364 * migration_call - callback that gets triggered when a CPU is added.
5365 * Here we can start up the necessary migration thread for the new CPU.
5366 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005367static int __cpuinit
5368migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005369{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005370 struct task_struct *p;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005371 int cpu = (long)hcpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005372 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005373 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005374
5375 switch (action) {
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005376 case CPU_LOCK_ACQUIRE:
5377 mutex_lock(&sched_hotcpu_mutex);
5378 break;
5379
Linus Torvalds1da177e2005-04-16 15:20:36 -07005380 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005381 case CPU_UP_PREPARE_FROZEN:
Ingo Molnardd41f592007-07-09 18:51:59 +02005382 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005383 if (IS_ERR(p))
5384 return NOTIFY_BAD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005385 kthread_bind(p, cpu);
5386 /* Must be high prio: stop_machine expects to yield to it. */
5387 rq = task_rq_lock(p, &flags);
Ingo Molnardd41f592007-07-09 18:51:59 +02005388 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005389 task_rq_unlock(rq, &flags);
5390 cpu_rq(cpu)->migration_thread = p;
5391 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005392
Linus Torvalds1da177e2005-04-16 15:20:36 -07005393 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005394 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005395 /* Strictly unneccessary, as first user will wake it. */
5396 wake_up_process(cpu_rq(cpu)->migration_thread);
5397 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005398
Linus Torvalds1da177e2005-04-16 15:20:36 -07005399#ifdef CONFIG_HOTPLUG_CPU
5400 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005401 case CPU_UP_CANCELED_FROZEN:
Heiko Carstensfc75cdf2006-06-25 05:49:10 -07005402 if (!cpu_rq(cpu)->migration_thread)
5403 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005404 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08005405 kthread_bind(cpu_rq(cpu)->migration_thread,
5406 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005407 kthread_stop(cpu_rq(cpu)->migration_thread);
5408 cpu_rq(cpu)->migration_thread = NULL;
5409 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005410
Linus Torvalds1da177e2005-04-16 15:20:36 -07005411 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005412 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005413 migrate_live_tasks(cpu);
5414 rq = cpu_rq(cpu);
5415 kthread_stop(rq->migration_thread);
5416 rq->migration_thread = NULL;
5417 /* Idle task back to normal (off runqueue, low prio) */
5418 rq = task_rq_lock(rq->idle, &flags);
Ingo Molnara8e504d2007-08-09 11:16:47 +02005419 update_rq_clock(rq);
5420 deactivate_task(rq, rq->idle, 0, rq->clock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005421 rq->idle->static_prio = MAX_PRIO;
Ingo Molnardd41f592007-07-09 18:51:59 +02005422 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5423 rq->idle->sched_class = &idle_sched_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005424 migrate_dead_tasks(cpu);
5425 task_rq_unlock(rq, &flags);
5426 migrate_nr_uninterruptible(rq);
5427 BUG_ON(rq->nr_running != 0);
5428
5429 /* No need to migrate the tasks: it was best-effort if
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005430 * they didn't take sched_hotcpu_mutex. Just wake up
Linus Torvalds1da177e2005-04-16 15:20:36 -07005431 * the requestors. */
5432 spin_lock_irq(&rq->lock);
5433 while (!list_empty(&rq->migration_queue)) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005434 struct migration_req *req;
5435
Linus Torvalds1da177e2005-04-16 15:20:36 -07005436 req = list_entry(rq->migration_queue.next,
Ingo Molnar70b97a72006-07-03 00:25:42 -07005437 struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005438 list_del_init(&req->list);
5439 complete(&req->done);
5440 }
5441 spin_unlock_irq(&rq->lock);
5442 break;
5443#endif
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005444 case CPU_LOCK_RELEASE:
5445 mutex_unlock(&sched_hotcpu_mutex);
5446 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005447 }
5448 return NOTIFY_OK;
5449}
5450
5451/* Register at highest priority so that task migration (migrate_all_tasks)
5452 * happens before everything else.
5453 */
Chandra Seetharaman26c21432006-06-27 02:54:10 -07005454static struct notifier_block __cpuinitdata migration_notifier = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005455 .notifier_call = migration_call,
5456 .priority = 10
5457};
5458
5459int __init migration_init(void)
5460{
5461 void *cpu = (void *)(long)smp_processor_id();
Akinobu Mita07dccf32006-09-29 02:00:22 -07005462 int err;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005463
5464 /* Start one for the boot CPU: */
Akinobu Mita07dccf32006-09-29 02:00:22 -07005465 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5466 BUG_ON(err == NOTIFY_BAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005467 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5468 register_cpu_notifier(&migration_notifier);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005469
Linus Torvalds1da177e2005-04-16 15:20:36 -07005470 return 0;
5471}
5472#endif
5473
5474#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07005475
5476/* Number of possible processor ids */
5477int nr_cpu_ids __read_mostly = NR_CPUS;
5478EXPORT_SYMBOL(nr_cpu_ids);
5479
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005480#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07005481#ifdef SCHED_DOMAIN_DEBUG
5482static void sched_domain_debug(struct sched_domain *sd, int cpu)
5483{
5484 int level = 0;
5485
Nick Piggin41c7ce92005-06-25 14:57:24 -07005486 if (!sd) {
5487 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5488 return;
5489 }
5490
Linus Torvalds1da177e2005-04-16 15:20:36 -07005491 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5492
5493 do {
5494 int i;
5495 char str[NR_CPUS];
5496 struct sched_group *group = sd->groups;
5497 cpumask_t groupmask;
5498
5499 cpumask_scnprintf(str, NR_CPUS, sd->span);
5500 cpus_clear(groupmask);
5501
5502 printk(KERN_DEBUG);
5503 for (i = 0; i < level + 1; i++)
5504 printk(" ");
5505 printk("domain %d: ", level);
5506
5507 if (!(sd->flags & SD_LOAD_BALANCE)) {
5508 printk("does not load-balance\n");
5509 if (sd->parent)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005510 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5511 " has parent");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005512 break;
5513 }
5514
5515 printk("span %s\n", str);
5516
5517 if (!cpu_isset(cpu, sd->span))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005518 printk(KERN_ERR "ERROR: domain->span does not contain "
5519 "CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005520 if (!cpu_isset(cpu, group->cpumask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005521 printk(KERN_ERR "ERROR: domain->groups does not contain"
5522 " CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005523
5524 printk(KERN_DEBUG);
5525 for (i = 0; i < level + 2; i++)
5526 printk(" ");
5527 printk("groups:");
5528 do {
5529 if (!group) {
5530 printk("\n");
5531 printk(KERN_ERR "ERROR: group is NULL\n");
5532 break;
5533 }
5534
Eric Dumazet5517d862007-05-08 00:32:57 -07005535 if (!group->__cpu_power) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005536 printk("\n");
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005537 printk(KERN_ERR "ERROR: domain->cpu_power not "
5538 "set\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005539 }
5540
5541 if (!cpus_weight(group->cpumask)) {
5542 printk("\n");
5543 printk(KERN_ERR "ERROR: empty group\n");
5544 }
5545
5546 if (cpus_intersects(groupmask, group->cpumask)) {
5547 printk("\n");
5548 printk(KERN_ERR "ERROR: repeated CPUs\n");
5549 }
5550
5551 cpus_or(groupmask, groupmask, group->cpumask);
5552
5553 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5554 printk(" %s", str);
5555
5556 group = group->next;
5557 } while (group != sd->groups);
5558 printk("\n");
5559
5560 if (!cpus_equal(sd->span, groupmask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005561 printk(KERN_ERR "ERROR: groups don't span "
5562 "domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005563
5564 level++;
5565 sd = sd->parent;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005566 if (!sd)
5567 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005568
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005569 if (!cpus_subset(groupmask, sd->span))
5570 printk(KERN_ERR "ERROR: parent span is not a superset "
5571 "of domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005572
5573 } while (sd);
5574}
5575#else
Ingo Molnar48f24c42006-07-03 00:25:40 -07005576# define sched_domain_debug(sd, cpu) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005577#endif
5578
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005579static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005580{
5581 if (cpus_weight(sd->span) == 1)
5582 return 1;
5583
5584 /* Following flags need at least 2 groups */
5585 if (sd->flags & (SD_LOAD_BALANCE |
5586 SD_BALANCE_NEWIDLE |
5587 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005588 SD_BALANCE_EXEC |
5589 SD_SHARE_CPUPOWER |
5590 SD_SHARE_PKG_RESOURCES)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005591 if (sd->groups != sd->groups->next)
5592 return 0;
5593 }
5594
5595 /* Following flags don't use groups */
5596 if (sd->flags & (SD_WAKE_IDLE |
5597 SD_WAKE_AFFINE |
5598 SD_WAKE_BALANCE))
5599 return 0;
5600
5601 return 1;
5602}
5603
Ingo Molnar48f24c42006-07-03 00:25:40 -07005604static int
5605sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005606{
5607 unsigned long cflags = sd->flags, pflags = parent->flags;
5608
5609 if (sd_degenerate(parent))
5610 return 1;
5611
5612 if (!cpus_equal(sd->span, parent->span))
5613 return 0;
5614
5615 /* Does parent contain flags not in child? */
5616 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5617 if (cflags & SD_WAKE_AFFINE)
5618 pflags &= ~SD_WAKE_BALANCE;
5619 /* Flags needing groups don't count if only 1 group in parent */
5620 if (parent->groups == parent->groups->next) {
5621 pflags &= ~(SD_LOAD_BALANCE |
5622 SD_BALANCE_NEWIDLE |
5623 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005624 SD_BALANCE_EXEC |
5625 SD_SHARE_CPUPOWER |
5626 SD_SHARE_PKG_RESOURCES);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005627 }
5628 if (~cflags & pflags)
5629 return 0;
5630
5631 return 1;
5632}
5633
Linus Torvalds1da177e2005-04-16 15:20:36 -07005634/*
5635 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5636 * hold the hotplug lock.
5637 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005638static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005639{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005640 struct rq *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005641 struct sched_domain *tmp;
5642
5643 /* Remove the sched domains which do not contribute to scheduling. */
5644 for (tmp = sd; tmp; tmp = tmp->parent) {
5645 struct sched_domain *parent = tmp->parent;
5646 if (!parent)
5647 break;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005648 if (sd_parent_degenerate(tmp, parent)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005649 tmp->parent = parent->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005650 if (parent->parent)
5651 parent->parent->child = tmp;
5652 }
Suresh Siddha245af2c2005-06-25 14:57:25 -07005653 }
5654
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005655 if (sd && sd_degenerate(sd)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005656 sd = sd->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005657 if (sd)
5658 sd->child = NULL;
5659 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005660
5661 sched_domain_debug(sd, cpu);
5662
Nick Piggin674311d2005-06-25 14:57:27 -07005663 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005664}
5665
5666/* cpus with isolated domains */
Tim Chen67af63a2006-12-22 01:07:50 -08005667static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005668
5669/* Setup the mask of cpus configured for isolated domains */
5670static int __init isolated_cpu_setup(char *str)
5671{
5672 int ints[NR_CPUS], i;
5673
5674 str = get_options(str, ARRAY_SIZE(ints), ints);
5675 cpus_clear(cpu_isolated_map);
5676 for (i = 1; i <= ints[0]; i++)
5677 if (ints[i] < NR_CPUS)
5678 cpu_set(ints[i], cpu_isolated_map);
5679 return 1;
5680}
5681
5682__setup ("isolcpus=", isolated_cpu_setup);
5683
5684/*
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005685 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5686 * to a function which identifies what group(along with sched group) a CPU
5687 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5688 * (due to the fact that we keep track of groups covered with a cpumask_t).
Linus Torvalds1da177e2005-04-16 15:20:36 -07005689 *
5690 * init_sched_build_groups will build a circular linked list of the groups
5691 * covered by the given span, and will set each group's ->cpumask correctly,
5692 * and ->cpu_power to 0.
5693 */
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005694static void
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005695init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5696 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5697 struct sched_group **sg))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005698{
5699 struct sched_group *first = NULL, *last = NULL;
5700 cpumask_t covered = CPU_MASK_NONE;
5701 int i;
5702
5703 for_each_cpu_mask(i, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005704 struct sched_group *sg;
5705 int group = group_fn(i, cpu_map, &sg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005706 int j;
5707
5708 if (cpu_isset(i, covered))
5709 continue;
5710
5711 sg->cpumask = CPU_MASK_NONE;
Eric Dumazet5517d862007-05-08 00:32:57 -07005712 sg->__cpu_power = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005713
5714 for_each_cpu_mask(j, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005715 if (group_fn(j, cpu_map, NULL) != group)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005716 continue;
5717
5718 cpu_set(j, covered);
5719 cpu_set(j, sg->cpumask);
5720 }
5721 if (!first)
5722 first = sg;
5723 if (last)
5724 last->next = sg;
5725 last = sg;
5726 }
5727 last->next = first;
5728}
5729
John Hawkes9c1cfda2005-09-06 15:18:14 -07005730#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005731
John Hawkes9c1cfda2005-09-06 15:18:14 -07005732#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005733
John Hawkes9c1cfda2005-09-06 15:18:14 -07005734/**
5735 * find_next_best_node - find the next node to include in a sched_domain
5736 * @node: node whose sched_domain we're building
5737 * @used_nodes: nodes already in the sched_domain
5738 *
5739 * Find the next node to include in a given scheduling domain. Simply
5740 * finds the closest node not already in the @used_nodes map.
5741 *
5742 * Should use nodemask_t.
5743 */
5744static int find_next_best_node(int node, unsigned long *used_nodes)
5745{
5746 int i, n, val, min_val, best_node = 0;
5747
5748 min_val = INT_MAX;
5749
5750 for (i = 0; i < MAX_NUMNODES; i++) {
5751 /* Start at @node */
5752 n = (node + i) % MAX_NUMNODES;
5753
5754 if (!nr_cpus_node(n))
5755 continue;
5756
5757 /* Skip already used nodes */
5758 if (test_bit(n, used_nodes))
5759 continue;
5760
5761 /* Simple min distance search */
5762 val = node_distance(node, n);
5763
5764 if (val < min_val) {
5765 min_val = val;
5766 best_node = n;
5767 }
5768 }
5769
5770 set_bit(best_node, used_nodes);
5771 return best_node;
5772}
5773
5774/**
5775 * sched_domain_node_span - get a cpumask for a node's sched_domain
5776 * @node: node whose cpumask we're constructing
5777 * @size: number of nodes to include in this span
5778 *
5779 * Given a node, construct a good cpumask for its sched_domain to span. It
5780 * should be one that prevents unnecessary balancing, but also spreads tasks
5781 * out optimally.
5782 */
5783static cpumask_t sched_domain_node_span(int node)
5784{
John Hawkes9c1cfda2005-09-06 15:18:14 -07005785 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005786 cpumask_t span, nodemask;
5787 int i;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005788
5789 cpus_clear(span);
5790 bitmap_zero(used_nodes, MAX_NUMNODES);
5791
5792 nodemask = node_to_cpumask(node);
5793 cpus_or(span, span, nodemask);
5794 set_bit(node, used_nodes);
5795
5796 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5797 int next_node = find_next_best_node(node, used_nodes);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005798
John Hawkes9c1cfda2005-09-06 15:18:14 -07005799 nodemask = node_to_cpumask(next_node);
5800 cpus_or(span, span, nodemask);
5801 }
5802
5803 return span;
5804}
5805#endif
5806
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07005807int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005808
John Hawkes9c1cfda2005-09-06 15:18:14 -07005809/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07005810 * SMT sched-domains:
John Hawkes9c1cfda2005-09-06 15:18:14 -07005811 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005812#ifdef CONFIG_SCHED_SMT
5813static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005814static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005815
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005816static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5817 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005818{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005819 if (sg)
5820 *sg = &per_cpu(sched_group_cpus, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005821 return cpu;
5822}
5823#endif
5824
Ingo Molnar48f24c42006-07-03 00:25:40 -07005825/*
5826 * multi-core sched-domains:
5827 */
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005828#ifdef CONFIG_SCHED_MC
5829static DEFINE_PER_CPU(struct sched_domain, core_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005830static DEFINE_PER_CPU(struct sched_group, sched_group_core);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005831#endif
5832
5833#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005834static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5835 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005836{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005837 int group;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005838 cpumask_t mask = cpu_sibling_map[cpu];
5839 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005840 group = first_cpu(mask);
5841 if (sg)
5842 *sg = &per_cpu(sched_group_core, group);
5843 return group;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005844}
5845#elif defined(CONFIG_SCHED_MC)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005846static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5847 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005848{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005849 if (sg)
5850 *sg = &per_cpu(sched_group_core, cpu);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005851 return cpu;
5852}
5853#endif
5854
Linus Torvalds1da177e2005-04-16 15:20:36 -07005855static DEFINE_PER_CPU(struct sched_domain, phys_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005856static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005857
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005858static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5859 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005860{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005861 int group;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005862#ifdef CONFIG_SCHED_MC
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005863 cpumask_t mask = cpu_coregroup_map(cpu);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005864 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005865 group = first_cpu(mask);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005866#elif defined(CONFIG_SCHED_SMT)
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005867 cpumask_t mask = cpu_sibling_map[cpu];
5868 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005869 group = first_cpu(mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005870#else
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005871 group = cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005872#endif
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005873 if (sg)
5874 *sg = &per_cpu(sched_group_phys, group);
5875 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005876}
5877
5878#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07005879/*
5880 * The init_sched_build_groups can't handle what we want to do with node
5881 * groups, so roll our own. Now each node has its own list of groups which
5882 * gets dynamically allocated.
5883 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005884static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005885static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005886
5887static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005888static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005889
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005890static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5891 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005892{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005893 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5894 int group;
5895
5896 cpus_and(nodemask, nodemask, *cpu_map);
5897 group = first_cpu(nodemask);
5898
5899 if (sg)
5900 *sg = &per_cpu(sched_group_allnodes, group);
5901 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005902}
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005903
Siddha, Suresh B08069032006-03-27 01:15:23 -08005904static void init_numa_sched_groups_power(struct sched_group *group_head)
5905{
5906 struct sched_group *sg = group_head;
5907 int j;
5908
5909 if (!sg)
5910 return;
5911next_sg:
5912 for_each_cpu_mask(j, sg->cpumask) {
5913 struct sched_domain *sd;
5914
5915 sd = &per_cpu(phys_domains, j);
5916 if (j != first_cpu(sd->groups->cpumask)) {
5917 /*
5918 * Only add "power" once for each
5919 * physical package.
5920 */
5921 continue;
5922 }
5923
Eric Dumazet5517d862007-05-08 00:32:57 -07005924 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
Siddha, Suresh B08069032006-03-27 01:15:23 -08005925 }
5926 sg = sg->next;
5927 if (sg != group_head)
5928 goto next_sg;
5929}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005930#endif
5931
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005932#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005933/* Free memory allocated for various sched_group structures */
5934static void free_sched_groups(const cpumask_t *cpu_map)
5935{
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005936 int cpu, i;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005937
5938 for_each_cpu_mask(cpu, *cpu_map) {
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005939 struct sched_group **sched_group_nodes
5940 = sched_group_nodes_bycpu[cpu];
5941
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005942 if (!sched_group_nodes)
5943 continue;
5944
5945 for (i = 0; i < MAX_NUMNODES; i++) {
5946 cpumask_t nodemask = node_to_cpumask(i);
5947 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5948
5949 cpus_and(nodemask, nodemask, *cpu_map);
5950 if (cpus_empty(nodemask))
5951 continue;
5952
5953 if (sg == NULL)
5954 continue;
5955 sg = sg->next;
5956next_sg:
5957 oldsg = sg;
5958 sg = sg->next;
5959 kfree(oldsg);
5960 if (oldsg != sched_group_nodes[i])
5961 goto next_sg;
5962 }
5963 kfree(sched_group_nodes);
5964 sched_group_nodes_bycpu[cpu] = NULL;
5965 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005966}
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005967#else
5968static void free_sched_groups(const cpumask_t *cpu_map)
5969{
5970}
5971#endif
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005972
Linus Torvalds1da177e2005-04-16 15:20:36 -07005973/*
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005974 * Initialize sched groups cpu_power.
5975 *
5976 * cpu_power indicates the capacity of sched group, which is used while
5977 * distributing the load between different sched groups in a sched domain.
5978 * Typically cpu_power for all the groups in a sched domain will be same unless
5979 * there are asymmetries in the topology. If there are asymmetries, group
5980 * having more cpu_power will pickup more load compared to the group having
5981 * less cpu_power.
5982 *
5983 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5984 * the maximum number of tasks a group can handle in the presence of other idle
5985 * or lightly loaded groups in the same sched domain.
5986 */
5987static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5988{
5989 struct sched_domain *child;
5990 struct sched_group *group;
5991
5992 WARN_ON(!sd || !sd->groups);
5993
5994 if (cpu != first_cpu(sd->groups->cpumask))
5995 return;
5996
5997 child = sd->child;
5998
Eric Dumazet5517d862007-05-08 00:32:57 -07005999 sd->groups->__cpu_power = 0;
6000
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006001 /*
6002 * For perf policy, if the groups in child domain share resources
6003 * (for example cores sharing some portions of the cache hierarchy
6004 * or SMT), then set this domain groups cpu_power such that each group
6005 * can handle only one task, when there are other idle groups in the
6006 * same sched domain.
6007 */
6008 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6009 (child->flags &
6010 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
Eric Dumazet5517d862007-05-08 00:32:57 -07006011 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006012 return;
6013 }
6014
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006015 /*
6016 * add cpu_power of each child group to this groups cpu_power
6017 */
6018 group = child->groups;
6019 do {
Eric Dumazet5517d862007-05-08 00:32:57 -07006020 sg_inc_cpu_power(sd->groups, group->__cpu_power);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006021 group = group->next;
6022 } while (group != child->groups);
6023}
6024
6025/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006026 * Build sched domains for a given set of cpus and attach the sched domains
6027 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07006028 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006029static int build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006030{
6031 int i;
John Hawkesd1b55132005-09-06 15:18:14 -07006032#ifdef CONFIG_NUMA
6033 struct sched_group **sched_group_nodes = NULL;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006034 int sd_allnodes = 0;
John Hawkesd1b55132005-09-06 15:18:14 -07006035
6036 /*
6037 * Allocate the per-node list of sched groups
6038 */
Ingo Molnardd41f592007-07-09 18:51:59 +02006039 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
Srivatsa Vaddagirid3a5aa92006-06-27 02:54:39 -07006040 GFP_KERNEL);
John Hawkesd1b55132005-09-06 15:18:14 -07006041 if (!sched_group_nodes) {
6042 printk(KERN_WARNING "Can not alloc sched group node list\n");
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006043 return -ENOMEM;
John Hawkesd1b55132005-09-06 15:18:14 -07006044 }
6045 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6046#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006047
6048 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006049 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006050 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006051 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006052 struct sched_domain *sd = NULL, *p;
6053 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6054
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006055 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006056
6057#ifdef CONFIG_NUMA
Ingo Molnardd41f592007-07-09 18:51:59 +02006058 if (cpus_weight(*cpu_map) >
6059 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
John Hawkes9c1cfda2005-09-06 15:18:14 -07006060 sd = &per_cpu(allnodes_domains, i);
6061 *sd = SD_ALLNODES_INIT;
6062 sd->span = *cpu_map;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006063 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006064 p = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006065 sd_allnodes = 1;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006066 } else
6067 p = NULL;
6068
Linus Torvalds1da177e2005-04-16 15:20:36 -07006069 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006070 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006071 sd->span = sched_domain_node_span(cpu_to_node(i));
6072 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006073 if (p)
6074 p->child = sd;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006075 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006076#endif
6077
6078 p = sd;
6079 sd = &per_cpu(phys_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006080 *sd = SD_CPU_INIT;
6081 sd->span = nodemask;
6082 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006083 if (p)
6084 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006085 cpu_to_phys_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006086
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006087#ifdef CONFIG_SCHED_MC
6088 p = sd;
6089 sd = &per_cpu(core_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006090 *sd = SD_MC_INIT;
6091 sd->span = cpu_coregroup_map(i);
6092 cpus_and(sd->span, sd->span, *cpu_map);
6093 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006094 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006095 cpu_to_core_group(i, cpu_map, &sd->groups);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006096#endif
6097
Linus Torvalds1da177e2005-04-16 15:20:36 -07006098#ifdef CONFIG_SCHED_SMT
6099 p = sd;
6100 sd = &per_cpu(cpu_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006101 *sd = SD_SIBLING_INIT;
6102 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006103 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006104 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006105 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006106 cpu_to_cpu_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006107#endif
6108 }
6109
6110#ifdef CONFIG_SCHED_SMT
6111 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07006112 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006113 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006114 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006115 if (i != first_cpu(this_sibling_map))
6116 continue;
6117
Ingo Molnardd41f592007-07-09 18:51:59 +02006118 init_sched_build_groups(this_sibling_map, cpu_map,
6119 &cpu_to_cpu_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006120 }
6121#endif
6122
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006123#ifdef CONFIG_SCHED_MC
6124 /* Set up multi-core groups */
6125 for_each_cpu_mask(i, *cpu_map) {
6126 cpumask_t this_core_map = cpu_coregroup_map(i);
6127 cpus_and(this_core_map, this_core_map, *cpu_map);
6128 if (i != first_cpu(this_core_map))
6129 continue;
Ingo Molnardd41f592007-07-09 18:51:59 +02006130 init_sched_build_groups(this_core_map, cpu_map,
6131 &cpu_to_core_group);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006132 }
6133#endif
6134
Linus Torvalds1da177e2005-04-16 15:20:36 -07006135 /* Set up physical groups */
6136 for (i = 0; i < MAX_NUMNODES; i++) {
6137 cpumask_t nodemask = node_to_cpumask(i);
6138
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006139 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006140 if (cpus_empty(nodemask))
6141 continue;
6142
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006143 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006144 }
6145
6146#ifdef CONFIG_NUMA
6147 /* Set up node groups */
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006148 if (sd_allnodes)
Ingo Molnardd41f592007-07-09 18:51:59 +02006149 init_sched_build_groups(*cpu_map, cpu_map,
6150 &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006151
6152 for (i = 0; i < MAX_NUMNODES; i++) {
6153 /* Set up node groups */
6154 struct sched_group *sg, *prev;
6155 cpumask_t nodemask = node_to_cpumask(i);
6156 cpumask_t domainspan;
6157 cpumask_t covered = CPU_MASK_NONE;
6158 int j;
6159
6160 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07006161 if (cpus_empty(nodemask)) {
6162 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006163 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07006164 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006165
6166 domainspan = sched_domain_node_span(i);
6167 cpus_and(domainspan, domainspan, *cpu_map);
6168
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006169 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006170 if (!sg) {
6171 printk(KERN_WARNING "Can not alloc domain group for "
6172 "node %d\n", i);
6173 goto error;
6174 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006175 sched_group_nodes[i] = sg;
6176 for_each_cpu_mask(j, nodemask) {
6177 struct sched_domain *sd;
Ingo Molnar9761eea2007-07-09 18:52:00 +02006178
John Hawkes9c1cfda2005-09-06 15:18:14 -07006179 sd = &per_cpu(node_domains, j);
6180 sd->groups = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006181 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006182 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006183 sg->cpumask = nodemask;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006184 sg->next = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006185 cpus_or(covered, covered, nodemask);
6186 prev = sg;
6187
6188 for (j = 0; j < MAX_NUMNODES; j++) {
6189 cpumask_t tmp, notcovered;
6190 int n = (i + j) % MAX_NUMNODES;
6191
6192 cpus_complement(notcovered, covered);
6193 cpus_and(tmp, notcovered, *cpu_map);
6194 cpus_and(tmp, tmp, domainspan);
6195 if (cpus_empty(tmp))
6196 break;
6197
6198 nodemask = node_to_cpumask(n);
6199 cpus_and(tmp, tmp, nodemask);
6200 if (cpus_empty(tmp))
6201 continue;
6202
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006203 sg = kmalloc_node(sizeof(struct sched_group),
6204 GFP_KERNEL, i);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006205 if (!sg) {
6206 printk(KERN_WARNING
6207 "Can not alloc domain group for node %d\n", j);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006208 goto error;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006209 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006210 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006211 sg->cpumask = tmp;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006212 sg->next = prev->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006213 cpus_or(covered, covered, tmp);
6214 prev->next = sg;
6215 prev = sg;
6216 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006217 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006218#endif
6219
6220 /* Calculate CPU power for physical packages and nodes */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006221#ifdef CONFIG_SCHED_SMT
6222 for_each_cpu_mask(i, *cpu_map) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006223 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6224
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006225 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006226 }
6227#endif
6228#ifdef CONFIG_SCHED_MC
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006229 for_each_cpu_mask(i, *cpu_map) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006230 struct sched_domain *sd = &per_cpu(core_domains, i);
6231
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006232 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006233 }
6234#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006235
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006236 for_each_cpu_mask(i, *cpu_map) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006237 struct sched_domain *sd = &per_cpu(phys_domains, i);
6238
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006239 init_sched_groups_power(i, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006240 }
6241
John Hawkes9c1cfda2005-09-06 15:18:14 -07006242#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08006243 for (i = 0; i < MAX_NUMNODES; i++)
6244 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006245
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006246 if (sd_allnodes) {
6247 struct sched_group *sg;
Siddha, Suresh Bf712c0c72006-07-30 03:02:59 -07006248
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006249 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
Siddha, Suresh Bf712c0c72006-07-30 03:02:59 -07006250 init_numa_sched_groups_power(sg);
6251 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006252#endif
6253
Linus Torvalds1da177e2005-04-16 15:20:36 -07006254 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006255 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006256 struct sched_domain *sd;
6257#ifdef CONFIG_SCHED_SMT
6258 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006259#elif defined(CONFIG_SCHED_MC)
6260 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006261#else
6262 sd = &per_cpu(phys_domains, i);
6263#endif
6264 cpu_attach_domain(sd, i);
6265 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006266
6267 return 0;
6268
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006269#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006270error:
6271 free_sched_groups(cpu_map);
6272 return -ENOMEM;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006273#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006274}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006275/*
6276 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6277 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006278static int arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006279{
6280 cpumask_t cpu_default_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006281 int err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006282
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006283 /*
6284 * Setup mask for cpus without special case scheduling requirements.
6285 * For now this just excludes isolated cpus, but could be used to
6286 * exclude other special cases in the future.
6287 */
6288 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6289
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006290 err = build_sched_domains(&cpu_default_map);
6291
6292 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006293}
6294
6295static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006296{
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006297 free_sched_groups(cpu_map);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006298}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006299
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006300/*
6301 * Detach sched domains from a group of cpus specified in cpu_map
6302 * These cpus will now be attached to the NULL domain
6303 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006304static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006305{
6306 int i;
6307
6308 for_each_cpu_mask(i, *cpu_map)
6309 cpu_attach_domain(NULL, i);
6310 synchronize_sched();
6311 arch_destroy_sched_domains(cpu_map);
6312}
6313
6314/*
6315 * Partition sched domains as specified by the cpumasks below.
6316 * This attaches all cpus from the cpumasks to the NULL domain,
6317 * waits for a RCU quiescent period, recalculates sched
6318 * domain information and then attaches them back to the
6319 * correct sched domains
6320 * Call with hotplug lock held
6321 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006322int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006323{
6324 cpumask_t change_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006325 int err = 0;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006326
6327 cpus_and(*partition1, *partition1, cpu_online_map);
6328 cpus_and(*partition2, *partition2, cpu_online_map);
6329 cpus_or(change_map, *partition1, *partition2);
6330
6331 /* Detach sched domains from all of the affected cpus */
6332 detach_destroy_domains(&change_map);
6333 if (!cpus_empty(*partition1))
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006334 err = build_sched_domains(partition1);
6335 if (!err && !cpus_empty(*partition2))
6336 err = build_sched_domains(partition2);
6337
6338 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006339}
6340
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006341#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6342int arch_reinit_sched_domains(void)
6343{
6344 int err;
6345
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006346 mutex_lock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006347 detach_destroy_domains(&cpu_online_map);
6348 err = arch_init_sched_domains(&cpu_online_map);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006349 mutex_unlock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006350
6351 return err;
6352}
6353
6354static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6355{
6356 int ret;
6357
6358 if (buf[0] != '0' && buf[0] != '1')
6359 return -EINVAL;
6360
6361 if (smt)
6362 sched_smt_power_savings = (buf[0] == '1');
6363 else
6364 sched_mc_power_savings = (buf[0] == '1');
6365
6366 ret = arch_reinit_sched_domains();
6367
6368 return ret ? ret : count;
6369}
6370
6371int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6372{
6373 int err = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006374
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006375#ifdef CONFIG_SCHED_SMT
6376 if (smt_capable())
6377 err = sysfs_create_file(&cls->kset.kobj,
6378 &attr_sched_smt_power_savings.attr);
6379#endif
6380#ifdef CONFIG_SCHED_MC
6381 if (!err && mc_capable())
6382 err = sysfs_create_file(&cls->kset.kobj,
6383 &attr_sched_mc_power_savings.attr);
6384#endif
6385 return err;
6386}
6387#endif
6388
6389#ifdef CONFIG_SCHED_MC
6390static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6391{
6392 return sprintf(page, "%u\n", sched_mc_power_savings);
6393}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006394static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6395 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006396{
6397 return sched_power_savings_store(buf, count, 0);
6398}
6399SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6400 sched_mc_power_savings_store);
6401#endif
6402
6403#ifdef CONFIG_SCHED_SMT
6404static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6405{
6406 return sprintf(page, "%u\n", sched_smt_power_savings);
6407}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006408static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6409 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006410{
6411 return sched_power_savings_store(buf, count, 1);
6412}
6413SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6414 sched_smt_power_savings_store);
6415#endif
6416
Linus Torvalds1da177e2005-04-16 15:20:36 -07006417/*
6418 * Force a reinitialization of the sched domains hierarchy. The domains
6419 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006420 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006421 * which will prevent rebalancing while the sched domains are recalculated.
6422 */
6423static int update_sched_domains(struct notifier_block *nfb,
6424 unsigned long action, void *hcpu)
6425{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006426 switch (action) {
6427 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006428 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006429 case CPU_DOWN_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006430 case CPU_DOWN_PREPARE_FROZEN:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006431 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006432 return NOTIFY_OK;
6433
6434 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006435 case CPU_UP_CANCELED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006436 case CPU_DOWN_FAILED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006437 case CPU_DOWN_FAILED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006438 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006439 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006440 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006441 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006442 /*
6443 * Fall through and re-initialise the domains.
6444 */
6445 break;
6446 default:
6447 return NOTIFY_DONE;
6448 }
6449
6450 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006451 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006452
6453 return NOTIFY_OK;
6454}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006455
6456void __init sched_init_smp(void)
6457{
Nick Piggin5c1e1762006-10-03 01:14:04 -07006458 cpumask_t non_isolated_cpus;
6459
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006460 mutex_lock(&sched_hotcpu_mutex);
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006461 arch_init_sched_domains(&cpu_online_map);
Nathan Lynche5e56732007-01-10 23:15:28 -08006462 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006463 if (cpus_empty(non_isolated_cpus))
6464 cpu_set(smp_processor_id(), non_isolated_cpus);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006465 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006466 /* XXX: Theoretical race here - CPU may be hotplugged now */
6467 hotcpu_notifier(update_sched_domains, 0);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006468
Nick Piggine692ab52007-07-26 13:40:43 +02006469 init_sched_domain_sysctl();
6470
Nick Piggin5c1e1762006-10-03 01:14:04 -07006471 /* Move init over to a non-isolated CPU */
6472 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6473 BUG();
Ingo Molnardd41f592007-07-09 18:51:59 +02006474 sched_init_granularity();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006475}
6476#else
6477void __init sched_init_smp(void)
6478{
Ingo Molnardd41f592007-07-09 18:51:59 +02006479 sched_init_granularity();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006480}
6481#endif /* CONFIG_SMP */
6482
6483int in_sched_functions(unsigned long addr)
6484{
6485 /* Linker adds these: start and end of __sched functions */
6486 extern char __sched_text_start[], __sched_text_end[];
Ingo Molnar48f24c42006-07-03 00:25:40 -07006487
Linus Torvalds1da177e2005-04-16 15:20:36 -07006488 return in_lock_functions(addr) ||
6489 (addr >= (unsigned long)__sched_text_start
6490 && addr < (unsigned long)__sched_text_end);
6491}
6492
Ingo Molnardd41f592007-07-09 18:51:59 +02006493static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6494{
6495 cfs_rq->tasks_timeline = RB_ROOT;
6496 cfs_rq->fair_clock = 1;
6497#ifdef CONFIG_FAIR_GROUP_SCHED
6498 cfs_rq->rq = rq;
6499#endif
6500}
6501
Linus Torvalds1da177e2005-04-16 15:20:36 -07006502void __init sched_init(void)
6503{
Ingo Molnardd41f592007-07-09 18:51:59 +02006504 u64 now = sched_clock();
Christoph Lameter476f3532007-05-06 14:48:58 -07006505 int highest_cpu = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006506 int i, j;
6507
6508 /*
6509 * Link up the scheduling class hierarchy:
6510 */
6511 rt_sched_class.next = &fair_sched_class;
6512 fair_sched_class.next = &idle_sched_class;
6513 idle_sched_class.next = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006514
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006515 for_each_possible_cpu(i) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006516 struct rt_prio_array *array;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006517 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006518
6519 rq = cpu_rq(i);
6520 spin_lock_init(&rq->lock);
Ingo Molnarfcb99372006-07-03 00:25:10 -07006521 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
Nick Piggin78979862005-06-25 14:57:13 -07006522 rq->nr_running = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006523 rq->clock = 1;
6524 init_cfs_rq(&rq->cfs, rq);
6525#ifdef CONFIG_FAIR_GROUP_SCHED
6526 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6527 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6528#endif
6529 rq->ls.load_update_last = now;
6530 rq->ls.load_update_start = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006531
Ingo Molnardd41f592007-07-09 18:51:59 +02006532 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6533 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006534#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006535 rq->sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006536 rq->active_balance = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006537 rq->next_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006538 rq->push_cpu = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07006539 rq->cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006540 rq->migration_thread = NULL;
6541 INIT_LIST_HEAD(&rq->migration_queue);
6542#endif
6543 atomic_set(&rq->nr_iowait, 0);
6544
Ingo Molnardd41f592007-07-09 18:51:59 +02006545 array = &rq->rt.active;
6546 for (j = 0; j < MAX_RT_PRIO; j++) {
6547 INIT_LIST_HEAD(array->queue + j);
6548 __clear_bit(j, array->bitmap);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006549 }
Christoph Lameter476f3532007-05-06 14:48:58 -07006550 highest_cpu = i;
Ingo Molnardd41f592007-07-09 18:51:59 +02006551 /* delimiter for bitsearch: */
6552 __set_bit(MAX_RT_PRIO, array->bitmap);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006553 }
6554
Peter Williams2dd73a42006-06-27 02:54:34 -07006555 set_load_weight(&init_task);
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006556
Avi Kivitye107be32007-07-26 13:40:43 +02006557#ifdef CONFIG_PREEMPT_NOTIFIERS
6558 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6559#endif
6560
Christoph Lameterc9819f42006-12-10 02:20:25 -08006561#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07006562 nr_cpu_ids = highest_cpu + 1;
Christoph Lameterc9819f42006-12-10 02:20:25 -08006563 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6564#endif
6565
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006566#ifdef CONFIG_RT_MUTEXES
6567 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6568#endif
6569
Linus Torvalds1da177e2005-04-16 15:20:36 -07006570 /*
6571 * The boot idle thread does lazy MMU switching as well:
6572 */
6573 atomic_inc(&init_mm.mm_count);
6574 enter_lazy_tlb(&init_mm, current);
6575
6576 /*
6577 * Make us the idle thread. Technically, schedule() should not be
6578 * called from this thread, however somewhere below it might be,
6579 * but because we are the idle thread, we just pick up running again
6580 * when this runqueue becomes "idle".
6581 */
6582 init_idle(current, smp_processor_id());
Ingo Molnardd41f592007-07-09 18:51:59 +02006583 /*
6584 * During early bootup we pretend to be a normal task:
6585 */
6586 current->sched_class = &fair_sched_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006587}
6588
6589#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6590void __might_sleep(char *file, int line)
6591{
Ingo Molnar48f24c42006-07-03 00:25:40 -07006592#ifdef in_atomic
Linus Torvalds1da177e2005-04-16 15:20:36 -07006593 static unsigned long prev_jiffy; /* ratelimiting */
6594
6595 if ((in_atomic() || irqs_disabled()) &&
6596 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6597 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6598 return;
6599 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08006600 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07006601 " context at %s:%d\n", file, line);
6602 printk("in_atomic():%d, irqs_disabled():%d\n",
6603 in_atomic(), irqs_disabled());
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08006604 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08006605 if (irqs_disabled())
6606 print_irqtrace_events(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006607 dump_stack();
6608 }
6609#endif
6610}
6611EXPORT_SYMBOL(__might_sleep);
6612#endif
6613
6614#ifdef CONFIG_MAGIC_SYSRQ
6615void normalize_rt_tasks(void)
6616{
Ingo Molnara0f98a12007-06-17 18:37:45 +02006617 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006618 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006619 struct rq *rq;
Ingo Molnardd41f592007-07-09 18:51:59 +02006620 int on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006621
6622 read_lock_irq(&tasklist_lock);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006623 do_each_thread(g, p) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006624 p->se.fair_key = 0;
6625 p->se.wait_runtime = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006626 p->se.exec_start = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02006627 p->se.wait_start_fair = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006628 p->se.sleep_start_fair = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02006629#ifdef CONFIG_SCHEDSTATS
6630 p->se.wait_start = 0;
6631 p->se.sleep_start = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006632 p->se.block_start = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02006633#endif
Ingo Molnardd41f592007-07-09 18:51:59 +02006634 task_rq(p)->cfs.fair_clock = 0;
6635 task_rq(p)->clock = 0;
6636
6637 if (!rt_task(p)) {
6638 /*
6639 * Renice negative nice level userspace
6640 * tasks back to 0:
6641 */
6642 if (TASK_NICE(p) < 0 && p->mm)
6643 set_user_nice(p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006644 continue;
Ingo Molnardd41f592007-07-09 18:51:59 +02006645 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006646
Ingo Molnarb29739f2006-06-27 02:54:51 -07006647 spin_lock_irqsave(&p->pi_lock, flags);
6648 rq = __task_rq_lock(p);
Ingo Molnardd41f592007-07-09 18:51:59 +02006649#ifdef CONFIG_SMP
6650 /*
6651 * Do not touch the migration thread:
6652 */
6653 if (p == rq->migration_thread)
6654 goto out_unlock;
6655#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006656
Ingo Molnardd41f592007-07-09 18:51:59 +02006657 on_rq = p->se.on_rq;
Ingo Molnara8e504d2007-08-09 11:16:47 +02006658 if (on_rq) {
6659 update_rq_clock(task_rq(p));
6660 deactivate_task(task_rq(p), p, 0, task_rq(p)->clock);
6661 }
Ingo Molnardd41f592007-07-09 18:51:59 +02006662 __setscheduler(rq, p, SCHED_NORMAL, 0);
6663 if (on_rq) {
6664 activate_task(task_rq(p), p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006665 resched_task(rq->curr);
6666 }
Ingo Molnardd41f592007-07-09 18:51:59 +02006667#ifdef CONFIG_SMP
6668 out_unlock:
6669#endif
Ingo Molnarb29739f2006-06-27 02:54:51 -07006670 __task_rq_unlock(rq);
6671 spin_unlock_irqrestore(&p->pi_lock, flags);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006672 } while_each_thread(g, p);
6673
Linus Torvalds1da177e2005-04-16 15:20:36 -07006674 read_unlock_irq(&tasklist_lock);
6675}
6676
6677#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07006678
6679#ifdef CONFIG_IA64
6680/*
6681 * These functions are only useful for the IA64 MCA handling.
6682 *
6683 * They can only be called when the whole system has been
6684 * stopped - every CPU needs to be quiescent, and no scheduling
6685 * activity can take place. Using them for anything else would
6686 * be a serious bug, and as a result, they aren't even visible
6687 * under any other configuration.
6688 */
6689
6690/**
6691 * curr_task - return the current task for a given cpu.
6692 * @cpu: the processor in question.
6693 *
6694 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6695 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006696struct task_struct *curr_task(int cpu)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006697{
6698 return cpu_curr(cpu);
6699}
6700
6701/**
6702 * set_curr_task - set the current task for a given cpu.
6703 * @cpu: the processor in question.
6704 * @p: the task pointer to set.
6705 *
6706 * Description: This function must only be used when non-maskable interrupts
6707 * are serviced on a separate stack. It allows the architecture to switch the
6708 * notion of the current task on a cpu in a non-blocking manner. This function
6709 * must be called with all CPU's synchronized, and interrupts disabled, the
6710 * and caller must save the original value of the current task (see
6711 * curr_task() above) and restore that value before reenabling interrupts and
6712 * re-starting the system.
6713 *
6714 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6715 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006716void set_curr_task(int cpu, struct task_struct *p)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006717{
6718 cpu_curr(cpu) = p;
6719}
6720
6721#endif