blob: a28978a37bfa54ed4e20008055ca9b02f2e7cdda [file] [log] [blame]
Kirill A. Shutemov1cd9c222018-01-31 16:54:02 +03001/*
2 * AMD Memory Encryption Support
3 *
4 * Copyright (C) 2016 Advanced Micro Devices, Inc.
5 *
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#define DISABLE_BRANCH_PROFILING
14
15#include <linux/mm.h>
16#include <linux/mem_encrypt.h>
17
18#include <asm/setup.h>
19#include <asm/sections.h>
20#include <asm/cmdline.h>
21
22#include "mm_internal.h"
23
24#define PGD_FLAGS _KERNPG_TABLE_NOENC
25#define P4D_FLAGS _KERNPG_TABLE_NOENC
26#define PUD_FLAGS _KERNPG_TABLE_NOENC
27#define PMD_FLAGS _KERNPG_TABLE_NOENC
28
29#define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
30
31#define PMD_FLAGS_DEC PMD_FLAGS_LARGE
32#define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
33 (_PAGE_PAT | _PAGE_PWT))
34
35#define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
36
37#define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
38
39#define PTE_FLAGS_DEC PTE_FLAGS
40#define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
41 (_PAGE_PAT | _PAGE_PWT))
42
43#define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
44
45struct sme_populate_pgd_data {
46 void *pgtable_area;
47 pgd_t *pgd;
48
49 pmdval_t pmd_flags;
50 pteval_t pte_flags;
51 unsigned long paddr;
52
53 unsigned long vaddr;
54 unsigned long vaddr_end;
55};
56
57static char sme_cmdline_arg[] __initdata = "mem_encrypt";
58static char sme_cmdline_on[] __initdata = "on";
59static char sme_cmdline_off[] __initdata = "off";
60
61static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
62{
63 unsigned long pgd_start, pgd_end, pgd_size;
64 pgd_t *pgd_p;
65
66 pgd_start = ppd->vaddr & PGDIR_MASK;
67 pgd_end = ppd->vaddr_end & PGDIR_MASK;
68
69 pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
70
71 pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
72
73 memset(pgd_p, 0, pgd_size);
74}
75
76static pmd_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
77{
78 pgd_t *pgd_p;
79 p4d_t *p4d_p;
80 pud_t *pud_p;
81 pmd_t *pmd_p;
82
83 pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
84 if (native_pgd_val(*pgd_p)) {
85 if (IS_ENABLED(CONFIG_X86_5LEVEL))
86 p4d_p = (p4d_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
87 else
88 pud_p = (pud_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
89 } else {
90 pgd_t pgd;
91
92 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
93 p4d_p = ppd->pgtable_area;
94 memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
95 ppd->pgtable_area += sizeof(*p4d_p) * PTRS_PER_P4D;
96
97 pgd = native_make_pgd((pgdval_t)p4d_p + PGD_FLAGS);
98 } else {
99 pud_p = ppd->pgtable_area;
100 memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
101 ppd->pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
102
103 pgd = native_make_pgd((pgdval_t)pud_p + PGD_FLAGS);
104 }
105 native_set_pgd(pgd_p, pgd);
106 }
107
108 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
109 p4d_p += p4d_index(ppd->vaddr);
110 if (native_p4d_val(*p4d_p)) {
111 pud_p = (pud_t *)(native_p4d_val(*p4d_p) & ~PTE_FLAGS_MASK);
112 } else {
113 p4d_t p4d;
114
115 pud_p = ppd->pgtable_area;
116 memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
117 ppd->pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
118
119 p4d = native_make_p4d((pudval_t)pud_p + P4D_FLAGS);
120 native_set_p4d(p4d_p, p4d);
121 }
122 }
123
124 pud_p += pud_index(ppd->vaddr);
125 if (native_pud_val(*pud_p)) {
126 if (native_pud_val(*pud_p) & _PAGE_PSE)
127 return NULL;
128
129 pmd_p = (pmd_t *)(native_pud_val(*pud_p) & ~PTE_FLAGS_MASK);
130 } else {
131 pud_t pud;
132
133 pmd_p = ppd->pgtable_area;
134 memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
135 ppd->pgtable_area += sizeof(*pmd_p) * PTRS_PER_PMD;
136
137 pud = native_make_pud((pmdval_t)pmd_p + PUD_FLAGS);
138 native_set_pud(pud_p, pud);
139 }
140
141 return pmd_p;
142}
143
144static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
145{
146 pmd_t *pmd_p;
147
148 pmd_p = sme_prepare_pgd(ppd);
149 if (!pmd_p)
150 return;
151
152 pmd_p += pmd_index(ppd->vaddr);
153 if (!native_pmd_val(*pmd_p) || !(native_pmd_val(*pmd_p) & _PAGE_PSE))
154 native_set_pmd(pmd_p, native_make_pmd(ppd->paddr | ppd->pmd_flags));
155}
156
157static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
158{
159 pmd_t *pmd_p;
160 pte_t *pte_p;
161
162 pmd_p = sme_prepare_pgd(ppd);
163 if (!pmd_p)
164 return;
165
166 pmd_p += pmd_index(ppd->vaddr);
167 if (native_pmd_val(*pmd_p)) {
168 if (native_pmd_val(*pmd_p) & _PAGE_PSE)
169 return;
170
171 pte_p = (pte_t *)(native_pmd_val(*pmd_p) & ~PTE_FLAGS_MASK);
172 } else {
173 pmd_t pmd;
174
175 pte_p = ppd->pgtable_area;
176 memset(pte_p, 0, sizeof(*pte_p) * PTRS_PER_PTE);
177 ppd->pgtable_area += sizeof(*pte_p) * PTRS_PER_PTE;
178
179 pmd = native_make_pmd((pteval_t)pte_p + PMD_FLAGS);
180 native_set_pmd(pmd_p, pmd);
181 }
182
183 pte_p += pte_index(ppd->vaddr);
184 if (!native_pte_val(*pte_p))
185 native_set_pte(pte_p, native_make_pte(ppd->paddr | ppd->pte_flags));
186}
187
188static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
189{
190 while (ppd->vaddr < ppd->vaddr_end) {
191 sme_populate_pgd_large(ppd);
192
193 ppd->vaddr += PMD_PAGE_SIZE;
194 ppd->paddr += PMD_PAGE_SIZE;
195 }
196}
197
198static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
199{
200 while (ppd->vaddr < ppd->vaddr_end) {
201 sme_populate_pgd(ppd);
202
203 ppd->vaddr += PAGE_SIZE;
204 ppd->paddr += PAGE_SIZE;
205 }
206}
207
208static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
209 pmdval_t pmd_flags, pteval_t pte_flags)
210{
211 unsigned long vaddr_end;
212
213 ppd->pmd_flags = pmd_flags;
214 ppd->pte_flags = pte_flags;
215
216 /* Save original end value since we modify the struct value */
217 vaddr_end = ppd->vaddr_end;
218
219 /* If start is not 2MB aligned, create PTE entries */
220 ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
221 __sme_map_range_pte(ppd);
222
223 /* Create PMD entries */
224 ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
225 __sme_map_range_pmd(ppd);
226
227 /* If end is not 2MB aligned, create PTE entries */
228 ppd->vaddr_end = vaddr_end;
229 __sme_map_range_pte(ppd);
230}
231
232static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
233{
234 __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
235}
236
237static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
238{
239 __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
240}
241
242static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
243{
244 __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
245}
246
247static unsigned long __init sme_pgtable_calc(unsigned long len)
248{
249 unsigned long p4d_size, pud_size, pmd_size, pte_size;
250 unsigned long total;
251
252 /*
253 * Perform a relatively simplistic calculation of the pagetable
254 * entries that are needed. Those mappings will be covered mostly
255 * by 2MB PMD entries so we can conservatively calculate the required
256 * number of P4D, PUD and PMD structures needed to perform the
257 * mappings. For mappings that are not 2MB aligned, PTE mappings
258 * would be needed for the start and end portion of the address range
259 * that fall outside of the 2MB alignment. This results in, at most,
260 * two extra pages to hold PTE entries for each range that is mapped.
261 * Incrementing the count for each covers the case where the addresses
262 * cross entries.
263 */
264 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
265 p4d_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
266 p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
267 pud_size = (ALIGN(len, P4D_SIZE) / P4D_SIZE) + 1;
268 pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
269 } else {
270 p4d_size = 0;
271 pud_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
272 pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
273 }
274 pmd_size = (ALIGN(len, PUD_SIZE) / PUD_SIZE) + 1;
275 pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
276 pte_size = 2 * sizeof(pte_t) * PTRS_PER_PTE;
277
278 total = p4d_size + pud_size + pmd_size + pte_size;
279
280 /*
281 * Now calculate the added pagetable structures needed to populate
282 * the new pagetables.
283 */
284 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
285 p4d_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
286 p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
287 pud_size = ALIGN(total, P4D_SIZE) / P4D_SIZE;
288 pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
289 } else {
290 p4d_size = 0;
291 pud_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
292 pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
293 }
294 pmd_size = ALIGN(total, PUD_SIZE) / PUD_SIZE;
295 pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
296
297 total += p4d_size + pud_size + pmd_size;
298
299 return total;
300}
301
302void __init __nostackprotector sme_encrypt_kernel(struct boot_params *bp)
303{
304 unsigned long workarea_start, workarea_end, workarea_len;
305 unsigned long execute_start, execute_end, execute_len;
306 unsigned long kernel_start, kernel_end, kernel_len;
307 unsigned long initrd_start, initrd_end, initrd_len;
308 struct sme_populate_pgd_data ppd;
309 unsigned long pgtable_area_len;
310 unsigned long decrypted_base;
311
312 if (!sme_active())
313 return;
314
315 /*
316 * Prepare for encrypting the kernel and initrd by building new
317 * pagetables with the necessary attributes needed to encrypt the
318 * kernel in place.
319 *
320 * One range of virtual addresses will map the memory occupied
321 * by the kernel and initrd as encrypted.
322 *
323 * Another range of virtual addresses will map the memory occupied
324 * by the kernel and initrd as decrypted and write-protected.
325 *
326 * The use of write-protect attribute will prevent any of the
327 * memory from being cached.
328 */
329
330 /* Physical addresses gives us the identity mapped virtual addresses */
331 kernel_start = __pa_symbol(_text);
332 kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
333 kernel_len = kernel_end - kernel_start;
334
335 initrd_start = 0;
336 initrd_end = 0;
337 initrd_len = 0;
338#ifdef CONFIG_BLK_DEV_INITRD
339 initrd_len = (unsigned long)bp->hdr.ramdisk_size |
340 ((unsigned long)bp->ext_ramdisk_size << 32);
341 if (initrd_len) {
342 initrd_start = (unsigned long)bp->hdr.ramdisk_image |
343 ((unsigned long)bp->ext_ramdisk_image << 32);
344 initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
345 initrd_len = initrd_end - initrd_start;
346 }
347#endif
348
349 /* Set the encryption workarea to be immediately after the kernel */
350 workarea_start = kernel_end;
351
352 /*
353 * Calculate required number of workarea bytes needed:
354 * executable encryption area size:
355 * stack page (PAGE_SIZE)
356 * encryption routine page (PAGE_SIZE)
357 * intermediate copy buffer (PMD_PAGE_SIZE)
358 * pagetable structures for the encryption of the kernel
359 * pagetable structures for workarea (in case not currently mapped)
360 */
361 execute_start = workarea_start;
362 execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
363 execute_len = execute_end - execute_start;
364
365 /*
366 * One PGD for both encrypted and decrypted mappings and a set of
367 * PUDs and PMDs for each of the encrypted and decrypted mappings.
368 */
369 pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
370 pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
371 if (initrd_len)
372 pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
373
374 /* PUDs and PMDs needed in the current pagetables for the workarea */
375 pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
376
377 /*
378 * The total workarea includes the executable encryption area and
379 * the pagetable area. The start of the workarea is already 2MB
380 * aligned, align the end of the workarea on a 2MB boundary so that
381 * we don't try to create/allocate PTE entries from the workarea
382 * before it is mapped.
383 */
384 workarea_len = execute_len + pgtable_area_len;
385 workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
386
387 /*
388 * Set the address to the start of where newly created pagetable
389 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
390 * structures are created when the workarea is added to the current
391 * pagetables and when the new encrypted and decrypted kernel
392 * mappings are populated.
393 */
394 ppd.pgtable_area = (void *)execute_end;
395
396 /*
397 * Make sure the current pagetable structure has entries for
398 * addressing the workarea.
399 */
400 ppd.pgd = (pgd_t *)native_read_cr3_pa();
401 ppd.paddr = workarea_start;
402 ppd.vaddr = workarea_start;
403 ppd.vaddr_end = workarea_end;
404 sme_map_range_decrypted(&ppd);
405
406 /* Flush the TLB - no globals so cr3 is enough */
407 native_write_cr3(__native_read_cr3());
408
409 /*
410 * A new pagetable structure is being built to allow for the kernel
411 * and initrd to be encrypted. It starts with an empty PGD that will
412 * then be populated with new PUDs and PMDs as the encrypted and
413 * decrypted kernel mappings are created.
414 */
415 ppd.pgd = ppd.pgtable_area;
416 memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
417 ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
418
419 /*
420 * A different PGD index/entry must be used to get different
421 * pagetable entries for the decrypted mapping. Choose the next
422 * PGD index and convert it to a virtual address to be used as
423 * the base of the mapping.
424 */
425 decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
426 if (initrd_len) {
427 unsigned long check_base;
428
429 check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
430 decrypted_base = max(decrypted_base, check_base);
431 }
432 decrypted_base <<= PGDIR_SHIFT;
433
434 /* Add encrypted kernel (identity) mappings */
435 ppd.paddr = kernel_start;
436 ppd.vaddr = kernel_start;
437 ppd.vaddr_end = kernel_end;
438 sme_map_range_encrypted(&ppd);
439
440 /* Add decrypted, write-protected kernel (non-identity) mappings */
441 ppd.paddr = kernel_start;
442 ppd.vaddr = kernel_start + decrypted_base;
443 ppd.vaddr_end = kernel_end + decrypted_base;
444 sme_map_range_decrypted_wp(&ppd);
445
446 if (initrd_len) {
447 /* Add encrypted initrd (identity) mappings */
448 ppd.paddr = initrd_start;
449 ppd.vaddr = initrd_start;
450 ppd.vaddr_end = initrd_end;
451 sme_map_range_encrypted(&ppd);
452 /*
453 * Add decrypted, write-protected initrd (non-identity) mappings
454 */
455 ppd.paddr = initrd_start;
456 ppd.vaddr = initrd_start + decrypted_base;
457 ppd.vaddr_end = initrd_end + decrypted_base;
458 sme_map_range_decrypted_wp(&ppd);
459 }
460
461 /* Add decrypted workarea mappings to both kernel mappings */
462 ppd.paddr = workarea_start;
463 ppd.vaddr = workarea_start;
464 ppd.vaddr_end = workarea_end;
465 sme_map_range_decrypted(&ppd);
466
467 ppd.paddr = workarea_start;
468 ppd.vaddr = workarea_start + decrypted_base;
469 ppd.vaddr_end = workarea_end + decrypted_base;
470 sme_map_range_decrypted(&ppd);
471
472 /* Perform the encryption */
473 sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
474 kernel_len, workarea_start, (unsigned long)ppd.pgd);
475
476 if (initrd_len)
477 sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
478 initrd_len, workarea_start,
479 (unsigned long)ppd.pgd);
480
481 /*
482 * At this point we are running encrypted. Remove the mappings for
483 * the decrypted areas - all that is needed for this is to remove
484 * the PGD entry/entries.
485 */
486 ppd.vaddr = kernel_start + decrypted_base;
487 ppd.vaddr_end = kernel_end + decrypted_base;
488 sme_clear_pgd(&ppd);
489
490 if (initrd_len) {
491 ppd.vaddr = initrd_start + decrypted_base;
492 ppd.vaddr_end = initrd_end + decrypted_base;
493 sme_clear_pgd(&ppd);
494 }
495
496 ppd.vaddr = workarea_start + decrypted_base;
497 ppd.vaddr_end = workarea_end + decrypted_base;
498 sme_clear_pgd(&ppd);
499
500 /* Flush the TLB - no globals so cr3 is enough */
501 native_write_cr3(__native_read_cr3());
502}
503
504void __init __nostackprotector sme_enable(struct boot_params *bp)
505{
506 const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
507 unsigned int eax, ebx, ecx, edx;
508 unsigned long feature_mask;
509 bool active_by_default;
510 unsigned long me_mask;
511 char buffer[16];
512 u64 msr;
513
514 /* Check for the SME/SEV support leaf */
515 eax = 0x80000000;
516 ecx = 0;
517 native_cpuid(&eax, &ebx, &ecx, &edx);
518 if (eax < 0x8000001f)
519 return;
520
521#define AMD_SME_BIT BIT(0)
522#define AMD_SEV_BIT BIT(1)
523 /*
524 * Set the feature mask (SME or SEV) based on whether we are
525 * running under a hypervisor.
526 */
527 eax = 1;
528 ecx = 0;
529 native_cpuid(&eax, &ebx, &ecx, &edx);
530 feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;
531
532 /*
533 * Check for the SME/SEV feature:
534 * CPUID Fn8000_001F[EAX]
535 * - Bit 0 - Secure Memory Encryption support
536 * - Bit 1 - Secure Encrypted Virtualization support
537 * CPUID Fn8000_001F[EBX]
538 * - Bits 5:0 - Pagetable bit position used to indicate encryption
539 */
540 eax = 0x8000001f;
541 ecx = 0;
542 native_cpuid(&eax, &ebx, &ecx, &edx);
543 if (!(eax & feature_mask))
544 return;
545
546 me_mask = 1UL << (ebx & 0x3f);
547
548 /* Check if memory encryption is enabled */
549 if (feature_mask == AMD_SME_BIT) {
550 /* For SME, check the SYSCFG MSR */
551 msr = __rdmsr(MSR_K8_SYSCFG);
552 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
553 return;
554 } else {
555 /* For SEV, check the SEV MSR */
556 msr = __rdmsr(MSR_AMD64_SEV);
557 if (!(msr & MSR_AMD64_SEV_ENABLED))
558 return;
559
560 /* SEV state cannot be controlled by a command line option */
561 sme_me_mask = me_mask;
562 sev_enabled = true;
563 return;
564 }
565
566 /*
567 * Fixups have not been applied to phys_base yet and we're running
568 * identity mapped, so we must obtain the address to the SME command
569 * line argument data using rip-relative addressing.
570 */
571 asm ("lea sme_cmdline_arg(%%rip), %0"
572 : "=r" (cmdline_arg)
573 : "p" (sme_cmdline_arg));
574 asm ("lea sme_cmdline_on(%%rip), %0"
575 : "=r" (cmdline_on)
576 : "p" (sme_cmdline_on));
577 asm ("lea sme_cmdline_off(%%rip), %0"
578 : "=r" (cmdline_off)
579 : "p" (sme_cmdline_off));
580
581 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
582 active_by_default = true;
583 else
584 active_by_default = false;
585
586 cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
587 ((u64)bp->ext_cmd_line_ptr << 32));
588
589 cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
590
591 if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
592 sme_me_mask = me_mask;
593 else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
594 sme_me_mask = 0;
595 else
596 sme_me_mask = active_by_default ? me_mask : 0;
597}