blob: 210a4d92782833d375da305f31eca47749bc8db4 [file] [log] [blame]
Benoit Jacob2fdd0672007-11-28 15:34:40 +00001// This file is part of Eigen, a lightweight C++ template library
Benoit Jacob6347b1d2009-05-22 20:25:33 +02002// for linear algebra.
Benoit Jacob2fdd0672007-11-28 15:34:40 +00003//
Benoit Jacob00f89a82008-11-24 13:40:43 +00004// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
Benoit Jacob2fdd0672007-11-28 15:34:40 +00005//
Benoit Jacob69124cf2012-07-13 14:42:47 -04006// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
Gael Guennebaud239ada92009-08-15 22:19:29 +02009
Benoit Jacob2fdd0672007-11-28 15:34:40 +000010#include "main.h"
11
Gael Guennebauda0fb8852013-02-14 21:33:42 +010012template<bool IsInteger> struct adjoint_specific;
13
14template<> struct adjoint_specific<true> {
15 template<typename Vec, typename Mat, typename Scalar>
16 static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
Gael Guennebaud62670c82013-06-10 23:40:56 +020017 VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0));
Gael Guennebauda0fb8852013-02-14 21:33:42 +010018 VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), 0));
19
20 // check compatibility of dot and adjoint
21 VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0));
22 }
23};
24
25template<> struct adjoint_specific<false> {
26 template<typename Vec, typename Mat, typename Scalar>
27 static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
28 typedef typename NumTraits<Scalar>::Real RealScalar;
Gael Guennebaudd02e3292013-07-15 21:21:14 +020029 using std::abs;
Gael Guennebauda0fb8852013-02-14 21:33:42 +010030
31 RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm());
Gael Guennebaud62670c82013-06-10 23:40:56 +020032 VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref));
Gael Guennebauda0fb8852013-02-14 21:33:42 +010033 VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), ref));
34
35 VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm());
36 // check normalized() and normalize()
37 VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
38 v3 = v1;
39 v3.normalize();
40 VERIFY_IS_APPROX(v1, v1.norm() * v3);
41 VERIFY_IS_APPROX(v3, v1.normalized());
42 VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
Gael Guennebaudee37eb42016-01-21 20:43:42 +010043
44 // check null inputs
45 VERIFY_IS_APPROX((v1*0).normalized(), (v1*0));
Gael Guennebaud3ba8a3a2016-01-30 22:14:04 +010046#if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE)
Gael Guennebaudee37eb42016-01-21 20:43:42 +010047 RealScalar very_small = (std::numeric_limits<RealScalar>::min)();
Erik Schultheisd271a7d2022-01-26 18:16:19 +000048 VERIFY( numext::is_exactly_zero((v1*very_small).norm()) );
Gael Guennebaudee37eb42016-01-21 20:43:42 +010049 VERIFY_IS_APPROX((v1*very_small).normalized(), (v1*very_small));
50 v3 = v1*very_small;
51 v3.normalize();
52 VERIFY_IS_APPROX(v3, (v1*very_small));
Gael Guennebaud3ba8a3a2016-01-30 22:14:04 +010053#endif
Gael Guennebauda0fb8852013-02-14 21:33:42 +010054
55 // check compatibility of dot and adjoint
56 ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm()));
Gael Guennebaudd02e3292013-07-15 21:21:14 +020057 VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>()));
Gael Guennebauda0fb8852013-02-14 21:33:42 +010058
59 // check that Random().normalized() works: tricky as the random xpr must be evaluated by
60 // normalized() in order to produce a consistent result.
61 VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1));
62 }
63};
64
Antonio Sánchez32348092022-05-23 14:46:16 +000065template<typename MatrixType, typename Scalar = typename MatrixType::Scalar>
66MatrixType RandomMatrix(int rows, int cols, Scalar min, Scalar max) {
67 MatrixType M = MatrixType(rows, cols);
68 for (int i=0; i<rows; ++i) {
69 for (int j=0; j<cols; ++j) {
70 M(i, j) = Eigen::internal::random<Scalar>(min, max);
71 }
72 }
73 return M;
74}
75
Benoit Jacob2fdd0672007-11-28 15:34:40 +000076template<typename MatrixType> void adjoint(const MatrixType& m)
77{
78 /* this test covers the following files:
79 Transpose.h Conjugate.h Dot.h
80 */
Gael Guennebauda76fbbf2012-11-06 15:25:50 +010081 using std::abs;
Benoit Jacob2fdd0672007-11-28 15:34:40 +000082 typedef typename MatrixType::Scalar Scalar;
Gael Guennebaud2120fed2008-08-23 15:14:20 +000083 typedef typename NumTraits<Scalar>::Real RealScalar;
Benoit Jacob2ee68a02008-03-12 17:17:36 +000084 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
Gael Guennebaud2120fed2008-08-23 15:14:20 +000085 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
Gael Guennebaudc6eb84a2015-01-26 17:09:01 +010086 const Index PacketSize = internal::packet_traits<Scalar>::size;
Hauke Heibelf1679c72010-06-20 17:37:56 +020087
88 Index rows = m.rows();
89 Index cols = m.cols();
Gael Guennebaud8e0d5482008-03-05 13:18:19 +000090
Antonio Sánchez32348092022-05-23 14:46:16 +000091 // Avoid integer overflow by limiting input values.
92 RealScalar rmin = static_cast<RealScalar>(NumTraits<Scalar>::IsInteger ? NumTraits<Scalar>::IsSigned ? -100 : 0 : -1);
93 RealScalar rmax = static_cast<RealScalar>(NumTraits<Scalar>::IsInteger ? 100 : 1);
94
95 MatrixType m1 = RandomMatrix<MatrixType>(rows, cols, rmin, rmax),
96 m2 = RandomMatrix<MatrixType>(rows, cols, rmin, rmax),
Benoit Jacob2fdd0672007-11-28 15:34:40 +000097 m3(rows, cols),
Antonio Sánchez32348092022-05-23 14:46:16 +000098 square = RandomMatrix<SquareMatrixType>(rows, rows, rmin, rmax);
99 VectorType v1 = RandomMatrix<VectorType>(rows, 1, rmin, rmax),
100 v2 = RandomMatrix<VectorType>(rows, 1, rmin, rmax),
101 v3 = RandomMatrix<VectorType>(rows, 1, rmin, rmax),
Gael Guennebaudc10f0692008-07-21 00:34:46 +0000102 vzero = VectorType::Zero(rows);
Benoit Jacob2fdd0672007-11-28 15:34:40 +0000103
Antonio Sánchez32348092022-05-23 14:46:16 +0000104 Scalar s1 = internal::random<Scalar>(rmin, rmax),
105 s2 = internal::random<Scalar>(rmin, rmax);
Gael Guennebaud8e0d5482008-03-05 13:18:19 +0000106
Benoit Jacob2fdd0672007-11-28 15:34:40 +0000107 // check basic compatibility of adjoint, transpose, conjugate
Benoit Jacob346c00f2007-12-03 10:23:08 +0000108 VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1);
109 VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1);
Gael Guennebaud8e0d5482008-03-05 13:18:19 +0000110
Benoit Jacob2fdd0672007-11-28 15:34:40 +0000111 // check multiplicative behavior
Benoit Jacob346c00f2007-12-03 10:23:08 +0000112 VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1);
Gael Guennebaud62670c82013-06-10 23:40:56 +0200113 VERIFY_IS_APPROX((s1 * m1).adjoint(), numext::conj(s1) * m1.adjoint());
Gael Guennebaud8e0d5482008-03-05 13:18:19 +0000114
Gael Guennebauda0fb8852013-02-14 21:33:42 +0100115 // check basic properties of dot, squaredNorm
Gael Guennebaud62670c82013-06-10 23:40:56 +0200116 VERIFY_IS_APPROX(numext::conj(v1.dot(v2)), v2.dot(v1));
117 VERIFY_IS_APPROX(numext::real(v1.dot(v1)), v1.squaredNorm());
Gael Guennebauda0fb8852013-02-14 21:33:42 +0100118
119 adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2);
120
Gael Guennebauda76fbbf2012-11-06 15:25:50 +0100121 VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast<RealScalar>(1));
Benoit Jacobd2673d82011-06-15 00:30:46 -0400122
Benoit Jacobfc7b2b52007-12-12 17:48:20 +0000123 // like in testBasicStuff, test operator() to check const-qualification
Benoit Jacob47160402010-10-25 10:15:22 -0400124 Index r = internal::random<Index>(0, rows-1),
125 c = internal::random<Index>(0, cols-1);
Gael Guennebaud62670c82013-06-10 23:40:56 +0200126 VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c)));
127 VERIFY_IS_APPROX(m1.adjoint()(c,r), numext::conj(m1(r,c)));
Gael Guennebaud8e0d5482008-03-05 13:18:19 +0000128
Gael Guennebaudebe14aa2008-10-29 15:24:08 +0000129 // check inplace transpose
130 m3 = m1;
131 m3.transposeInPlace();
132 VERIFY_IS_APPROX(m3,m1.transpose());
133 m3.transposeInPlace();
134 VERIFY_IS_APPROX(m3,m1);
Gael Guennebaudc6eb84a2015-01-26 17:09:01 +0100135
136 if(PacketSize<m3.rows() && PacketSize<m3.cols())
137 {
138 m3 = m1;
139 Index i = internal::random<Index>(0,m3.rows()-PacketSize);
140 Index j = internal::random<Index>(0,m3.cols()-PacketSize);
141 m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace();
142 VERIFY_IS_APPROX( (m3.template block<PacketSize,PacketSize>(i,j)), (m1.template block<PacketSize,PacketSize>(i,j).transpose()) );
143 m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace();
144 VERIFY_IS_APPROX(m3,m1);
145 }
Benoit Jacobbf596d02009-03-31 13:55:40 +0000146
147 // check inplace adjoint
148 m3 = m1;
149 m3.adjointInPlace();
150 VERIFY_IS_APPROX(m3,m1.adjoint());
151 m3.transposeInPlace();
152 VERIFY_IS_APPROX(m3,m1.conjugate());
153
Gael Guennebaud0bfb78c2011-01-27 09:59:19 +0100154 // check mixed dot product
155 typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
Antonio Sánchez32348092022-05-23 14:46:16 +0000156 RealVectorType rv1 = RandomMatrix<RealVectorType>(rows, 1, rmin, rmax);
157
Gael Guennebaud0bfb78c2011-01-27 09:59:19 +0100158 VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
159 VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
Gael Guennebaud7f321092019-01-17 11:33:43 +0100160
161 VERIFY( is_same_type(m1,m1.template conjugateIf<false>()) );
162 VERIFY( is_same_type(m1.conjugate(),m1.template conjugateIf<true>()) );
Benoit Jacob2fdd0672007-11-28 15:34:40 +0000163}
164
Gael Guennebauddff3a922018-07-17 15:52:58 +0200165template<int>
166void adjoint_extra()
167{
168 MatrixXcf a(10,10), b(10,10);
169 VERIFY_RAISES_ASSERT(a = a.transpose());
170 VERIFY_RAISES_ASSERT(a = a.transpose() + b);
171 VERIFY_RAISES_ASSERT(a = b + a.transpose());
172 VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
173 VERIFY_RAISES_ASSERT(a = a.adjoint());
174 VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
175 VERIFY_RAISES_ASSERT(a = b + a.adjoint());
176
177 // no assertion should be triggered for these cases:
178 a.transpose() = a.transpose();
179 a.transpose() += a.transpose();
180 a.transpose() += a.transpose() + b;
181 a.transpose() = a.adjoint();
182 a.transpose() += a.adjoint();
183 a.transpose() += a.adjoint() + b;
184
185 // regression tests for check_for_aliasing
186 MatrixXd c(10,10);
187 c = 1.0 * MatrixXd::Ones(10,10) + c;
188 c = MatrixXd::Ones(10,10) * 1.0 + c;
189 c = c + MatrixXd::Ones(10,10) .cwiseProduct( MatrixXd::Zero(10,10) );
190 c = MatrixXd::Ones(10,10) * MatrixXd::Zero(10,10);
Gael Guennebaud502f7172019-01-16 14:33:45 +0100191
192 // regression for bug 1646
193 for (int j = 0; j < 10; ++j) {
194 c.col(j).head(j) = c.row(j).head(j);
195 }
196
Gael Guennebaudc8e40ed2019-01-16 16:27:00 +0100197 for (int j = 0; j < 10; ++j) {
198 c.col(j) = c.row(j);
199 }
200
Gael Guennebaud502f7172019-01-16 14:33:45 +0100201 a.conservativeResize(1,1);
202 a = a.transpose();
203
204 a.conservativeResize(0,0);
205 a = a.transpose();
Gael Guennebauddff3a922018-07-17 15:52:58 +0200206}
207
Gael Guennebaud82f0ce22018-07-17 14:46:15 +0200208EIGEN_DECLARE_TEST(adjoint)
Benoit Jacob2fdd0672007-11-28 15:34:40 +0000209{
Gael Guennebaud7a9519a2009-07-14 23:00:53 +0200210 for(int i = 0; i < g_repeat; i++) {
Benoit Jacob2840ac72009-10-28 18:19:29 -0400211 CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
212 CALL_SUBTEST_2( adjoint(Matrix3d()) );
213 CALL_SUBTEST_3( adjoint(Matrix4f()) );
Gael Guennebaudc6eb84a2015-01-26 17:09:01 +0100214
Gael Guennebauda8f66fe2011-07-12 14:41:00 +0200215 CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
216 CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
217 CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
Gael Guennebaudc6eb84a2015-01-26 17:09:01 +0100218
219 // Complement for 128 bits vectorization:
220 CALL_SUBTEST_8( adjoint(Matrix2d()) );
221 CALL_SUBTEST_9( adjoint(Matrix<int,4,4>()) );
222
223 // 256 bits vectorization:
224 CALL_SUBTEST_10( adjoint(Matrix<float,8,8>()) );
225 CALL_SUBTEST_11( adjoint(Matrix<double,4,4>()) );
226 CALL_SUBTEST_12( adjoint(Matrix<int,8,8>()) );
Gael Guennebaudf5d23172009-07-13 21:14:47 +0200227 }
Gael Guennebauda8f66fe2011-07-12 14:41:00 +0200228 // test a large static matrix only once
Benoit Jacob2840ac72009-10-28 18:19:29 -0400229 CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
Gael Guennebaudb56bb442009-09-07 12:46:16 +0200230
Gael Guennebauddff3a922018-07-17 15:52:58 +0200231 CALL_SUBTEST_13( adjoint_extra<0>() );
Benoit Jacob2fdd0672007-11-28 15:34:40 +0000232}
Benoit Jacobe05f2912007-12-02 18:32:59 +0000233