blob: 31244000d0516e03772c448cb0b12ab5fb7e22b3 [file] [log] [blame]
Gael Guennebaud86ccd992008-11-05 13:47:55 +00001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra. Eigen itself is part of the KDE project.
3//
4// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
5//
6// Eigen is free software; you can redistribute it and/or
7// modify it under the terms of the GNU Lesser General Public
8// License as published by the Free Software Foundation; either
9// version 3 of the License, or (at your option) any later version.
10//
11// Alternatively, you can redistribute it and/or
12// modify it under the terms of the GNU General Public License as
13// published by the Free Software Foundation; either version 2 of
14// the License, or (at your option) any later version.
15//
16// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
17// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
18// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
19// GNU General Public License for more details.
20//
21// You should have received a copy of the GNU Lesser General Public
22// License and a copy of the GNU General Public License along with
23// Eigen. If not, see <http://www.gnu.org/licenses/>.
24
25#include "sparse.h"
26
27template<typename SetterType,typename DenseType, typename SparseType>
28bool test_random_setter(SparseType& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords)
29{
30 {
31 sm.setZero();
32 SetterType w(sm);
33 std::vector<Vector2i> remaining = nonzeroCoords;
34 while(!remaining.empty())
35 {
36 int i = ei_random<int>(0,remaining.size()-1);
37 w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y());
38 remaining[i] = remaining.back();
39 remaining.pop_back();
40 }
41 }
42 return sm.isApprox(ref);
43}
44
45template<typename Scalar> void sparse_basic(int rows, int cols)
46{
47 double density = std::max(8./(rows*cols), 0.01);
48 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
49 typedef Matrix<Scalar,Dynamic,1> DenseVector;
50 Scalar eps = 1e-6;
51
52 SparseMatrix<Scalar> m(rows, cols);
53 DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
54 DenseVector vec1 = DenseVector::Random(rows);
Gael Guennebaud2d534662009-01-14 21:27:54 +000055 Scalar s1 = ei_random<Scalar>();
Gael Guennebaud86ccd992008-11-05 13:47:55 +000056
57 std::vector<Vector2i> zeroCoords;
58 std::vector<Vector2i> nonzeroCoords;
59 initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
60
61 if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
62 return;
63
64 // test coeff and coeffRef
65 for (int i=0; i<(int)zeroCoords.size(); ++i)
66 {
67 VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
68 VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
69 }
70 VERIFY_IS_APPROX(m, refMat);
71
72 m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
73 refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
74
75 VERIFY_IS_APPROX(m, refMat);
Gael Guennebaudc4c70662009-01-14 14:24:10 +000076 /*
Gael Guennebaud86ccd992008-11-05 13:47:55 +000077 // test InnerIterators and Block expressions
78 for (int t=0; t<10; ++t)
79 {
80 int j = ei_random<int>(0,cols-1);
81 int i = ei_random<int>(0,rows-1);
82 int w = ei_random<int>(1,cols-j-1);
83 int h = ei_random<int>(1,rows-i-1);
84
Gael Guennebaudc4c70662009-01-14 14:24:10 +000085// VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
Gael Guennebaud86ccd992008-11-05 13:47:55 +000086 for(int c=0; c<w; c++)
87 {
88 VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
89 for(int r=0; r<h; r++)
90 {
Gael Guennebaudc4c70662009-01-14 14:24:10 +000091// VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
Gael Guennebaud86ccd992008-11-05 13:47:55 +000092 }
93 }
Gael Guennebaudc4c70662009-01-14 14:24:10 +000094// for(int r=0; r<h; r++)
95// {
96// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
97// for(int c=0; c<w; c++)
98// {
99// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
100// }
101// }
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000102 }
103
104 for(int c=0; c<cols; c++)
105 {
106 VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
107 VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
108 }
109
110 for(int r=0; r<rows; r++)
111 {
112 VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
113 VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
114 }
115 */
116
117 // test SparseSetters
118 // coherent setter
119 // TODO extend the MatrixSetter
120// {
121// m.setZero();
122// VERIFY_IS_NOT_APPROX(m, refMat);
123// SparseSetter<SparseMatrix<Scalar>, FullyCoherentAccessPattern> w(m);
124// for (int i=0; i<nonzeroCoords.size(); ++i)
125// {
126// w->coeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y());
127// }
128// }
129// VERIFY_IS_APPROX(m, refMat);
130
131 // random setter
132// {
133// m.setZero();
134// VERIFY_IS_NOT_APPROX(m, refMat);
135// SparseSetter<SparseMatrix<Scalar>, RandomAccessPattern> w(m);
136// std::vector<Vector2i> remaining = nonzeroCoords;
137// while(!remaining.empty())
138// {
139// int i = ei_random<int>(0,remaining.size()-1);
140// w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y());
141// remaining[i] = remaining.back();
142// remaining.pop_back();
143// }
144// }
145// VERIFY_IS_APPROX(m, refMat);
146
147 VERIFY(( test_random_setter<RandomSetter<SparseMatrix<Scalar>, StdMapTraits> >(m,refMat,nonzeroCoords) ));
148 #ifdef _HASH_MAP
149 VERIFY(( test_random_setter<RandomSetter<SparseMatrix<Scalar>, GnuHashMapTraits> >(m,refMat,nonzeroCoords) ));
150 #endif
151 #ifdef _DENSE_HASH_MAP_H_
152 VERIFY(( test_random_setter<RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) ));
153 #endif
154 #ifdef _SPARSE_HASH_MAP_H_
155 VERIFY(( test_random_setter<RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) ));
156 #endif
Gael Guennebaud5015e482008-12-11 18:26:24 +0000157
158 // test fillrand
159 {
160 DenseMatrix m1(rows,cols);
161 m1.setZero();
162 SparseMatrix<Scalar> m2(rows,cols);
163 m2.startFill();
164 for (int j=0; j<cols; ++j)
165 {
166 for (int k=0; k<rows/2; ++k)
167 {
168 int i = ei_random<int>(0,rows-1);
169 if (m1.coeff(i,j)==Scalar(0))
170 m2.fillrand(i,j) = m1(i,j) = ei_random<Scalar>();
171 }
172 }
173 m2.endFill();
174 std::cerr << m1 << "\n\n" << m2 << "\n";
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000175 VERIFY_IS_APPROX(m2,m1);
Gael Guennebaud5015e482008-12-11 18:26:24 +0000176 }
Gael Guennebaud9a4b7992009-01-15 14:16:41 +0000177
Gael Guennebaud87241082009-01-15 13:30:50 +0000178 // test RandomSetter
179 {
180 SparseMatrix<Scalar> m1(rows,cols), m2(rows,cols);
181 DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
182 initSparse<Scalar>(density, refM1, m1);
183 {
184 Eigen::RandomSetter<SparseMatrix<Scalar> > setter(m2);
185 for (int j=0; j<m1.outerSize(); ++j)
186 for (typename SparseMatrix<Scalar>::InnerIterator i(m1,j); i; ++i)
187 setter(i.index(), j) = i.value();
188 }
189 VERIFY_IS_APPROX(m1, m2);
190 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000191// std::cerr << m.transpose() << "\n\n" << refMat.transpose() << "\n\n";
192// VERIFY_IS_APPROX(m, refMat);
193
Gael Guennebaud2d534662009-01-14 21:27:54 +0000194 // test basic computations
195 {
196 DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
197 DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
198 DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
199 DenseMatrix refM4 = DenseMatrix::Zero(rows, rows);
200 SparseMatrix<Scalar> m1(rows, rows);
201 SparseMatrix<Scalar> m2(rows, rows);
202 SparseMatrix<Scalar> m3(rows, rows);
203 SparseMatrix<Scalar> m4(rows, rows);
204 initSparse<Scalar>(density, refM1, m1);
205 initSparse<Scalar>(density, refM2, m2);
206 initSparse<Scalar>(density, refM3, m3);
207 initSparse<Scalar>(density, refM4, m4);
208
209 VERIFY_IS_APPROX(m1+m2, refM1+refM2);
210 VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
211 VERIFY_IS_APPROX(m3.cwise()*(m1+m2), refM3.cwise()*(refM1+refM2));
212 VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
213
214 VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
215 VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
216
217 refM4.setRandom();
218 // sparse cwise* dense
219 VERIFY_IS_APPROX(m3.cwise()*refM4, refM3.cwise()*refM4);
220// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
221 }
222
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000223 // test innerVector()
224 {
225 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
226 SparseMatrix<Scalar> m2(rows, rows);
227 initSparse<Scalar>(density, refMat2, m2);
228 int j0 = ei_random(0,rows-1);
229 int j1 = ei_random(0,rows-1);
Gael Guennebaud2d534662009-01-14 21:27:54 +0000230 VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0));
231 VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1));
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000232 }
233
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000234 // test transpose
235 {
236 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
237 SparseMatrix<Scalar> m2(rows, rows);
238 initSparse<Scalar>(density, refMat2, m2);
239 VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
240 VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
241 }
242
243 // test matrix product
244 {
245 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
246 DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows);
247 DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows);
Gael Guennebaud0b606dc2009-01-14 17:41:55 +0000248 DenseMatrix dm4 = DenseMatrix::Zero(rows, rows);
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000249 SparseMatrix<Scalar> m2(rows, rows);
250 SparseMatrix<Scalar> m3(rows, rows);
251 SparseMatrix<Scalar> m4(rows, rows);
252 initSparse<Scalar>(density, refMat2, m2);
253 initSparse<Scalar>(density, refMat3, m3);
254 initSparse<Scalar>(density, refMat4, m4);
255 VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3);
256 VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
257 VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
258 VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
Gael Guennebaud2d534662009-01-14 21:27:54 +0000259
Gael Guennebaud0b606dc2009-01-14 17:41:55 +0000260 // sparse * dense
261 VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
262 VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose());
263 VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3, refMat4=refMat2.transpose()*refMat3);
264 VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
Gael Guennebaud2d534662009-01-14 21:27:54 +0000265
Gael Guennebaud0b606dc2009-01-14 17:41:55 +0000266 // dense * sparse
267 VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3);
268 VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
269 VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
270 VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000271 }
Gael Guennebaudccdcebc2009-01-15 18:52:14 +0000272
273 // test self adjoint products
274 {
275 DenseMatrix b = DenseMatrix::Random(rows, rows);
276 DenseMatrix x = DenseMatrix::Random(rows, rows);
277 DenseMatrix refX = DenseMatrix::Random(rows, rows);
278 DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
279 DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
280 DenseMatrix refS = DenseMatrix::Zero(rows, rows);
281 SparseMatrix<Scalar> mUp(rows, rows);
282 SparseMatrix<Scalar> mLo(rows, rows);
283 SparseMatrix<Scalar> mS(rows, rows);
284 do {
285 initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
286 } while (refUp.isZero());
287 refLo = refUp.transpose().conjugate();
288 mLo = mUp.transpose().conjugate();
289 refS = refUp + refLo;
290 refS.diagonal() *= 0.5;
291 mS = mUp + mLo;
292 for (int k=0; k<mS.outerSize(); ++k)
293 for (typename SparseMatrix<Scalar>::InnerIterator it(mS,k); it; ++it)
294 if (it.index() == k)
295 it.valueRef() *= 0.5;
296
297 VERIFY_IS_APPROX(refS.adjoint(), refS);
298 VERIFY_IS_APPROX(mS.transpose().conjugate(), mS);
299 VERIFY_IS_APPROX(mS, refS);
300 VERIFY_IS_APPROX(x=mS*b, refX=refS*b);
301 VERIFY_IS_APPROX(x=mUp.template marked<UpperTriangular|SelfAdjoint>()*b, refX=refS*b);
302 VERIFY_IS_APPROX(x=mLo.template marked<LowerTriangular|SelfAdjoint>()*b, refX=refS*b);
303 VERIFY_IS_APPROX(x=mS.template marked<SelfAdjoint>()*b, refX=refS*b);
304 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000305}
306
307void test_sparse_basic()
308{
309 for(int i = 0; i < g_repeat; i++) {
310 CALL_SUBTEST( sparse_basic<double>(8, 8) );
311 CALL_SUBTEST( sparse_basic<std::complex<double> >(16, 16) );
312 CALL_SUBTEST( sparse_basic<double>(33, 33) );
313 }
314}