blob: 121cc05b1795c317692a4336ea0116ee926bc0ba [file] [log] [blame]
Gael Guennebaud86ccd992008-11-05 13:47:55 +00001// This file is part of Eigen, a lightweight C++ template library
Benoit Jacob6347b1d2009-05-22 20:25:33 +02002// for linear algebra.
Gael Guennebaud86ccd992008-11-05 13:47:55 +00003//
Gael Guennebaud22c76092011-03-22 11:58:22 +01004// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
Gael Guennebaud86ccd992008-11-05 13:47:55 +00005// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
6//
Benoit Jacob69124cf2012-07-13 14:42:47 -04007// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
Gael Guennebaud86ccd992008-11-05 13:47:55 +000010
11#include "sparse.h"
12
Gael Guennebaud178858f2009-01-19 15:20:45 +000013template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
14{
Hauke Heibelf1679c72010-06-20 17:37:56 +020015 typedef typename SparseMatrixType::Index Index;
16
17 const Index rows = ref.rows();
18 const Index cols = ref.cols();
Gael Guennebaud178858f2009-01-19 15:20:45 +000019 typedef typename SparseMatrixType::Scalar Scalar;
20 enum { Flags = SparseMatrixType::Flags };
Gael Guennebaud9f795582009-12-16 19:18:40 +010021
Gael Guennebaud42e25782011-08-19 14:18:05 +020022 double density = (std::max)(8./(rows*cols), 0.01);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000023 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
24 typedef Matrix<Scalar,Dynamic,1> DenseVector;
25 Scalar eps = 1e-6;
26
Gael Guennebaud178858f2009-01-19 15:20:45 +000027 SparseMatrixType m(rows, cols);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000028 DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
29 DenseVector vec1 = DenseVector::Random(rows);
Benoit Jacob47160402010-10-25 10:15:22 -040030 Scalar s1 = internal::random<Scalar>();
Gael Guennebaud86ccd992008-11-05 13:47:55 +000031
32 std::vector<Vector2i> zeroCoords;
33 std::vector<Vector2i> nonzeroCoords;
34 initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
Gael Guennebaud9f795582009-12-16 19:18:40 +010035
Gael Guennebaud86ccd992008-11-05 13:47:55 +000036 if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
37 return;
38
39 // test coeff and coeffRef
40 for (int i=0; i<(int)zeroCoords.size(); ++i)
41 {
42 VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
Hauke Heibel7bc8e3a2010-10-25 22:13:49 +020043 if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
Gael Guennebaud178858f2009-01-19 15:20:45 +000044 VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
Gael Guennebaud86ccd992008-11-05 13:47:55 +000045 }
46 VERIFY_IS_APPROX(m, refMat);
47
48 m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
49 refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
50
51 VERIFY_IS_APPROX(m, refMat);
Gael Guennebaudc4c70662009-01-14 14:24:10 +000052 /*
Gael Guennebaud86ccd992008-11-05 13:47:55 +000053 // test InnerIterators and Block expressions
54 for (int t=0; t<10; ++t)
55 {
Benoit Jacob47160402010-10-25 10:15:22 -040056 int j = internal::random<int>(0,cols-1);
57 int i = internal::random<int>(0,rows-1);
58 int w = internal::random<int>(1,cols-j-1);
59 int h = internal::random<int>(1,rows-i-1);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000060
Gael Guennebaudc4c70662009-01-14 14:24:10 +000061// VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
Gael Guennebaud86ccd992008-11-05 13:47:55 +000062 for(int c=0; c<w; c++)
63 {
64 VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
65 for(int r=0; r<h; r++)
66 {
Gael Guennebaudc4c70662009-01-14 14:24:10 +000067// VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
Gael Guennebaud86ccd992008-11-05 13:47:55 +000068 }
69 }
Gael Guennebaudc4c70662009-01-14 14:24:10 +000070// for(int r=0; r<h; r++)
71// {
72// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
73// for(int c=0; c<w; c++)
74// {
75// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
76// }
77// }
Gael Guennebaud86ccd992008-11-05 13:47:55 +000078 }
79
80 for(int c=0; c<cols; c++)
81 {
82 VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
83 VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
84 }
85
86 for(int r=0; r<rows; r++)
87 {
88 VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
89 VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
90 }
91 */
92
Gael Guennebaud28293142009-05-04 14:25:12 +000093 // test insert (inner random)
Gael Guennebaud5015e482008-12-11 18:26:24 +000094 {
95 DenseMatrix m1(rows,cols);
96 m1.setZero();
Gael Guennebaud178858f2009-01-19 15:20:45 +000097 SparseMatrixType m2(rows,cols);
Gael Guennebaud4ca89f32011-12-02 19:00:16 +010098 if(internal::random<int>()%2)
99 m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
Gael Guennebaud5015e482008-12-11 18:26:24 +0000100 for (int j=0; j<cols; ++j)
101 {
102 for (int k=0; k<rows/2; ++k)
103 {
Benoit Jacob47160402010-10-25 10:15:22 -0400104 int i = internal::random<int>(0,rows-1);
Gael Guennebaud5015e482008-12-11 18:26:24 +0000105 if (m1.coeff(i,j)==Scalar(0))
Benoit Jacob47160402010-10-25 10:15:22 -0400106 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
Gael Guennebaud5015e482008-12-11 18:26:24 +0000107 }
108 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000109 m2.finalize();
110 VERIFY_IS_APPROX(m2,m1);
111 }
Gael Guennebaud9f795582009-12-16 19:18:40 +0100112
Gael Guennebaud28293142009-05-04 14:25:12 +0000113 // test insert (fully random)
114 {
115 DenseMatrix m1(rows,cols);
116 m1.setZero();
117 SparseMatrixType m2(rows,cols);
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100118 if(internal::random<int>()%2)
119 m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
Gael Guennebaud28293142009-05-04 14:25:12 +0000120 for (int k=0; k<rows*cols; ++k)
121 {
Benoit Jacob47160402010-10-25 10:15:22 -0400122 int i = internal::random<int>(0,rows-1);
123 int j = internal::random<int>(0,cols-1);
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100124 if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
Benoit Jacob47160402010-10-25 10:15:22 -0400125 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100126 else
127 {
128 Scalar v = internal::random<Scalar>();
129 m2.coeffRef(i,j) += v;
130 m1(i,j) += v;
131 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000132 }
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000133 VERIFY_IS_APPROX(m2,m1);
Gael Guennebaud5015e482008-12-11 18:26:24 +0000134 }
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200135
136 // test insert (un-compressed)
137 for(int mode=0;mode<4;++mode)
138 {
139 DenseMatrix m1(rows,cols);
140 m1.setZero();
141 SparseMatrixType m2(rows,cols);
142 VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? m2.innerSize() : std::max<int>(1,m2.innerSize()/8)));
143 m2.reserve(r);
144 for (int k=0; k<rows*cols; ++k)
145 {
146 int i = internal::random<int>(0,rows-1);
147 int j = internal::random<int>(0,cols-1);
148 if (m1.coeff(i,j)==Scalar(0))
149 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
150 if(mode==3)
151 m2.reserve(r);
152 }
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100153 if(internal::random<int>()%2)
154 m2.makeCompressed();
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200155 VERIFY_IS_APPROX(m2,m1);
156 }
Gael Guennebaud9f795582009-12-16 19:18:40 +0100157
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000158 // test innerVector()
159 {
160 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
Gael Guennebaud178858f2009-01-19 15:20:45 +0000161 SparseMatrixType m2(rows, rows);
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000162 initSparse<Scalar>(density, refMat2, m2);
Gael Guennebaud91fe1502011-06-07 11:28:16 +0200163 int j0 = internal::random<int>(0,rows-1);
164 int j1 = internal::random<int>(0,rows-1);
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100165 if(SparseMatrixType::IsRowMajor)
166 VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.row(j0));
167 else
168 VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0));
169
170 if(SparseMatrixType::IsRowMajor)
171 VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.row(j0)+refMat2.row(j1));
172 else
173 VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1));
Gael Guennebaud50d756b2011-12-20 18:10:02 +0100174
175 SparseMatrixType m3(rows,rows);
176 m3.reserve(VectorXi::Constant(rows,rows/2));
177 for(int j=0; j<rows; ++j)
178 for(int k=0; k<j; ++k)
179 m3.insertByOuterInner(j,k) = k+1;
180 for(int j=0; j<rows; ++j)
181 {
Desire NUENTSAb3fff172013-06-11 14:31:31 +0200182 VERIFY(j==internal::real(m3.innerVector(j).nonZeros()));
Gael Guennebaud50d756b2011-12-20 18:10:02 +0100183 if(j>0)
Desire NUENTSAb3fff172013-06-11 14:31:31 +0200184 VERIFY(j==internal::real(m3.innerVector(j).lastCoeff()));
Gael Guennebaud50d756b2011-12-20 18:10:02 +0100185 }
186 m3.makeCompressed();
187 for(int j=0; j<rows; ++j)
188 {
Desire NUENTSAb3fff172013-06-11 14:31:31 +0200189 VERIFY(j==internal::real(m3.innerVector(j).nonZeros()));
Gael Guennebaud50d756b2011-12-20 18:10:02 +0100190 if(j>0)
Desire NUENTSAb3fff172013-06-11 14:31:31 +0200191 VERIFY(j==internal::real(m3.innerVector(j).lastCoeff()));
Gael Guennebaud50d756b2011-12-20 18:10:02 +0100192 }
193
Gael Guennebaud8ce45032009-01-27 22:48:17 +0000194 //m2.innerVector(j0) = 2*m2.innerVector(j1);
195 //refMat2.col(j0) = 2*refMat2.col(j1);
196 //VERIFY_IS_APPROX(m2, refMat2);
197 }
Gael Guennebaud9f795582009-12-16 19:18:40 +0100198
Gael Guennebaud8ce45032009-01-27 22:48:17 +0000199 // test innerVectors()
200 {
201 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
202 SparseMatrixType m2(rows, rows);
203 initSparse<Scalar>(density, refMat2, m2);
Gael Guennebaud7450b232013-04-12 13:20:13 +0200204 if(internal::random<float>(0,1)>0.5) m2.makeCompressed();
205
Gael Guennebaud91fe1502011-06-07 11:28:16 +0200206 int j0 = internal::random<int>(0,rows-2);
207 int j1 = internal::random<int>(0,rows-2);
Gael Guennebaud42e25782011-08-19 14:18:05 +0200208 int n0 = internal::random<int>(1,rows-(std::max)(j0,j1));
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100209 if(SparseMatrixType::IsRowMajor)
210 VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols));
211 else
212 VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
213 if(SparseMatrixType::IsRowMajor)
214 VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
Gael Guennebaud7450b232013-04-12 13:20:13 +0200215 refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0));
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100216 else
217 VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
218 refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
Gael Guennebaud7450b232013-04-12 13:20:13 +0200219
220 VERIFY_IS_APPROX(m2, refMat2);
221
222 m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
223 if(SparseMatrixType::IsRowMajor)
224 refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval();
225 else
226 refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval();
227
228 VERIFY_IS_APPROX(m2, refMat2);
229
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000230 }
Gael Guennebaud4e602832012-11-16 09:02:50 +0100231
232 // test basic computations
233 {
234 DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
235 DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
236 DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
237 DenseMatrix refM4 = DenseMatrix::Zero(rows, rows);
238 SparseMatrixType m1(rows, rows);
239 SparseMatrixType m2(rows, rows);
240 SparseMatrixType m3(rows, rows);
241 SparseMatrixType m4(rows, rows);
242 initSparse<Scalar>(density, refM1, m1);
243 initSparse<Scalar>(density, refM2, m2);
244 initSparse<Scalar>(density, refM3, m3);
245 initSparse<Scalar>(density, refM4, m4);
246
247 VERIFY_IS_APPROX(m1+m2, refM1+refM2);
248 VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
249 VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
250 VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
251
252 VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
253 VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
254
255 VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
256 VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
257
258 if(SparseMatrixType::IsRowMajor)
259 VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
260 else
261 VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0)));
262
263 VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
264 VERIFY_IS_APPROX(m1.real(), refM1.real());
265
266 refM4.setRandom();
267 // sparse cwise* dense
268 VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
269// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
270
271 // test aliasing
272 VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1));
273 VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval()));
274 VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval()));
275 VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1));
276 }
277
278 // test transpose
279 {
280 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
281 SparseMatrixType m2(rows, rows);
282 initSparse<Scalar>(density, refMat2, m2);
283 VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
284 VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
285
286 VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
287 }
288
289
290
291 // test generic blocks
292 {
293 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
294 SparseMatrixType m2(rows, rows);
295 initSparse<Scalar>(density, refMat2, m2);
296 int j0 = internal::random<int>(0,rows-2);
297 int j1 = internal::random<int>(0,rows-2);
298 int n0 = internal::random<int>(1,rows-(std::max)(j0,j1));
299 if(SparseMatrixType::IsRowMajor)
300 VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols));
301 else
302 VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0));
303
304 if(SparseMatrixType::IsRowMajor)
305 VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols),
306 refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols));
307 else
308 VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0),
309 refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
310 }
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000311
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000312 // test prune
313 {
314 SparseMatrixType m2(rows, rows);
315 DenseMatrix refM2(rows, rows);
316 refM2.setZero();
317 int countFalseNonZero = 0;
318 int countTrueNonZero = 0;
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000319 for (int j=0; j<m2.outerSize(); ++j)
Gael Guennebaud28293142009-05-04 14:25:12 +0000320 {
321 m2.startVec(j);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000322 for (int i=0; i<m2.innerSize(); ++i)
323 {
Benoit Jacob47160402010-10-25 10:15:22 -0400324 float x = internal::random<float>(0,1);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000325 if (x<0.1)
326 {
327 // do nothing
328 }
329 else if (x<0.5)
330 {
331 countFalseNonZero++;
Gael Guennebaud8710bd22010-06-02 13:32:13 +0200332 m2.insertBackByOuterInner(j,i) = Scalar(0);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000333 }
334 else
335 {
336 countTrueNonZero++;
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100337 m2.insertBackByOuterInner(j,i) = Scalar(1);
338 if(SparseMatrixType::IsRowMajor)
339 refM2(j,i) = Scalar(1);
340 else
341 refM2(i,j) = Scalar(1);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000342 }
343 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000344 }
345 m2.finalize();
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000346 VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
347 VERIFY_IS_APPROX(m2, refM2);
Hauke Heibeld204ec42010-11-02 14:33:33 +0100348 m2.prune(Scalar(1));
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000349 VERIFY(countTrueNonZero==m2.nonZeros());
350 VERIFY_IS_APPROX(m2, refM2);
351 }
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100352
Gael Guennebaud87138072012-01-28 11:13:59 +0100353 // test setFromTriplets
354 {
355 typedef Triplet<Scalar,Index> TripletType;
356 std::vector<TripletType> triplets;
357 int ntriplets = rows*cols;
358 triplets.reserve(ntriplets);
359 DenseMatrix refMat(rows,cols);
360 refMat.setZero();
361 for(int i=0;i<ntriplets;++i)
362 {
Gael Guennebaud18e3ac02012-01-31 09:14:01 +0100363 int r = internal::random<int>(0,rows-1);
364 int c = internal::random<int>(0,cols-1);
Gael Guennebaud87138072012-01-28 11:13:59 +0100365 Scalar v = internal::random<Scalar>();
Gael Guennebaud18e3ac02012-01-31 09:14:01 +0100366 triplets.push_back(TripletType(r,c,v));
367 refMat(r,c) += v;
Gael Guennebaud87138072012-01-28 11:13:59 +0100368 }
369 SparseMatrixType m(rows,cols);
370 m.setFromTriplets(triplets.begin(), triplets.end());
371 VERIFY_IS_APPROX(m, refMat);
372 }
373
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100374 // test triangularView
375 {
376 DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
377 SparseMatrixType m2(rows, rows), m3(rows, rows);
378 initSparse<Scalar>(density, refMat2, m2);
379 refMat3 = refMat2.template triangularView<Lower>();
380 m3 = m2.template triangularView<Lower>();
381 VERIFY_IS_APPROX(m3, refMat3);
382
383 refMat3 = refMat2.template triangularView<Upper>();
384 m3 = m2.template triangularView<Upper>();
385 VERIFY_IS_APPROX(m3, refMat3);
386
387 refMat3 = refMat2.template triangularView<UnitUpper>();
388 m3 = m2.template triangularView<UnitUpper>();
389 VERIFY_IS_APPROX(m3, refMat3);
390
391 refMat3 = refMat2.template triangularView<UnitLower>();
392 m3 = m2.template triangularView<UnitLower>();
393 VERIFY_IS_APPROX(m3, refMat3);
394 }
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200395
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100396 // test selfadjointView
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100397 if(!SparseMatrixType::IsRowMajor)
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100398 {
399 DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
400 SparseMatrixType m2(rows, rows), m3(rows, rows);
401 initSparse<Scalar>(density, refMat2, m2);
402 refMat3 = refMat2.template selfadjointView<Lower>();
403 m3 = m2.template selfadjointView<Lower>();
404 VERIFY_IS_APPROX(m3, refMat3);
405 }
406
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200407 // test sparseView
408 {
409 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
410 SparseMatrixType m2(rows, rows);
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100411 initSparse<Scalar>(density, refMat2, m2);
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200412 VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
413 }
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100414
415 // test diagonal
416 {
417 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
418 SparseMatrixType m2(rows, rows);
419 initSparse<Scalar>(density, refMat2, m2);
420 VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval());
421 }
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200422
423 // test conservative resize
424 {
425 std::vector< std::pair<int,int> > inc;
426 inc.push_back(std::pair<int,int>(-3,-2));
427 inc.push_back(std::pair<int,int>(0,0));
428 inc.push_back(std::pair<int,int>(3,2));
429 inc.push_back(std::pair<int,int>(3,0));
430 inc.push_back(std::pair<int,int>(0,3));
431
432 for(size_t i = 0; i< inc.size(); i++) {
433 int incRows = inc[i].first;
434 int incCols = inc[i].second;
435 SparseMatrixType m1(rows, cols);
436 DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols);
437 initSparse<Scalar>(density, refMat1, m1);
438
439 m1.conservativeResize(rows+incRows, cols+incCols);
440 refMat1.conservativeResize(rows+incRows, cols+incCols);
441 if (incRows > 0) refMat1.bottomRows(incRows).setZero();
442 if (incCols > 0) refMat1.rightCols(incCols).setZero();
443
444 VERIFY_IS_APPROX(m1, refMat1);
445
446 // Insert new values
447 if (incRows > 0)
448 m1.insert(refMat1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1;
449 if (incCols > 0)
450 m1.insert(0, refMat1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1;
451
452 VERIFY_IS_APPROX(m1, refMat1);
453
454
455 }
456 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000457}
458
459void test_sparse_basic()
460{
461 for(int i = 0; i < g_repeat; i++) {
Gael Guennebaud91fe1502011-06-07 11:28:16 +0200462 int s = Eigen::internal::random<int>(1,50);
Gael Guennebauda1091ca2013-02-15 14:05:37 +0100463 EIGEN_UNUSED_VARIABLE(s);
Gael Guennebaud91fe1502011-06-07 11:28:16 +0200464 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100465 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(s, s)) ));
466 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(s, s)) ));
Gael Guennebaud91fe1502011-06-07 11:28:16 +0200467 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(s, s)) ));
468 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,long int>(s, s)) ));
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100469 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,long int>(s, s)) ));
Gael Guennebaud47e89022013-06-10 10:34:03 +0200470
471 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,short int>(s, s)) ));
472 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,short int>(s, s)) ));
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000473 }
474}