blob: e6c41fd70430ff86985e232759cdfa98365170c7 [file] [log] [blame]
Benoit Jacob76152e92010-06-29 10:02:33 -04001namespace Eigen {
2
Gael Guennebaud93ee82b2013-01-05 16:37:11 +01003/** \eigenManualPage TutorialLinearAlgebra Linear algebra and decompositions
Benoit Jacob76152e92010-06-29 10:02:33 -04004
Gael Guennebaud091a49c2013-01-06 23:48:59 +01005This page explains how to solve linear systems, compute various decompositions such as LU,
6QR, %SVD, eigendecompositions... After reading this page, don't miss our
7\link TopicLinearAlgebraDecompositions catalogue \endlink of dense matrix decompositions.
Benoit Jacob76152e92010-06-29 10:02:33 -04008
Gael Guennebaud93ee82b2013-01-05 16:37:11 +01009\eigenAutoToc
Jitse Niesend0f6b1c2010-07-22 21:52:04 +010010
Benoit Jacob4d4a23c2010-06-30 10:11:55 -040011\section TutorialLinAlgBasicSolve Basic linear solving
Benoit Jacob76152e92010-06-29 10:02:33 -040012
13\b The \b problem: You have a system of equations, that you have written as a single matrix equation
14 \f[ Ax \: = \: b \f]
15Where \a A and \a b are matrices (\a b could be a vector, as a special case). You want to find a solution \a x.
16
17\b The \b solution: You can choose between various decompositions, depending on what your matrix \a A looks like,
18and depending on whether you favor speed or accuracy. However, let's start with an example that works in all cases,
19and is a good compromise:
Gael Guennebaudf66fe262010-10-19 11:40:49 +020020<table class="example">
21<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob76152e92010-06-29 10:02:33 -040022<tr>
23 <td>\include TutorialLinAlgExSolveColPivHouseholderQR.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +020024 <td>\verbinclude TutorialLinAlgExSolveColPivHouseholderQR.out </td>
Benoit Jacob76152e92010-06-29 10:02:33 -040025</tr>
26</table>
27
Benoit Jacob4d4a23c2010-06-30 10:11:55 -040028In this example, the colPivHouseholderQr() method returns an object of class ColPivHouseholderQR. Since here the
29matrix is of type Matrix3f, this line could have been replaced by:
Benoit Jacob76152e92010-06-29 10:02:33 -040030\code
Benoit Jacob4d4a23c2010-06-30 10:11:55 -040031ColPivHouseholderQR<Matrix3f> dec(A);
Benoit Jacob76152e92010-06-29 10:02:33 -040032Vector3f x = dec.solve(b);
33\endcode
34
35Here, ColPivHouseholderQR is a QR decomposition with column pivoting. It's a good compromise for this tutorial, as it
36works for all matrices while being quite fast. Here is a table of some other decompositions that you can choose from,
37depending on your matrix and the trade-off you want to make:
38
Gael Guennebaudf66fe262010-10-19 11:40:49 +020039<table class="manual">
Benoit Jacob76152e92010-06-29 10:02:33 -040040 <tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +020041 <th>Decomposition</th>
42 <th>Method</th>
43 <th>Requirements on the matrix</th>
44 <th>Speed</th>
45 <th>Accuracy</th>
Benoit Jacob76152e92010-06-29 10:02:33 -040046 </tr>
Benoit Jacob76152e92010-06-29 10:02:33 -040047 <tr>
48 <td>PartialPivLU</td>
49 <td>partialPivLu()</td>
50 <td>Invertible</td>
51 <td>++</td>
52 <td>+</td>
53 </tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +020054 <tr class="alt">
Benoit Jacob76152e92010-06-29 10:02:33 -040055 <td>FullPivLU</td>
56 <td>fullPivLu()</td>
57 <td>None</td>
58 <td>-</td>
59 <td>+++</td>
60 </tr>
Benoit Jacob76152e92010-06-29 10:02:33 -040061 <tr>
62 <td>HouseholderQR</td>
63 <td>householderQr()</td>
64 <td>None</td>
65 <td>++</td>
66 <td>+</td>
67 </tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +020068 <tr class="alt">
Benoit Jacob76152e92010-06-29 10:02:33 -040069 <td>ColPivHouseholderQR</td>
70 <td>colPivHouseholderQr()</td>
71 <td>None</td>
72 <td>+</td>
73 <td>++</td>
74 </tr>
Benoit Jacob76152e92010-06-29 10:02:33 -040075 <tr>
76 <td>FullPivHouseholderQR</td>
77 <td>fullPivHouseholderQr()</td>
78 <td>None</td>
79 <td>-</td>
80 <td>+++</td>
81 </tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +020082 <tr class="alt">
Benoit Jacob76152e92010-06-29 10:02:33 -040083 <td>LLT</td>
84 <td>llt()</td>
85 <td>Positive definite</td>
86 <td>+++</td>
87 <td>+</td>
88 </tr>
Benoit Jacob76152e92010-06-29 10:02:33 -040089 <tr>
90 <td>LDLT</td>
91 <td>ldlt()</td>
92 <td>Positive or negative semidefinite</td>
93 <td>+++</td>
94 <td>++</td>
95 </tr>
Benoit Jacob76152e92010-06-29 10:02:33 -040096</table>
97
98All of these decompositions offer a solve() method that works as in the above example.
99
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400100For example, if your matrix is positive definite, the above table says that a very good
101choice is then the LDLT decomposition. Here's an example, also demonstrating that using a general
102matrix (not a vector) as right hand side is possible.
103
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200104<table class="example">
105<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400106<tr>
107 <td>\include TutorialLinAlgExSolveLDLT.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200108 <td>\verbinclude TutorialLinAlgExSolveLDLT.out </td>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400109</tr>
110</table>
111
112For a \ref TopicLinearAlgebraDecompositions "much more complete table" comparing all decompositions supported by Eigen (notice that Eigen
Benoit Jacob76152e92010-06-29 10:02:33 -0400113supports many other decompositions), see our special page on
114\ref TopicLinearAlgebraDecompositions "this topic".
115
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400116\section TutorialLinAlgSolutionExists Checking if a solution really exists
Benoit Jacob76152e92010-06-29 10:02:33 -0400117
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400118Only you know what error margin you want to allow for a solution to be considered valid.
119So Eigen lets you do this computation for yourself, if you want to, as in this example:
120
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200121<table class="example">
122<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400123<tr>
124 <td>\include TutorialLinAlgExComputeSolveError.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200125 <td>\verbinclude TutorialLinAlgExComputeSolveError.out </td>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400126</tr>
127</table>
128
129\section TutorialLinAlgEigensolving Computing eigenvalues and eigenvectors
130
131You need an eigendecomposition here, see available such decompositions on \ref TopicLinearAlgebraDecompositions "this page".
132Make sure to check if your matrix is self-adjoint, as is often the case in these problems. Here's an example using
133SelfAdjointEigenSolver, it could easily be adapted to general matrices using EigenSolver or ComplexEigenSolver.
134
Jitse Niesen45a6bb32011-11-07 17:14:06 +0000135The computation of eigenvalues and eigenvectors does not necessarily converge, but such failure to converge is
136very rare. The call to info() is to check for this possibility.
137
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200138<table class="example">
139<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400140<tr>
141 <td>\include TutorialLinAlgSelfAdjointEigenSolver.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200142 <td>\verbinclude TutorialLinAlgSelfAdjointEigenSolver.out </td>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400143</tr>
144</table>
145
Jitse Niesend0f6b1c2010-07-22 21:52:04 +0100146\section TutorialLinAlgInverse Computing inverse and determinant
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400147
148First of all, make sure that you really want this. While inverse and determinant are fundamental mathematical concepts,
149in \em numerical linear algebra they are not as popular as in pure mathematics. Inverse computations are often
150advantageously replaced by solve() operations, and the determinant is often \em not a good way of checking if a matrix
151is invertible.
152
153However, for \em very \em small matrices, the above is not true, and inverse and determinant can be very useful.
154
155While certain decompositions, such as PartialPivLU and FullPivLU, offer inverse() and determinant() methods, you can also
156call inverse() and determinant() directly on a matrix. If your matrix is of a very small fixed size (at most 4x4) this
157allows Eigen to avoid performing a LU decomposition, and instead use formulas that are more efficient on such small matrices.
158
159Here is an example:
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200160<table class="example">
161<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400162<tr>
163 <td>\include TutorialLinAlgInverseDeterminant.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200164 <td>\verbinclude TutorialLinAlgInverseDeterminant.out </td>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400165</tr>
166</table>
167
168\section TutorialLinAlgLeastsquares Least squares solving
169
Jitse Niesenaa0db352014-01-18 01:16:17 +0000170The most accurate method to do least squares solving is with a SVD decomposition. Eigen provides one
171as the JacobiSVD class, and its solve() is doing least-squares solving.
Benoit Jacob26129222010-10-15 09:44:43 -0400172
173Here is an example:
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200174<table class="example">
175<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob26129222010-10-15 09:44:43 -0400176<tr>
177 <td>\include TutorialLinAlgSVDSolve.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200178 <td>\verbinclude TutorialLinAlgSVDSolve.out </td>
Benoit Jacob26129222010-10-15 09:44:43 -0400179</tr>
180</table>
181
Jitse Niesenaa0db352014-01-18 01:16:17 +0000182Another methods, potentially faster but less reliable, are to use a Cholesky decomposition of the
183normal matrix or a QR decomposition. Our page on \link LeastSquares least squares solving \endlink
184has more details.
185
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400186
187\section TutorialLinAlgSeparateComputation Separating the computation from the construction
188
189In the above examples, the decomposition was computed at the same time that the decomposition object was constructed.
190There are however situations where you might want to separate these two things, for example if you don't know,
191at the time of the construction, the matrix that you will want to decompose; or if you want to reuse an existing
192decomposition object.
193
194What makes this possible is that:
195\li all decompositions have a default constructor,
196\li all decompositions have a compute(matrix) method that does the computation, and that may be called again
197 on an already-computed decomposition, reinitializing it.
198
199For example:
200
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200201<table class="example">
202<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400203<tr>
204 <td>\include TutorialLinAlgComputeTwice.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200205 <td>\verbinclude TutorialLinAlgComputeTwice.out </td>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400206</tr>
207</table>
208
209Finally, you can tell the decomposition constructor to preallocate storage for decomposing matrices of a given size,
210so that when you subsequently decompose such matrices, no dynamic memory allocation is performed (of course, if you
211are using fixed-size matrices, no dynamic memory allocation happens at all). This is done by just
212passing the size to the decomposition constructor, as in this example:
213\code
214HouseholderQR<MatrixXf> qr(50,50);
215MatrixXf A = MatrixXf::Random(50,50);
216qr.compute(A); // no dynamic memory allocation
217\endcode
218
219\section TutorialLinAlgRankRevealing Rank-revealing decompositions
220
221Certain decompositions are rank-revealing, i.e. are able to compute the rank of a matrix. These are typically
222also the decompositions that behave best in the face of a non-full-rank matrix (which in the square case means a
223singular matrix). On \ref TopicLinearAlgebraDecompositions "this table" you can see for all our decompositions
224whether they are rank-revealing or not.
225
226Rank-revealing decompositions offer at least a rank() method. They can also offer convenience methods such as isInvertible(),
227and some are also providing methods to compute the kernel (null-space) and image (column-space) of the matrix, as is the
228case with FullPivLU:
229
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200230<table class="example">
231<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400232<tr>
233 <td>\include TutorialLinAlgRankRevealing.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200234 <td>\verbinclude TutorialLinAlgRankRevealing.out </td>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400235</tr>
236</table>
237
238Of course, any rank computation depends on the choice of an arbitrary threshold, since practically no
239floating-point matrix is \em exactly rank-deficient. Eigen picks a sensible default threshold, which depends
240on the decomposition but is typically the diagonal size times machine epsilon. While this is the best default we
241could pick, only you know what is the right threshold for your application. You can set this by calling setThreshold()
Benoit Jacob962b30d2010-06-30 19:27:30 -0400242on your decomposition object before calling rank() or any other method that needs to use such a threshold.
243The decomposition itself, i.e. the compute() method, is independent of the threshold. You don't need to recompute the
244decomposition after you've changed the threshold.
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400245
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200246<table class="example">
247<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400248<tr>
249 <td>\include TutorialLinAlgSetThreshold.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200250 <td>\verbinclude TutorialLinAlgSetThreshold.out </td>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400251</tr>
252</table>
253
Benoit Jacob76152e92010-06-29 10:02:33 -0400254*/
255
256}