blob: 5657dee85c1b4ad3d33563b5a6f462bc55e04c44 [file] [log] [blame]
Gael Guennebaud99462972008-08-31 17:30:09 +00001namespace Eigen {
2
Gael Guennebaud41ea92d2010-07-04 10:14:47 +02003/** \page TutorialGeometry Tutorial page 8 - Geometry
Gael Guennebaud99462972008-08-31 17:30:09 +00004 \ingroup Tutorial
5
Jitse Niesen26cfe5a2010-07-09 11:59:29 +01006\li \b Previous: \ref TutorialReductionsVisitorsBroadcasting
Gael Guennebaud41ea92d2010-07-04 10:14:47 +02007\li \b Next: \ref TutorialSparse
Gael Guennebaud99462972008-08-31 17:30:09 +00008
Tim Holy16a2d892011-06-20 22:47:58 -05009In this tutorial, we will briefly introduce the many possibilities offered by the \ref Geometry_Module "geometry module", namely 2D and 3D rotations and projective or affine transformations.
Gael Guennebaud99462972008-08-31 17:30:09 +000010
11\b Table \b of \b contents
12 - \ref TutorialGeoElementaryTransformations
13 - \ref TutorialGeoCommontransformationAPI
14 - \ref TutorialGeoTransform
15 - \ref TutorialGeoEulerAngles
16
Benoit Jacob789ea9d2008-12-22 20:50:47 +000017Eigen's Geometry module provides two different kinds of geometric transformations:
18 - Abstract transformations, such as rotations (represented by \ref AngleAxis "angle and axis" or by a \ref Quaternion "quaternion"), \ref Translation "translations", \ref Scaling "scalings". These transformations are NOT represented as matrices, but you can nevertheless mix them with matrices and vectors in expressions, and convert them to matrices if you wish.
Gael Guennebaud41ea92d2010-07-04 10:14:47 +020019 - Projective or affine transformation matrices: see the Transform class. These are really matrices.
Benoit Jacob789ea9d2008-12-22 20:50:47 +000020
Hauke Heibel85fdcdf2010-08-17 20:03:50 +020021\note If you are working with OpenGL 4x4 matrices then Affine3f and Affine3d are what you want. Since Eigen defaults to column-major storage, you can directly use the Transform::data() method to pass your transformation matrix to OpenGL.
Benoit Jacob789ea9d2008-12-22 20:50:47 +000022
23You can construct a Transform from an abstract transformation, like this:
24\code
25 Transform t(AngleAxis(angle,axis));
26\endcode
27or like this:
28\code
29 Transform t;
30 t = AngleAxis(angle,axis);
31\endcode
32But note that unfortunately, because of how C++ works, you can \b not do this:
33\code
34 Transform t = AngleAxis(angle,axis);
35\endcode
36<span class="note">\b Explanation: In the C++ language, this would require Transform to have a non-explicit conversion constructor from AngleAxis, but we really don't want to allow implicit casting here.
37</span>
38
Gael Guennebaud99462972008-08-31 17:30:09 +000039\section TutorialGeoElementaryTransformations Transformation types
40
Gael Guennebaudf66fe262010-10-19 11:40:49 +020041<table class="manual">
42<tr><th>Transformation type</th><th>Typical initialization code</th></tr>
Gael Guennebaud99462972008-08-31 17:30:09 +000043<tr><td>
Gael Guennebaud6825c8d2008-09-01 06:33:19 +000044\ref Rotation2D "2D rotation" from an angle</td><td>\code
Gael Guennebaud99462972008-08-31 17:30:09 +000045Rotation2D<float> rot2(angle_in_radian);\endcode</td></tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +020046<tr class="alt"><td>
Gael Guennebaud6825c8d2008-09-01 06:33:19 +0000473D rotation as an \ref AngleAxis "angle + axis"</td><td>\code
Gael Guennebaud57207232011-11-01 09:40:51 +010048AngleAxis<float> aa(angle_in_radian, Vector3f(ax,ay,az));\endcode
49<span class="note">The axis vector must be normalized.</span></td></tr>
Gael Guennebaud99462972008-08-31 17:30:09 +000050<tr><td>
Gael Guennebaud6825c8d2008-09-01 06:33:19 +0000513D rotation as a \ref Quaternion "quaternion"</td><td>\code
Gael Guennebaud5b71d442011-05-28 22:12:15 +020052Quaternion<float> q; q = AngleAxis<float>(angle_in_radian, axis);\endcode</td></tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +020053<tr class="alt"><td>
Gael Guennebaud99462972008-08-31 17:30:09 +000054N-D Scaling</td><td>\code
55Scaling<float,2>(sx, sy)
56Scaling<float,3>(sx, sy, sz)
57Scaling<float,N>(s)
58Scaling<float,N>(vecN)\endcode</td></tr>
59<tr><td>
60N-D Translation</td><td>\code
61Translation<float,2>(tx, ty)
62Translation<float,3>(tx, ty, tz)
63Translation<float,N>(s)
64Translation<float,N>(vecN)\endcode</td></tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +020065<tr class="alt"><td>
Gael Guennebaud99462972008-08-31 17:30:09 +000066N-D \ref TutorialGeoTransform "Affine transformation"</td><td>\code
Gael Guennebaudb5f32832010-10-06 13:27:14 +020067Transform<float,N,Affine> t = concatenation_of_any_transformations;
68Transform<float,3,Affine> t = Translation3f(p) * AngleAxisf(a,axis) * Scaling3f(s);\endcode</td></tr>
Gael Guennebaud99462972008-08-31 17:30:09 +000069<tr><td>
70N-D Linear transformations \n
71<em class=note>(pure rotations, \n scaling, etc.)</em></td><td>\code
72Matrix<float,N> t = concatenation_of_rotations_and_scalings;
73Matrix<float,2> t = Rotation2Df(a) * Scaling2f(s);
74Matrix<float,3> t = AngleAxisf(a,axis) * Scaling3f(s);\endcode</td></tr>
75</table>
76
77<strong>Notes on rotations</strong>\n To transform more than a single vector the preferred
78representations are rotation matrices, while for other usages Quaternion is the
79representation of choice as they are compact, fast and stable. Finally Rotation2D and
80AngleAxis are mainly convenient types to create other rotation objects.
81
Tim Holy16a2d892011-06-20 22:47:58 -050082<strong>Notes on Translation and Scaling</strong>\n Like AngleAxis, these classes were
Gael Guennebaud99462972008-08-31 17:30:09 +000083designed to simplify the creation/initialization of linear (Matrix) and affine (Transform)
84transformations. Nevertheless, unlike AngleAxis which is inefficient to use, these classes
85might still be interesting to write generic and efficient algorithms taking as input any
86kind of transformations.
87
88Any of the above transformation types can be converted to any other types of the same nature,
Gael Guennebaud582c1f92008-11-22 19:51:05 +000089or to a more generic type. Here are some additional examples:
Gael Guennebaudf66fe262010-10-19 11:40:49 +020090<table class="manual">
Gael Guennebaud99462972008-08-31 17:30:09 +000091<tr><td>\code
Gael Guennebaud5b71d442011-05-28 22:12:15 +020092Rotation2Df r; r = Matrix2f(..); // assumes a pure rotation matrix
93AngleAxisf aa; aa = Quaternionf(..);
94AngleAxisf aa; aa = Matrix3f(..); // assumes a pure rotation matrix
95Matrix2f m; m = Rotation2Df(..);
96Matrix3f m; m = Quaternionf(..); Matrix3f m; m = Scaling3f(..);
97Affine3f m; m = AngleAxis3f(..); Affine3f m; m = Scaling3f(..);
98Affine3f m; m = Translation3f(..); Affine3f m; m = Matrix3f(..);
Gael Guennebaud99462972008-08-31 17:30:09 +000099\endcode</td></tr>
100</table>
101
102
103<a href="#" class="top">top</a>\section TutorialGeoCommontransformationAPI Common API across transformation types
104
Gael Guennebauda4487ef2009-02-05 21:19:40 +0000105To some extent, Eigen's \ref Geometry_Module "geometry module" allows you to write
Gael Guennebaud99462972008-08-31 17:30:09 +0000106generic algorithms working on any kind of transformation representations:
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200107<table class="manual">
Gael Guennebaud99462972008-08-31 17:30:09 +0000108<tr><td>
109Concatenation of two transformations</td><td>\code
110gen1 * gen2;\endcode</td></tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200111<tr class="alt"><td>Apply the transformation to a vector</td><td>\code
Gael Guennebaud99462972008-08-31 17:30:09 +0000112vec2 = gen1 * vec1;\endcode</td></tr>
113<tr><td>Get the inverse of the transformation</td><td>\code
114gen2 = gen1.inverse();\endcode</td></tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200115<tr class="alt"><td>Spherical interpolation \n (Rotation2D and Quaternion only)</td><td>\code
Gael Guennebaud99462972008-08-31 17:30:09 +0000116rot3 = rot1.slerp(alpha,rot2);\endcode</td></tr>
117</table>
118
119
120
121<a href="#" class="top">top</a>\section TutorialGeoTransform Affine transformations
122Generic affine transformations are represented by the Transform class which internaly
123is a (Dim+1)^2 matrix. In Eigen we have chosen to not distinghish between points and
124vectors such that all points are actually represented by displacement vectors from the
125origin ( \f$ \mathbf{p} \equiv \mathbf{p}-0 \f$ ). With that in mind, real points and
126vector distinguish when the transformation is applied.
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200127<table class="manual">
Gael Guennebaud99462972008-08-31 17:30:09 +0000128<tr><td>
129Apply the transformation to a \b point </td><td>\code
130VectorNf p1, p2;
131p2 = t * p1;\endcode</td></tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200132<tr class="alt"><td>
Gael Guennebaud99462972008-08-31 17:30:09 +0000133Apply the transformation to a \b vector </td><td>\code
134VectorNf vec1, vec2;
135vec2 = t.linear() * vec1;\endcode</td></tr>
136<tr><td>
137Apply a \em general transformation \n to a \b normal \b vector
138(<a href="http://www.cgafaq.info/wiki/Transforming_normals">explanations</a>)</td><td>\code
139VectorNf n1, n2;
140MatrixNf normalMatrix = t.linear().inverse().transpose();
141n2 = (normalMatrix * n1).normalized();\endcode</td></tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200142<tr class="alt"><td>
Gael Guennebaud99462972008-08-31 17:30:09 +0000143Apply a transformation with \em pure \em rotation \n to a \b normal \b vector
144(no scaling, no shear)</td><td>\code
145n2 = t.linear() * n1;\endcode</td></tr>
146<tr><td>
147OpenGL compatibility \b 3D </td><td>\code
148glLoadMatrixf(t.data());\endcode</td></tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200149<tr class="alt"><td>
Gael Guennebaud99462972008-08-31 17:30:09 +0000150OpenGL compatibility \b 2D </td><td>\code
Jitse Niesene0a6ce52011-09-19 21:57:26 +0100151Affine3f aux(Affine3f::Identity());
Benoit Jacob9962c592010-04-22 14:11:18 -0400152aux.linear().topLeftCorner<2,2>() = t.linear();
Gael Guennebaud99462972008-08-31 17:30:09 +0000153aux.translation().start<2>() = t.translation();
154glLoadMatrixf(aux.data());\endcode</td></tr>
155</table>
156
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200157\b Component \b accessors
158<table class="manual">
Gael Guennebaud99462972008-08-31 17:30:09 +0000159<tr><td>
160full read-write access to the internal matrix</td><td>\code
161t.matrix() = matN1xN1; // N1 means N+1
162matN1xN1 = t.matrix();
163\endcode</td></tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200164<tr class="alt"><td>
Gael Guennebaud99462972008-08-31 17:30:09 +0000165coefficient accessors</td><td>\code
166t(i,j) = scalar; <=> t.matrix()(i,j) = scalar;
167scalar = t(i,j); <=> scalar = t.matrix()(i,j);
168\endcode</td></tr>
169<tr><td>
170translation part</td><td>\code
171t.translation() = vecN;
172vecN = t.translation();
173\endcode</td></tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200174<tr class="alt"><td>
Gael Guennebaud99462972008-08-31 17:30:09 +0000175linear part</td><td>\code
176t.linear() = matNxN;
177matNxN = t.linear();
178\endcode</td></tr>
179<tr><td>
180extract the rotation matrix</td><td>\code
181matNxN = t.extractRotation();
182\endcode</td></tr>
183</table>
184
185
186\b Transformation \b creation \n
187While transformation objects can be created and updated concatenating elementary transformations,
188the Transform class also features a procedural API:
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200189<table class="manual">
Tim Holy16a2d892011-06-20 22:47:58 -0500190<tr><th></th><th>procedural API</th><th>equivalent natural API </th></tr>
Gael Guennebaud99462972008-08-31 17:30:09 +0000191<tr><td>Translation</td><td>\code
192t.translate(Vector_(tx,ty,..));
193t.pretranslate(Vector_(tx,ty,..));
194\endcode</td><td>\code
195t *= Translation_(tx,ty,..);
196t = Translation_(tx,ty,..) * t;
197\endcode</td></tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200198<tr class="alt"><td>\b Rotation \n <em class="note">In 2D and for the procedural API, any_rotation can also \n be an angle in radian</em></td><td>\code
Gael Guennebaud99462972008-08-31 17:30:09 +0000199t.rotate(any_rotation);
200t.prerotate(any_rotation);
201\endcode</td><td>\code
202t *= any_rotation;
203t = any_rotation * t;
204\endcode</td></tr>
205<tr><td>Scaling</td><td>\code
206t.scale(Vector_(sx,sy,..));
207t.scale(s);
208t.prescale(Vector_(sx,sy,..));
209t.prescale(s);
210\endcode</td><td>\code
211t *= Scaling_(sx,sy,..);
212t *= Scaling_(s);
213t = Scaling_(sx,sy,..) * t;
214t = Scaling_(s) * t;
215\endcode</td></tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200216<tr class="alt"><td>Shear transformation \n ( \b 2D \b only ! )</td><td>\code
Gael Guennebaud99462972008-08-31 17:30:09 +0000217t.shear(sx,sy);
218t.preshear(sx,sy);
219\endcode</td><td></td></tr>
220</table>
221
222Note that in both API, any many transformations can be concatenated in a single expression as shown in the two following equivalent examples:
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200223<table class="manual">
Gael Guennebaud99462972008-08-31 17:30:09 +0000224<tr><td>\code
225t.pretranslate(..).rotate(..).translate(..).scale(..);
226\endcode</td></tr>
227<tr><td>\code
228t = Translation_(..) * t * RotationType(..) * Translation_(..) * Scaling_(..);
229\endcode</td></tr>
230</table>
231
232
233
234<a href="#" class="top">top</a>\section TutorialGeoEulerAngles Euler angles
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200235<table class="manual">
Gael Guennebaud99462972008-08-31 17:30:09 +0000236<tr><td style="max-width:30em;">
237Euler angles might be convenient to create rotation objects.
Tim Holy16a2d892011-06-20 22:47:58 -0500238On the other hand, since there exist 24 different conventions, they are pretty confusing to use. This example shows how
Gael Guennebaud99462972008-08-31 17:30:09 +0000239to create a rotation matrix according to the 2-1-2 convention.</td><td>\code
240Matrix3f m;
241m = AngleAxisf(angle1, Vector3f::UnitZ())
242* * AngleAxisf(angle2, Vector3f::UnitY())
243* * AngleAxisf(angle3, Vector3f::UnitZ());
244\endcode</td></tr>
245</table>
246
Gael Guennebaud41ea92d2010-07-04 10:14:47 +0200247\li \b Next: \ref TutorialSparse
248
Gael Guennebaud99462972008-08-31 17:30:09 +0000249*/
250
251}