blob: 3a718288304bd3b63fe02ef937f5f35db98545d3 [file] [log] [blame]
Gael Guennebaud86a19262009-01-16 17:20:12 +00001namespace Eigen {
2
Jitse Niesen90735b62009-08-22 20:12:47 +01003/** \page TutorialSparse Tutorial 4/4 - Getting started with the sparse module
Gael Guennebaud86a19262009-01-16 17:20:12 +00004 \ingroup Tutorial
5
6<div class="eimainmenu">\ref index "Overview"
7 | \ref TutorialCore "Core features"
8 | \ref TutorialGeometry "Geometry"
9 | \ref TutorialAdvancedLinearAlgebra "Advanced linear algebra"
10 | \b Sparse \b matrix
11</div>
12
13\b Table \b of \b contents \n
14 - \ref TutorialSparseIntro
15 - \ref TutorialSparseFilling
16 - \ref TutorialSparseFeatureSet
17 - \ref TutorialSparseDirectSolvers
18<hr>
19
Gael Guennebaud25f16582009-01-21 17:44:58 +000020\section TutorialSparseIntro Sparse matrix representations
Gael Guennebaud86a19262009-01-16 17:20:12 +000021
22In many applications (e.g., finite element methods) it is common to deal with very large matrices where only a few coefficients are different than zero. Both in term of memory consumption and performance, it is fundamental to use an adequate representation storing only nonzero coefficients. Such a matrix is called a sparse matrix.
23
Gael Guennebaud25f16582009-01-21 17:44:58 +000024\b Declaring \b sparse \b matrices \b and \b vectors \n
25The SparseMatrix class is the main sparse matrix representation of the Eigen's sparse module which offers high performance, low memory usage, and compatibility with most of sparse linear algebra packages. Because of its limited flexibility, we also provide a DynamicSparseMatrix variante taillored for low-level sparse matrix assembly. Both of them can be either row major or column major:
26
27\code
28#include <Eigen/Sparse>
29SparseMatrix<std::complex<float> > m1(1000,2000); // declare a 1000x2000 col-major compressed sparse matrix of complex<float>
30SparseMatrix<double,RowMajor> m2(1000,2000); // declare a 1000x2000 row-major compressed sparse matrix of double
31DynamicSparseMatrix<std::complex<float> > m1(1000,2000); // declare a 1000x2000 col-major dynamic sparse matrix of complex<float>
32DynamicSparseMatrix<double,RowMajor> m2(1000,2000); // declare a 1000x2000 row-major dynamic sparse matrix of double
33\endcode
34
35Although a sparse matrix could also be used to represent a sparse vector, for that purpose it is better to use the specialized SparseVector class:
36\code
37SparseVector<std::complex<float> > v1(1000); // declare a column sparse vector of complex<float> of size 1000
38SparseVector<double,RowMajor> v2(1000); // declare a row sparse vector of double of size 1000
39\endcode
40Note that here the size of a vector denotes its dimension and not the number of nonzero coefficients which is initially zero (like sparse matrices).
41
42
43\b Overview \b of \b the \b internal \b sparse \b storage \n
44In order to get the best of the Eigen's sparse objects, it is important to have a rough idea of the way they are internally stored. The SparseMatrix class implements the common and generic Compressed Column/Row Storage scheme. It consists of three compact arrays storing the values with their respective inner coordinates, and pointer indices to the begining of each outer vector. For instance, let \c m be a column-major sparse matrix. Then its nonzero coefficients are sequentially stored in memory in a column-major order (\em values). A second array of integer stores the respective row index of each coefficient (\em inner \em indices). Finally, a third array of integer, having the same length than the number of columns, stores the index in the previous arrays of the first element of each column (\em outer \em indices).
Gael Guennebaud86a19262009-01-16 17:20:12 +000045
46Here is an example, with the matrix:
47<table>
48<tr><td>0</td><td>3</td><td>0</td><td>0</td><td>0</td></tr>
49<tr><td>22</td><td>0</td><td>0</td><td>0</td><td>17</td></tr>
50<tr><td>7</td><td>5</td><td>0</td><td>1</td><td>0</td></tr>
51<tr><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>
52<tr><td>0</td><td>0</td><td>14</td><td>0</td><td>8</td></tr>
53</table>
54
55and its internal representation using the Compressed Column Storage format:
56<table>
57<tr><td>Values:</td> <td>22</td><td>7</td><td>3</td><td>5</td><td>14</td><td>1</td><td>17</td><td>8</td></tr>
58<tr><td>Inner indices:</td> <td> 1</td><td>2</td><td>0</td><td>2</td><td> 4</td><td>2</td><td> 1</td><td>4</td></tr>
59</table>
60Outer indices:<table><tr><td>0</td><td>2</td><td>4</td><td>5</td><td>6</td><td>\em 7 </td></tr></table>
61
Gael Guennebaud25f16582009-01-21 17:44:58 +000062As you can guess, here the storage order is even more important than with dense matrix. We will therefore often make a clear difference between the \em inner and \em outer dimensions. For instance, it is easy to loop over the coefficients of an \em inner \em vector (e.g., a column of a column-major matrix), but completely inefficient to do the same for an \em outer \em vector (e.g., a row of a col-major matrix).
Gael Guennebaud86a19262009-01-16 17:20:12 +000063
Gael Guennebaud25f16582009-01-21 17:44:58 +000064The SparseVector class implements the same compressed storage scheme but, of course, without any outer index buffer.
Gael Guennebaud86a19262009-01-16 17:20:12 +000065
Gael Guennebaud25f16582009-01-21 17:44:58 +000066Since all nonzero coefficients of such a matrix are sequentially stored in memory, random insertion of new nonzeros can be extremely costly. To overcome this limitation, Eigen's sparse module provides a DynamicSparseMatrix class which is basically implemented as an array of SparseVector. In other words, a DynamicSparseMatrix is a SparseMatrix where the values and inner-indices arrays have been splitted into multiple small and resizable arrays. Assuming the number of nonzeros per inner vector is relatively low, this slight modification allow for very fast random insertion at the cost of a slight memory overhead and a lost of compatibility with other sparse libraries used by some of our highlevel solvers. Note that the major memory overhead comes from the extra memory preallocated by each inner vector to avoid an expensive memory reallocation at every insertion.
Gael Guennebaud86a19262009-01-16 17:20:12 +000067
Gael Guennebaud25f16582009-01-21 17:44:58 +000068To summarize, it is recommanded to use a SparseMatrix whenever this is possible, and reserve the use of DynamicSparseMatrix for matrix assembly purpose when a SparseMatrix is not flexible enough. The respective pro/cons of both representations are summarized in the following table:
69
70<table>
71<tr><td></td> <td>SparseMatrix</td><td>DynamicSparseMatrix</td></tr>
72<tr><td>memory usage</td><td>***</td><td>**</td></tr>
73<tr><td>sorted insertion</td><td>***</td><td>***</td></tr>
74<tr><td>random insertion \n in sorted inner vector</td><td>**</td><td>**</td></tr>
75<tr><td>sorted insertion \n in random inner vector</td><td>-</td><td>***</td></tr>
76<tr><td>random insertion</td><td>-</td><td>**</td></tr>
77<tr><td>coeff wise unary operators</td><td>***</td><td>***</td></tr>
78<tr><td>coeff wise binary operators</td><td>***</td><td>***</td></tr>
79<tr><td>matrix products</td><td>***</td><td>**(*)</td></tr>
80<tr><td>transpose</td><td>**</td><td>***</td></tr>
81<tr><td>redux</td><td>***</td><td>**</td></tr>
82<tr><td>*= scalar</td><td>***</td><td>**</td></tr>
83<tr><td>Compatibility with highlevel solvers \n (TAUCS, Cholmod, SuperLU, UmfPack)</td><td>***</td><td>-</td></tr>
84</table>
85
Gael Guennebaud86a19262009-01-16 17:20:12 +000086
87\b Matrix \b and \b vector \b properties \n
88
Gael Guennebaud25f16582009-01-21 17:44:58 +000089Here mat and vec represents any sparse-matrix and sparse-vector types respectively.
90
Gael Guennebaud86a19262009-01-16 17:20:12 +000091<table>
92<tr><td>Standard \n dimensions</td><td>\code
93mat.rows()
94mat.cols()\endcode</td>
95<td>\code
96vec.size() \endcode</td>
97</tr>
98<tr><td>Sizes along the \n inner/outer dimensions</td><td>\code
99mat.innerSize()
100mat.outerSize()\endcode</td>
101<td></td>
102</tr>
103<tr><td>Number of non \n zero coefficiens</td><td>\code
104mat.nonZeros() \endcode</td>
105<td>\code
106vec.nonZeros() \endcode</td></tr>
107</table>
108
Gael Guennebaud25f16582009-01-21 17:44:58 +0000109
Gael Guennebaud86a19262009-01-16 17:20:12 +0000110\b Iterating \b over \b the \b nonzero \b coefficients \n
111
112Iterating over the coefficients of a sparse matrix can be done only in the same order than the storage order. Here is an example:
113<table>
114<tr><td>
115\code
Gael Guennebaud25f16582009-01-21 17:44:58 +0000116SparseMatrixType mat(rows,cols);
117for (int k=0; k\<m1.outerSize(); ++k)
118 for (SparseMatrixType::InnerIterator it(mat,k); it; ++it)
Gael Guennebaud86a19262009-01-16 17:20:12 +0000119 {
120 it.value();
121 it.row(); // row index
122 it.col(); // col index (here it is equal to k)
123 it.index(); // inner index, here it is equal to it.row()
124 }
125\endcode
126</td><td>
127\code
Gael Guennebaud25f16582009-01-21 17:44:58 +0000128SparseVector<double> vec(size);
129for (SparseVector<double>::InnerIterator it(vec); it; ++it)
Gael Guennebaud86a19262009-01-16 17:20:12 +0000130{
Gael Guennebaud25f16582009-01-21 17:44:58 +0000131 it.value(); // == vec[ it.index() ]
Gael Guennebaud86a19262009-01-16 17:20:12 +0000132 it.index();
133}
134\endcode
135</td></tr>
136</table>
137
138
139\section TutorialSparseFilling Filling a sparse matrix
140
Gael Guennebaud25f16582009-01-21 17:44:58 +0000141A DynamicSparseMatrix object can be set and updated just like any dense matrix using the coeffRef(row,col) method. If the coefficient is not stored yet, then it will be inserted in the matrix. Here is an example:
142\code
143DynamicSparseMatrix<float> aux(1000,1000);
144for (...)
145 for each i
146 for each j interacting with i
147 aux.coeffRef(i,j) += foo(o1,o2);
148SparseMatrix<float> mat(aux); // convert the DynamicSparseMatrix to a SparseMatrix
149\endcode
150
151Sometimes, however, we simply want to set all the coefficients of a matrix before using it through standard matrix operations (addition, product, etc.). In that case it faster to use the low-level startFill()/fill()/fillrand()/endFill() interface. Even though this interface is availabe for both sparse matrix types, their respective restrictions slightly differ from one representation to the other. In all case, a call to startFill() set the matrix to zero, and the fill*() functions will fail if the coefficient already exist.
152
153As a first difference, for SparseMatrix, the fill*() functions can only be called inside a startFill()/endFill() pair, and no other member functions are allowed during the filling process, i.e., until endFill() has been called. On the other hand, a DynamicSparseMatrix is always in a stable state, and the startFill()/endFill() functions are only for compatibility purpose.
154
155Another difference is that the fill*() functions must be called with increasing outer indices for a SparseMatrix, while they can be random for a DynamicSparseMatrix.
156
157Finally, the fill() function assumes the coefficient are inserted in a sorted order per inner vector, while the fillrand() variante allows random insertions (the outer indices must still be sorted for SparseMatrix).
158
159Some examples:
Gael Guennebaud86a19262009-01-16 17:20:12 +0000160
1611 - If you can set the coefficients in exactly the same order that the storage order, then the matrix can be filled directly and very efficiently. Here is an example initializing a random, row-major sparse matrix:
162\code
163SparseMatrix<double,RowMajor> m(rows,cols);
164m.startFill(rows*cols*percent_of_non_zero); // estimate of the number of nonzeros (optional)
165for (int i=0; i\<rows; ++i)
166 for (int j=0; j\<cols; ++j)
167 if (rand()\<percent_of_non_zero)
168 m.fill(i,j) = rand();
169m.endFill();
170\endcode
171
1722 - If you can set each outer vector in a consistent order, but do not have sorted data for each inner vector, then you can use fillrand() instead of fill():
173\code
174SparseMatrix<double,RowMajor> m(rows,cols);
175m.startFill(rows*cols*percent_of_non_zero); // estimate of the number of nonzeros (optional)
176for (int i=0; i\<rows; ++i)
177 for (int k=0; k\<cols*percent_of_non_zero; ++k)
178 m.fillrand(i,rand(0,cols)) = rand();
179m.endFill();
180\endcode
181The fillrand() function performs a sorted insertion into an array sequentially stored in memory and requires a copy of all coefficients stored after its target position. This method is therefore reserved for matrices having only a few elements per row/column (up to 50) and works better if the insertion are almost sorted.
182
1833 - Eventually, if none of the above solution is practicable for you, then you have to use a RandomSetter which temporarily wraps the matrix into a more flexible hash map allowing complete random accesses:
184\code
185SparseMatrix<double,RowMajor> m(rows,cols);
186{
187 RandomSetter<SparseMatrix<double,RowMajor> > setter(m);
188 for (int k=0; k\<cols*rows*percent_of_non_zero; ++k)
189 setter(rand(0,rows), rand(0,cols)) = rand();
190}
191\endcode
192The matrix \c m is set at the destruction of the setter, hence the use of a nested block. This imposed syntax has the advantage to emphasize the critical section where m is not valid and cannot be used.
193
194
195\section TutorialSparseFeatureSet Supported operators and functions
196
197In the following \em sm denote a sparse matrix, \em sv a sparse vector, \em dm a dense matrix, and \em dv a dense vector.
198In Eigen's sparse module we chose to expose only the subset of the dense matrix API which can be efficiently implemented. Moreover, all combinations are not always possible. For instance, it is not possible to add two sparse matrices having two different storage order. On the other hand it is perfectly fine to evaluate a sparse matrix/expression to a matrix having a different storage order:
199\code
200SparseMatrixType sm1, sm2, sm3;
201sm3 = sm1.transpose() + sm2; // invalid
202sm3 = SparseMatrixType(sm1.transpose()) + sm2; // correct
203\endcode
204
205Here are some examples of the supported operations:
206\code
207s_1 *= 0.5;
208sm4 = sm1 + sm2 + sm3; // only if s_1, s_2 and s_3 have the same storage order
209sm3 = sm1 * sm2;
210dv3 = sm1 * dv2;
211dm3 = sm1 * dm2;
212dm3 = dm2 * sm1;
213sm3 = sm1.cwise() * sm2; // only if s_1 and s_2 have the same storage order
214dv2 = sm1.marked<UpperTriangular>().solveTriangular(dv2);
215\endcode
216
217The product of a sparse matrix A time a dense matrix/vector dv with A symmetric can be optimized by telling that to Eigen:
218\code
219res = A.marked<SeflAdjoint>() * dv; // if all coefficients of A are stored
220res = A.marked<SeflAdjoint|UpperTriangular>() * dv; // if only the upper part of A is stored
221res = A.marked<SeflAdjoint|LowerTriangular>() * dv; // if only the lower part of A is stored
222\endcode
223
224
225\section TutorialSparseDirectSolvers Using the direct solvers
226
227TODO
228
229\subsection TutorialSparseDirectSolvers_LLT LLT
230Cholmod, Taucs.
231
232\subsection TutorialSparseDirectSolvers_LDLT LDLT
233
234
235\subsection TutorialSparseDirectSolvers_LU LU
236SuperLU, UmfPack.
237
238*/
239
240}