| namespace Eigen { |
| |
| /** \page TutorialGeometry Tutorial 2/3 - Geometry |
| \ingroup Tutorial |
| |
| <div class="eimainmenu">\ref index "Overview" |
| | \ref TutorialCore "Core features" |
| | \b Geometry |
| | \ref TutorialAdvancedLinearAlgebra "Advanced linear algebra" |
| </div> |
| |
| In this tutorial chapter we will shortly introduce the many possibilities offered by the \ref GeometryModule "geometry module", |
| namely 2D and 3D rotations and affine transformations. |
| |
| \b Table \b of \b contents |
| - \ref TutorialGeoElementaryTransformations |
| - \ref TutorialGeoCommontransformationAPI |
| - \ref TutorialGeoTransform |
| - \ref TutorialGeoEulerAngles |
| |
| \section TutorialGeoElementaryTransformations Transformation types |
| |
| <table class="tutorial_code"> |
| <tr><td>Transformation type</td><td>Typical initialization code</td></tr> |
| <tr><td> |
| \ref Rotation2D "2D rotation" from an angle</td><td>\code |
| Rotation2D<float> rot2(angle_in_radian);\endcode</td></tr> |
| <tr><td> |
| 3D rotation as an \ref AngleAxis "angle + axis"</td><td>\code |
| AngleAxis<float> aa(angle_in_radian, Vector3f(ax,ay,az));\endcode</td></tr> |
| <tr><td> |
| 3D rotation as a \ref Quaternion "quaternion"</td><td>\code |
| Quaternion<float> q = AngleAxis<float>(angle_in_radian, axis);\endcode</td></tr> |
| <tr><td> |
| N-D Scaling</td><td>\code |
| Scaling<float,2>(sx, sy) |
| Scaling<float,3>(sx, sy, sz) |
| Scaling<float,N>(s) |
| Scaling<float,N>(vecN)\endcode</td></tr> |
| <tr><td> |
| N-D Translation</td><td>\code |
| Translation<float,2>(tx, ty) |
| Translation<float,3>(tx, ty, tz) |
| Translation<float,N>(s) |
| Translation<float,N>(vecN)\endcode</td></tr> |
| <tr><td> |
| N-D \ref TutorialGeoTransform "Affine transformation"</td><td>\code |
| Transform<float,N> t = concatenation_of_any_transformations; |
| Transform<float,3> t = Translation3f(p) * AngleAxisf(a,axis) * Scaling3f(s);\endcode</td></tr> |
| <tr><td> |
| N-D Linear transformations \n |
| <em class=note>(pure rotations, \n scaling, etc.)</em></td><td>\code |
| Matrix<float,N> t = concatenation_of_rotations_and_scalings; |
| Matrix<float,2> t = Rotation2Df(a) * Scaling2f(s); |
| Matrix<float,3> t = AngleAxisf(a,axis) * Scaling3f(s);\endcode</td></tr> |
| </table> |
| |
| <strong>Notes on rotations</strong>\n To transform more than a single vector the preferred |
| representations are rotation matrices, while for other usages Quaternion is the |
| representation of choice as they are compact, fast and stable. Finally Rotation2D and |
| AngleAxis are mainly convenient types to create other rotation objects. |
| |
| <strong>Notes on Translation and Scaling</strong>\n Likewise AngleAxis, these classes were |
| designed to simplify the creation/initialization of linear (Matrix) and affine (Transform) |
| transformations. Nevertheless, unlike AngleAxis which is inefficient to use, these classes |
| might still be interesting to write generic and efficient algorithms taking as input any |
| kind of transformations. |
| |
| Any of the above transformation types can be converted to any other types of the same nature, |
| or to a more generic type. Here are come additional examples: |
| <table class="tutorial_code"> |
| <tr><td>\code |
| Rotation2Df r = Matrix2f(..); // assumes a pure rotation matrix |
| AngleAxisf aa = Quaternionf(..); |
| AngleAxisf aa = Matrix3f(..); // assumes a pure rotation matrix |
| Matrix2f m = Rotation2Df(..); |
| Matrix3f m = Quaternionf(..); Matrix3f m = Scaling3f(..); |
| Transform3f m = AngleAxis3f(..); Transform3f m = Scaling3f(..); |
| Transform3f m = Translation3f(..); Transform3f m = Matrix3f(..); |
| \endcode</td></tr> |
| </table> |
| |
| |
| <a href="#" class="top">top</a>\section TutorialGeoCommontransformationAPI Common API across transformation types |
| |
| To some extent, Eigen's \ref GeometryModule "geometry module" allows you to write |
| generic algorithms working on any kind of transformation representations: |
| <table class="tutorial_code"> |
| <tr><td> |
| Concatenation of two transformations</td><td>\code |
| gen1 * gen2;\endcode</td></tr> |
| <tr><td>Apply the transformation to a vector</td><td>\code |
| vec2 = gen1 * vec1;\endcode</td></tr> |
| <tr><td>Get the inverse of the transformation</td><td>\code |
| gen2 = gen1.inverse();\endcode</td></tr> |
| <tr><td>Spherical interpolation \n (Rotation2D and Quaternion only)</td><td>\code |
| rot3 = rot1.slerp(alpha,rot2);\endcode</td></tr> |
| </table> |
| |
| |
| |
| <a href="#" class="top">top</a>\section TutorialGeoTransform Affine transformations |
| Generic affine transformations are represented by the Transform class which internaly |
| is a (Dim+1)^2 matrix. In Eigen we have chosen to not distinghish between points and |
| vectors such that all points are actually represented by displacement vectors from the |
| origin ( \f$ \mathbf{p} \equiv \mathbf{p}-0 \f$ ). With that in mind, real points and |
| vector distinguish when the transformation is applied. |
| <table class="tutorial_code"> |
| <tr><td> |
| Apply the transformation to a \b point </td><td>\code |
| VectorNf p1, p2; |
| p2 = t * p1;\endcode</td></tr> |
| <tr><td> |
| Apply the transformation to a \b vector </td><td>\code |
| VectorNf vec1, vec2; |
| vec2 = t.linear() * vec1;\endcode</td></tr> |
| <tr><td> |
| Apply a \em general transformation \n to a \b normal \b vector |
| (<a href="http://www.cgafaq.info/wiki/Transforming_normals">explanations</a>)</td><td>\code |
| VectorNf n1, n2; |
| MatrixNf normalMatrix = t.linear().inverse().transpose(); |
| n2 = (normalMatrix * n1).normalized();\endcode</td></tr> |
| <tr><td> |
| Apply a transformation with \em pure \em rotation \n to a \b normal \b vector |
| (no scaling, no shear)</td><td>\code |
| n2 = t.linear() * n1;\endcode</td></tr> |
| <tr><td> |
| OpenGL compatibility \b 3D </td><td>\code |
| glLoadMatrixf(t.data());\endcode</td></tr> |
| <tr><td> |
| OpenGL compatibility \b 2D </td><td>\code |
| Transform3f aux(Transform3f::Identity); |
| aux.linear().corner<2,2>(TopLeft) = t.linear(); |
| aux.translation().start<2>() = t.translation(); |
| glLoadMatrixf(aux.data());\endcode</td></tr> |
| </table> |
| |
| \b Component \b accessors</td></tr> |
| <table class="tutorial_code"> |
| <tr><td> |
| full read-write access to the internal matrix</td><td>\code |
| t.matrix() = matN1xN1; // N1 means N+1 |
| matN1xN1 = t.matrix(); |
| \endcode</td></tr> |
| <tr><td> |
| coefficient accessors</td><td>\code |
| t(i,j) = scalar; <=> t.matrix()(i,j) = scalar; |
| scalar = t(i,j); <=> scalar = t.matrix()(i,j); |
| \endcode</td></tr> |
| <tr><td> |
| translation part</td><td>\code |
| t.translation() = vecN; |
| vecN = t.translation(); |
| \endcode</td></tr> |
| <tr><td> |
| linear part</td><td>\code |
| t.linear() = matNxN; |
| matNxN = t.linear(); |
| \endcode</td></tr> |
| <tr><td> |
| extract the rotation matrix</td><td>\code |
| matNxN = t.extractRotation(); |
| \endcode</td></tr> |
| </table> |
| |
| |
| \b Transformation \b creation \n |
| While transformation objects can be created and updated concatenating elementary transformations, |
| the Transform class also features a procedural API: |
| <table class="tutorial_code"> |
| <tr><td></td><td>\b procedurale \b API </td><td>\b equivalent \b natural \b API </td></tr> |
| <tr><td>Translation</td><td>\code |
| t.translate(Vector_(tx,ty,..)); |
| t.pretranslate(Vector_(tx,ty,..)); |
| \endcode</td><td>\code |
| t *= Translation_(tx,ty,..); |
| t = Translation_(tx,ty,..) * t; |
| \endcode</td></tr> |
| <tr><td>\b Rotation \n <em class="note">In 2D, any_rotation can also \n be an angle in radian</em></td><td>\code |
| t.rotate(any_rotation); |
| t.prerotate(any_rotation); |
| \endcode</td><td>\code |
| t *= any_rotation; |
| t = any_rotation * t; |
| \endcode</td></tr> |
| <tr><td>Scaling</td><td>\code |
| t.scale(Vector_(sx,sy,..)); |
| t.scale(s); |
| t.prescale(Vector_(sx,sy,..)); |
| t.prescale(s); |
| \endcode</td><td>\code |
| t *= Scaling_(sx,sy,..); |
| t *= Scaling_(s); |
| t = Scaling_(sx,sy,..) * t; |
| t = Scaling_(s) * t; |
| \endcode</td></tr> |
| <tr><td>Shear transformation \n ( \b 2D \b only ! )</td><td>\code |
| t.shear(sx,sy); |
| t.preshear(sx,sy); |
| \endcode</td><td></td></tr> |
| </table> |
| |
| Note that in both API, any many transformations can be concatenated in a single expression as shown in the two following equivalent examples: |
| <table class="tutorial_code"> |
| <tr><td>\code |
| t.pretranslate(..).rotate(..).translate(..).scale(..); |
| \endcode</td></tr> |
| <tr><td>\code |
| t = Translation_(..) * t * RotationType(..) * Translation_(..) * Scaling_(..); |
| \endcode</td></tr> |
| </table> |
| |
| |
| |
| <a href="#" class="top">top</a>\section TutorialGeoEulerAngles Euler angles |
| <table class="tutorial_code"> |
| <tr><td style="max-width:30em;"> |
| Euler angles might be convenient to create rotation objects. |
| On the other hand, since there exist 24 differents convensions,they are pretty confusing to use. This example shows how |
| to create a rotation matrix according to the 2-1-2 convention.</td><td>\code |
| Matrix3f m; |
| m = AngleAxisf(angle1, Vector3f::UnitZ()) |
| * * AngleAxisf(angle2, Vector3f::UnitY()) |
| * * AngleAxisf(angle3, Vector3f::UnitZ()); |
| \endcode</td></tr> |
| </table> |
| |
| */ |
| |
| } |