| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| |
| namespace Eigen { |
| |
| template<typename MatrixType> void adjoint(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| Transpose.h Conjugate.h Dot.h |
| */ |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::random(rows, cols), |
| m2 = MatrixType::random(rows, cols), |
| m3(rows, cols), |
| mzero = MatrixType::zero(rows, cols), |
| identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> |
| ::identity(rows, rows), |
| square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> |
| ::random(rows, rows); |
| VectorType v1 = VectorType::random(rows), |
| v2 = VectorType::random(rows), |
| v3 = VectorType::random(rows), |
| vzero = VectorType::zero(rows); |
| |
| Scalar s1 = ei_random<Scalar>(), |
| s2 = ei_random<Scalar>(); |
| |
| // check involutivity of adjoint, transpose, conjugate |
| VERIFY_IS_APPROX(m1.transpose().transpose(), m1); |
| VERIFY_IS_APPROX(m1.conjugate().conjugate(), m1); |
| VERIFY_IS_APPROX(m1.adjoint().adjoint(), m1); |
| |
| // check basic compatibility of adjoint, transpose, conjugate |
| VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); |
| VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); |
| if(!NumTraits<Scalar>::IsComplex) |
| VERIFY_IS_APPROX(m1.adjoint().transpose(), m1); |
| |
| // check multiplicative behavior |
| VERIFY_IS_APPROX((m1.transpose() * m2).transpose(), m2.transpose() * m1); |
| VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); |
| VERIFY_IS_APPROX((m1.transpose() * m2).conjugate(), m1.adjoint() * m2.conjugate()); |
| VERIFY_IS_APPROX((s1 * m1).transpose(), s1 * m1.transpose()); |
| VERIFY_IS_APPROX((s1 * m1).conjugate(), ei_conj(s1) * m1.conjugate()); |
| VERIFY_IS_APPROX((s1 * m1).adjoint(), ei_conj(s1) * m1.adjoint()); |
| |
| // check basic properties of dot, norm, norm2 |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| VERIFY_IS_APPROX((s1 * v1 + s2 * v2).dot(v3), s1 * v1.dot(v3) + s2 * v2.dot(v3)); |
| VERIFY_IS_APPROX(v3.dot(s1 * v1 + s2 * v2), ei_conj(s1)*v3.dot(v1)+ei_conj(s2)*v3.dot(v2)); |
| VERIFY_IS_APPROX(ei_conj(v1.dot(v2)), v2.dot(v1)); |
| VERIFY_IS_APPROX(ei_abs(v1.dot(v1)), v1.norm2()); |
| if(NumTraits<Scalar>::HasFloatingPoint) |
| VERIFY_IS_APPROX(v1.norm2(), v1.norm() * v1.norm()); |
| VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(vzero.dot(v1)), static_cast<RealScalar>(1)); |
| if(NumTraits<Scalar>::HasFloatingPoint) |
| VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); |
| |
| // check compatibility of dot and adjoint |
| VERIFY_IS_APPROX(v1.dot(square * v2), (square.adjoint() * v1).dot(v2)); |
| |
| // like in testBasicStuff, test operator() to check const-qualification |
| int r = ei_random<int>(0, rows-1), |
| c = ei_random<int>(0, cols-1); |
| VERIFY_IS_APPROX(m1.conjugate()(r,c), ei_conj(m1(r,c))); |
| VERIFY_IS_APPROX(m1.adjoint()(c,r), ei_conj(m1(r,c))); |
| |
| } |
| |
| void EigenTest::testAdjoint() |
| { |
| for(int i = 0; i < m_repeat; i++) { |
| adjoint(Matrix<float, 1, 1>()); |
| adjoint(Matrix4d()); |
| adjoint(MatrixXcf(3, 3)); |
| adjoint(MatrixXi(8, 12)); |
| adjoint(MatrixXcd(20, 20)); |
| } |
| // test a large matrix only once |
| adjoint(Matrix<float, 100, 100>()); |
| } |
| |
| } // namespace Eigen |