| |
| //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out |
| //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out |
| // -DNOGMM -DNOMTL -DCSPARSE |
| // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a |
| #ifndef SIZE |
| #define SIZE 1000000 |
| #endif |
| |
| #ifndef NBPERROW |
| #define NBPERROW 24 |
| #endif |
| |
| #ifndef REPEAT |
| #define REPEAT 1 |
| #endif |
| |
| #ifndef NOGOOGLE |
| #define EIGEN_GOOGLEHASH_SUPPORT |
| #include <google/sparse_hash_map> |
| #endif |
| |
| #include "BenchSparseUtil.h" |
| |
| |
| #define BENCH(X) \ |
| timer.reset(); \ |
| for (int _j=0; _j<NBTRIES; ++_j) { \ |
| timer.start(); \ |
| for (int _k=0; _k<REPEAT; ++_k) { \ |
| X \ |
| } timer.stop(); } |
| |
| typedef std::vector<Vector2i> Coordinates; |
| typedef std::vector<float> Values; |
| |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_mtl(const Coordinates& coords, const Values& vals); |
| |
| int main(int argc, char *argv[]) |
| { |
| int rows = SIZE; |
| int cols = SIZE; |
| //float density = float(NBPERROW)/float(SIZE); |
| |
| BenchTimer timer; |
| Coordinates coords; |
| Values values; |
| for (int i=0; i<cols*NBPERROW; ++i) |
| { |
| coords.push_back(Vector2i(ei_random<int>(0,rows-1),ei_random<int>(0,cols-1))); |
| values.push_back(ei_random<Scalar>()); |
| } |
| std::cout << "nnz = " << coords.size() << "\n"; |
| |
| // dense matrices |
| #ifdef DENSEMATRIX |
| { |
| timer.reset(); |
| timer.start(); |
| for (int k=0; k<REPEAT; ++k) |
| setrand_eigen_dense(coords,values); |
| timer.stop(); |
| std::cout << "Eigen Dense\t" << timer.value() << "\n"; |
| } |
| #endif |
| |
| // eigen sparse matrices |
| { |
| timer.reset(); |
| timer.start(); |
| for (int k=0; k<REPEAT; ++k) |
| setrand_eigen_gnu_hash(coords,values); |
| timer.stop(); |
| std::cout << "Eigen std::map\t" << timer.value() << "\n"; |
| } |
| #ifndef NOGOOGLE |
| { |
| timer.reset(); |
| timer.start(); |
| for (int k=0; k<REPEAT; ++k) |
| setrand_eigen_google_dense(coords,values); |
| timer.stop(); |
| std::cout << "Eigen google dense\t" << timer.value() << "\n"; |
| } |
| { |
| timer.reset(); |
| timer.start(); |
| for (int k=0; k<REPEAT; ++k) |
| setrand_eigen_google_sparse(coords,values); |
| timer.stop(); |
| std::cout << "Eigen google sparse\t" << timer.value() << "\n"; |
| } |
| #endif |
| |
| #ifndef NOUBLAS |
| { |
| timer.reset(); |
| timer.start(); |
| for (int k=0; k<REPEAT; ++k) |
| setrand_ublas_mapped(coords,values); |
| timer.stop(); |
| std::cout << "ublas mapped\t" << timer.value() << "\n"; |
| } |
| { |
| timer.reset(); |
| timer.start(); |
| for (int k=0; k<REPEAT; ++k) |
| setrand_ublas_genvec(coords,values); |
| timer.stop(); |
| std::cout << "ublas vecofvec\t" << timer.value() << "\n"; |
| } |
| /*{ |
| timer.reset(); |
| timer.start(); |
| for (int k=0; k<REPEAT; ++k) |
| setrand_ublas_compressed(coords,values); |
| timer.stop(); |
| std::cout << "ublas comp\t" << timer.value() << "\n"; |
| } |
| { |
| timer.reset(); |
| timer.start(); |
| for (int k=0; k<REPEAT; ++k) |
| setrand_ublas_coord(coords,values); |
| timer.stop(); |
| std::cout << "ublas coord\t" << timer.value() << "\n"; |
| }*/ |
| #endif |
| |
| |
| // MTL4 |
| #ifndef NOMTL |
| { |
| timer.reset(); |
| timer.start(); |
| for (int k=0; k<REPEAT; ++k) |
| setrand_mtl(coords,values); |
| timer.stop(); |
| std::cout << "MTL\t" << timer.value() << "\n"; |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals) |
| { |
| using namespace Eigen; |
| SparseMatrix<Scalar> mat(SIZE,SIZE); |
| { |
| RandomSetter<SparseMatrix<Scalar>, StdMapTraits > setter(mat); |
| for (int i=0; i<coords.size(); ++i) |
| { |
| setter(coords[i].x(), coords[i].y()) = vals[i]; |
| } |
| // std::cout << "check mem\n"; getchar(); |
| } |
| return 0;//&mat.coeffRef(coords[0].x(), coords[0].y()); |
| } |
| |
| #ifndef NOGOOGLE |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals) |
| { |
| using namespace Eigen; |
| SparseMatrix<Scalar> mat(SIZE,SIZE); |
| { |
| RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> setter(mat); |
| for (int i=0; i<coords.size(); ++i) |
| setter(coords[i].x(), coords[i].y()) = vals[i]; |
| // std::cout << "check mem\n"; getchar(); |
| } |
| return 0;//&mat.coeffRef(coords[0].x(), coords[0].y()); |
| } |
| |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals) |
| { |
| using namespace Eigen; |
| SparseMatrix<Scalar> mat(SIZE,SIZE); |
| { |
| RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> setter(mat); |
| for (int i=0; i<coords.size(); ++i) |
| setter(coords[i].x(), coords[i].y()) = vals[i]; |
| // std::cout << "check mem\n"; getchar(); |
| } |
| return 0;//&mat.coeffRef(coords[0].x(), coords[0].y()); |
| } |
| #endif |
| |
| #ifndef NOUBLAS |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals) |
| { |
| using namespace boost; |
| using namespace boost::numeric; |
| using namespace boost::numeric::ublas; |
| mapped_matrix<Scalar> aux(SIZE,SIZE); |
| for (int i=0; i<coords.size(); ++i) |
| { |
| aux(coords[i].x(), coords[i].y()) = vals[i]; |
| } |
| // std::cout << "check mem\n"; getchar(); |
| compressed_matrix<Scalar> mat(aux); |
| return 0;// &mat(coords[0].x(), coords[0].y()); |
| } |
| /*EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals) |
| { |
| using namespace boost; |
| using namespace boost::numeric; |
| using namespace boost::numeric::ublas; |
| coordinate_matrix<Scalar> aux(SIZE,SIZE); |
| for (int i=0; i<coords.size(); ++i) |
| { |
| aux(coords[i].x(), coords[i].y()) = vals[i]; |
| } |
| compressed_matrix<Scalar> mat(aux); |
| return 0;//&mat(coords[0].x(), coords[0].y()); |
| } |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals) |
| { |
| using namespace boost; |
| using namespace boost::numeric; |
| using namespace boost::numeric::ublas; |
| compressed_matrix<Scalar> mat(SIZE,SIZE); |
| for (int i=0; i<coords.size(); ++i) |
| { |
| mat(coords[i].x(), coords[i].y()) = vals[i]; |
| } |
| return 0;//&mat(coords[0].x(), coords[0].y()); |
| }*/ |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals) |
| { |
| using namespace boost; |
| using namespace boost::numeric; |
| using namespace boost::numeric::ublas; |
| |
| // ublas::vector<coordinate_vector<Scalar> > foo; |
| generalized_vector_of_vector<Scalar, row_major, ublas::vector<coordinate_vector<Scalar> > > aux(SIZE,SIZE); |
| for (int i=0; i<coords.size(); ++i) |
| { |
| aux(coords[i].x(), coords[i].y()) = vals[i]; |
| } |
| compressed_matrix<Scalar,row_major> mat(aux); |
| return 0;//&mat(coords[0].x(), coords[0].y()); |
| } |
| #endif |
| |
| #ifndef NOMTL |
| EIGEN_DONT_INLINE void setrand_mtl(const Coordinates& coords, const Values& vals); |
| #endif |
| |