| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <Eigen/Array> |
| |
| template<typename MatrixType> void scalarAdd(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| Array.cpp |
| */ |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::random(rows, cols), |
| m2 = MatrixType::random(rows, cols), |
| m3(rows, cols); |
| |
| Scalar s1 = ei_random<Scalar>(), |
| s2 = ei_random<Scalar>(); |
| |
| VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise()); |
| VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::constant(rows,cols,s1) + m1); |
| VERIFY_IS_APPROX((m1*Scalar(2)).cwise() - s2, (m1+m1) - MatrixType::constant(rows,cols,s2) ); |
| m3 = m1; |
| m3.cwise() += s2; |
| VERIFY_IS_APPROX(m3, m1.cwise() + s2); |
| m3 = m1; |
| m3.cwise() -= s1; |
| VERIFY_IS_APPROX(m3, m1.cwise() - s1); |
| |
| VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum()); |
| VERIFY_IS_APPROX(m1.rowwise().sum().sum(), m1.sum()); |
| VERIFY_IS_NOT_APPROX((m1.rowwise().sum()*2).sum(), m1.sum()); |
| VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(ei_scalar_sum_op<Scalar>())); |
| } |
| |
| template<typename MatrixType> void comparisons(const MatrixType& m) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| int r = ei_random<int>(0, rows-1), |
| c = ei_random<int>(0, cols-1); |
| |
| MatrixType m1 = MatrixType::random(rows, cols), |
| m2 = MatrixType::random(rows, cols), |
| m3(rows, cols); |
| |
| VERIFY(((m1.cwise() + Scalar(1)).cwise() > m1).all()); |
| VERIFY(((m1.cwise() - Scalar(1)).cwise() < m1).all()); |
| if (rows*cols>1) |
| { |
| m3 = m1; |
| m3(r,c) += 1; |
| VERIFY(! (m1.cwise() < m3).all() ); |
| VERIFY(! (m1.cwise() > m3).all() ); |
| } |
| } |
| |
| void test_array() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST( scalarAdd(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST( scalarAdd(Matrix2f()) ); |
| CALL_SUBTEST( scalarAdd(Matrix4d()) ); |
| CALL_SUBTEST( scalarAdd(MatrixXcf(3, 3)) ); |
| CALL_SUBTEST( scalarAdd(MatrixXf(8, 12)) ); |
| CALL_SUBTEST( scalarAdd(MatrixXi(8, 12)) ); |
| } |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST( comparisons(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST( comparisons(Matrix2f()) ); |
| CALL_SUBTEST( comparisons(Matrix4d()) ); |
| CALL_SUBTEST( comparisons(MatrixXf(8, 12)) ); |
| CALL_SUBTEST( comparisons(MatrixXi(8, 12)) ); |
| } |
| } |